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Summary

In the present work, we provide a reformulation of the minimal time crisis problem
associated with a constraint set as a free terminal time control problem. The proof
requires the existence of a non-empty viability kernel that is reachable from the
state space. In addition, we suppose a uniform lower bound between two consecu-
tive crossing times of the constraint set. Thanks to this result, we compute an optimal
synthesis for the minimal time crisis problem governed by the prey-predator dynam-
ics, with a controlled mortality on the predators. Finally, we compare the time spent
in the crisis set by optimal trajectories of the minimal time crisis problem with the
minimum time problem to reach the viability kernel. This is made possible by means
of an exact characterization of the viability kernel.
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1 INTRODUCTION

This paper focuses on the notion of time crisis which represents the time spent by a solution of a controlled system outside a
given domainK . In many engineering problems, control systems are subject to state constraints (see1), and the goal is to design
admissible controls that bring the system in certain environments, and which are also optimal with respect to a certain criterion.
Since it is sometimes not possible to drive the system in such a way to satisfy state constraints, the study of minimal time crisis
problem is an interesting alternative. The crisis set is by definition the complementary of the domainK , and we then wish to find
control strategies minimizing the total time spent in this set. In the context of viability theory (see2,3), when initial conditions of
the system are outside the viability kernel† of K , finding a control for which the associated trajectory spends the least possible
time outside K is a crucial issue.
The minimal time crisis problem was introduced in the context of viability theory in4 (see also5,6) where a characterization of

the value function as a generalized solution of an Hamilton-Jacobi equation has been proposed. Necessary optimality conditions
have been given in7,8 using a hybrid maximum principle (see9,10,11) since the time crisis problem possesses a discontinuous
Hamiltonian. For the well-posedness of the adjoint state, it is assumed in7 that optimal trajectories hit the boundary of K
transversally (see also11).
In the present paper, we consider a case study in the context of the prey-predator systems to compare two different approaches

measuring the time spent by the system outside a constraint set, defined as a prey density above a given threshold (see12,13).
Assuming that the control acts only on the mortality of predators (14,15,16), we wish to compare optimal strategies for the two
following criteria:

†The viability kernel is defined as the largest subset of K composed of initial conditions for which there exists an admissible control such that the associated solution
of the system remains in K for all time t ≥ 0, see 2,3.
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1. the minimal time crisis,

2. the minimum time to reach the viability kernel (this domain being here characterized analytically).

Prey-predator models have been widely studied in the literature (see e.g.,13,12,17,18,19,14,15,16 among others) with various objec-
tives: optimal control, stabilization, impulse control and others. However, to our best knowledge, the question of determining a
viability kernel together with the syntheses for the time crisis and the minimum time problem to reach this set, have not been
previously addressed in the literature. In general, it is difficult to characterize a viability kernel. Note also that finding an optimal
synthesis for the time crisis problem presents technicalities with respect to the classical application of the Pontryagin Maximum
Principle due to the discontinuity of the characteristic function.
The paper is structured as follows. In section 2, we propose in a general framework an equivalent formulation of the minimal

time crisis problem over a finite horizon when the viability kernel is non-empty and reachable from the state space. We also
assume that the duration between two consecutive crossing times is uniformly bounded by below. This assumption appears to
be strong, however we show in this work that it is satisfied in prey-predator systems. This reformulation allows us to obtain
optimality conditions on the minimal time crisis problem in this general framework using the hybrid maximum principle. In
section 3, we provide an analytical description of the viability kernel for the constraint set (defined as a prey density above a
given threshold) under the prey-predator dynamics. In Section 4, we compute an optimal synthesis for the minimum time control
problem to reach this set using the Pontryagin Maximum Principle. Finally, we compute in Section 5 an optimal synthesis for
the minimal time crisis problem governed by the prey-predator dynamics, using the reformulation obtained in Section 2. In
particular, we exhibit a subset of the state space which enjoys the following remarkable property: for any initial condition in this
set, the time crisis is strictly less that the time spent in the crisis set by the minimal time strategy to reach the viability kernel.

2 OPTIMALITY CONDITIONS FOR THE TIME CRISIS FUNCTION

In this section, we provide optimality conditions on the time crisis function in a general setup. We first introduce some notations.
Given a non-empty subset C ofℝn, we denote by Int(C) its interior and by )C its boundary. We also denote by | ⋅ | the euclidean
norm in ℝn (n ≥ 1). If C is a non-empty closed convex subset of ℝn, the normal cone to C at a point x ∈ C is defined as

NC (x) ∶= {p ∈ ℝn ; p ⋅ (y − x) ≤ 0, ∀y ∈ C},

where a ⋅ b denotes the standard scalar product of two vectors a, b ∈ ℝn. Throughout this section, we consider a control system:

ẋ = f (x, u), (2.1)

where f ∶ ℝn ×ℝm → ℝn is the dynamics, x is the state, and u the control that takes values in a non-empty closed subset U of
ℝm. The admissible control set is classically

 ∶= {u ∶ [0,+∞) → U ; u meas.}.

We assume the usual regularity assumptions on the dynamics (see e.g.,20):

(H1) The function f is continuous w.r.t. (x, u), of class C1 w.r.t. x and satisfies the linear growth condition: there exist c1 > 0
and c2 > 0 such that for all x ∈ ℝn and all u ∈ U , one has:

|f (x, u)| ≤ c1|x| + c2, (2.2)

(H2) For any x ∈ ℝn, the velocity set F (x) ∶= {f (x, u) ; u ∈ U} is a non-empty compact convex set.

Under hypotheses (H1)-(H2), for any initial condition x0 ∈ ℝn and any T ≥ 0, there exists a unique absolutely continuous
solution of (2.1) defined over [0, T ] such that x(0) = x0, denoted by xu(⋅, x0) hereafter (this is a consequence of Cauchy-
Lipschitz’s Theorem). Given a closed subset K of ℝn (that plays the role of constraint set), let us now introduce the viability
kernel of K under the dynamics f as

Viab(K) ∶= {x0 ∈ K ; ∃u ∈  , xu(t, x0) ∈ K, ∀t ≥ 0}.

If non-empty, the viability kernel is a closed subset of K and it enjoys several properties. In particular, it can be reached from
outside only at its boundary in common with the boundary of the set K . We refer to2,3 for more detailed properties of this set
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and its fundamental role in several economic and biological models. Hereafter, we are interested in studying properties of the
minimal time crisis function T ∶ ℝn → ℝ+ ∪ {+∞} which states as

T (x0) ∶= inf
u∈

+∞

∫
0

1Kc (xu(t, x0)) dt, (2.3)

where 1Kc is the indicator function of Kc :

1Kc (x) ∶=

{

0 if x ∈ K,
1 if x ∉ K,

and Kc ∶= ℝn∖K denotes the complementary of the set K . It has been introduced in4 within the context of viability theory2,3

typically when the initial state does not belong to the viability kernel. In particular, one can show that it is a lower semi-continuous
function (see4,7,8). Our main concern in this section is to investigate a reformulation of (2.3) over a finite horizon that involves
the viability kernel. This will allow us to obtain necessary optimality conditions on the time crisis function, using the hybrid
maximum principle9. To do so, let us introduce an additional hypothesis:

(H3) The viability kernel of K under the dynamics f , Viab(K), is non-empty and for any initial condition in ℝn, there exists a
control u ∈  steering x0 to Viab(K) in finite time.

Consider now the auxiliary optimal control problem:

T̂ (x0) ∶= inf
�≥0,u∈

�

∫
0

1Kc (xu(t, x0)) dt s.t. xu(�, x0) ∈ Viab(K). (2.4)

Under the additional hypothesis (H3), the existence of an optimal control for both problems (2.3) and (2.4) follows from standard
argumentation (see4,7). Moreover, for any x0 ∈ ℝn, one has T (x0) < +∞ and T̂ (x0) < +∞. In order to relate (2.3) and (2.4),
we introduce the notion of crossing time.

Definition 1. Given a solution xu(⋅, x0) of (2.1), we say that a time tc > 0 is a crossing time for xu(⋅, x0) from K to Kc if the
control u is left- and right-continuous at tc , xu(tc , x0) ∈ )K , and there exists � > 0 such that for any time t ∈ [tc − �, tc], resp.
t ∈ (tc , tc + �], xu(t, x0) ∈ K , resp. xu(t, x0) ∈ Kc . Similarly, we define the notion of crossing time from Kc to K .

Next, we consider the following hypothesis:

(H4) There exists a number � > 0 such that for any pair of consecutive crossing times t1 < t2 from K to Kc or from Kc to K ,
one has t2 − t1 ≥ �,

which allows us to state the following equivalence result.

Proposition 1. Suppose that (H1)-(H2)-(H3)-(H4) are satisfied. Then, for any x0 ∈ ℝn one has

T (x0) = T̂ (x0).

Furthermore, for any x0 ∈ ℝn, the infimum in (2.4) is reached for a finite �.

Proof. As the value functions T and T̂ are clearly identically equal to zero inViab(x), we take x0 ∉ Viab(K). It is known (see4)
that one has T (x0) ≤ Ṽ (x0), where

Ṽ (x0) ∶= inf
u∈

Tu s.t. xu(Tu, x0) ∈ Viab(K).

