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Abstract

Many life-history traits, like the age at maturity or adult longevity, are important deter-
minants of the generation time. For instance, semelparous species whose adults reproduce
once and die have shorter generation times than iteroparous species that reproduce on several
occasions. A shorter generation time ensures a higher growth rate in stable environments
where resources are in excess, and is therefore a positively selected feature in this (rarely met)
situation. In a stable and limiting environment, all combination of traits (or strategies) that
produce the same number of viable offspring on average are strictly neutral even when their
generation times differ. We first study the evolution of life-history strategies with different
generation times in this context, and show that those with the longest generation time rep-
resent the most likely evolutionary outcomes. Indeed, strategies with longer generation times
generate fewer mutants per time unit, which makes them less likely to be replaced within a
given time period. This ‘turnover bias’ inevitably exists and favors the evolution of strate-
gies with long generation times. Its real impact, however, should depend on the strength
and direction of other evolutionary forces; selection for short generation times, for instance,
may oppose turnover bias. Likewise, the evolutionary outcome depends on the strength of
such selection and population size, comparably to other biases acting on the occurrence of
mutations.

Introduction

Generation time is a major feature of organisms, whose evolution is usually considered through the prism
of life-history strategies – i.e. combinations of traits that often impact generation time, like adult survival
or the age of reproductive maturity. Why there exist populations or species with long generation times
can be intriguing, as in a stable non-limiting environment the most evolutionary successful strategy is the
one that grows most rapidly [1, 2]. Life-history strategies that reduce generation time – “fast strategies”
hereafter – thus benefit from a selective advantage over “slow strategies” in this context. Whenever
population growth is limited, however, the advantage to a fast strategy may vanish. In this context, the
selective advantage of a mutant is given by the number of viable offspring it is expected to produce, also
known as its net reproductive rate R0 [3–5]: whether the mutant breeds shortly or not, or produces few
or many litters, is not seen by selection.

Many life-history traits influence both the generation time and the R0, such that their evolutionary
dynamics are often thought to be dominated by selection [6]. Nonetheless, heritable changes in life-history
traits may not necessarily be filtered stringently by selection because negative relationships (trade-offs)
exist between these traits and restrict their ability to vary independently [7]. Life-history strategies are
indeed distributed along trade-offs whose shapes are often sufficient to predict which strategy, if any, is
the most likely to evolve by selection.

1

http://arxiv.org/abs/1502.05508v3


The role of trade-off shapes is well illustrated by the case of reproduction strategies, which can be
thought as distributed along a trade-off between the number of litters produced during an adult’s lifetime
(‘longevity’ hereafter) and the size of each litter [1, 8–10]. A convex trade-off means that litter size
decreases rapidly with longevity, such that semelparous individuals, who reproduce only once, produce
a larger number of offspring in their adult life on average. Such a trade-off may appropriately describe
the case of a species where adults have a fixed amount of resources to allocate to either reproduction or
maintenance, such that increasing adult survival – through higher investment in maintenance – would
be at the cost of a decreased lifetime fecundity. Because semelparous individuals produce more offspring
faster, semelparity outcompetes any other reproduction strategy under this trade-off. Now consider the
case where adults can acquire resources during their lifetime: this new source of energy may partly or
fully compensate for the energy allocated to maintenance, and make the trade-off less convex or linear.
The acquired energy may even overcompensate the investment in maintenance – and make the trade-off
concave – such that iteroparous (long lived) strategies have higher R0s than the semelparous.

One can always find a trade-off shape that keeps the R0 constant among strategies; for the case
of reproductive strategies, this condition is met when litter size decreases linearly as adult survival
increases – the linear trade-off described above. This is an ideal setup to identify other players in
the evolutionary dynamics of slow/fast strategies than the obvious selective advantage provided by a
higher R0; Bulmer [11], for instance, used it to demonstrate that environmental variability may select for
iteroparity in a density-dependent environment.

We first use this setup and study the impact of neutral processes on the evolutionary dynamics of two
classes of life-history strategies associated with generation time: reproductive strategies and development
duration. We confirm that the strategies considered, although they yield different generation times,
are neutral in this situation: none is expected to increase or decrease in frequency, on average, in a
pairwise competition. Next we investigate their neutral evolutionary dynamics and show that the most
probable strategy at the evolutionary equilibrium is the slowest one, i.e. maximum longevity or duration
of development. This is due to a newly discovered evolutionary process that we called ‘turnover bias’,
whereby slow strategies are replaced after a longer time on average, so they are more likely to be observed.
We also verify that turnover bias still modifies the evolutionary outcome when a specific strategy is
selected. Turnover bias is most impacting when neutral processes like genetic drift dominate over selection,
which occurs when selection is weak and/or when the effective population size is small [12]. This defines
the conditions where turnover bias should be an important determinant of the evolution of life-history
strategies.

Results

Strategies with different generation times and equal R0 are neutral

We first consider a monomorphic population living in a stable environment with limited resources. The
population is constituted by NJ juveniles andNA adults, whose dynamics can be described by the discrete
system (1):

{

NJ (t+ 1) = NA(t)× F × (1− α)× d+NJ(t)× γ

NA(t+ 1) = NA(t)× α+NJ(t)× sJ × (1− γ)
, (1)

where sJ is the survival of juveniles becoming adults, F the lifetime fecundity, and d a density-dependent
egg (or newborn) survival. There are two ways of changing the generation time in this model: by
increasing adult longevity – by increasing the probability that an adult survives until the next reproductive
season, α – or by increasing the duration of development – by increasing the probability that a juvenile
remains a juvenile at the next reproductive season, γ. We study the evolution of α and γ separately –
while setting the other, γ or α, to 0 – in the two distinct models (denoted 1 and 2 hereafter) described in
fig. 1. As a consequence, all strategies have the same age at maturity (1) when reproduction strategies
evolve, and are all semelparous when development duration evolves.

