Scalability Analysis of Mini-Cluster Jetson TX2 for Training DNN Applied to Healthcare

John A. GARCÍA. H. Frédéric PRECIOSO, Pascal STACCINI, Michel RIVEILL

Université Côte d'Azur, CNRS

Laboratoire d'Informatique, Signaux et Systèmes de Sophia Antipolis - I3S

Purpose Statements

Motivation: Health Care Decision-Making

- A common challenge in healthcare today is that physicians have access to massive amounts of data on patients, but have short time to analyze all of them.
- One limitation is that hospitals without robust computational systems for processing, storing and drawing conclusions requires to outsource the clinical tasks and that is a risk for privacy clinical data.

Developing a Green Intelligence Medical System to derivate a patient representation for predict general medical targets and improving the computational resources usage.

Provides three high-level features:

- 1) A framework to build full Deep Neural Networks (DNN) workflow;
- 2) A distributed processing for training DNN on Jetson TX2 Mini-Clusters;
- 3) An energy-monitoring tool for workload characterization.

Case Study: Predict the Medical Future of Hospitalized Patients

Diagnosis-related Group I		ICD-10 Codes	Definition
Patient 1	Morbidity Principal	R402	Unspecified coma
	Etiology	I619	Nontraumatic intracerebral hemorrhage, unspecified
Medical Target Care Purpose		Z515	Encounter for palliative care
Label used	Clinical Major Category	20	Palliative care
Patient 2	Morbidity Principal	R530	Neoplastic (malignant) relate fatigue
Etiology		C20	Malignant neoplasm of rectum
$Medical \ Target$	Care Purpose	Z518	Encounter for other specified aftercare
Label used	Clinical Major Category	60	Other disorders

PMSI-PACA Clinical Dataset

As Input we are using **result features** that describe the patient clinical descriptors to predict the medical targets.

116.851 Patients Records with an entry as first week 2008 2006 2011 18 GB **Clinical Descriptors:** +Demographics +Admission Details +Hospitalization Details +Physical Dependence **Binary Patient** +Cognitive Dependence Representation +Rehabilitation Time (14.637 Features) +Comorbilities +Morbidity +Etiology Training Valid Test (5783,14637 (99306,14637 (11742, 14637)

Provides three high-level features:

- 1) A framework to build full Deep Neural Networks (DNN) workflow;
- 2) A distributed processing for training DNN on Jetson TX2 Mini-Clusters;
- 3) An energy-monitoring tool for workload characterization.

DiagnoseNET: Framework to automize the Patient Phenotype Representation

3. Adapted from: Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records. By Riccardo Miotto et al. SCIENTIFIC REPORTS, 2016.

Mining Electronic Health Records To Build A Patient Entity-Term Matrix

Serialized each patient record in a clinical document architecture schema

Dationts	x1_demographics			x4_physical_dependance			x7_related_diagnoses		
rationts	gender		age	feeding		displacement	Das1		Das 3
Patient 1	2		61	4		2	Z431		Z501
Patient 2	2		65	4		2	J459		F322
••••	•••		•••	•••					•••
Patient m	1		95	1		2	C259		F322

Build a binary patient phenotype representation from their features selected

Dationta	x1 :demographics			x4 :phy	x7 :related_diagnoses				
rationts	[1 :male]	[2 :female]	60-74	[4 :Assistance]		[2 :normal_transfer]	Z431		F322
Patient 1	0	1	1	1	•••	1	1		0
Patient 2	0	1	1	1	•••	1	0		1
		•••		•••	•••	•••			
Patient m	1	0	0	0	•••	1	0		1

Unsupervised Patient Phenotype Representation

The task:

- + From a binary patient representation {X} derive a latent patient representation {Z}.
- + Using the general representation plus a supervised learning algorithms for predict different medical targets.

Medical Target 1

Unsupervised Learning Representation

Experiment Analysis

1) Number of Gradient Updates as Factor to Early Model Convergence.

1) Number of Gradient Updates as Factor to Early Model Convergence

• Network convergence using batch partitions of [20000, 1420, 768] records to generate [4, 59, 110] gradient updates by epoch respectively.

	1-Layer1	2-Layer2	3-Layer3	4-Activation_funct	5-GD_Optimizer	6-Learning_rate	7-Dropout-rate
0	2048	2048	768	relu	adam	0.0001	0.5

Power consumption in a window of 6 minutes

63.35 *Watts* in average to process 68 gradient up-dtaes in 17 epochs.

86.61 *Watts* in average to process 885 gradient updtaes in 15 epochs. 82.21 *Watts* in average to process 1540 gradient updtaes in 14 epochs.

Experiment Analysis

2) Model Dimensionality as Factor to Generate Quality Latent Representation

Model Dimensionality as Factor to Generate Quality Latent Representation

 Comparison of different model dimensionality using relu as function to generate the latent representation.

Model Dimensionality as Factor to Generate Quality Latent Representation

Autoencoders:

End to End:

Supervised Learning

Position	Description
0	Other situations
1	Proceedings of Medical Cardiovascular / Respiratory Care
3	Proceedings of Neuro-Muscular Medical Care
4	Proceedings of Medical Care Mental Health
5	Proceedings Sensory and Skin Medical Care
6	Proceedings of Rheumatics / Orthopedic Medical Care
7	Proceedings of Post-Traumatic Medical Care
8	Proceedings of Medical Amputations
9	Palliative care
10	Placement expectation
11	Rehabilitation
12	Proceedings of Nutritional Medical Care
13	Grouping impossible