Moreover, Hypothesis (H3) implies Ṽ (x0) < +∞. Let u∗(⋅) be an optimal control for T (x0) and x∗ the associated solution
starting from x0. Define the time �(x0) ∈ ℝ+ ∪ {+∞} by:

�(x0) ∶= sup{t ≥ 0 ; x∗(t) ∈ Kc},

and suppose by contradiction that �(x0) = +∞. As T (x0) < +∞, there exists t0 ≥ 0 such that x∗(t0) ∈ K . Now, as �(x0) = +∞,
there exists t1 ≥ t0 such that t1 is a crossing time from K to Kc . We now define t2 as the first entry time t > t1 of x∗ from Kc

into K (t2 exists as T (x0) < +∞). From (H4), we deduce that t2 − t1 ≥ � > 0. By the Dynamic Programming Principle, x∗
is also optimal from x∗(t2) and one has T (x∗(t2)) ≤ T (y0) < +∞ together with �(x∗(t2)) = �(y0) = +∞. Therefore, the same
argument can be applied from (t2, x∗(t2)) and we obtain two increasing sequences of times (ti,n)n, i = 1, 2, such that one has
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t2,n − t1,n ≥ � > 0 for any n ∈ ℕ. It follows that one has T (y0) = +∞ and thus a contradiction. Therefore, we necessary have
�(x0) < +∞ which implies that x∗(t) ∈ K for any time t ≥ �(x0) i.e., x∗(�(x0)) ∈ Viab(K). It follows that

T (x0) =

�(x0)

∫
0

1Kc (x∗(t)) dt ≥ T̂ (x0),

using that x∗(�(x0)) ∈ Viab(K). On the other hand, let (�̂, û(⋅)) ∈ ℝ+ ×  be an optimal pair for T̂ (x0). If x̂(⋅) denotes the
associated trajectory, we then have x̂(�̂) ∈ Viab(K) with û defined over [0, �̂]. Hence, we can extend û to a control function
ū ∈  defined on [0 + ∞) such that the associated trajectory ū(⋅) satisfies x̄(t) ∈ Viab(K) for any time t ≥ �̂. We then have

T̂ (x0) =

�̂

∫
0

1Kc (x̂(t)) dt =

+∞

∫
0

1Kc (x̄(t)) dt ≥ T (x0),

and the conclusion follows.
Finally, to prove that the infimum in (2.4) is reached for a finite �, we suppose by contradiction that this is not the case. As

previously, we can then find two increasing sequences of times (ti,n)n, i = 1, 2, such that one has t2,n − t1,n ≥ � for any n ∈ ℕ.
Similarly, we find a contradiction with the fact that T̂ (x0) is finite, which ends the proof.

Remark 1. Hypothesis (H4) is about trajectories of the system. It appears to be a strong hypothesis, nevertheless, we shall see
that it is satisfied for the prey-predator model (Section 5).

In connection with Hypothesis (H4), it is relevant to recall the chattering phenomenon‡.

Definition 2. Given x0 ∈ ℝn and a solution xu(⋅, x0) of (2.1) defined over [0,+∞), we say that a chattering phenomenon occurs
if there exist two sequences of times (toutn )n≥0, (tinn )n≥0 satisfying:

(i) For any n ∈ ℕ, toutn and tinn are two consecutive crossing times for xu(⋅, x0) from K to Kc and from Kc to K respectively.

(ii) For any n ∈ ℕ, one has toutn − tinn > 0, and toutn − tinn → 0 when n→ +∞.

Let us finally recall the definition of transverse crossing times7 (for convex sets K).

Definition 3. Given an admissible trajectory xu(⋅, x0), a crossing time tc (from K to Kc or from Kc to K) is transverse when
there exists �, �′ ∈ NK (xu(tc)) such that ẋu(t−c ) ⋅ � ≠ 0 and ẋu(t+c ) ⋅ �

′ ≠ 0.

In other words, a transverse crossing time tc is such that the trajectory does not hit the boundary of K tangentially while
crossing K (however, the control could switch at time tc). We are now in a position to state optimality conditions for problem
(2.3). LetH ∶ ℝn ×ℝn ×ℝ ×ℝm → ℝ be the Hamiltonian associated with the system defined by:

H = H(x, p, p0, u) ∶= p ⋅ f (x, u) + p01Kc (x).

Using the previous proposition, we can apply the hybrid principle on the time crisis problem which allows to state the following
necessary optimality conditions (see7,8,11).

Theorem 1. Suppose that K is convex and that (H1)-(H2)-(H3)-(H4) hold true. Let u be an optimal control for (2.3) and x the
associated trajectory.

(1) There exists �f > 0 , n ∈ ℕ and t0 = 0 < t1 < ⋯ < tn < tn+1 = �f such that x(�f ) ∈ Viab(K) and ti, 1 ≤ i ≤ n is a
crossing time of x.

(2) In addition, if we suppose that each crossing time is transverse, there exists a function p ∶ [0, �f ] → ℝn which is absolutely
continuous in each interval (ti, ti+1), 0 ≤ i ≤ n − 1 and p0 ≤ 0 satisfying the following conditions:

(i) The pair (p(⋅), p0) is non-zero.
(ii) The function p satisfies the adjoint equation

ṗ(t) = −∇xH(x(t), p(t), p0, u(t)) a.e. t ∈ (ti, ti+1), 0 ≤ i ≤ n − 1. (2.5)

‡In general, this terminology is used when an optimal control has an infinite number of switching points over a finite horizon (in presence of a singular arc of order
2); see for instance the Fuller’s example 21,22.
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(iii) The control u satisfies the Hamiltonian condition

u(t) ∈ argmax
!∈U

H(x(t), p(t), p0, !) a.e. t ∈ [0, �f ].

(iv) At every crossing time ti, 1 ≤ i ≤ n, the co-vector satisfies:

p(t+i ) = p(t−i ) +
p(t−i ) ⋅ (f (x(ti), u(t

−
i )) − f (x(ti), u(t

+
i ))) + �p0

n(x(ti)) ⋅ f (x(ti), u(t+i ))
n(x(ti)), (2.6)

where � = −1, resp. � = +1 if tc is a regular crossing time from K to Kc , resp. from Kc into K and
n(x(ti)) ∈ NK (x(ti))).

(v) The transversality condition holds true at the terminal time:

p(�f ) ∈ −NViab(K)(x(�f )). (2.7)

Remark 2.

- In the previous Theorem, we can relax the convexity of K by assuming only that its boundary is smooth.

- The jump condition on the co-vector (2.6) follows using that the Hamiltonian is conserved along any extremal trajectory
(since the system is autonomous).

- In (2.7),NViab(K)(x(�f )) denotes the Mordukhovich (limiting) normal cone to Viab(K) (see1). If Viab(K) is convex (such
as for the prey-predator problem, see Section 3), then it coincides with the normal cone in the sense of convex analysis.

Hereafter, we say that an extremal trajectory (x, p, p0, u) is normal if p0 ≠ 0 and abnormal if p0 = 0. Whenever an extremal
trajectory is normal, we can always assume that p0 = −1. We shall next use this result in order to characterize optimal trajectories
for the time crisis problem governed by the prey-predator dynamics (see Section 5).

3 VIABILITY KERNEL FOR THE PREY-PREDATOR SYSTEM

In the rest of the paper, we shall focus on the prey-predator model:
{

ẋ = rx − xy,
ẏ = −my + xy − uy,

(3.1)

where r > 0 and m > 0, and u is a measurable control function taking values within the set  defined as

 ∶= {u ∶ [0,+∞) → [0, ū] ; u(⋅) meas.},

with ū > 0. We set  ∶= ℝ∗
+ × ℝ∗

+ which is invariant by (3.1). Our aim is to address the problem of preserving the preys from
the predators, maintaining as much as possible their density above a given threshold x > 0, which amounts to have the state
belonging to the set

K(x) ∶= {(x, y) ∈  ; x ≥ x}.
Although the mathematical analysis of (3.1) (for a constant control u) predicts that the preys cannot be extinct in finite time, one
may consider that practically having a small density of preys expose them to a danger of disappearance that should be avoided
as much as possible. This is why, we wish to study in the rest of the paper the minimal time crisis problem governed by (3.1)
associated with the set K(x). We first determine the viability kernel of K(x) under the dynamics (3.1) and its attainability from
the set .

3.1 Computation of the viability hernel
For a fixed u ∈ [0, ū], we define the functionWu ∶  → ℝ by:

Wu(x, y) ∶= x − (m + u) ln x + y − r ln y, (x, y) ∈ ,

together with the number c(u) ∈ ℝ defined by

c(u) ∶= Wu(m + u, r) = (m + u)(1 − ln(m + u)) + r(1 − ln r),
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and the positive equilibrium point E⋆(u) for (3.1)

E⋆(u) ∶= (x⋆(u), y⋆) = (m + u, r).

For a given number c ≥ c(u), we denote by Lu(c), resp. by Su(c), the level set, resp. the sub-level set ofWu defined by

Lu(c) ∶= {(x, y) ∈ , Wu(x, y) = c}, resp. Su(c) ∶= {(x, y) ∈ , Wu(x, y) ≤ c}.

We recall in the two following Lemmas classical results about the model (3.1) with constant control.

Lemma 1. For a constant control u, a trajectory of (3.1) belongs to a level set Lu(c) with c ≥ c(u). The sets Lu(c) are closed
curves that surround the steady state E⋆(u).

Proof. By differentiatingWu w.r.t. x and y, one finds )xWu(x, y) = 1− m+u
x

and )xWu(x, y) = 1− r
y
for (x, y) ∈ . If (x(⋅), y(⋅))

is a solution of (3.1) with the constant control u, a direct computation gives
d
dt
Wu(x(t), y(t)) = )xWuẋ + )yWuẏ = 0.