Model 1. The reproduction strategy is described by the continuous variable α, the survival of adults
from one reproductive event to the next. Adults with α = 0 are semelparous: they reproduce once and
die. Iteroparity arises as soon as α is above 0, and the mean number of reproductive events increases
with α – it equals 1/(1− α). Fecundity per reproduction event equals F (1 − α), which ensures that the
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number of offspring produced by an adult within its lifetime is independent of its reproduction strategy,
so that all strategies have equal R0.

Each egg or newborn produced survives with the density-dependent probability d, which decreases as
the overall number produced, NA(t)F (1− α), increases. We do not assign a specific density-dependence
function to d at this point; Instead, we assume that this function eventually yields a non-zero equilibrium
where NA(t+1) = NA(t) = NA and NJ(t+1) = NJ(t) = NJ . This property is shared by many classical
density-dependence functions, given a parameterization that avoids cyclic or chaotic dynamics (see SI
texts 1-2 and figs. S1-S4). In consequence, the population dynamics simplify to:

{

NJ = NA × F × (1− α)× d

NA = NA × α+ sJ ×NJ

, (2)

for model 1 – the system (2) corresponds to (1) with γ = 0. By solving the system, we show that at
equilibrium the product of the lifetime potential fecundity F and of the density-dependent egg survival d
equals 1/sJ . This property also emerges when d is formulated explicitly (SI text 1 and figs. S1-S4). This
implies that all strategies reach a stable equilibrium where they have the same lifetime density-dependent
fecundity.

We now model the evolutionary dynamics of the reproduction strategy by considering the fate of a
single mutant with strategy αm appearing in a monomorphic population (with strategy α) whose dynamics
are described by the system (2). We use here the adaptive dynamics framework, which commonly assumes
that mutations are rare enough for the resident population to reach an equilibrium before a mutant
appears [13,14]. As we have seen, at this equilibrium the resident’s lifetime fecundity F × d equals 1/sJ .
Another classical assumption of adaptive dynamics is that the resident population is large enough for the
mutant to be negligibly rare at the beginning of the invasion. The density-dependent parameter d thus
only depends on NA(t)F (1 − α) and the mutant’s lifetime fecundity F × d equals that of the resident,
1/sJ – we relax the two assumptions above later (see Turnover bias in polymorphic populations), with
no visible impact on our results. The dynamics of the mutant can thus be modeled with the following
system:

{

NJm(t+ 1) = NAm(t)× (1− αm)/sJ

NAm(t+ 1) = NAm(t)× αm + sJ ×NJm(t)
(3)

where (1−αm)/sJ is the number of surviving eggs laid by the mutant at time t. In the appendix, we show
that all mutants have equal growth rates – regardless of the resident they compete with – such that no
reproduction strategy should increase (or decrease) in frequency in response to selection. Reproduction
strategies are therefore selectively neutral, or iso-neutral in the terminology of Proulx and Adler [15].

Model 2. The generation time can also be impacted by the duration of development, which increases
as γ increases in equation (1). With α = 0, the dynamics of the mutant – with strategy γm – is described
by the following system:

{

NJm(t+ 1) = NAm(t)× 1/sJ +NJm(t)× γm

NAm(t+ 1) = sJ ×NJm(t)× (1− γm)
(4)

Here again, we find that the mutant’s growth rate is insensitive to the mutant and the resident strategies
(see appendix). This confirms that strategies with equal R0s but different generation times are neutral.
In the following section, we study their neutral evolutionary dynamics.

The neutral evolution of slow/fast strategies

When changes in genotype frequencies are not – or little – governed by selection, neutral processes like
genetic drift may affect evolution in finite populations. Here we study the neutral evolutionary dynamics
of strategies with different generation times using a Markov chain that includes the production of offspring,
and the occurrence and fixation of mutations impacting these strategies.

Reproduction strategies. As before, the number of offspring produced by an adult with reproduction
strategy αi at any time step equals (1−αi)/sJ , and each survives with probability sJ . With probability
µ, an offspring carries a mutation that changes its reproduction strategy. Here again, we assume that µ
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is small enough for a mutation to appear and fix (or go extinct) before another mutation occurs. Because
reproduction strategies are neutral, a mutation fixes with probability ǫ regardless of the strategy it yields
– typically ǫ = 1/Ne, with Ne the effective population size. Ignoring the transient dynamics of mutant
fixation or loss, a population will always be monomorphic in this framework.

We further assume that mutations produce a small change in the reproduction strategy, such that
a population with strategy αi can only mutate to the immediately lower αi−1 or higher αi+1. The
probability of transition to either of these states equals:

pi,i−1 = pi,i+1 =
1− αi

sJ
× sJ ×

µ

2
× ǫ (5)

= (1− αi)×
µ

2
× ǫ, (6)

and the probability of remaining in state i equals:

pi,i = 1− pi,i+1 − pi,i−1 (7)

For the first and last of the ns states in the Markov chain, only the probabilities of transition p1,2
and pns,ns−1 can be calculated with equation (5), and the probabilities of remaining in those states are
p1,1 = 1− p1,2 and pns,ns

= 1− pns,ns−1, respectively.
The evolutionary dynamics of the reproduction strategy can thus be described by the Markov chain

represented in figure 2. Using equations (5) and (7), one can create a Markov chain of any length by
dividing the range of possible reproduction strategies into a given number of adjacent values of α. We
used the set {0, 0.01, ..., 0.99} and calculated the equilibrium state of the Markov chain, given by the
normalized eigenvector for the eigenvalue 1 of the transition matrix defined by equations (5 - 7), which
we obtained with the markovchain package of the R software [16, 17].

