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Abstract 
One of the main challenges in energy harvesting from ambient vibrations is to find 
efficient ways to scavenge the energy, not only at the mechanical system resonance, but 
on a wider frequency band. Instead of tuning the mechanical part of the system, as 
usually proposed in the state of the art, this paper develops extensively the possibility to 
tune the properties of the harvester using the electrical interface. Due to the progress in 
materials, piezoelectric harvesters can exhibit relatively high electromechanical coupling: 
hence, the electrical part can now have a substantial influence on the global parameters of 
the piezoelectric system. In order to harness the energy efficiently from this kind of 
generator on a wide frequency band, not only the electrical load’s effect on the 
harvester’s damping should be tuned, but also its effect on the harvester’s stiffness. In 
this paper, we present an analytical analysis of the influences of the resistive and reactive 
behavior of the electrical interface on highly coupled piezoelectric harvesters. We 
develop a normalized study of the multiphysic interactions, reducing the number of 
parameters of the problem to a few physically meaningful variables. The respective 
influence of each of these variables on the harvesting power has been studied and led us 
to the optimal electrical damping expression and the influences of the damping and of the 
coupling on the equivalent admittance of the piezoelectric energy harvester (PEH). 
Finally, we linked these normalized variables with real reactive load expressions, in order 
to study how a resistive, capacitive and inductive behaviors could affect the global 
performances of the system. The theoretical analysis and results are supported by 
experimental tests on a highly coupled piezoelectric system (𝑘" = 23%). Using an 
adequate tuning of a RC load at each frequency, the maximum harvested power (11𝜇𝑊) 
under a small acceleration amplitude of 0.5𝑚. 𝑠0" is reach over a 14Hz large frequency 
band around 105Hz which has been predicted by the model with less than 5% error. 
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Introduction 

The last decade has seen a growing interest in new energy scavenging sources that 
could replace chemical batteries (Schlichting et al., 2012), such as microbial fuel cells 
(Wanderoild et al., 2018), solar energy harvesters (Raghunathan et al., 2005), or thermal 
generators (Sodano et al., 2007). Mechanical energy harvesting is a good way to harvest 
the ambient energy, especially in closed confined environments. Piezoelectric elements 
are of particular interest because of their high energy densities and integration potential 
(Caliò et al., 2014). Since there exists a coupling between the electrical domain and the 
mechanical domain in a piezoelectric harvester, it has been proven that the interface 
circuit has a certain influence on the global harvesting efficiency of the system (Zhu et 
al., 2009). During the last two decades, there has been a relatively long-standing interest 
in strategies and electrical interfaces that could help increasing the scavenged power 
(Guyomar and Lallart, 2011; Liang, 2017; Wu et al., 2013; Shi et al., 2016) 

Ottman et al. and Lesieutre et al. have proposed to model the influence of the 
electrical interface as a mechanical damper that could be electronically tuned, for 
instance using a DC/DC converter (Ottman et al., 2002; Lesieutre et al., 2004). In an 
extensive theoretical study that takes in account the nonlinearities induced by the required 
AC/DC conversion, Shu et al. proved that there exists a particular damper that maximize 
the power at the resonance frequency (Shu and Lien, 2006).  

In 2005, Guyomar et al. proposed new synchronous harvesting circuits based on 
the commutation of inductive switches synchronously with the mechanical vibration. 
These highly nonlinear circuits, such as Synchronous Electric Charge Extraction (SECE) 
or Synchronized Switch Harvesting on Inductor (SSHI), could harvest the energy way 
more efficiently than the usual DC/DC used to get an optimal damping (Guyomar et al., 
2005). These strategies have been widely used and developed on lowly coupled 
piezoelectric generators or excited out resonance, and they undoubtedly outperformed the 
standard approach, as they were able to emulate higher electrical damping that were 
closer to the optimal damping required to reach the maximum harvested power (Lefeuvre 
et al., 2005). However, it has also been shown that if the electromechanical coupling 
factor is high enough, the synchronous techniques are no longer a better choice than the 
traditional harvesting strategy using a DC/DC (Lefeuvre et al., 2006). Indeed, the 
electrical damping induced by the nonlinear process is getting too important for highly 
coupled piezoelectric generators, and hence is not optimal (Lefeuvre et al., 2006). 