So, any solution of (3.1) with the constant control u belongs to a level set of the function Wu. As Wu(x, y) → +∞ when
|(x, y)| → +∞, each level setLu(c) is bounded. For a constant control u, one can check that the single equilibrium of the dynamics
in  is E⋆(u), and that the level set Lu(c(u)) is the singleton {E⋆(u)}. Therefore, for any initial condition in  ⧵ {E⋆(u)}, the
trajectory belongs to a level setLu(c)with c > c(u) (recall thatWu(x, y) → +∞when |(x, y)| → +∞). AsLu(c) is a compact set
that does not contain any equilibrium point, Poincaré-Bendixon Theorem allows to state that the trajectory converges to a limit
cycle that belongs to the same level set Lu(c). Therefore, the trajectory is periodic and Lu(c) is a closed curve which surrounds
E⋆(u).

For u ∈ [0, ū], we define two functions �u ∶ ℝ+ → ℝ and  ∶ ℝ+ → ℝ by

�u(x) ∶= x − (m + u) ln x, x ∈ ℝ+

and  (y) ∶= y − r ln y, y ∈ ℝ+.

Lemma 2. Given u ∈ [0, ū], one has the following properties

(i) For any x > �u(m+u), there exists unique x+u (x) ∈ (m+u,+∞) and x−u (x) ∈ (0, m+u) such that �u(x+u (x)) = �u(x−u (x)) =
x.

(ii) If p >  (r), the equation  (y) = p has exactly two roots y−(p), y+(p) that satisfy y−(p) < r < y+(p).

Proof. One can easily check that limx→+∞ �u(x) = limx→0 �u(x) = +∞. Moreover, by differentiating �u w.r.t. x, one finds
�′
u(x) = 1 − m+u

x
. So the function �u is decreasing from +∞ down to �u(m + u) and increasing up to +∞. Therefore, for any

x > �u(m + u), the equation �u(z) = x has exactly two solutions x−u (x), x
+
u (x), with x

−
u (x) < m + u and x+u (x) > m + u which

proves (i). Similarly, the function  is decreasing from +∞ down to  (r) and increasing up to +∞, which gives (ii).

For c ∈ ℝ, we consider the subsets oL+
u (c), L

−
u (c), S

+
u (c) and S

−
u (c) of , defined by:

L+
u (c) ∶= Lu(c) ∩ {y ≥ r}, L−

u (c) ∶= Lu(c) ∩ {y ≤ r},
S+
u (c) ∶= Su(c) ∩ {y ≥ r}, S−

u (c) ∶= Su(c) ∩ {y ≤ r}

and let r− ∈ (0, r] be
r− ∶= y−(W0(x+ū (x), r) − �0(x)).

The next Proposition provides a description of the viability kernel Viab(x) of K(x) for (3.1).

Proposition 2. One has the following characterization of the viability kernel:

(i) If m + ū < x, the set Viab(x) is empty.

(ii) If ū ≥ x − m, the viability kernel is non-empty and is given by

Viab(x) = S+
ū (Wū(x, r)) ∪

(

S−
0 (W0(x+ū (x), r)) ∩K(x)

)

,
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where x+ū (x) is given by Lemma 2. Its boundary is the union of the three curves

B+(x) ∶= L+
ū (Wū(x, r)),

B−(x) ∶= L−
0 (W0(x+ū (x), r)) ∩ {x ≥ x},

B0(x) ∶= {x} × [r−, r].

Proof. Let us assume that ū < x−m and let " > 0 be such that m+ u < x− ". Consider a trajectory (x(⋅), y(⋅)) that stays in the
set K(x) for any time t ≥ 0. As 0 ≤ u(t) ≤ ū, we deduce that

ẏ = y(x − m − u) ≥ y(x − x + ") ≥ "y,

using that x(t) ≥ x for any time t ≥ 0. Therefore y(⋅) is increasing, unbounded and thus there exists t1 > 0 such that y(t) > r for
any time t ≥ t1. It follows that

ẋ(t) = x(t)(r − y(t)) < x(t)(r − y(t1)) ∀t > t1,
implying that for t > t1 one has ẋ(t) < −Cx(t) with C ∶= y(t1) − r > 0. Thus, there exists t2 > t1 such that x(t2) < x. So the
trajectory (x(⋅), y(⋅)) must escape the set K(x) in finite time, and we have a contradiction. Thus, the viability kernel Viab(x) is
empty which proves (i).
Assume now that one has ū ≥ x−m and let us prove (ii). Notice first that the three curves B+(x), B−(x) and B0(x) belong to

the set K(x) and that their union U (x) defines the boundary of a compact subset Z(x) of K(x), which is such that

Z(x) = S+
ū (Wū(x, r)) ∪

(

S−
0 (W0(x+ū (x), r)) ∩K(x)

)

.

When ū = x − m, the set Z(x) is reduced to the single point E⋆(ū) that is an equilibrium of (3.1) for the constant control ū.
Thus, Z(x) is a viable set.
When ū > x − m, we first show that for any initial condition in U (x), there exists a trajectory that stays in K(x) for any

time t ≥ 0. Consider an initial condition in the set B+(x). With the control u = ū, the corresponding solution of (3.1) remains
on the level set Lū(Wū(x, r)) which is contained in K(x) as its extreme left point is (x, r). Take now an initial condition in
B−(x). With the control u = 0, the corresponding solution of (3.1) remains on B−(x) until it reaches in finite time the boundary
point (x+ū (x), r) that belongs to B

+(x). From this point, we come back to the previous case. Finally, take an initial condition in
Int(B0(x)) (if not empty). On Int(B0(x)), one has ẋ > 0 for any control as one has r−y > 0. Thus the trajectory enters the subset
Z(x) and cannot evade from K(x) on Int(B0(x)). If the trajectory touches B+ ∪ B−, we face one of the two previous cases. So
we conclude that Z(x) is a viable domain.
We now show that Z(x) is the largest viable domain included in K(x), that is, the viability kernel Viab(x), or equivalently

that any trajectory with initial condition in K(x) ⧵Z(x) leaves the set K(x) in a finite horizon. For convenience we consider the
two subsets of K(x) ⧵Z(x), C+(x) and C−(x) defined by:

C+(x) =
(

K(x) ⧵Z(x)
)

∩ {y ≥ r} and C−(x) =
(

K(x) ⧵Z(x)
)

∩ {y ≤ r}.

Consider now an initial condition (x0, y0) ∈ C+(x), and let (x(⋅), y(⋅)) a solution of (3.1) starting from (x0, y0). One has
Wū(x0, y0) > Wū(x̄, r), and by differentiating w.r.t t one finds:

d
dt
Wū(x(t), y(t)) = (y(t) − r)(ū − u(t)) ≥ 0.

Therefore no trajectory can reach the level set Lū(Wū(x̄, r)) from K(x) ⧵ Z(x). When y(t) = r, one has x(t) > m + ū and thus
ẏ(t) = r(x(t) − m − u(t)) > 0 as u(t) ≤ ū. We deduce that if there exists a trajectory with an initial condition (x0, y0) in C+(x)
that stays in K(x), it has to stay in C+(x). By differentiating w.r.t t, we obtain on C+(x) that

d
dt
W0(x(t), y(t)) = −u(t)(y(t) − r) ≤ 0,

and thus W0(x(t), y(t)) ≤ W0(x0, y0). It follows that the trajectory is bounded. Moreover, one has ẋ ≤ 0. i.e., the function
t → x(t) is non-increasing and thus converges to a certain x∞ > 0. By Barbalat’s Lemma (see for instance23), ẋ(t) converges to
0 which implies that y(t) tends to r. Then Wū(x(t), y(t)) converges to Wū(x∞, r) > Wū(x̄, r) which implies that x∞ < x̄. Thus,
the trajectory necessarily leaves the set K(x) and we have a contradiction.
Consider now an initial condition (x0, y0) ∈ C−(x). Similarly, one can show that no trajectory can reach the level set

L0(W0(x+(x), r)) from K(x) ⧵Z(x). It follows that a trajectory with an initial condition in C−(x) that stays in K(x) has to stay
in C−(x) (otherwise, it reaches C+(x) and we have shown above that its has to escapeK(x)). As previously, one can show that a
trajectory that stays in C−(x) is bounded and as t → x(t) is increasing, one obtains the convergence of x(t) to a certain x∞ > x.



8

As before, by Barbalat’s Lemma, ẋ(t) converges to 0 when t→ +∞, which implies that y(t) → r, and thus x∞ ≥ x+ū (x) > m+ ū.
Therefore there exists " > 0 and t0 > 0 such that ẏ(t) = (x(t) −m− u)y(t) > "y(t) for any t > t0. This gives a contradiction with
the convergence of y(t) to r when t → +∞. So, the trajectory has to enter C+(x) and then leaves K(x). This ends the proof of
(ii).

The viability kernel is depicted on Fig. 1 in case (ii) of Proposition 2 together with the three curves B+(x), B−(x),B0(x) that
define its boundary (see the Appendix for the numerical values of the parameters). It is worth noting that B+(x) is a semi-orbit
of (3.1) with u = ū passing trough the point (x, r). Similarly, B−(x) is a semi-orbit of (3.1) with u = 0 passing though the point
(x, r−). Note that whenever m + ū = x, then the viability kernel is reduced to one point i.e.,

m + ū = x ⇒ V iab(x) = {(x, r)},

as the semi-orbit B+(x) is then reduced to the positive equilibrium point of (3.1) with u = ū. The viability kernel ofK(x) enjoys

r

r

c

−

−

0

xK (  )

xB (  )

xB (  )

x

xViab(  )

+ xB (  )

xu
+

FIGURE 1 Viability kernel when ū > x − m (the numerical values of the parameters are given in the appendix).

the following properties.