At equilibrium, the most likely reproduction strategy has the highest level of iteroparity (α = 0.99;
Fig. 3). Semelparity (i.e. α = 0) is, among all possible reproductive strategies, the least likely to be
observed: for example it would be observed less than 0.2% of the time on a very long time series where
many neutral mutations would have fixed, or in less than 2 populations in 1000 at equilibrium. It should
be noted that interpreting the equilibrium probability of a specific strategy is irrelevant if one does not
know the set of strategies a population can really access: the probability of observing one specific strategy
will necessarily decrease as the model includes more strategies, for instance. Only ranges of strategies are
relevant, such as α ∈ [0, 0.1], which would include about 1% of observations. Medium to high degrees of
iteroparity – i.e. α > 0.5, or more than 2 reproductive events on average – occur about 86% of the time.

Turnover bias. Slow strategies – e.g. high degrees of iteroparity – are more likely to evolve neutrally
as a result of a bias that we call ‘turnover bias’. For instance, a population with reproduction strategy
αi−1 produces more offspring per reproduction event, and thus more mutants, than a population with a
slightly higher level of iteroparity αi+1 – this is known as the generation time effect [18]. Therefore, a
population that switches from state i to state i + 1 is less likely to switch back to i than a population
switching from i to i− 1 (see fig. 2). This yields a small bias towards increasing the degree of iteroparity
at each step, which does not stop until the highest degree of iteroparity is reached. In other words, a
population where a slow strategy has fixed generates fewer mutants per time unit and thus awaits a
longer time before a different strategy reaches fixation. It is, therefore, more likely to be observed.

Duration of development. The neutral evolutionary dynamics of reproduction strategies is easily
understood when considering how the Adults class is filled at each timestep: a proportion α remain
through adult survival, while a proportion 1 − α are newly made through reproduction. Only the latter
mutate (but see the Age-dependent mutation rate section), which explains the term (1− αi) in equation
5. When treating the question of the evolution of development time, it is more intuitive to ask how the
Juveniles class is filled. A proportion γ are juveniles remaining juveniles, while a proportion (1− γ)× sJ
become adults that will produce new juveniles at a mean rate 1/sJ – thus a proportion 1−γ is generated
this way. Of course, only the latter are subject to mutation, such that the evolutionary dynamics of γ
may be described by equations (5–7), substituting α with γ. Turnover bias is therefore also expected to
favor the evolution of long development durations, so long as these do not impede the R0.
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Turnover bias in polymorphic populations

The models described in the two sections above rely on the assumption that mutations are rare, so that
the population is only transiently polymorphic. Moreover, in the neutral Markov chain, mutants can
only reach neighboring reproduction strategies, even though the degree of iteroparity or development
duration might vary continuously. These assumptions can be relaxed in individual-based simulations
where mutations occur with probability µ and change the offspring strategy from its parent’s by an
amount sampled from a continuous distribution (see Simulation procedure in the Material and methods
section). The model otherwise matches the discrete life cycle described above (see equation 1).

At each timestep, a juvenile with genotype i can either remain a juvenile (with probability γi) or
attempt to become an adult (probability 1 − γi); then it survives with probability sJ . An adult with
genotype i survives with probability αi at each time step and produces NEi = F (1−αi) eggs on average.
The

∑

i NEi eggs produced by all genotypes are in competition for survival. The egg survival d needs to
be defined explicitly here: we use the exponential e−

∑
i
NEi/K throughout this paper, such that survival

is close to 1 when
∑

i NEi is small and decreases as this number increases. As in models 1 and 2 above,
we model the evolution of α and γ separately, while fixing γi or αi, respectively, to 0 for all i.

We ran 400 replicate simulations of the evolution of α and γ with µ = 0.001, F = 5 and K = 1000.
The simulations were initiated with a single genotype with α1 = 0.5 or γ1 = 0.5 (fig. 4, t = 0). Both traits
have very similar evolutionary dynamics: initially, the replicate populations diverge and exhibit a large
range of strategies (fig. 4, t = 105), with the means of the distributions of α and γ above 0.5. At higher
simulation times (fig. 4, t = 4× 105 and t = 2× 106), the mean strategy is, in most replicate simulations,
very close to its maximum possible value – that is, to the strategy with the longest generation time.

Genotypes with a slow turnover evolve under a wide range of parameter values, including even higher
mutation rates, lower fecundity and different initial values of α1 or γ1 (see SI text 2 and fig. S5). We
also studied another form of density-dependency and obtained very similar results to those presented in
figure 4 (SI text 2 and fig. S6).

It is worth noting that the population size is not strictly constant in this model: the density dependent
process can yield population sizes above or below its expected equilibrium. This may impact the resulting
evolutionary dynamics, because fast strategies perform better when the whole population growth rate
is above 1, while slow strategies are more able to wait for better conditions when this rate is below 1.
These time-varying competitive advantages might not compensate each others exactly, which could give
a selective advantage to a specific strategy. We thus ran simulations of the evolution of the reproduction
strategies (α), this time with a strictly constant population size of 1000. The evolutionary dynamics
in these simulations are very similar to those presented in fig. 4 (SI text 2 and fig. S7). These results
confirm that slow strategies are generally expected to evolve in a stable, density-dependent environment.

Age-dependent mutation rate

Above we considered a constant mutation rate among the various litters produced by an individual. By
doing so, we neglected the well-known fact that, in many species, the mutation rate can increase with
one or both parents’ age [19–22]. This increase is likely due to a large extent to an increase in the
number of germline cell divisions [23]. This raises two distinct issues: that iteroparous individuals may
be biased towards producing more mutants later in life, and that maybe this yields an increase in the
overall mutation rate as the degree of iteroparity increases. The first issue likely remains a minor one
as long as the overall mutation rate is small: iteroparous individuals will produce mutants late in life
instead of throughout, which will not affect the evolutionary dynamics as long as the overall mutation
rate remains equal between strategies.