Due to the last progresses in materials science and piezoelectric generator design, 
the electromechanical coupling factor, initially relatively low, is gradually getting greater 
(Cho et al., 2005; Badel and Lefeuvre, 2014). This has consequences on the frequency 
response of PEHs. The optimal electrical load is no longer only resistive and inductive 
but is resistive and capacitive between the piezoelectric generators short-circuit and open 
circuit resonant frequencies. As shown in this paper, the higher the coupling, the wider 
this frequency band, and hence it is increasingly important to include an additional 



tunable capacitive load that has a direct impact on the open circuit resonant frequency of 
the PEH.  

Recently, some researchers have proposed to use this increasing coupling to 
design interfaces that could harvest the energy efficiently on a wide frequency band, 
thanks to their reactive and resistive impedance emulation (Badel and Lefeuvre, 2014; 
Ahmed-Seddik et al., 2013; Hsieh et al., 2015). Indeed, it has been proven that even 
highly nonlinear electrical strategies can be seen and modelled as combination of linear 
reactive and resistive loads, thanks to the first harmonic approximation (Brufau-Penella 
and Puig-Vidal, 2009; Liang and Liao, 2010). While the influences of the resistive (Wu et 
al., 2006), and capacitive (Liao and Sodano, 2009) parts of the electrical interface have 
already been analytically studied, to the authors knowledges, there is no thorough 
analysis gathering all the resistive and reactive influences of the load on highly coupled 
harvesters (𝑘1" > 4𝜉1) with experimental demonstrations of these influences.  

 
Fig. 1. Scope of this paper 

As described in Fig. 1, we propose in this paper a generalized analysis of reactive 
and resistive electrical loads influences for highly coupled piezoelectric generators. We 
study the optimal electrical damping, and investigate on the piezoelectric admittance 
characteristics in order to highlight the influence of the coupling factor and mechanical 
damping on its resonance and anti-resonance frequencies. We then analyze the influences 
of the resistive, capacitive and inductive part of the electrical interface on the dynamics 
of the electromechanical systems, in order to determine the theoretical upper bounds of 
the harvested power and bandwidth. From these results, we may estimate the maximum 
power frequency response of any electrical interface, considering that any (nonlinear or 
not) interface can be modelled as a combination of resistive and reactive loads (Liang and 
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Liao, 2010). To do this, we show that the piezoelectric voltage can be split in two terms: 
an electrical damping and an electrical stiffness. We will then investigate on those terms 
in order to prove that to maximize the harvested energy in highly coupled systems, not 
only the electrical damping should be considered, but also the electrical stiffness. Taking 
these two terms into account allows the harnessing of the maximized power on a large 
frequency band. In a last section, we validate the proposed approach through 
experimental tests of resistive and capacitive loads connected to a highly coupled PEH. 

PEH modeling and coupling analysis 

Model and fundamental equations 

A piezoelectric energy harvester is used to convert mechanical energy into 
electrical energy. First, the vibration is transmitted in the host structure in order to stretch 
the piezoelectric materials. Connecting an interface circuit to the piezoelectric materials 
allows the electrical charges to flow and hence allows the energy transfer. Due to the 
backward coupling, it is important to note that the energy transfer is impacted by every 
stage of conversion:  

-The mechanical transfer in the harvester structure  
-The electromechanical conversion  
-The electrical energy transfer 

The aim of this paper is to analyze the impact of reactive loads on the 
electromechanical dynamics of the harvester, and to determine as well the optimal 
electrical loads that maximize the energy conversion and transfer for highly coupled 
generators. Considering the generic mechanical-to-electrical conversion model depicted 
in Fig. 2 and described extensively in (Arroyo et al., 2012), the electromechanical 
constitutive equations can be written as: 

where 𝑥, 𝑦, 𝑣8 and 𝑖 stand for the dynamic mass displacement, the ambient 
displacement, the piezoelectric output voltage and current respectively. 𝑀 is the dynamic 
mass of the system, 𝐷 is the mechanical damping of the structure, 𝐾=>	is the short-
circuited stiffness, 𝐶8 is the piezoelectric capacitance, and 𝛼 is the electromechanical 
coupling between the mechanical part and the electrical part of the piezoelectric 
generator. 

