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Challenges

Developing a Green Intelligence Medical System to derivate

● A common challenge in healthcare today is that physicians have 
access to massive amounts of data on patients, but have short time to 
analyze all of them.

● One limitation is that hospitals without robust computational systems for 
processing, storing and drawing conclusions requires to outsource the 
clinical tasks and that is a risk for privacy clinical data.

a patient representation for predict general medical targets

and improving the computational resources usage.
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Provides three high-level features:

1) A framework to build full Deep Neural Networks (DNN) workflow;

2) A distributed processing for training DNN on Jetson TX2 Mini-Clusters;

3) An energy-monitoring tool for workload characterization.

Green Intelligence Medical System
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Case Study: Predict the Medical Future of Hospitalized Patients
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PMSI-PACA Clinical Dataset

As Input we are using result features that describe the patient clinical 
descriptors to predict the medical targets.
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Provides three high-level features:

1) A framework to build full Deep Neural Networks (DNN) workflow;

2) A distributed processing for training DNN on Jetson TX2 Mini-Clusters;

3) An energy-monitoring tool for workload characterization.

Green Intelligence Medical System
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DiagnoseNET: Framework to automize the Patient Phenotype Representation

3. Adapted from: Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records. By Riccardo Miotto et al. 
SCIENTIFIC REPORTS, 2016.
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Mining Electronic Health Records

To Build A Patient Entity-Term Matrix
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Data-mining: Feature Extraction From Electronic Health Records

Serialized each patient record in a clinical document architecture schema

Build a binary patient phenotype representation from their features selected
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Unsupervised Patient Phenotype 
Representation
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Methodology: Unsupervised Patient Phenotype Representation

The task: 

+ From a binary patient representation {X} derive a latent patient representation {Z}.

+ Using the general representation plus a supervised learning algorithms for predict 
different medical targets.
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Unsupervised Learning Representation

 For Mapping the BPPR Through 

Unsupervised Stacked Denoising Autoencoder to get 

a New Encoded Space of Patient Phenotype (Latent Representation)

4. Adapted from Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion. By Pascal Vincent et al. 2010



Experiment Analysis

1) Number of Gradient Updates as Factor to Early Model 
Convergence.
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1) Number of Gradient Updates as Factor to Early Model Convergence

●  Network convergence using batch partitions of [20000, 1420, 768] 
records to generate [4, 59, 110] gradient updates by epoch respectively.
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Power consumption in a window of 6 minutes

BF: 20.000 BF: 1420 BF: 768

100 Epochs

EC: 137.65 Kj

40 Epochs 20 Epochs

EC:  41.26 Kj EC:  21.87 Kj



Experiment Analysis

2) Model Dimensionality as Factor to Generate Quality 
Latent Representation
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Model Dimensionality as Factor to Generate Quality Latent Representation

●  Comparison of different model dimensionality using relu as function to 
generate the latent representation.
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Model Dimensionality as Factor to Generate Quality Latent Representation

Autoencoders:

End to End:
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Supervised Learning
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Medical Target 1: Care Purpose Description Labels at ICU
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Medical Target 1: Class Distribution for Training Data
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Machine Learning Algorithm: Random Forest

Ensemble Algorithm Based on Decision Tree Model
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Random Forest: F1-Score for Different Number of Features Scales
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Random Forest: F1-Score for Different Number of Features Scales
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Random Forest: F1-Score for Different Number of Features Scales
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Deep Learning Network: Feed-forward Multilayer Perceptron

Hidden Layers (hi)

Output (Y’i)

Cross Entropy Loss Function

Gradient Descent Optimization



29

Experiments: Feed-forward Multilayer Perceptron
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Experiments: Feed-forward Multilayer Perceptron
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Stretching the 4096 Neurones over Deep Architectures

In 2, 4, 8 and 16 hidden layers
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Resuls F1 score for different stretching configurations
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Performance Results By class to Classify the Medical Target 1
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Distributed Processing for Training DNN 

on Jetson TX2 Mini-Clusters
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Computational Resources

Mini-Cluster Jetson TX2

(Distributed Memory)
Array Node with 24 Jetson TX2 

(Hybrid Memory)
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Develop DiagnoseNET for Training Large-Scale DNN on Distributed Systems

6. Adapted from Snap Machine Learning. By IBM Research et al. 2018
7. Adapted from TensorFlow Architecture. By Google Research. 



Task-Based Data Parallelism: Synchronous

8. Adapted from TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. By Google Research. 2015.

(Data Size):

+ Setting the number of workers and micro batch.
+ Fine-tuning DNN hyperparameters.
+ Speeds up the training.
+ I/O Intensive.
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2) Preliminary Results to Scale the Unsupervised Representation Learning

Preliminary results using: 
10.000 records and 
11.466 features.
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3) Number of Workers and Task Granularity as Factor to Early Model Convergence

●  Early convergence comparison between different groups of workers and 
task granularity for distributed training with 10.000 records and 11.466 
features.
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3) Number of Workers and Task Granularity as Factor to Early Model Convergence

●  Early convergence comparison between different groups of workers and 
task granularity for distributed training with 10.000 records and 11.466 
features.
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Preliminary Results to Scale the Feed-forward Multilayer Perceptron

F1-score of 8-Layers Model and 256 neurons per layer 
on a cluster of 2, 4, 6, 8, 10 and 12 Jetsons
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Preliminary Results to Scale the Feed-forward Multilayer Perceptron
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● Use the unsupervised embedding stage to create a new lower 
dimensional patient representation, reduces the number of sparse 
features to classify at stage 3. In which, the execution time for 
training is minimized by 41% with regard to BPPR and the 
precision to classify the first medical target is almost equal.

● Use small batch partitions with larger number of gradient updates 
allows an early model convergence and minimizes energy 
consumption.

● The future work is focused on evaluating the different DNN 
approach using the different platform such as, cluster Jetson TX2 
(distributed memory), a multiGPU Node with 8 GPUs (Share 
memory) and the array Node with 24 Jetson TX2 (Hybrid memory). 

Conclusions
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DiagnoseNET: Green Intelligence System Criteria

1) Select optimal computational resources and make good mapping of task 
granularity for training one model in less time and less power consumption 
give a mini-batch size factor.

2) Minimize the number of different trained models to converge the optimal  
generalization-accuracy model.

3) Management the queue of models to training and determine optimal 
combination of computational resources to use in each model training.
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Gracias Por su Atención
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