The second issue is more problematic and needs to be resolved here: an increase in the mutation rate
with the degree of iteroparity could, in theory, revert the neutral dynamics and make semelparity the most
likely outcome under the linear trade-off. It is trivial, from equations (5) and (7), that a mutation rate
µ increasing from a basal rate µ0 at a higher rate than the function µ = µ0/(1−αi) would produce such
a result, so we need to address the question ‘how much does the mutation rate per generation increase
with iteroparity?’. We need to build a model to obtain this relationship, which as far as we know has not
been determined empirically.

We assume that a batch of gametes is produced each time an individual reproduces, of a size propor-
tional to the number of offspring it is expected to yield at this reproductive season (SI text 3). The overall
number of gametes produced is thus constant among strategies, yet our model shows that producing them
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at once – as semelparous do – reduces the overall number of cell divisions in the germline. In consequence,
the average mutation rate per gamete increases with longevity, but the difference is negligible whenever
the number of gametes produced in a lifetime is large. For instance, if 106 gametes should be produced
in a lifetime, an iteroparous individual with α = 0.9 – living 10 reproductive seasons on average – would
have an average mutation rate increased by 10.97% compared to a semelparous individual. This number
raises to 23.18% if the number of gametes produced in a lifetime equals 1000.

How may this phenomenon affect the neutral evolution of reproduction strategies? In the previous
sections, we showed that highly iteroparous strategies were scarcely replaced due to their long generation
times. A higher mean mutation rate of iteroparous individuals might (over)compensate the bias and favor
the evolution of semelparity. We replaced the mutation rate in the Markov chain described by equations
(5) and (7) with that given by equation (S20), such that the equilibrium now depends on the number of
gametes produced in a lifetime, ng. We consider that the number of batches nbi of a strategy with adult
survival αi equals its mean longevity, 1/(1 − αi)). We set the mutation rate per cell division to 10−5

and checked that this parameter has no impact on the equilibrium distribution. In figure 5, we show the
resulting Markov chain equilibrium with ng = 106: the highest degree of iteroparity remains the most
likely evolutionary outcome, although in this situation semelparity and weak iteroparity are more likely
to evolve than when aging is ignored. Decreasing ng to the unrealistically low value of 100 does not
change these results qualitatively (fig. S8).

Turnover bias vs. selection

It is legitimate to ask whether turnover bias can have an impact on the evolutionary dynamics of genera-
tion time in the presence of selection. Consider first a two-allele haploid model where the two alleles
yield the two reproduction strategies α1 and α2 (α1 < α2). Turnover bias favors the evolution of α2

because this strategy generates fewer mutations per time unit, and selection can counteract this process
by increasing the fixation probability of α1 (denoted ǫ1) and decreasing that of α2 (ǫ2) from their value
in the neutral model (ǫ in the previous section). The bias is entirely canceled when:

(1− α1)ǫ1 = (1− α2)ǫ2, (8)

such that it is equally probable to evolve to α1 from a population where α2 is fixed than the reverse.
Assuming that the fitness advantage of α1 over α2 equals s (and the fitness disadvantage of α2 −s), we
can calculate [24]:

ǫ1 =
1− e−2s

1− e−2Ns
and ǫ2 =

1− e2s

1− e2Ns
. (9)

The equilibrium in equation 8 is thus obtained for:

s =
log(1 − α1)− log(1− α2)

2(N − 1)
. (10)

s increases as the difference between α1 and α2 increases – i.e. when turnover bias is more acute – and
when the population size decreases and selection consequently becomes less efficient. For instance, in a
population of size 1000, a semelparous allele (α1 = 0) would need to provide a selective advantage of
about 0.0012 to be as likely to evolve as an iteroparous allele with α2 = 0.9.

Now consider, as we did in previous sections, that reproduction strategies can vary continuously,
distributed along a trade-off between litter size and longevity. The shape of the trade-off determines the
selective value of any strategy competing with others. A convex trade-off appropriately sets a selection
gradient in the opposite direction to turnover bias. We model such a trade-off by changing the number
of eggs produced by an adult with genotype i in our simulations, NEi, from F (1 − αi) to F (1 − αi)

S ,
with S ≥ 1. The trade-off is linear when S = 1 and becomes increasingly convex as S increases, making
selection for semelparity stronger.

The evolutionarily expected reproduction strategies are represented in fig. 6. In large populations
(K = 104), semelparity evolves at very low values of S – as soon as the trade-off becomes non-linear
in fig. 6. In smaller populations, the level of iteroparity α decreases with S, at a slower rate when the
population size is smaller (K = 102 vs K = 103). This result is typical of evolutionary dynamics where
neutral and selective processes act in opposite directions: selection is most efficient in large populations –
favoring the evolution of semelparity in the present case – such that turnover bias has a small effect on the
evolutionary dynamics in this situation. As the population size decreases, selection becomes less efficient
and the evolving reproduction strategy is the result of a balance between turnover bias and selection.
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Discussion

Life-history strategies that influence the generation time but not the lifetime reproductive success are
known to be neutral in a density-dependent environment yielding stable population dynamics [1, 3],
suggesting a minor role of the generation time in their evolution. Here we show that a bias favors the
evolution of the slowest possible life-history strategy – that with the longest generation time. Indeed,
individuals adopting (fast) strategies with short generation times produce many offspring per time unit
(and thus many mutants), while slow strategies instead favor the survival of their carriers (who do not
mutate). Therefore, a fast strategy is more likely to be replaced shortly, and is less likely to be observed
than a slow strategy. This logic should be applicable to any trait or strategy associated with generation
time. We modeled the evolution of two of them: reproduction strategies, where the fast semelparous
compete with the slow iteroparous, and developmental timing where juveniles can develop readily (fast)
or wait (slow).