Proposition 3. Suppose that ū > x − m.

(i) Consider the unique solution of (3.1) backward in time with u = 0 from (x+ū (x), r), and let t′ > 0 be the first time where
this trajectory intersects the line {y = r}. Then, we have:

x(t′) ≤ x. (3.2)

(ii) The set V iab(x) is a compact convex set with non-empty interior.

(iii) Suppose that t1 < t2 are two consecutive crossing times from K(x) to K(x)c and from K(x)c to K(x) respectively, that
(x(t1), y(t1)) ∉ Viab(x), and that (x(t2), y(t2)) ∉ Viab(x). Then, one has:

t2 − t1 ≥
ln
(

r
r−

)

m + ū
. (3.3)

Proof. To prove (i), suppose by contradiction that x(t′) > x. Denote by (x0(⋅), x0(⋅)) the unique solution of (3.1) with u = 0 and
such that (x0(0), x0(0)) = (x(t′), r). By construction, the point (x+ū (x), r) is on the graph of the parameterized curve (x0(⋅), y0(⋅)).
Thus we denote by t0 ∶= inf{t ≥ 0 ; (x0(t), x0(t)) = (x+ū (x), r)}, and let 
0 be the parametrized curve (x0(⋅), x0(⋅)) on the
interval [0, t0].
Now, consider the unique solution (x1(⋅), y1(⋅)) of (3.1) with u = ū starting from the point (x(t′), r) and let t1 ∶= inf{t ≥

0 ; y1(t) = r}. We define 
1 as the parametrized curve (x1(⋅), y1(⋅)) on the interval [0, t1]. From (3.1), we know that the graph
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of 
1 is below the graph of 
0. To conclude, we consider the unique solution (x̃1(⋅), ỹ1(⋅)) of (3.1) with u = ū starting from (x, r)
until the first time t′1 > 0 where it reaches the segment line {y = r}. It can be noticed that this curve passes through the point
(x+ū (x), r) and that its graph 
̃1 is also below the graph of 
0. Hence, both graphs 
1 and 
̃1 should intersect i.e., there must exist
a time � ∈ (0, t0) such that (x1(�), y1(�)) = (x̃1(�), ỹ1(�)). By Cauchy-Lipschitz’s Theorem, both solutions (x1(⋅), y1(⋅)) and
(x̃1(⋅), ỹ1(⋅)) should coincide everywhere which is a contradiction as (x1(0), y1(0)) ≠ (x̃1(0), ỹ1(0)).
Let us now show (ii). From Proposition 2 and the previous point, we know that V iab(x) is a compact subset of ℝ2 with

non-empty interior. Now, one can easily verify that solutions of (3.1) in the plane (x, y) satisfy:

d2y
dx2

|

|

|

|

|u=0

(x) =
y(r(x − m)2 + m(r − y)2)

(r − y)3x2
and

d2y
dx2

|

|

|

|

|u=ū

(x) =
y(r(x − m − 1)2 + (m + 1)(r − y)2)

(r − y)3x2
.

It follows that for y < r, resp. y > r, one has d2y
dx2 |u=0

(x) > 0, resp. d
2y
dx2 |u=ū

(x) < 0, which guarantees that the set V iab(x) is convex.

Finally, to prove (iii), we integrate the equation ẏ(t) = y(t)(x(t) − m − u(t)) over [t1, t2], which gives:

(m + ū)(t2 − t1) ≥

t2

∫
t1

(m + u(t)) dt =

t2

∫
t1

x(t) dt −

y(t2)

∫
y(t1)

dy
y

≥ −

y(t2)

∫
y(t1)

dy
y

≥ ln
(

r
r−

)

,

using that y(t1) > r and y(t2) < r−. This ends the proof.

Remark 3.

- Whereas when m < x, it is clear that (3.2) holds true (as the equilibrium point for (3.1) with u = 0 is (m, r)), the previous
Proposition shows that this property remains valid whenever m > x. Note also that in the latter case, the set V iab(x) is
always non-empty as ū > 0.

- We know that for a given initial state in V iab(x), any control u can be chosen until that the corresponding trajectory
reaches the boundary of V iab(x) (see e.g.,2,3). If (x0, y0) ∈ B−(x), resp. (x0, y0) ∈ B+(x), then only the control u = 0,
resp. u = ū is admissible in order to stay in V iab(x).

- If x > m, then any point of the segment [x, ū+m] × {r} is a steady-state point for (3.1) with a prescribed constant control
whereas if x ≤ m, then any point of the segment [m, ū+m]×{r} is a steady-state point for (3.1) with a prescribed constant
control.

Remark 4. Inequality (3.3) is in line with Hypothesis (H4). A similar property between consecutive crossing times could also be
obtained for more general prey-predator models taking into account oscillatory trajectories (such as in Rosenzweig-MacArthur’s
model17).

3.2 Attainability of the viability kernel
In order to show the attainability of the target set, it is convenient to introduce the following feedback control:

u[x, y] ∶=
{

ū if y ≥ r,
0 if y < r.

(3.4)

Given an initial condition (x0, y0) ∈ (ℝ∗
+ × ℝ∗

+)∖Viab(x), we denote by (xm(⋅), ym(⋅)) the unique solution of (3.1) starting from
(x0, y0) at time 0 associated with the control um(⋅) defined by um(t) ∶= u[xm(t), ym(t)].

Proposition 4. For any initial condition (x0, y0) ∈ ∖Viab(x), there exists a control u ∈  steering (x0, y0) to the viability
kernel Viab(x).

Proof. Suppose first that one has m + ū > x, hence Viab(x) has a non-empty interior.
First step. We show that it is enough to prove the result for any initial condition of type (x0, r) with x0 > x+ū (x̄). If the initial
condition (x0, y0) is such that x0 < r, then it is enough to replace x0 by xm(tc)where tc is the first time t > 0 such that ym(tc) = r.
If (xm(tc), ym(tc)) ∈ Viab(x), then the result is proved. Otherwise, we have xm(tc) > x+ū (x̄). If now x0 > r, we apply the control
um until the first time t′c > 0 such that ym(t′c) = r. Then, for t > t′c (close to t′c) one has ym(t′c) < r, and we conclude by the
previous case.
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Second step. We now show the Proposition for any initial condition (x0, r) with x0 > x+ū (x̄). By applying the feedback control
um, we can define two sequences of time (tn)n≥0 and (t′n)n≥0 such that:

ym(tn) = ym(t′n) = r and x′n ∶= xm(t′n) < x < xn ∶= xm(tn).

Moreover, the trajectory is such that for any n ∈ ℕ:

t ∈ (tn, t′n) ⇒ ym(t) > r and t ∈ (t′n, tn+1) ⇒ ym(t) < r.

We have x1 < x0. Indeed, consider the two solutions of (3.1), x̂0(⋅), resp. x̂1(⋅) with the control u = 0, resp. u = ū starting from
the point (x′0, r). We then have x̂0(t) > x̂1(t) for any t ∈ (0, t̂] where t̂ is such that x̂0(t̂) = r. Now, as x̂1(⋅) passes though the
point (x0, r), we deduce that x1 < x0. Now, the two solutions of (3.1) with u = ū starting from (x0, r) and (x1, r) cannot intersect,
thus we deduce that x′1 > x

′
0. By induction, we obtain that (xn)n≥0 is decreasing and that (x′n)n≥0 is increasing.

Now, integrating (3.1) on the interval (t0, t′0), resp. (t
′
0, t1) with u = ū, resp. with u = 0 yields:

{

−x0 + (m + ū) ln(x0) = −x′0 + (m + ū) ln(x′0),
−x1 + m ln x1 = −x′0 + m ln x′0.

Thus we obtain the relation x0 − x1 − m ln
(

x0
x1

)

+ ū ln
(

x′0
x0

)

= 0 and by induction we get:

∀n ∈ ℕ∗, xn−1 − xn − m ln
(

xn−1
xn

)

+ ū ln

(

x′n−1
xn−1

)

= 0.

As xn−1 < xn, we deduce that one has

xn−1 − xn ≥ ū ln

(

xn−1
x′n−1

)

. (3.5)

To conclude, we suppose by contradiction that the trajectory always stays outside the set Viab(x). By noticing that inequalities
xn−1 − x′n−1 ≥ x+ū (x) − x and x′n−1 ≤ x are fulfilled for any n ≥ 1, one obtains xn−1

x′n−1
≥ x+ū (x̄)

x
which implies

xn−1 − xn ≥ �,

where � ∶= ū ln
(

x+ū (x̄)
x

)

> 0 (recall that the interior of V iab(x) is non-empty). Thus, one has for each n ∈ ℕ xn ≤ xn−1 − �.
Therefore we obtain a contradiction and the trajectory necessary enters the set Viab(x) which ends the proof in the case where
m + ū > x.
Consider now the casem+ ū = x. Then V iab(x) is reduced to a single point (x, r) that belongs to the periodic orbitOr defined

as the unique solution of (3.1) with u = 0 passing through this point. The second intersection point of this orbit with the line
{y = r} is denoted by (�, r) with 0 < � < x. Now, if the initial condition is in the interior of Or, then the control u = ū steers
(3.1) in finite time to Or and the result follows. Following the proof of the result in the case where m + ū > x, we can suppose
that the initial condition (x0, r) is such that x0 > x. Similarly, let us define two sequences of points (xn), (x′n) such that (xn) is
increasing and (x′n) is decreasing. Moreover inequality (3.5) also holds true. To conclude, we suppose by contradiction that the
trajectory does not intersect Or. Hence, for any n ∈ ℕ one has xn − x′n ≥ x − � and x′n ≤ �. We then find that for any n ∈ ℕ∗

xn−1
x′n−1

=
xn−1 − x′n−1

x′n−1
+ 1 ≥

x
�
> 0,

and for any n ∈ ℕ we obtain
xn−1 − xn ≥ �′,

with �′ ∶= ū ln
(

x∕�
)

> 0. We can then conclude as in the previous case.