	 𝑀𝑥 𝑡 + 𝐷𝑥 𝑡 + 𝐾DE𝑥 𝑡 + 𝛼𝑣8 𝑡 = 	−𝑀𝑦 𝑡 = 	−𝑀	𝛾
𝑖(𝑡) = 	𝛼𝑥 𝑡 − 𝐶8𝑣8(𝑡)

 
(1)	

	



 
Fig. 2. Generic mechanical-to-electrical conversion model 

 
 

Normalized power expression induced by the electrical load influence 

In the case of highly coupled systems, the electrical load has not only an influence 
on the electrical damping, but also on the electrical stiffness which can be used to tune 
the resonant frequency of the generator. In order to describe this effect, we first need to 
define the piezoelectric voltage as a combination of an imaginary part (the normalized 
electrical damping 𝜖J) and a real part (the normalized electrical stiffness 𝜖K). These 
parameters imply there is a phase difference between the piezoelectric voltage 𝑣8 and 
dynamic mass displacement 𝑥. In order to express the piezoelectric voltage consequently, 
we use the following notation defined in (Badel and Lefeuvre, 2016) and the following 
equivalent circuit: 

 

Fig. 3. Equivalent circuit of a PEH and its electrical load 

 

 

Injecting (2) in (1) written in the frequency domain leads to the following 
expression of the relative displacement 𝑥 : 
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(2)	
	



 

𝑥	can also be expressed as the following expression using normalized constants: 

Where 𝜔N	is the short circuit mechanical resonant frequency,	𝜉1	and	𝜉O	are the 
normalized damping ratios due to mechanical losses and electrical resistance 
respectively, and 𝛺1 is the normalized (with respect to 𝜔N	) short circuit mechanical 
resonant frequency.	𝛺O1 is the normalized resonant frequency of the electromechanical 
system, taking into account both the mechanical part and electrical part of the 
generator.	𝛺O is defined as the resonant frequency variation due to the electrical 
stiffness.	𝑘" is the squared coupling coefficient, and 𝑘1

" is defined as the squared 
modified electromechanical coupling coefficient, and is a function of the coupling factor 
𝛼 , the piezoelectric capacity 𝐶8 and the short-circuit stiffness 𝐾=> . 

Normalizing 𝑥 in (4) with respect to 
Q

RST
 leads to the following expression: 

 

From (5), it can be clearly seen that the resonance frequency is reached when ΩO1 
is equal to 1. It means that the resonant frequency of the system is not only dependent of 
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the mechanical properties of the harvester, but is also tunable by the electrical stiffness of 
the load. The harvested power is the power dissipated in the electrical damper (	 [\

R>]
) i.e. 

in the real part of the load, as shown in Fig. 3. It can be expressed as: 

Optimal electrical damping 

By finding the roots of the derivative of (6) with respect to 𝜉O, we can express the 
optimized electrical damping 𝜉O^8_	that maximizes the power at the resonance and off 
resonance: 

 

 

From equation (7), we can easily see that when the vibration frequency matches 
the normalized resonant frequency of the electromechanical system (𝛺O1 = 1), the 
optimized electrical damping is equal to the mechanical damping. However, when the 
input frequency is different than the system’s resonant frequency, the optimized electrical 
damping is greater than the mechanical damping. If 𝛺O ≠ 0 (𝛺O1 ≠ 𝛺1), the optimized 
power (and minimum optimal damping) is reached for a 𝛺1 different than 1, which 
means that the resonant frequency of the system can be tuned using this electrical 
stiffness.  

The power is maximized when the optimal electrical damping is equal to the 
mechanical damping (𝜉O = 𝜉1) and when the vibration frequency matches the 
electromechanical system’s resonant frequency (𝛺O1 = 1). The maximum power can 
then be expressed, as explained in (Badel and Lefeuvre, 2016): 

 

In order to use a referenced value of the harvested power, we will be using the 
following expression in this paper, directly derived from (6) and (8): 
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Using this notation, the power will be expressed as a number between 0 and 𝑄 
where 𝑄 is the quality factor of the mechanical part of the harvester, and can be expressed 
as 𝑄 = g

"hi
. 𝑃j^k1 is only dependent of the electrical and mechanical damping and of the 

normalized frequencies 𝛺1 and 𝛺O1.  