Turnover bias – as we called it – is an unescapable part of the evolutionary dynamics of strategies
with different generation times. This bias impacts the occurrence of mutations but not their fixation;
we actually detected it by building an “origin-fixation model” (OFM) that separates the two processes.
OFMs are rarely applied to life-history strategies, which might partly explain why turnover bias has not
been identified earlier – the framework of adaptive dynamics is often preferred, which takes its roots in
an OFM to build the canonical equation but then usually ignores differences in the mutation-generating
process among alternative strategies [25–27]. To our knowledge, only Proulx and Day [28] have built
an OFM to study the evolution of a trait associated with the generation time. They have considered
differences in fixation probabilities among strategies, but not in their rates of mutation appearance per
time unit, rendering it impossible to detect the bias. Interestingly, OFMs are ideal but not necessary to
identify turnover bias: we still observe the bias in simple individual-based simulations (see fig. 4) – where
origin and fixation are not formally separated – which are rather common in theoretical evolutionary
ecology.

An expected feature of biases of the mutational process is that their contribution to evolutionary
dynamics is maximum when alternative alleles have similar fixation probabilities, that is when allele
fixation is mainly due to neutral processes like genetic drift [27, 29]. Our results indeed indicate that
turnover bias impacts the evolutionary outcome more strongly when the selective values of the strategies
in competition are close and/or when the population is small. When selection strongly favors the fixation
of one specific strategy (or of a range thereof), turnover bias is still acting but its effects are negligible. We
should thus expect to observe turnover bias after the fixation of some neutral or nearly neutral mutations,
which may take a long time compared to the fixation of advantageous mutations. Turnover bias may
therefore only yield differences along evolutionary timescales where numerous neutral substitutions occur.
It might thus explain a part of the extraordinary diversity of life-history strategies reported across large
phylogenetic trees (e.g. [30–32]), while its role at the population level may be contingent on specific
population parameters.

The importance of turnover bias in nature thus relies on how often selection is inefficient among strate-
gies with different turnovers. It might be a very special and rare situation, but the factual truth is that
we lack empirical evidence to support this claim: selection among strategies distributed along a trade-off
depends on the shape of the trade-off, which is scarcely inferred. This is likely due to statistical issues:
relatively small samples allow the detection of negative relationships between traits, whereas inferring
precise relationships between traits requires many accurate observations. A promising approach consists
in obtaining trade-off shapes through mechanistic models of the genetic, physiological and ecological pro-
cesses that contribute to them [33] – evolutionary epidemiologists have studied the virulence-persistence
trade-off using mechanistic models [34], but we are not aware of their application to other trade-offs.

We have ignored other, potentially important selection pressures that may contribute to the evolu-
tionary dynamics of strategies associated with the generation time. Bet-hedging strategies, for instance,
evolve as a response to environmental fluctuations and are often characterized by longer generation
times than those selected by a constant environment, as exemplified by iteroparity or facultative dor-
mancy [11, 35–39]. This prediction contrast with a recent study by Mitteldorf and Martins [40] showing
that a fluctuating environment can select for short generation times, by creating repeated episodes of di-
rectional selection. This gives a selective advantage to genotypes adapting quickly, which can be achieved
by fast strategies as they produce more mutants per time unit. This apparent theoretical conflict – a
fluctuating environment can favor both slow and fast strategies – needs to be resolved. In any case, the
role of turnover bias in this context remains unclear, as the fluctuating environment both provides a
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selection pressure for a specific strategy and reduces drastically the effective population size. We have
also ignored the role of deleterious mutations, which are known to be the most frequent kind of muta-
tions in a stable environment [41]. Purging selection in presence of these mutations would likely favor
genotypes producing fewer mutants. This might create a selection pressure for slow strategies, even in
stable environments.

We have not considered the genetic architecture of the evolving traits, as it cannot change turnover
bias directly. Turnover bias results from traits impacting the generation time, regardless of their genetic,
physiological or developmental components. Nonetheless, the genetic architecture may play a (distinct)
major role in the evolutionary dynamics of the traits considered, as it should determine the mutation
rates from one strategy to others. If theses rates are uneven, a mutational bias should occur that may
change the evolutionary outcome. Mutation biases are known to play a role in the evolution of molecular
traits [42–45] but they are rarely considered for phenotypic traits (but see [46]). Mutation biases are
similar to turnover bias in the sense that they affect the origin of mutations but not their fixation.

Overall, evolutionary ecology typicallly focused on the complex interactions of organisms with their
biotic and abiotic environment and the selection pressure that results, leaving the study of neutral pro-
cesses and biases in the production of mutants to theoretical population genetics. Our hybrid model
makes novel predictions, which in our opinion praises for more dialogue between these two fields.

Material and methods

Simulation procedure

We simulated a population of a variable number n of genotypes with different reproduction strategies αi.
Each genotype i is represented byNJi juveniles andNAi adults. At a given timestep, adults with genotype
i produce a number of eggs NEi sampled from a Poisson distribution with mean NAi × F × (1 − αi).