Medical Target 1: Class Distribution for Training Data

Machine Learning Algorithm: Random Forest

Ensemble Algorithm Based on Decision Tree Model

Random Forest: F1-Score for Different Number of Features Scales

F1_score vs Number of Features

Random Forest: F1-Score for Different Number of Features Scales

Execution_time vs Number of Features

Number of Features

Random Forest: F1-Score for Different Number of Features Scales

Execution_time vs Number of cores

Number of cores

Deep Learning Network: Feed-forward Multilayer Perceptron

Experiments: Feed-forward Multilayer Perceptron

VALIDATION LOSS WITHOUT DROPOUT

Epoch

Experiments: Feed-forward Multilayer Perceptron

VALIDATION LOSS WITH DROPOUT

Epoch

In 2, 4, 8 and 16 hidden layers

Number of units $= 4096$	F1 score	execution time	energy consumption	
		(sec)	Kj	
2 layers - 4096 units	0.92	1108	238.06	
4 layers - 2048 units	0.85	934	161.74	
8 layers - 1024 units	0.72	793	124.04	
16 layers - 512 units	0.75	693	90.74	

Resuls F1 score for different stretching configurations

Architecture	F1 score	execution time	energy consumption
		(sec)	Kj
256 units - 2 layers - 128 units	0.92	686	59.97
2048 units - 8 layers - 256 units	0.91	654	66.49
8192 - 2 layers - 4096 units	0.92	1108	238.06

32

Performance Results By class to Classify the Medical Target 1

Classes	True positives	False positives	False negatives	precision	recall	f1 score	occurence
							de la classe
0	424	54	122	0.89	0.78	0.83	546
1	2089	136	59	0.94	0.97	0.96	2148
2	1382	98	79	0.93	0.95	0.94	1461
3	598	72	34	0.89	0.95	0.92	632
4	211	73	153	0.74	0.58	0.65	364
5	861	136	141	0.86	0.86	0.86	1002
6	2086	96	105	0.96	0.95	0.95	2191
7	1574	115	74	0.93	0.96	0.94	1648
8	76	9	10	0.89	0.88	0.89	86
9	101	74	122	0.58	0.45	0.51	223
10	36	1	3	0.97	0.92	0.95	39
11	275	31	20	0.90	0.93	0.92	295
12	1088	44	16	0.96	0.99	0.97	1104
13	0	2	3	0.0	0.0	0.0	3

Distributed Processing for Training DNN on Jetson TX2 Mini-Clusters

Computational Resources

Mini-Cluster Jetson TX2

(Distributed Memory)

Array Node with 24 Jetson TX2

(Hybrid Memory)

Cross-platform Library						
User Interface	Diagr	ioseNET An	aly	ysis Interface		
DiagnoseNET DNN I	Nodels	Dia	gno	oseNET		
DiagnoseNET Par & Distributed Trai	allel ning	Data M Resou	ana rce	gement & Manager		
Training Libraries	Infe	erence Libs				
Python Client	С	++ Client				
C	API					
Distributed Master	or					
Network	ing La	yer		enerGyPU		
GRPC	MA	МРІ		Monitor-1001		
Kernel Impl cuI						
Relu	v2	MatMul				
GCC, CUDA, Protobuf, Bazel,						

Adapted from Snap Machine Learning. By IBM Research et al. 2018
Adapted from TensorFlow Architecture. By Google Research.

Task-Based Data Parallelism: Synchronous

(Data Size):

- + Setting the number of workers and micro batch.
- + Fine-tuning DNN hyperparameters.
- + Speeds up the training.

+ I/O Intensive.

8. Adapted from TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. By Google Research. 2015.

2) Preliminary Results to Scale the Unsupervised Representation Learning

Preliminary results using: 10.000 records and 11.466 features.

3) Number of Workers and Task Granularity as Factor to Early Model Convergence

 Early convergence comparison between different groups of workers and task granularity for distributed training with 10.000 records and 11.466 features.

1.30 mins in avergange for processing one epoch on 1 PS 3 workers.

1 min in avergange for processing one epoch on 1 PS 6 workers.

3) Number of Workers and Task Granularity as Factor to Early Model Convergence

 Early convergence comparison between different groups of workers and task granularity for distributed training with 10.000 records and 11.466 features.

50.6 secs in avergange for processing one epoch on 1 PS 8 workers.

F1-score of 8-Layers Model and 256 neurons per layer on a cluster of 2, 4, 6, 8, 10 and 12 Jetsons

Nombre de jetsons

Preliminary Results to Scale the Feed-forward Multilayer Perceptron

Nombre de jetsons

Conclusions

- Use the unsupervised embedding stage to create a new lower dimensional patient representation, reduces the number of sparse features to classify at stage 3. In which, the execution time for training is minimized by 41% with regard to BPPR and the precision to classify the first medical target is almost equal.
- Use small batch partitions with larger number of gradient updates allows an early model convergence and minimizes energy consumption.
- The future work is focused on evaluating the different DNN approach using the different platform such as, cluster Jetson TX2 (distributed memory), a multiGPU Node with 8 GPUs (Share memory) and the array Node with 24 Jetson TX2 (Hybrid memory).

DiagnoseNET: Green Intelligence System Criteria

- 1) Select optimal computational resources and make good mapping of task granularity for training one model in less time and less power consumption give a mini-batch size factor.
- 2) Minimize the number of different trained models to converge the optimal generalization-accuracy model.
- **3)** Management the queue of models to training and determine optimal combination of computational resources to use in each model training.

Gracias Por su Atención

Scalability Analysis of Mini-Cluster Jetson TX2 for Training DNN Applied to Healthcare

John A. GARCÍA. H. Frédéric PRECIOSO, Pascal STACCINI, Michel RIVEILL

Université Côte d'Azur, CNRS, I3S

Laboratoire d'Informatique, Signaux et Systèmes de Sophia Antipolis - I3S

Purpose Statements