Piezoelectric generator’s admittance analysis 

In order to find the optimal impedance that maximizes the harvested power, it is 
important to analyze the piezoelectric generator’s admittance. From (1), the piezoelectric 
generator’s admittance can be expressed as: 

The imaginary part of this admittance is useful in order to analyze the 
piezoelectric resonance frequencies and if the piezoelectric generator behaves as a 
capacitive generator or an inductive generator. It can be expressed as: 

 
Fig. 4. Imaginary part of the admittance with different mechanical damping,  
with km" =0.4 
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(11)	
	



Fig. 4 shows the imaginary part of the admittance. The piezoelectric generator 
admittance exhibits one short-circuit resonance frequency and one open circuit resonance 
frequency (as explained later). Between these two frequencies, there is a range where the 
imaginary part of the admittance is negative, then the generator exhibits an inductive 
behavior. Otherwise, it is always positive. Fig. 4 also shows that these resonance 
frequencies are dependent on the mechanical damping. If the mechanical damping is too 
high, there may not be any resonance. 

High coupling influence on the admittance 

The two roots of (11) are named 𝛺g and 	𝛺". For a highly coupled and lowly 
damped piezoelectric generator, 𝛺g and 	𝛺" correspond to the short circuit and open 
circuit resonance normalized frequencies, respectively. In order to understand the 
influences of the damping and coupling on 𝛺g and 	𝛺", we establish the following 
expressions:  

 

 
Fig. 5. Bandwidth between the anti-resonant frequency and resonant frequency as a 
function of 𝑘1" and 𝜉𝑚  

If the damping is low enough, 𝛺g	will always be very close to 1 and will not be 
very affected by the coupling. However, 𝛺" is strongly dependent on the coupling and 
will be shifted on the right as the coupling increases. As explained in (Badel and 
Lefeuvre, 2016), the damping limit is given by 𝑘1" ≈ 4𝜉1. If 𝑘1" 	is below this value, the 
admittance is always strictly positive, and consequently, 𝛺g and 𝛺" are not defined. As it 
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has already been shown in Fig. 4, the piezoelectric generator behaves like an inductive 
source for any frequency between 𝛺g and 𝛺". Hence the electrical load must be 
capacitive to achieve the maximum harvesting power. A higher coupling increases the 
width of the frequency band where the piezoelectric generator has an inductive behavior 
as shown in Fig. 5. This frequency range where the optimal load is inductor-less is given 
by (13). 

Influences of the reactive behaviors of the electrical interface on 
the harvested power 

 
Fig. 6. Piezoelectric frequency and damping tuning using a generalized passive electrical 
load, emulated by a PWM rectifier. 
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As proven in prior art, all the electrical interfaces can be modelled, thanks to the 
first harmonic approximation, as a combination of resistive and reactive impedances 
(Liang and Liao, 2010, Badel and Lefeuvre, 2016), as shown in Fig. 6. We can note that 
the PWM AC/DC circuit shown in Fig. 6 and presented in (Badel and Lefeuvre, 2016), is 
a possible way to emulate every combination of RLC loads and to realize a complex 
impedance matching. This means that, practically, the optimal impedance matching is 
realizable. However, the sophisticated algorithm as well as the switching losses 
associated with such circuit may consume a lot of energy, which hinder its potential use 
as an energy harvester interface. In order to find less consuming ways to emulate reactive 
loads, (Morel et al., 2018; Lefeuvre et al., 2017, Badel and Lefeuvre, 2014) have 
proposed alternative strategies, summarized in Table 1. These strategies have been 
modelled using the formalism presented in this paper. 𝑅sE, 𝛾, 𝑁, 𝛽 and 𝜙 represent the 
input impedance of the DC/DC converter which follows the AC/DC converter, the 
charges inversion factor, the number of semi-period between every harvesting event, the 
percentage of electrical charges that are inverted during the energy harvesting event, and 
the angular phase between the displacement extremum and the energy harvesting event, 
respectively. Thus, in this part, we study the different influences involved with resistive, 
capacitive and inductive electrical behaviors. First, we investigate the harvested power 
using a pure resistive load. It aims at verifying the 𝑃1bcexpression given in (8). In a 
second time, we add a capacitive load in parallel to the resistive load in order to validate 
the possibility to tune the resonant frequency of the system and harvest the maximum 
power between 𝛺g and 𝛺". In a last part, we add an inductive load in parallel to the 
capacitance and resistance in order to study the performances of the harvester on a tuned 
RLC load to ideally maximize theoretically the harvested power for any vibration 
frequencies.  