4 MINIMUM TIME PROBLEM TO REACH THE VIABILITY KERNEL

In this Section, we consider that the condition ū ≥ x − m is fulfilled, which guarantees that the viability kernel Viab(x) is non
empty (see Proposition 2). We compute the optimal synthesis for the minimum time control problem to reach Viab(x). The
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value function V associated with the minimum time control problem to reach Viab(x) is defined as follows. For a given initial
condition z0 = (x0, y0) ∈ , the function V is defined as

V (z0) ∶= inf
u∈

Tu s.t. z(Tu, z0) ∈ Viab(x), (4.1)

where z(⋅, z0) ∶= (x, y) is the unique solution of (3.1) associated with the control u ∈  and Tu the first entry time of z(⋅, z0)
into the target set. From Proposition 4, the set Viab(x) can be reached from any initial condition (x0, y0) ∈ . Therefore V is
finite everywhere in and the existence of an optimal control follows from standard argumentation based on Filipov’s Theorem
(see for instance24). Recall also that Viab(x) can be reached fromK(x)c only through )K(x)⧵ )Viab(x) (see for instance2), that
is, here the line-segment B0(x). LetH ∶ ℝ2 ×ℝ2 ×ℝ ×ℝ → ℝ be the Hamiltonian associated with (4.1) defined by:

H = H(x, y, p, q, p0, u) = px(r − y) + qy(x − m − u) + p0.

We now apply the Pontryagin Maximum Principle (PMP) to (4.1) to derive necessary optimality conditions for Problem (4.1).
Let u ∈  be an optimal control defined over a certain time interval [0, Tu] with Tu < +∞ and let z ∶= (x, y) be the associated
trajectory. Then, there exist an absolutely continuous map � ∶= (p, q) ∶ [0, Tu] → ℝ2 and a number p0 ≤ 0 such that the
following conditions are satisfied:

- The pair (�(⋅), p0) is non-zero.

- The adjoint vector satisfies the adjoint equation �̇ = − )H
)z

a.e., that is:
{

ṗ = p(y − r) − qy,
q̇ = px + q(u + m − x).

(4.2)

- The transversality condition can be expressed as �(Tu) ∈ −NV iab(x)(z(Tu)).

- The Hamiltonian condition reeds as follows:

u(t) ∈ arg max0≤!≤ūH(z(t), �(t), p0, !) a.e. t ∈ [0, Tu]. (4.3)

An extremal is a triple (z, �(⋅), u) satisfying (3.1)-(4.2)-(4.3). Moreover, as the system is autonomous and Tu is free, the Hamil-
tonian is equal to zero along any extremal trajectory. In view of the maximization condition in (4.3), we define the switching
function � as

� ∶= −qy,
and we obtain the following conditions on the optimal control law (for almost any t):

⎧

⎪

⎨

⎪

⎩

�(t) > 0 ⇒ u(t) = ū,
�(t) < 0 ⇒ u(t) = 0,
�(t) = 0 ⇒ u(t) ∈ [0, ū].

(4.4)

We call switching time tc a time such that the switching function� has non-constant sign in any neighborhood of tc (and switching
point for the corresponding state z(tc)). From (4.4), we deduce that any switching time satisfies �(tc) = 0. A direct computation
shows that we have:

�̇(t) = −p(t)x(t)y(t) a.e. t ∈ [0, Tu].
Let e1 ∶= (1, 0). Since V iab(x) is non-smooth at the point (x, r−), let w be the unit vector defined by w ∶= (sin ,−cos )
where  ∈ (− �

2
, �
2
) is defined by

tan ∶=
(x − m)r−
(r − r−)x

,

Lemma 3. Suppose that ū > x − m, i.e. that V iab(x) has a non-empty interior. If (x, y) ∈ B0(x), we have:

y ∈ (r−, r] ⇒ NV iab(x)(x, y) = ℝ− × {0},
y = r− ⇒ NV iab(x)(x, y) = {�(�w − [1 − �]e1) ; (�, �) ∈ ℝ+ × [0, 1]}.

Proof. The result is straightforward for y ∈ (r−, r] (note that for y = r, then B+(x) has a vertical tangent at the point (x, r)).
Now, at the boundary point (x, r−) of V iab(x), the tangent cone is generated by the vectors (0, 1) and (cos , sin ). The

geometric computation of NV iab(x)(x, y) follows using that V iab(x) is convex and that the normal cone to V iab(x) at (x, y) ∈
B0(x) is the dual cone to the tangent cone to V iab(x) at (x, y).



12

Accordingly to Pontryagin Principle, we can derive the following properties.

Proposition 5. Let u ∈  be an optimal control for (4.1) and (z, �(⋅), u) the corresponding extremal trajectory defined over a
time interval [0, Tu]. Then, the following properties hold true:

(i) The control u is bang-bang i.e., it satisfies u(t) ∈ {0, ū} for a.e. t ∈ [0, Tu] and:

u(t) = ū
2
(1 + sign(�(t))) a.e. t ∈ [0, Tu]. (4.5)

(ii) The transversality condition on the adjoint vector at time Tu reads as follows (in the case where ū > x − m only):

(x(Tu), y(Tu)) ∈ {x} × (r−, r) ⇒ (p(Tu), q(Tu)) ∈ ℝ+ × {0},
(x(Tu), y(Tu)) = (x, r−) ⇒ (p(Tu), q(Tu)) ∈ {�(−�w + (1 − �)e1) ; (�, �) ∈ ℝ+ × [0, 1]}.

(4.6)

(iii) If the extremal trajectory reaches the target at some point in {x} × (r−, r), then it is normal i.e., p0 ≠ 0.

(iv) If the extremal trajectory is abnormal, then any switching point lies on the line {y = r}.

Proof. To prove (i), suppose that � = 0 on some time interval [t1, t2]. By differentiating � w.r.t the time t, we obtain q̇ = q = 0
over [t1, t2] implying p = 0 over [t1, t2]. From (4.2), we deduce that the adjoint vector � is zero over [0, Tu]. We thus obtain a
contradiction with the PMP usingH = 0. This proves that (4.5) holds almost everywhere.
Lemma 3 together with the transversality condition �(Tu) ∈ −NV iab(x)(z(Tu)) straightforwardly implies (4.6) which proves

(ii).
Let us now show (iii). Suppose by contradiction that p0 = 0. Using that H = 0 and that y(Tu) ≠ r, one obtains p(Tu) = 0.

Thus we would have p(Tu) = q(Tu) = 0 and then � ≡ 0 using (4.2). This contradicts the PMP as the pair (�(⋅), p0)would be zero.
Finally, suppose that the extremal is abnormal and let t0 be a switching point implying �(t0) = q(t0) = 0. It follows that

p(t0) ≠ 0 (otherwise the vector �would be zero on [0, Tu] and this would contradict the PMP). Now, suppose that y(t0) ≠ r, then
we find that p(t0)x(t0)(r − y(t0)) ≠ 0 which again contradicts the PMP as one has p0 = 0. Hence, we necessarily have y(t0) = r
which proves (iv).

Remark 5. From (4.2) and the fact that (�(⋅), p0) is non-zero, the mapping t ←→ (p(t), q(t)) is always non-zero. Using a similar
argument as in the proof of the first point of Proposition 5, one can prove that the zeros of � are isolated.

We now wish to synthesize an optimal feedback control for (4.1) using the previous analysis. We first analyze the behavior of
the switching function �.

Lemma 4. A normal extremal trajectory (z(⋅), �(⋅), u) defined over [0, Tu] satisfies the following properties:

(i) The switching function is solution of the ordinary differential equation (ODE):

�̇(t) =
y(t)(m + u(t) − x(t))

r − y(t)
�(t) −

y(t)
r − y(t)

, a.e. t ∈ [0, Tu], (4.7)

(ii) At a time t0 where y(t0) = r, we have �(t0) ≠ 0 and:

�(t0) =
1

u(t0) + m − x(t0)
. (4.8)

Proof. Let us first show that the set S ∶= {t ∈ [0, Tu] ; y(t) = r} is finite. If t0 ∈ S, we have q(t0)y(t0)(x(t0) − m − u(t0)) = 1
which implies that ẏ(t0) ≠ 0, hence t0 is isolated and thus S is finite. Using that � = −qy, �̇ = −pxy, and that H = 0, we get
that (4.7) holds almost everywhere which proves (i). The proof of (ii) is straightforward combiningH = 0 and y(t0) = r.

This Lemma leads to the following Proposition.

Proposition 6. Let (z(⋅), �(⋅), u) be a normal extremal trajectory defined over [0, Tu]. Then, the following properties hold true.