Eggs survive with the density dependent probability e−
∑

N
i=1

NEi/1000; for each genotype, the number of
surviving eggs is sampled from a binomial with this probability and NEi trials. Note that we also use
a different density-dependent function in the supplement. The surviving eggs constitute the juveniles at
the beginning of the next timestep.
Each offspring of genotype i can mutate with probability µ. When this event occurs, the number of
genotypes n is incremented by 1 and the new genotype n has NAn = 0, NJn = 1, and αn = αi + ǫ. ǫ is
sampled from a normal distribution with mean 0 and standard deviation 0.05; mutants with αN below
0 or above 0.99 take the value 0 and 0.99, respectively. The number of juveniles with genotype i at the
beginning of the next timestep is decremented by 1.
After reproduction, the number of surviving adults of genotype j is sampled from a binomial with
NAj trials and probability αj . These will constitute the adults with genotype i at the next timestep,
together with the offspring produced at the previous timestep that survive, whose number is sampled
from a binomial with NJi trials and probability sJ . At each timestep, a genotype is suppressed if
NAi = NJi = 0.
In each replicate simulation, we simulated the process described above during 2 × 106 timesteps, and
recorded NAi, NJi and αi for each of the i genotypes present in the population. We ran 100 replicate
simulations for each parameter set explored; the distribution of the mean values of α in the 100 replicates
is represented in fig. 4 at different timesteps. The program was written in the R programming language
and is available on demand.

Appendix: mutant’s asymptotic growth rate

Initially, the mutant is a juvenile so NJm(0) = 1 and NAm(0) = 0. The mutant population may grow
from this point, and its ability to do so is given by the Lyapunov exponent, or invasion fitness, denoted
logλ(αm, α) [13, 47–50]:

logλ(αm, α) = lim
T→∞

1

T
log

N(T )

N(0)
, (11)

where N(t) = NJm(t) +NAm(t).
Because F × d is equal for all residents, the invasion dynamics of the mutant are independent of

the resident’s strategy – either α for the model 1 or γ for model 2 (see system [3]). For model 1, the
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asymptotic growth rate of the mutant can be calculated as the first eigenvalue of the matrix:

M1 =

(

αm sJ
(1− αm)/sJ 0

)

. (12)

The mutant’s asymptotic growth rate is calculated as the largest eigenvalue of M1 (defined in eq.
[12]), which can be obtained by solving |M1 − λI| = 0. This yields the characteristic polynomial:

(αm − λ)× (−λ)− (1− αm)/sJ × sJ = 0, (13)

which simplifies to:
(λ− 1)(λ+ 1− αm) = 0 (14)

Hence the polynomial has roots λ1 = 1 and λ2 = αm − 1. λ1 > λ2 for 0 ≤ αm < 1 so the asymptotic
growth rate of the mutant equals 1.

The transition matrix for model 2 can be written:

M2 =

(

0 (1− γm)× sJ
1/sJ γm

)

. (15)

Solving |M2 − λI| = 0, we obtain the characteristic polynomial:

(γm − λ)× (−λ)− (1− γm)/sJ × sJ = 0 (16)

⇔ (λ− 1)(λ+ 1− γm) = 0, (17)

which mirrors equation (14) above: here, too, the mutant’s asymptotic growth rate equals 1, regardless
of its strategy.
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Figures

Model 1

J A

sJ

F× (1− α)× d

α

Model 2

J A

(1 − γ) × sJ

F× d

γ

Figure 1: The two models considered can produce different population turnovers – by varying α in model 1
and γ in model 2 – without affecting the lifetime reproductive success. Increasing α in model 1 increases the
average longevity of adults (A), and increasing γ in model 2 increases the average time before juveniles (J)
become adults. Both models are special cases of the more general model described by the system (1); model
1 is obtained by setting γ = 0 and model 2 is obtained by setting α = 0.

i-1 i i+1

pi−1,i

pi,i−1

pi,i+1

pi+1,i

Figure 2: Schematic representation of the model for the neutral evolution of the reproduction strategy. The
states i−1, i and i+1 correspond to populations with different reproduction strategies, with αi−1 < αi < αi+1

– i.e. the degree of iteroparity increases from left to right. The values of pi,i−1, pi−1,i, pi+1,i and pi,i+1 can be
calculated using eq. [5]; higher probabilities are represented by thicker arrows. pi,i−1 equals pi,i+1 according to
eq. (5), is lower than pi−1,i (because 1−αi−1 > 1−αi) and is higher than pi+1,i (because 1−αi+1 < 1−αi).
The probabilities of remaining in a given state are not shown, but can be calculated from eq. (7).
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Figure 3: High degrees of iteroparity are the most likely evolutionary outcome for a regulated population living
in stable environment. In this context, only neutral processes can impact the evolution of the reproduction
strategy. The black bars (left y -axis) represent the equilibrium probability that a given population will have
a given α, under the neutral model described in Fig. 2. The red line (right y -axis) represents the probability
that a population be at a given α or below.
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Figure 4: Simulations confirm that slow turnover, exemplified by a long adult lifetime – i.e. a high α in model
1 – and a long development time – a high γ in model 2 – should evolve in polymorphic populations living in
a stable density-dependent environment. The simulation procedure is described in the Material and methods
section. The distribution of the mean values of α, α, is represented at different simulation times for 400
replicates of model 1 (left panels); right panels similarly represent the distribution of the mean values of γ
evolving in model 2. Parameter values: F = 5, µ = 0.001, K = 1000.
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Figure 5: A high degree of iteroparity remains the most likely evolutionary outcome when the mutation rate
can increase with an individual’s age. The figure is similar to fig. 3, except that the model includes the increase
in the mutation rate with α (see text). The number of gametes produced in a lifetime, ng, equals 10
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Figure 6: Both the strength of selection and population size are key parameters in the evolution of reproduction
strategies. Population size increases with parameter K in our model, which sets the level of resources in the
density-dependent egg survival function. The trade-off between litter size and adult survival becomes more
convex as S increases, which increases the selection pressure for semelparity (i.e for α = 0). Accordingly in
our simulated populations, high levels of iteroparity evolve when S = 1 – the linear trade-off – but semelparity
evolves as S increases. The evolutionarily expected level of iteroparity decreases with S at a speed that increases
with K. For each set of parameters, the mean (circle) and the range from the 10%- to the 90%-quantile are
represented.
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Supplementary information

SI text 1: Density-dependent population dynamics

Here we study the population dynamics described by the system [1] in the main paper, replacing d by
two density-dependency functions.