Resistive electrical interface 

From equations (1) and considering a purely resistive electrical interface, the 
following equations that express the relation between the piezoelectric voltage and the 
current in the resistive load are derived. 

 



 

Solving this system in the frequency domain leads to the following system: 

 

Where 𝑅 is the resistive load, 𝑟 ∈ ℝ� is the corresponding normalized load, 𝜖J 
and 𝜖K the normalized electrical damping and stiffness respectively. Finding the root of 
the derivative of the electrical damping 𝜖J (15) proves that the maximum electrical 
damping emulated with a resistance is 1/2 and that the corresponding resistance is given 
by (16). 

 

From (4) and (16), at the resonant frequency, we can extract the minimal 
electromechanical coupling that is necessary to obtain an electrical damping equals to the 
mechanical damping. The expression of this coupling factor is given by (17). For the 
following, we define a low coupling system as 𝑘1" < 𝑘1��i

" . 

 

 

In low coupling systems (𝑘1" < 𝑘1��i
" ), the optimal electrical damping cannot be 

reached, which explains why the maximum power 𝑃1bc (8) is not attained (Lefeuvre et 

	 𝑖 𝑡 = 	𝛼𝑥 𝑡 − 𝐶8𝑣8 𝑡

𝑖 𝑡 =
𝑣8 𝑡
𝑅

	
(14)	

	

	 𝑣8 =
𝛼
𝐶8
𝑥	(𝜖K + 𝑗𝜖J)

𝜖J =
𝑟𝛺1

1 + (𝑟𝛺1)²

𝜖K = 	
𝑟𝛺1 "

1 + 𝑟𝛺1 "

𝑟 = 𝑅𝜔N𝐶8

	

 

	
(15)	

	

	 max(𝜖J) =
1
2
	⇔ 𝑅 = 		

1
𝐶8𝜔N

	

 

(16)	
	

	 𝑘1��i
" = 	

4𝜉1
1 + 4𝜉1

≈ 4𝜉1	

 

(17)	
	



al., 2006). It is however possible, using highly nonlinear techniques, to emulate a higher 
electrical damping and hence being able to harvest the maximum power even when this 
condition is not respected (Lefeuvre et al., 2006). In high coupling systems (𝑘1" >
𝑘1��i
" ), the optimal damping can be reached without using any synchronous strategies. In 

any cases, using (9) and (15), the normalized power harvestable on a pure resistance load 
can be expressed as the following: 

 

 
Fig. 7. (a) Maximum harvested power and (b) Optimal 𝑟 for harvesting on a purely 
resistive load with 𝜉1 = 0.015 

Finding the roots of the derivative of (18) leads to the optimal value of the 
normalized resistive load 𝑟 8_, expressed by (19): 
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The optimal normalized load 𝑟 for a particular mechanical damping (𝜉1 = 0.015) 
leads to the results plotted in Fig. 7. It shows that the maximum harvested power is 
reached twice, for 𝛺1 = 𝛺g and the normalized frequency 𝛺1 = 𝛺" of the piezoelectric 
generator.  

If the coupling is too small,	(𝑘1" < 𝑘1��i
" ), the maximum power cannot be 

reached, since the electrical damping is too small to attain the mechanical damping. 
Hence in lowly coupled systems, the maximum harvested power depends on the coupling 
coefficient (Shu and Lien, 2006). 

For highly coupled systems, the maximum power harvested at the resonance (and 
anti-resonance) is theoretically always equal to 𝑃1bc	as defined in (8). As shown in Fig. 
5, the open circuit resonance frequency is strongly dependent on the electromechanical 
coupling factor, which explains why the second peak 𝛺" moves toward the right as the 
coupling is increased.  