(i) If there exist two consecutive times t2 > t1 > 0 such that y(t1) = y(t2) = r, then the control u has exactly one switching
time tc ∈ (t1, t2).

(ii) If, in addition, one has x(t1) > x(t2), resp. x(t1) < x(t2), then an optimal control satisfies u = 0, resp. u = ū on (t1, tc) and
then u = ū, resp. u = 0 on (tc , t2).
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Proof. From (4.8), the sign of�(ti), i = 1, 2 depends on the value of x(ti) compared to u(t0)+m. Whenever the trajectory satisfies
y(t1) = r with x(t1) > x+ū (x), we thus have �(t1) < 0 implying u = 0. Using the inequality x(t2) < m, we deduce that �(t2) > 0,
hence the trajectory necessarily has a switching point at some time tc ∈ (t1, t2). Now, from (4.7), one has �̇(tc) = − y(tc )

r−y(tc )
> 0.

Thus, the only possibility for the trajectory is to switch from u = 0 to u = ū. This shows the uniqueness of tc in (t1, t2). If now
x(t1) < x+ū (x), the same argumentation shows that there exists a unique switching time from u = ū to u = 0 in (t1, t2). This ends
the proof of the Proposition.

We denote by 
 the graph of the unique solution (x̃(⋅), ỹ(⋅)) of (3.1) backward in time starting from the point (x, r) associated
with the feedback control (3.4). Let �1 be the first time where (x̃(⋅), ỹ(⋅)) exitsK(x) and �2 > �1 be the first exit time of (x̃(⋅), ỹ(⋅))
of the set {(x, y) ∈  ; y ≤ r}. Finally, let 
1 be the restriction of (x̃(⋅), ỹ(⋅)) to the interval [�1, �2]. The optimal synthesis of
the problem then reads as follows (see also Fig. 2).

Theorem 2. Let (x0, y0) be an initial condition in ∖Viab(x).

(1) If (x0, y0) ∈ 
 , then any optimal trajectory of (3.1) steering (x0, y0) to the target set is abnormal. The corresponding
control is given by um(⋅) and switching points occur on the line {y = r}.

(2) If (x0, y0) ∉ 
 , then any optimal trajectory of (3.1)steering (x0, y0) to the target set is normal. Moreover, if u denotes the
optimal control, there exists p ∈ ℕ∗, s ∈ {0, 1}, and a sequence of times (�k)0≤k≤p such that:

(i) We have �0 = 0 < �1 <⋯ < �p−1 < �p = Tu and �k is a switching time of u for 1 ≤ k ≤ p.
(ii) The optimal control u is given by

u(t) = ū
2
(1 + (−1)p−k−s) t ∈ (�k, �k+1), 0 ≤ k ≤ p − 1. (4.9)

(iii) If y(Tu) ∈ (r−, r), resp. y(Tu) = r−, then s = 1, resp. s = 0.

Proof. Let us prove (1). Take an initial condition on the curve 
 . We already know from Proposition 5 that any trajectory starting
on the curve 
 and associated with the control um corresponds to an abnormal extremal trajectory. Indeed, such a trajectory
remains on the curve 
 , therefore switching points only occur on the axis {y = r} implying that the trajectory is abnormal.
We must prove that such an extremal is optimal. To do so, let us choose (x0, y0) on the curve 
 , and let (x(⋅), y(⋅), �(⋅), u) be an
optimal extremal trajectory steering (x0, y0) to Viab(x). Let t0 be defined as follows:

t0 ∶= inf{t ≥ 0 ; ∃" > 0 ∀� ∈ (t, t + ") (x(�), y(�)) ∉ 
}.

Suppose by contradiction that t0 < Tu. As (x(⋅), y(⋅), u) is extremal, (4.3) implies that t0 is necessarily a switching time from
u = 0 to u = ū or from u = ū to u = 0. We argue that y(t0) ≠ r. Indeed, otherwise, we would have a contradiction with the
definition of t0 (as by definition, um switches on the line {y = r}). Hence, either we have y(t0) < r or y(t0) > r. Now, the fact that
y(t0) ≠ r implies that the extremal trajectory is a normal one. Indeed, we cannot have p(t0) = 0 by Cauchy-Lipschitz’s Theorem,
but as y(t0) ≠ r, we obtain that p(t0)x(t0)(r − y(t0)) ≠ 0 and thus p0 must be non null. Suppose for instance that y(t0) < r. By
construction of t0, this point is a switching time from u = 0 to u = ū and we necessarily have �̇(t0) ≥ 0. On the other hand, we
obtain from (4.7) that

�̇(t0) = −
y(t0)

r − y(t0)
< 0,

and thus a contradiction. If y(t0) > r, we obtain a similar contradiction with the sign of �̇ at time t0. This shows that t0 ≥ Tu,
thus we have proved that the abnormal extremal trajectory starting from (x0, y0) with the control um(⋅) drives a solution of (3.1)
optimally to the target.
Let us now prove (2). The first two properties follow from Proposition 5 and from the fact that the number of switching times

of an optimal control is finite. Given an extremal trajectory (x(⋅), y(⋅), �(⋅), u) driving optimally (x0, y0) ∉ 
 to Viab(x), we con-
sider two cases depending if y(Tu) ∈ (r−, r) or y(Tu) = r−.
First case: y(Tu) ∈ (r−, r). From Proposition 5, we have p0 ≠ 0 i.e., the trajectory is normal. Now, as �(Tu) = 0 and
�̇(Tu) = − y(Tu)

r−y(Tu)
< 0, we obtain that u = ū in a left neighborhood of Tu. By using Proposition 6, we obtain that the extremal

has exactly one switching time tc between two consecutive instants t1 < t2 such that y(t1) = y(t2) = r. We thus obtain (4.9) by
considering (3.1) backward in time from t = Tu and by counting the number of times (denoted by p − 1 with p ≥ 1) where the
trajectory surrounds Viab(x) before reaching (x0, y0). When k = p−1, we obtain u(t) = ū

2
(1 + (−1)1−s), thus s = 1 as was to be

proved.
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Second case: y(Tu) = r−. Suppose that the extremal is abnormal i.e., p0 = 0. It follows that q(Tu) > 0. Otherwise, the transver-
sality condition would imply q(Tu) = 0 and using H = 0 we would have p(Tu) = 0 and a contradiction with the PMP. We
deduce that �(Tu) < 0 thus u = 0 in a left neighborhood of Tu. As the extremal is abnormal, switching points occur only on the
line {y = r}. This shows that we have u = 0 on [tc , Tu] where tc is the last time such that y(tc) = r before reaching B0(x). Thus,
by integrating backward in time (3.1) from (x, r−), we find that u = um(⋅) and that (x0, y0) ∈ 
 which is a contradiction. We
have thus proved that the extremal optimal trajectory is normal. Finally, we have two cases depending on whether the optimal
trajectory reaches (x, r−) with either the control u = 0 or u = ū:

- The case where we have u = ū at the terminal time Tu is similar to the first case y(Tu) ∈ (r−, r) above. Thus, the conclusion
is obtained similarly as above.

- Now, suppose that we have u = 0 at the terminal time Tu. The trajectory necessary has a switching time on 
1 (as it
is normal). We thus obtain (4.9) by considering (3.1) backward in time from t = Tu and by counting the number of
times (denoted by p − 1 with p ≥ 1) where the trajectory surrounds Viab(x) before reaching (x0, y0). As u = 0 in a left
neighborhood of Tu, we obtain s = 0.

When the viability kernel is reduced to the singleton {(x, r)} i.e., when ū = x −m, Theorem 3.1 still holds true, even though
there is no transversality condition on the terminal adjoint vector. This can be interpreted as the limiting case when the two
extreme points of B0(x) collapse.

x

x

r

K (  )c

FIGURE 2 Examples of optimal trajectories for the minimum time to reach Viab(x) (see Appendix for the numerical values).
In blue, normal optimal trajectories reaching the target set at B0(x). In red, the abnormal optimal trajectory reaching B0(x) at
the extreme point (x, r−). Switches (from 0 to ū or from ū to 0) are represented by the green dots.

5 MINIMAL TIME CRISIS VERSUS MINIMUM TIME

In this section, our aim is twofold. We first compute the optimal synthesis for the minimal time crisis problem. We then compare
compare the time spent in Kc for the two strategies (minimum time to reach Viab(x) and minimal time crisis).
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5.1 Optimal synthesis for the minimal time crisis problem
According to (3.3), the minimal time crisis problem can be stated as

inf
�≥0, u∈

�

∫
0

1Kc (z(t, z0)) dt s.t. z(�, z0) ∈ Viab(x). (5.1)

LetH ∶ ℝ2 ×ℝ2 ×ℝ ×ℝ → ℝ be the Hamiltonian associated with (5.1) defined by:

H ∶= H(x, y, p, q, p0, u) = px(r − y) + qy(x − m − u) + p01K(x)c (x, y).

If u is an optimal control of (5.1) defined over a time interval [0, �], and (x, y) is the associated solution of (3.1), then the
following optimality conditions are satisfied:

- There exist numbers � ≥ 0, p0 ≤ 0 and a measurable function �(⋅) ∶= (p(⋅), q(⋅)) ∶ [0, �] → ℝ2 that is almost everywhere
absolutely continuous, satisfying (4.2) a.e. on [0, �].