Density-dependency function 1: d = e−
∑

i NEi/K

Here the population is monomorphic, so the number of eggs produced at a given timestep,
∑

i NEi equals
NA(t) × F × (1 − α). We simulated the system with sJ = 0.9 and F = 5, starting with NA = 10 and
NJ = 10. As shown in fig. S1, this function yields a stable dynamic equilibrium when F < 8, with
juvenile survival sJ = 0.9 and adult survival α = 0 (i.e semelparous). Lower sJ yield unstable population
dynamics at higher values of F (e.g. at F = 15 for sJ = 0.5). Increasing it has a similar impact, as
shown in fig. S1 (bottom panel) for α = 0.3.

We ran simulations in the stable regime (F = 5, sJ = 0.9) for 100 generations with α = 0.1, 0.5 and
0.9 (fig. S2). The population equilibrium is indeed stable and quickly reached. At the equilibrium, the
density-dependent lifetime fecundity F × d equals 1/sJ , as expected from the more general theoretical
approach in the main paper.

Density-dependency function 2: d =
1

1 + eβ×(
∑

i
NEi−K)

This function yields a sigmoidal relationship between d and the number of eggs produced,
∑

i NEi – as
before, the population is monomorphic at this point so

∑

iNEi = NA(t)× F × (1− α). Two parameters
control the shape of the function: K is the number of eggs at which d = 0.5, and beta controls the slope
of the function at this point (it is steeper at higher β). As before, the population dynamics become cyclic
or chaotic as F increases; For the parameters used in fig. S3 (top panel, β = 0.001, K = 400, sJ = 0.9,
α = 0), this occurs when F > 8. The shape of the function plays an obvious role, as shown in the bottom
panel of fig. S3, where we see that the population dynamics are unstable when β is over 0.0033.

We also ran simulations in the stable regime with this function (F = 5, sJ = 0.9, β = 0.001) for
100 generations with α = 0.1, 0.5 and 0.9 (fig. S4). At the equilibrium, the density-dependent lifetime
fecundity F ×d equals 1/sJ , as with the first function above and as we show should generally be expected
in regulated populations with stable population dynamics (see main text).

SI text 2: Evolutionary dynamics

Density-dependency function 1: d = e−
∑

i NEi/K

We simulated the evolution of it in 100 replicate populations, as described in the Material and methods
section of the main paper. We used different parameter sets, showing that neither the mutations rate µ,
the potential fecundity F nor the initial value of α in the population change the evolutionary outcome
(fig. S5): in every case studied, a very high α evolves, presumably as a result of neutral evolutionary
dynamics (see paper). Note that the simulations were run for 2 × 106 generations when µ = 10−3 and
for 10−5 generations when µ = 10−2.

Density-dependency function 2: d =
1

1 + eβ×(
∑

i NEi−K)

In this section, the function for the density-dependent is replaced by d =
1

1 + eβ×(
∑

i
NEi−K)

. Otherwise

the simulation procedure is exactly the same as that described in the Material and methods section in
the main text and in the previous section. Changing d does not impact the results: in most replicate
simulations, a very high level of iteroparity evolves, independently of the mutation rate µ, potential
fecundity F and initial level of iteroparity α.

Constant population size

Our aim here is to maintain the size of the population strictly constant to a value N . We sample the
number of surviving adults of each genotype (subscript i) from a binomial with probability αi, and the
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number of juveniles with genotype i that become adults from a binomial with probability sJ . The eggs
that survive and become juveniles at the next timestep equals N minus the sum of surviving adults and
juveniles. These are sampled according to their frequency in the pool of eggs, i.e. an egg will be of
genotype i with probability:

pi =
NAi × F × (1− αi)

ngenotypes
∑

j=1

NAj × F × (1 − αj)

The evolutionary dynamics obtained with a constant population size are show in fig. S7.

SI text 3: Age-dependent mutation rate

In this section, we detail the calculations of the age-specific mutation rate, and of the resulting average
mutation rate per gamete, when gametes need to be produced on several occasions in a lifetime. Since
gametes are typically short-lived, we will consider that a new batch of gametes needs to be produced
at each reproductive season. Thus the average number of batches nb = 1/(1 − α). Semelparous will
produce 1 batch, iteroparous with α = 0.75 will produce 4, etc. Moreover, we assume that the number of
gametes to produce in a batch is proportional to the number of offspring produced at the corresponding
reproductive season. Since all strategies have equal lifetime fecundities, the overall number of gametes,
ng, is constant across strategies.

A critical number of cells in the germline needs to be reached before the first gametes can be produced
through meiosis. Here we assume that half the germline cells are used to produce a batch of gametes, the
others being kept for future production – this is true in man, for which each primordial (Ad) spermatogo-
nia divides into another Ad cell and a differentiated Ap cell that will eventually yield spermatozoids [51].
Thus the number of germline cells needs to reach a critical threshold equal to twice the number of cells
required for a batch (see fig. S9). Then each germline cell destined to immediate production yields 4
gametes through meiosis. Thus, from the number of gametes in a batch (ng/nb), one can obtain the
number of germline cells – and thus the number of cell divisions – that needs to be reached before meiosis
starts (fig. S9). This number equals

t0 = log2

(

2×
ng

nb
/4

)

= log2

(

ng

nb

)

− 1, (S18)

where
ng

nb
/4 is the number of germline cells used to produce the first batch of gametes. Substituting for

nb, we obtain t0 = log2 (ng × (1− α)) − 1.