In order to enhance the bandwidth of the piezoelectric generator and to harvest the 
power limit 𝑃1bc on a wide band of frequency, it should be possible to realize an 
impedance matching by using a capacitive load (since a highly coupled piezoelectric 
generator behaves as an inductive source between its short circuit and open circuit 
resonance frequencies) in order to maximize the harvested power between 𝛺g and 𝛺". 

Electrical interface combining resistive and capacitive behaviors 

Adding a capacitance in parallel to the resistive load is the same as increasing the 
dielectric capacitance of the piezoelectric generator. Increasing 𝐶8 has the same effect as 
reducing the squared modified coupling coefficient 	𝑘1"  since it is inversely proportional 
to 𝐶8 (4). In order to study the power harvested by a RC load, we consider the system of 
equations (19), which takes into account the capacitive load 𝐶 and a normalized variable 
𝑐 ∈ [0,1].  
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Since the capacitive load 𝐶 only has an influence on the electrical damping and on 
the electrical stiffness, the global power expression remains the same as (18). Computing 
the maximum harvested power on a RC load gives the results exhibited in Fig. 8. For low 
coupling systems, the results are similar that those on a pure resistive load. We have 
shown that when 𝑘1" < 𝑘1��i

" , the maximum power is an increasing function of the 
coupling factor. Hence, adding a capacitive load (which has the same effect as reducing 
the coupling) decreases the maximum harvested power.  

In another hand, for highly coupled systems, the tuning of the capacitance (and 
hence the tuning of the normalized coupling) leads to a significant improvement of the 
harvested power between 𝛺g and 𝛺". Between these frequencies the piezoelectric 
generator exhibits an inductive behavior, hence the electrical load has to be capacitive. 
Another way to understand this tuning is to consider 𝛺" as a moving frequency (function 
of the coupling factor) as seen in Fig. 5. At this frequency, the maximum harvested power 
can be reached. Hence, tuning the load capacity amount by adapting the normalized 
coupling, it is then possible to move this anti-resonant peak in order to harvest a 
maximized power between the resonant frequency and the anti-resonant frequency 
(which corresponds to the maximum reachable coupling). These results are consistent 
with the results obtained in (Ahmed-Seddik et al., 2013) that show that adding 
capacitances in parallel with the piezoelectric material tune the stiffness and hence the 
resonance of the harvesting system.  

 
Fig. 8. (a) Maximum harvested power, (b) Optimal 𝑟 and (c) Optimal 𝑐 for harvesting on 
a RC load with 𝜉1 = 0.015 
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Since the piezoelectric harvester works at resonance between 𝛺g and 𝛺", the 
analytical expression of the optimal electrical damping on this frequency band is directly 
equal to the mechanical damping. It leads to the followings optimal load expressions, 
valid for lowly damped/highly coupled systems: 

 

 

Electrical interface combining resistive, capacitive and inductive behaviors 

In this part we investigate how combining an inductive load with a capacitive load 
can enlarge the frequency band where 𝑃1bc	is harvested. We need to redefine the 
piezoelectric voltage and the normalized load expressions. Starting from (14), we derive 
the following expressions for a RLC load: 

 

Where 𝐿 is the inductive load, 𝑟, 𝑐 and 𝑙 are respectively the normalized load 
linked to the resistive, capacitive and inductive loads, and 𝜖J and 𝜖K are respectively the 
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normalized electrical damping and normalized electrical stiffness emulated by the 
electrical load. Deriving 𝜖J (22) with respect to 𝑙, and studying its root shows that the 
maximum damping is directly proportional to 𝑟. It means that the inductive load can 
compensate the influence of the dielectric capacitance in order to make the electrical 
damping an unbounded function, proportional to the resistive load 𝑅: 

Combining (18) and (22), the harvested power in the RLC load can be expressed. 
Finding numerically the maximum extracted power on a RLC load leads to Fig. 9. 
Outside [𝛺g, 𝛺"], the piezoelectric generator is capacitive (as shown in Fig. 4), hence it is 
understandable that the electrical load should be inductive on this frequency band. 
Between the resonant and anti-resonant frequency, the maximized power can be 
harvested without any inductance and using a capacitive tuning. The normalized 
expressions of the optimal loads can be expressed as follow:  

 

 

 