- The control u satisfies the maximization condition:

u(t) ∈ arg max
!∈[0,ū]

H(x(t), y(t), p(t), q(t), p0, !) a.e. t ∈ [0, �]. (5.2)

- The HamiltonianH is constant equal to zero along any extremal trajectory (x(⋅), y(⋅), p(⋅), q(⋅), p0, u) satisfying (3.1)-(4.2)-
(5.2) (we recall that the terminal time is free).

- At any crossing time tc (from K(x) to K(x)c or from K(x)c to K(x)), the adjoint vector satisfies:

�(t+c ) − �(t
−
c ) ∈ NK(x)(x(tc), y(tc)).

- The triple (p0, p(⋅), q(⋅)) is non identically null.

- The adjoint vector �(T ) satisfies the transversality condition (4.6).

The switching function associated with the control u is � ∶= −qy and it satisfies �̇ = −pxy. This allows to express u by the
expression (4.4). Note however that the behavior of � should be slightly different as the one in Section 4, since the Hamiltonian
now involves the characteristic function ofK(x). This discontinuity will imply a jump on the adjoint vector of normal extremals.
Following Definition 3 for the set K(x), a crossing time tc is transverse when one has ż(tc , z0).e1 ≠ 0, where e1 denotes the
vector (1, 0). We begin by two Lemmas that characterize crossing times.

Lemma 5. Given a solution z(⋅, z0) of (3.1), any crossing time tc of z(⋅, z0) such that z(tc , z0) ∉ Viab(x) is transverse.

Proof. Suppose that a solution z(⋅, z0) = (x(⋅), y(⋅)) of (3.1) hits tangentially the boundary of K(x) at some point (x, y). Then,
we must have ż(tc , z0) ⋅ e1 = 0 which implies that y(tc) = r. Hence, we obtain that (x(tc), y(tc)) = (x, r) ∈ Viab(x) which
contradicts the hypothesis of the Lemma. Hence, any crossing time is transverse.

Accordingly to this Lemma, we can write the jump condition on the adjoint vector as follows (see7). Let tc be a crossing time.
Then, one has:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x(t−c ) > x and x(t+c ) < x ⇒ p(t+c ) − p(t
−
c ) =

q(tc)y(tc)(u(t+c ) − u(t
−
c )) − p0

x(r − y(tc))
,

x(t−c ) < x and x(t+c ) > x ⇒ p(t+c ) − p(t
−
c ) =

q(tc)y(tc)(u(t+c ) − u(t
−
c )) + p0

x(r − y(tc))
,

(5.3)

and the function q(⋅) is (absolutely) continuous over [0, T ] whereas p is piece-wise (absolutely) continuous. We then obtain the
following characterization of the jumps.

Lemma 6. Let us consider an extremal trajectory (x(⋅), y(⋅), p(⋅), q(⋅), p0, u).

(i) If the extremal is abnormal (i.e., p0 = 0), then the adjoint vector (p(⋅), q(⋅)) is absolutely continuous.
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(ii) If the extremal is normal (i.e., p0 < 0), then a crossing time tc is such that

⎧

⎪

⎨

⎪

⎩

x(t−c ) > x and x(t+c ) < x ⇒ p(t+c ) − p(t
−
c ) =

1
x(r − y(tc))

,

x(t−c ) < x and x(t+c ) > x ⇒ p(t+c ) − p(t
−
c ) =

−1
x(r − y(tc))

.
(5.4)

Proof. Let us first show that q(tc)y(tc)(u(t+c ) − u(t−c )) is zero at any crossing time. The result is obvious if q(tc) = 0. Now,
if q(tc) < 0, then � > 0 in a neighborhood of tc , thus u = ū in a neighborhood of tc (recall that � is continuous) so that
u(t+c ) − u(t−c ) = 0. The same conclusion follows if q(tc) > 0. Using the equality q(tc)y(tc)(u(t+c ) − u(t−c )) = 0, one obtains
straightforwardly (i) and (ii) from (5.3).

We can now state our main result that characterizes the optimal solutions of Problem (5.1).

Proposition 7. Consider an optimal solution of Problem (5.1) defined over [0, T ].

(1) If (x0, y0) ∈ 
 , then the optimal trajectory is abnormal and the optimal control is given by um. Switching points occur on
the line {y = r}.

(2) If (x0, y0) ∉ 
 , then the optimal trajectory is normal. Moreover, the following properties hold true:

(i) If � is the last instant for which y(�) = r, then one has u = ū over [�, T ].

(ii) Any switching point in K(x)c ∩ {y > r} is from u = 0 to u = ū.

(iii) Any switching point in K(x)c ∩ {y < r} is from u = ū to u = 0.

(iv) If a switching point occurs in K(x) at an instant ts, then we must have y(ts) = r.

Proof. First, notice that 1K(x)c is zero in K(x), hence any switching time ts that occurs in the set K(x) necessarily satisfies
y(ts) = r.
To prove (1), we suppose by contradiction (as in the proof of the first point in Theorem 2) that the trajectory starting from

(x0, y0) ∈ 
 contains a switching point ts such that q(ts) = 0 and y(ts) ≠ r. We may suppose that ts is the first one satisfying
y(ts) ≠ r. Hence, the trajectory is normal (otherwise, the conditionH = 0, q(ts) = 0 and y(ts) ≠ rwould imply a contradiction).
Finally, suppose that y(ts) > r. Thus, ts is a switching point from u = ū to u = 0, i.e., �(ts) = 0 implying also �̇(ts) ≤ 0.
From (4.7) (which remains valid in K(x)c) we deduce that �̇(ts) < 0 which is a contradiction. If now y(ts) < r, then ts is by
construction a switching point from u = 0 to u = ū, and we obtain a similar contradiction. Hence, we deduce that the optimal
control is um and that the corresponding trajectory is abnormal.
To prove (2), we use the transversality condition (4.6)ăwhich implies that either p(T ) > 0 and q(T ) = 0, thus �̇(T −) ≤ 0

(when y(t) ∈ (r−, r)) or q(T ) < 0 (when y(t) = r−). Suppose that the trajectory reachesB0(x) in its interior. Then, one must have
p(T )x(r− y(T )) + p0 = 0, hence p0 < 0 and the trajectory is normal (otherwise we would have p(⋅) and q(⋅) identically equal to
zero which contradicts the hybrid maximum principle). Suppose now that the trajectory reaches the point (x, r−) at time t = T .
Then, if the trajectory is abnormal, it must coincide with the curve 
 (as switching points only occur on the line {y = r}. Thus
we obtain a contradiction with (x0, y0) ∉ 
 .
It follows that one has � > 0 in a left neighborhood of T and thus there exists � > 0 such that the control satisfies u = ū over

[�, T ] which gives (i). Now, thanks to (4.7), we obtain that any switching point in K(x)c ∩ {y > r}, resp. K(x)c ∩ {y < r} is
from u = 0 to u = ū, resp. from u = ū to u = 0 implying (ii)-(iii). Finally, note that in the set K(x), the Hamiltonian writes

H = px(r − y) + qy(x − m − u) = 0,

implying that y(ts) = r whenever q(ts) = 0. This ends the proof.

We then deduce the following result.

Corollary 1. Let (x(⋅), y(⋅)) be a normal extremal trajectory defined over a time interval [t0, t2] such that :

(i) At time t0, one has y(t0) = r, (x(t0), y(t0)) ∈ K(x)∖Viab(x), and t0 is a switching point from u = 0 to u = ū.

(ii) There exists t1 ∈ (t0, t2) such that x(t1) = x(t2) = x with (x(t2), y(t2)) ∉ Viab(x) and t1 < t2 are two consecutive crossing
times from K(x) to K(x)c and from K(x)c to K(x) respectively.
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Then, the trajectory has exactly one switching time ts ∈ (t1, t2) from u = ū to u = 0 such that y(ts) < r.

Proof. As t0 is a switching point such that (x(t0), y(t0)) ∈ K(x)∖Viab(x), we necessarily have u = ū over [t0, t1). Now, using
that q(⋅) is continuous and that no switching points occur in the interval (t0, t1], we must have q(t1) < 0 thus �(t1) > 0, and
consequently one has � > 0 in a right neighborhood of t1. From Proposition 7, the trajectory cannot switch from u = ū to u = 0
in the set K(x)c ∩ {y > r}. Recall that one has � > 0 when the trajectory crosses the line {y = r}. Suppose now that the
trajectory does not switch in the set K(x)c ∩ {y < r}. Then, one has � > 0 until t = t2. At this time, the trajectory enters K(x)
with � > 0 (as q is continuous), thus we have u = ū until that the trajectory again reaches the point (x(t0), r). Indeed, recall that
switching points in K(x) only occur on the axis {y = r}. This contradicts the optimality of the trajectory. Hence, there must
exist a switching point in the set K(x)c ∩ {y < r} as was to be proved.

Typical optimal trajectories are depicted on Fig. 3 (see Appendix for details on the numerical simulations). Switching points
are represented in black. Switching curves consist of the collection of these points.

x

x

cK (  )

r

FIGURE 3 Examples of normal optimal trajectories for the minimal time crisis (see Appendix for the numerical values). Color
of the trajectories are changed at each crossing time. Switching points are represented by the black dots.

5.2 Comparison with the minimum time strategy
In order to compare solutions of Problems (4.1) and (5.1), we consider the subset  ⊂  containing all the points of that can
reach Viab(x) with the constant control u = ū and such that the corresponding optimal trajectory does not contain any switching
point. Moreover, let  be defined by:

 ∶=  ∪ 
.