Age-distribution of the mutation rate. The first batch is produced from cells mutated t0 times.
They will experience another division with DNA replication – and mutation – during meiosis I, and
another division without DNA replication (meiosis II), so the mutation rate of batch 1, µ1, equals t0 + 1
times the mutation rate per cell division, µd.
Then one division needs to occur each time another batch is produced, such that the mutation rate of
batch i (i ∈ {1, .., nb − 1}) equals

µi = µ1 + (i− 1)× µd = (t0 + 1)× µd + (i− 1)× µd = (t0 + i)× µd = (log2(
ng

nb
) + i− 1)× µd (S19)

The last batch has the same mutation rate as the previous one because the remaining germline cells are
used, with no further DNA replication required, so that µnb

= µnb−1.

Mean mutation rate. Equation (S19) gives the mutation rate in each batch, so we can now calculate
the mean probability of mutation across all gametes produced continuously:

16



µ =
1

nb

nb
∑

i=1

µi

=
µd

nb

(

nb−1
∑

i=1

(

log2

(

ng

nb

)

+ i− 1

)

+ log2

(

ng

nb

)

+ nb − 1− 1

)

= µd ×

(

log2

(

ng

nb

)

− 1 +
1

nb

(

nb−1
∑

i=1

(i) + nb − 1

))

= µd ×

(

log2

(

ng

nb

)

− 1 +
1

nb

(

(nb − 1)nb

2
+ nb − 1

))

= µd ×

(

log2

(

ng

nb

)

− 1 +
nb − 1

2
+ 1−

1

nb

)

= µd ×

(

log2

(

ng

nb

)

+
nb − 1

2
−

1

nb

)

(S20)

Semelparous populations produce a single batch, such that µ = µd × (log2(ng) − 1). Interestingly,
producing two batches instead of a single one gives the exact same result, because the two batches are
produced simultaneously, even though one is going to be used before the other. Once nb ≥ 3, the mean
mutation rate for gametes produced continuously is above that of gametes produced early. The increase
in the mean mutation rate is especially marked when the number of gametes produced, ng, is small, and
when the number of batches, nb, is large.
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Supplementary figures
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Figure S1: Bifurcation diagram for the density-dependency function 1. For each value of F , the total population
size (NA+NJ) is represented for 100 timesteps after an initial simulation period of 100 steps. More than one
value of N(t) mean that the equilibrium is unstable (cyclic or chaotic), which occurs here when F > 8 (top
panel) or F > 13 (bottom).
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Figure S2: Population dynamics simulated using the density-dependency function 1.
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Figure S3: Bifurcation diagram for the density-dependency function 2. For each value of F (top panel) or
β (bottom), the total population size (NA +NJ) is represented for 100 timesteps after an initial simulation
period of 100 steps. More than one value of N(t) mean that the equilibrium is unstable (cyclic or chaotic),
which occurs here when F > 8 (top panel) or β > 0.0033 (bottom).
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Figure S4: Population dynamics simulated using the density-dependency function 2.
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Figure S5: Distribution of the mean value of α evolving in 100 replicate simulations (for each parameter
set) where the density dependent egg survival is modeled by function 1, with K = 1000. We used two high
mutation rates µ = 10−3 (left panel) or µ = 10−2 (right), with two values for the potential fecundity F (2 or
5). We initiated the simulations with two initial values of α: 0 and 0.5.
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Figure S6: Distribution of the mean value of α evolving in 100 replicate simulations (for each parameter set)
where the density dependent egg survival is modeled by function 2, with K = 400 and β = 0.001. We used
two high mutation rates µ = 10−3 (left panel) or µ = 10−2 (right), with two values for the potential fecundity
F (2 or 5). We initiated the simulations with two initial values of α: 0 and 0.5.
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Figure S7: Slow turnover reproduction strategies also evolve when the population is kept strictly stable (see
SI text 2). The distribution of the mean values of α, α, is represented at different simulation times for 400
replicates of model 1. Parameter values: F = 5, µ = 0.001.
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Figure S8: A high degree of iteroparity remains the most likely evolutionary outcome when the mutation rate
can increase with an individual’s age. The figure is similar to fig. 3, except that the model includes the increase
in the mutation rate with α (see text). The number of gametes produced in a lifetime, ng, equals 10

2.
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A. Production in 1 batch

64 gametes in a single batch
µ = 5 × µd

B. Production in 4 batches

16 gametes in batch 1
µ1 = 4 × µd

16 gametes in batch 2
µ2 = 5 × µd

16 gametes in batch 3
µ3 = 6 × µd

16 gametes in batch 4
µ4 = 6 × µd

Cell divisions in the germline before

the first batch is produced

Cell divisions in the germline after

the first batch is produced

Figure S9: A depiction of the two production strategies considered. Germline cells ongoing mitosis are represented as white circles, while cells and gametes produced
through meiosis are represented in grey. Cell divisions involving DNA replication (and mutation) are represented by solid lines, whereas the second division of meiosis,
during which DNA is not replicated, is represented by dotted lines. The vertical position of the gametes shows their mutation rate, which is equal for all gametes
produced in a single batch. Gametes produced in several batches also have an equal mutation rate within a batch, but more cell divisions are needed to produce
gametes in old batches, so the mutation rate increases with age. The mutation rate in the first batch of four is lower than that of gametes produced in a single batch
(this is generally true when the number of batches is above 2), and higher in the two last batches. On average, continuous production yields a higher mutation rate
whenever the number of batches nb ≥ 3 (see SI text 3).
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