The inductances required to harvest a maximized energy outside of the resonant 
and anti-resonant frequencies are usually huge. For example, to harvest the maximum 
achievable power for the piezoelectric generator described in the next section and 
illustrated in Fig. 10, and driven 10% under its resonant frequency (𝛺1 = 0.9), a 247H 
inductance would be required. This value cannot be practically obtained using discrete 
components. However, as explained in (Abdelmoula and Abdelkefi, 2015), it is possible 
to use an interface emulating an inductive behavior in order to reach such value. This 
interface could be for example the PWM structure shown in Fig. 6 and proposed in 
(Badel and Lefeuvre, 2016), that tunes the phase between the load current and the 
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fundamental (first harmonic) voltage, and hence can emulate inductive or capacitive 
loads. 

 

Fig. 9. (a) Maximum harvested power, (b) Optimal 𝑟, (c)𝑐,		and (d)𝑙 for harvesting on a 
RLC load with 𝜉1 = 0.015 

Experimental validation 

In this part, we validate the previously established theoretical results thanks to 
experimentations on a highly coupled piezoelectric generator, using a resistive load and a 
RC load alternately. Table 2 gives the characteristics of the piezoelectric generator used 
for the following experiments. 

Table 2  
Piezoelectric generator parameters table 

Parameters		 Values	 Units	

𝑘1" 	 0.3	 −	

𝜉1	 0.01	 −	

𝐶8	 2.06	 nF	

𝑓DE ≈
𝛺g𝜔N
2𝜋 	 98	 Hz	

𝑓 E ≈
𝛺"𝜔N
2𝜋 	 112	 Hz	

0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3
0

20

40

0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3
0

50

km
2 =0.01

km
2 =0.05

km
2 =0.1

km
2 =0.2

km
2 =0.3

km
2 =0.4

0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3
0

0.5

1

0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3
0.5

1

1.5

Ω" Ω#
$ %
&'
(

Maximum 
$%&'( = *

O
pt

im
al

 +
O

pt
im

al
 ,

O
pt

im
al

 -

. → ∞, inductance disconnected

a.

b.

c.

d.

Normalized frequency Ω(



𝑃1bc	 11	 µW	

 

The piezoelectric device consists in two plates of highly coupled piezoelectric 
material bonded on a cantilever beam, as shown in Fig. 10. The piezoelectric materials 
are PZN-PT single crystals that have been manufactured by Microfine Company. They 
exhibit an important coupling coefficient 𝑘�g of 0.92 along the [100] axis. The whole 
experimental bench is illustrated in Fig. 11. The harvester is placed on an electrodynamic 
shaker. The cantilever tip displacement is sensed by a laser vibrometer and the vibration 
generated by the shaker by an accelerometer. The piezoelectric element is connected to a 
numerical resistive and a numerical capacitive decade box, and the piezoelectric voltage 
is displayed on an oscilloscope. Thanks to an algorithm implemented on dSpace, the 
voltage, displacement, and acceleration waveforms are stored in a computer for every 
load combination, and for various vibration’s frequency.  

 

Fig. 10. Photograph of the piezoelectric energy harvester exhibiting an important 
electromechanical coupling. 

 

Fig. 11. Experimental setup 
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Results and discussion 

To verify the theoretical results, we compared the results of expression (18) 
applied on the piezoelectric generator using the characteristics listed in Table 2, and the 
results obtained through experimental tests under an acceleration of constant amplitude 
𝛾1bc = 0.5	𝑚. 𝑠0". The results on a resistive load can be observed in Fig. 12, for 50 
resistive loads values from 1𝑘𝛺 to 15𝑀𝛺, and 37 vibrations frequencies from 80Hz to 
135Hz. Fig. 12 shows the harvested power with the optimal resistance for each 
vibration’s frequency. These results are in good agreements with the model and analysis 
done in the previous parts. The maximized power 11	𝜇𝑊 , as defined in (8), is attained 
at the short circuit resonance frequency 𝑓DE (98 Hz) for a resistance of relatively small 
value (60𝑘𝛺). At the open circuit resonance frequency 𝑓 E (112 Hz), there is another 
power peak corresponding to a higher resistive load value (8𝑀𝛺), as predicted by the 
theoretical model and Fig. 7. 