Proposition 8. Given an initial condition z0 = (x0, y0) ∈ , we have the two following cases:

(i) If z0 ∈  , optimal solutions for Problems (4.1) and (5.1) coincide.

(ii) If z0 ∈ ∖ , then one has
�(z0) < J (u⋆, z0),
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where u⋆ denotes an optimal control for (4.1), J (u⋆, z0) ∶= ∫ +∞
0 1K(x)(z⋆(t, z0)) dt, and z⋆ is the solution associated to

u⋆.

Proof. The proof of (i) is immediate from Theorem 2 and Proposition 7. Take now an initial condition z0 = (x0, y0) ∈ ∖ and
let u⋆ be an optimal control for (4.1). As u⋆ ∈  is admissible for (5.1), we have �(z0) ≤ J (u⋆, z0). If we have �(z0) = J (u⋆, z0),
then u⋆ is necessarily an optimal control for (5.1). The switching points in K(x) of the associated trajectory occur on the line
{y = r} only from Proposition 7. As z0 ∈ ∖ the trajectory necessarily has at least one switching point in the set K(x) from
Proposition 6 at some time tc . At time tc , we must have y(tc) > r as the corresponding trajectory is a normal extremal (see
Theorem 2). This gives a contradiction and proves (ii).

Intuitively, this result says that for initial conditions in  , the time spent in Kc by an optimal trajectory of the minimum time
problem (4.1) is greater than the one spent in in Kc by an optimal trajectory of the time crisis problem (5.1). To conclude this
study, we provide properties of the minimal time crisis problem when the viability kernel Viab(x) is empty, that is, when the
condition m + ū < x is fulfilled (see Proposition 2).

Proposition 9. When m + ū < x, the following properties hold true.

(i) There is no chattering phenomenon for Problem 5.1 in the sense of Definition 2 for system (3.1).

(ii) For any z0 ∈ , one has �(z0) = +∞.

Proof. First, suppose that there exist two sequences of times (t1n) and (t
2
n) satisfying:

- both sequences (t1n) and (t
2
n) are increasing with t

1
n < t

2
n for any n ∈ ℕ and such that t2n − t

1
n → 0 when n→ +∞.

- for any n ∈ ℕ, t1n, resp. t
2
n is a crossing time from K(x) to K(x)c , resp. from K(x)c to K(x),

- for any time t ∈ (t1n, t
2
n), one has (x(t), y(t)) ∈ K(x)c .

As m + ū < x, there exists " > 0 such that m + ū + " < x. Let us now integrate (3.1) over [t1n, t
2
n]. Since u(t) ≤ ū for any time t,

one has:
y2n

∫
y1n

dy
y

=

t2n

∫
t1n

(x(t) − m − u(t)) dt ≥

t2n

∫
t1n

(x(t) − m − ū) dt >

t2n

∫
t1n

(x(t) − x + ") dt,

where y1n ∶= y(t1n) and y
2
n ∶= y(t2n), or equivalently

"(t2n − t
1
n) + ln

(

y1n
y2n

)

<

t2n

∫
t1n

(x − x(t)) dt. (5.5)

As one should have at the crossing times ẋ(t1n) > 0 and ẋ(t2n) < 0, one immediately obtains from equations (3.1) the inequalities
y1n > r > y2n, and thus ln

(

y1n
y2n

)

is a positive number, for any n. We then deduce from (5.5) that ln
(

y1n
y2n

)

has to tend to 0 when n
tends to +∞, which implies that y1n and y

2
n both tend to r. Therefore, y(⋅) is uniformly bounded on the intervals [t1n, t

2
n], say by a

number C > 0. It follows that one has

∀n ∈ ℕ, ∀t ∈ [t1n, t
2
n], |ẋ(t)| ≤ x(t)(r + y(t)) ≤ A,

whereA ∶= x(r+C). We then deduce that |x(t)−x| ≤ A|t−t1n| for any n ∈ ℕ and any time t ∈ [t1n, t
2
n]. Finally one has from (5.5)

"(t2n − t
1
n) + ln

(

y1n
y2n

)

< A
2
(t2n − t

1
n)

2

which gives a contradiction for large values of n. This concludes the proof (i).

To prove (ii), suppose by contradiction that there exists z0 ∈  such that �(z0) < +∞ and let (x(⋅), y(⋅), u) be an optimal
solution. Then, x(⋅) has an infinite number of crossing times. Otherwise, either x(⋅) remains in K(x) after a certain time � ≥ 0,
which is a contradiction with Viab(x) = ∅, or it remains in K(x)c after a certain time � ≥ 0, which is a contradiction with
�(z0) < +∞. Without any loss of generality, we can then suppose that there exist two sequences of times (t1n), (t

2
n) as above. We

then obtain a contradiction as previously, which ends the proof.
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Remark 6.

- This result shows that even if �(z0) = +∞, then no chattering phenomenon occurs.

- Proposition 9 implies that when m + ū < x one has J (u, z0) = +∞ for any u ∈  and z0 ∈ . However, it is possible to
study the minimal time crisis problem restricted to a given finite horizon (see7,8) and to characterize optimal controls in
the same way.

6 CONCLUSION AND PERSPECTIVES

In this work, we first provided a reformulation of the minimal time crisis problem in general setup as a free terminal control
problem. Thanks to this result, we could state optimality conditions using the hybrid maximum principle. We have then applied
this result to compute the minimal time crisis for the prey-predator model when the control acts as a mortality term on the
predators. This was made possible after an exact determination of the viability kernel. Finally, we have depicted a particular
subset of the state space which is as follows: for any initial condition in this set, the time spent in the crisis set by optimal
trajectories of the minimal time crisis problem is strictly less than the one spent by optimal trajectories of the minimum time
problem reaching the viability kernel. We believe that our contribution is original since an exact computation of a viability
kernel is often difficult. This study shows that the minimal time crisis function appears to be an interesting alternative to the
strategy which consists in steering a system in minimal time to the viability kernel. The methodology we have deployed here
could be applied to other prey-predator models. More generally, we could also focus on first order optimality conditions for the
time crisis function in the case where optimal trajectories could hit the boundary tangentially or an infinite number of times. As
well, it could be interesting to study the long-run averaged minimal time crisis problem, typically to deal with situations where
the viability kernel is empty.
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8 APPENDIX: NUMERICAL SIMULATIONS

Numerical simulations for obtaining Fig. 2 and 3, have been conducted with the parameters r = m = 1, ū = 0.5 and x̄ = 1.2.
We proceed as follows. Given a terminal time T > 0, we consider the state-adjoint system backward in time:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ẋ = −x(r − y),
ẏ = −y(x − m − u),
ṗ = −p(y − r) + qy,
q̇ = −px − q(u + m − x),

(8.1)

over [0, T ] together with the control law u(t) = sign(−q(t)) for a.e. t ∈ [0, T ] obtained from (5.2). The initialization makes use
of the transversality condition (4.6) for an initial condition (x0, r) with x0 ∈ [r−, r).

Numerical determination of extremal trajectories for the minimum time problem (4.1).

First case. If x0 ∈ (r−, r), then q(0) = 0 and p(0) = 1
x(r−x0)

(thanks toH = 0). Thus, (8.1) is initialized by the quadruple:
(

x, x0,
1

x(r − x0)
, 0
)

. (8.2)
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Second case. If x0 = r−, then there exists � ≥ 0 and � ∈ [0, 1] such that

(p(0), q(0)) = �(1 − �(1 +w1),−�w2) and � = 1
x(r − r−)(1 − �(1 +w1)) − �w2r−(x − m)

, (8.3)

using the fact that the Hamiltonian is zero along any extremal trajectory. The system (8.1) is then initialized by the quadruple:
(

x, r−, p(0), q(0)
)

, (8.4)

with (p(0), q(0)) and � given by (8.3). Notice that in this case, the value of � ∈ [0, 1] is a parameter (as K(x) is non-smooth at
(x, r−), there exist infinitely many extremal trajectories arising from (x, r−)).

Numerical determination of extremal trajectories for the minimum time crisis problem (5.1).

The initialization of (8.1) is the same as for Problem (4.1). Moreover, the equation (8.1) remains valid as long as the trajectory
does not belong to the boundary of K(x). We thus impose the following condition:

⎧

⎪

⎨

⎪

⎩

x(t−c ) < x and x(t+c ) > x ⇒ p(t+c ) − p(t
−
c ) =

1
x(r−y(tc ))

,

x(t−c ) > x and x(t+c ) < x ⇒ p(t+c ) − p(t
−
c ) =

−1
x(r−y(tc ))

,
(8.5)

at each crossing time tc (recall that according to the Hybrid Maximum Principle applied on Problem (5.2) only p is
discontinuous). Finally, the plots of optimal trajectories for (4.1) and (5.1) have been obtained by the scheme:

- TakeN ∈ ℕ∗ and let xk0 ∶= r− + (k−1)
N

(r − r−) for k = 1⋯N .

- If k = 1 then choose �i =
(i−1)
N

for i = 1⋯N and initialize (8.1) with (8.4) where � is replaced by �i.

- If k > 1 initialize (8.1) with (8.2) where y0 is replaced by xk0 .

For both problems, the numerical integration of (8.1) is stopped when t = T (with T chosen sufficiently large). Any zero of the
switching function � (or equivalently q) during the numerical integration is marked by a dot point on the picture. These points
correspond to switching points in the state space and to the switching curves (i.e., the loci where the control switches either
from u = 0 to u = ū or from u = ū to u = 0).
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