 
Fig. 12. Comparison between experimental (colored surface) and theoretical (transparent 
surface) harvested power on a resistive load in the (𝑅, 𝑓) plane. The theoretical surface 
has been shifted of 1uW in order to clarify the figure. 
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Fig. 13. Comparison between experimental (blue dots) and theoretical (red curve) 
maximum harvested power on an optimized resistive load 

The influences of an additional capacitive load on the experimental harvester 
power response can be observed in Fig. 14, Fig.15 and Fig.16. As predicted from the 
theoretical analysis, the second power peaks (𝛺") gets closer to the first power peak (𝛺g) 
as the load capacitance is increased. The maximum power however does not change, 
since the condition of high coupling given by (17) remains true. 

 

Fig. 14. Experimental harvested power in the (𝑅, 𝑓) plane with 𝐶 = 0𝑛𝐹 
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Fig. 15. Experimental harvested power in the (𝑅, 𝑓) plane with 𝐶 = 3𝑛𝐹 

 

Fig. 16. Experimental harvested power in the (𝑅, 𝑓) plane with 𝐶 = 11𝑛𝐹 

The frequency responses of our PEH with optimized resistive loads and various 
capacitive loads have been measured as well, and are shown on Fig.17. 
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Fig. 17. Experimental (dots and dashed lines) and theoretical (straight lines) power 
frequency responses of our piezoelectric harvester with optimized resistive loads and 
various capacitive loads. 

The experimental curves on Fig.17 look a lot like the theoretical ones on Fig.7. It 
confirms that adding a capacitance in parallel with the piezoelectric harvester tends to 
reduce its effective coupling and hence shifts the open circuit resonance frequency on the 
left. When adding a capacitance of 11nF, the two power peaks become undistinguishable 
because the effective coupling is close to the limit coupling expressed by (17). If a higher 
capacitance value were added, the harvester would be lowly coupled, and the maximum 
harvested power would decrease. These results confirm that the harvested energy can be 
maximized between the resonant and anti-resonant frequency using a capacitive load that 
creates an electrical stiffness and tune the resonant frequency of the harvester. A fine 
tuning of the capacitive load (green curve on Fig. 17) allows to harvest the maximal 
power 11	𝜇𝑊  for any frequency between 98Hz and 112Hz, which are respectively the 
short circuit and open circuit resonance frequencies of the piezoelectric generator. This 
confirms the predicted behavior by Fig.8. The differences between the theoretical results 
and the experimental ones are relatively small and the relative error remains under 5%.  

Conclusion 

In this paper, we develop the theoretical basis and notations that are required to 
extend the previous studies on linear harvesting approaches to highly coupled 
piezoelectric generators. We show the consequences of the increase of the piezoelectric 
electromechanical coupling factor on the harvesting strategies and optimal electrical load. 
A high coupling implies a large frequency band where the piezoelectric generator 
behaves as an inductive source. On this frequency band, it is possible to maximize the 
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energy transfer by tuning an electrical stiffness using a capacitive load. These 
fundamental results have been demonstrated experimentally on a highly coupled PEH. 
The agreement between the theoretical results and the practical ones confirm that some 
new strategies and implementations could be investigated in order to realize not only a 
resistive emulation, but also a tunable capacitance matching. 

Future work will aim at finding new strategies implementing an electrical 
stiffness tuning which could reach the theoretical limits presented in this paper. 
Continuous strategies focus on emulating capacitive tuning without any passive 
components, as proposed in (Morel et al., 2016), or using switching techniques such as 
Pulse Width Modulation (PWM) (Badel and Lefeuvre, 2016). Highly nonlinear strategies 
could also be used to control the energies exchange between the mechanical and 
electrical part, in order to emulate any inductive or capacitive values. The limitations of 
those all those strategies come from the frequency band where this tuning could be 
effectively done, the dielectric losses in the piezoelectric material (Liang and Liao, 2011; 
Morel et al., 2018) the losses induced by the switching (Badel and Lefeuvre, 2016) or by 
the quality factor of the inductance used in the inversion process (Badel and Lefeuvre, 
2014). A potential aim could be to find new strategies that could overcome these 
limitations, while still emulating an important range of reactive loads. 
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