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Abstract

We present a reduced-order approximation of the BGK equation leading to fast
and accurate computations. The BGK model describes the dynamics of a gas flow
in both hydrodynamic and rarefied regimes. The particles of the gas are repre-
sented by a density distribution function depending on physical space, velocity
space and time. In this work, the density distribution function is approximated
in the velocity space by a small number of basis functions computed offline. In
the offline phase, the BGK equation is sampled in order to collect information on
the density distribution function. To complete this sampling, optimal transport
is used to add new information by interpolating the samples of the density dis-
tribution function. Finally, the basis functions are built by Proper Orthogonal
Decomposition. During the online phase, the offline knowledge is used to compute
approximations of the density distribution function at low cost. To do so, the BGK
equation is projected onto the basis functions, leading to a system of partial differ-
ential equations. The system obtained is hyperbolic by construction and is solved
by an IMEX Runge-Kutta scheme in time and a finite-volume scheme in space.
To improve the accuracy, the reduced-oder model is modified to conserve mass,
momentum and energy of the gas. Numerical illustrations of 1D and 2D flows are
given. In particular, we investigate the reconstruction and the prediction of shock
waves, boundary layers and vortices. The results demonstrate the accuracy of the
reduced-order model and the significant reduction of the computational cost.

Keywords: Reduced-order model, Proper Orthogonal Decomposition, Rarefied
flows, Optimal transportation

1. Introduction

We present a model describing a gas flow in both hydrodynamic and rarefied
regimes. These regimes are characterized by the Knudsen number

Kn =
λ

L
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where λ is the mean free path of the particles and L is the characteristic length of
the problem. When the Knudsen number is low (roughly Kn < 10−2) the collisions
between the gas particles are preponderant compared to the free transport of
the particles and the regime is hydrodynamic. Conversely, the rarefied regime
corresponds to 10−2 < Kn.

In the high-fidelity model, the dynamics of the gas flow is described by the
Boltzmann equation

∂f

∂t
(x, ξ, t) + ξ · ∇xf(x, ξ, t) = Q(f, f) (1)

where f is the gas density distribution function at point x ∈ R3, velocity ξ ∈ R3

and time t ∈ R. Q is the collision operator, approximated here by the BGK
operator [1]. The computational cost of this model can be prohibitive due to the
high number of dimensions of the grid (e.g. 3 in space + 3 in velocity + 1 in time).

For this reason, we develop a stable, accurate and efficient reduced-order model
to compute approximations of the density distribution function f at low cost with
respect to the high-fidelity model. To this end, several approaches were developed
in the literature: Proper Orthogonal Decomposition [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
Proper Generalised Decomposition [13], Empirical Interpolation Method [14, 15].
In this work, we adopt an approach based on Proper Orthogonal Decomposition
and Galerkin method. In this approach, the gas density distribution function f is
approximated in velocity space by Npod basis functions Φn

f̃(x, ξ, t) =

Npod∑
n=1

an(x, t)Φn(ξ)

The basis functions Φn are computed offline by Proper Orthogonal Decomposition
[3] and the coefficients an are computed online by the Galerkin method.

In the offline phase, the high-fidelity model is sampled to collect information
on the density distribution function f that we want to approximate. The sampling
is based on two fundamental steps. Firstly, we collect samples of both the density
distribution function f and of the Maxwellian distribution function Mf , since Mf

will also be represented by the basis functions Φn. Secondly, since the number
of simulations may be limited due to the computational cost of the high-fidelity
model, the samples of the distribution functions f and Mf are interpolated by
optimal transport to compute additional samples, completing the sampling of the
high-fidelity model. Finally, the basis functions Φn are built by POD to be the
best representation in the least squares sense of the samples.

During the online phase, this offline knowledge is used to compute an approxi-
mation of the density distribution function f̃ at low cost. In the Galerkin method,
the Boltzmann equation (1) is projected onto the basis functions Φn, leading to a
system of partial differential equations that is shown to be hyperbolic by construc-
tion. The equations are then decoupled by a linear change of variables and the
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system is solved by a first-order IMEX Runge-Kutta scheme [16, 17, 18] in time
and a first-order finite volume scheme [19] in space. Due to projection error, the

approximation of the Maxwellian distribution function M̃f does not necessarily

preserve conservation leading to significant errors in f̃ . We introduce a constraint
projection to compute M̃f in order to conserve the mass, the momentum and the
energy of the gas that significantly improves accuracy.

These steps are detailed in the next sections. In section 2, we introduce the
high-fidelity model. Then section 3 presents in details the reduced-order model
approximating the high-fidelity model. In section 4, we describe the boundary
conditions and the numerical schemes used to discretize the reduced-order model.
Finally, the last section 5 demonstrates the accuracy of the reduced-order model
and the significant reduction of the computational cost.

2. High-fidelity model

We briefly introduce the high-fidelity model describing a gas flow in both hy-
drodynamic and rarefied regimes. The detailed model can be found in [20].

2.1. Dimensionless BGK model

The high-fidelity model uses the BGK operator [1] where the collision term Q
is linearised around the Maxwellian distribution function Mf in the Boltzmann
equation (1)

∂f

∂t
(x, ξ, t) + ξ · ∇xf(x, ξ, t) =

Mf (x, ξ, t)− f(x, ξ, t)

τ(x, t)
(2)

with x = (x, y, z)T ∈ R3, ξ = (ξu, ξv, ξw)T ∈ R3 and t ∈ R. For simplicity, we
consider a monoatomic gas. In dimensionless form, the relaxation time τ is

τ−1(x, t) =
ρ(x, t)T 1−ν(x, t)

Kn

with ν ∈ R the exponent of the viscosity law of the gas and Mf the Maxwellian
distribution function

Mf (x, ξ, t) =
ρ(x, t)

(2πT (x, t))
3
2

exp

(
−‖ξ − U(x, t)‖2

2T (x, t)

)
(3)

where ρ(x, t) ∈ R is the density, U(x, t) = (u(x, t), v(x, t), w(x, t))T ∈ R3 is the
macroscopic velocity and T (x, t) ∈ R is the temperature of the gas. The density,
the momentum and the energy of the gas are given by the moments of the density
distribution function f

∫
R3

f(x, ξ, t)

 1
ξ
‖ξ‖2
2

 dξ =

 ρ(x, t)
ρ(x, t)U(x, t)

E(x, t)

 (4)
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where E(x, t) ∈ R is the energy of the gas. The temperature T (x, t) and the
pressure p(x, t) ∈ R of the gas are deduced from the moments

T (x, t) =
2E(x, t)

3ρ(x, t)
− ‖U(x, t)‖2

3
and p(x, t) = ρ(x, t)T (x, t)

2.2. Discrete Maxwellian distribution function

If 〈., .〉ξ denotes the discrete inner product used to approximate the continuous
inner product, the Maxwellian distribution function Mf does not necessarily verify
the equation

〈Mf (x, ξ, t),m(ξ)〉ξ =

 ρ(x, t)
ρ(x, t)U(x, t)

E(x, t)

 (5)

where m(ξ) = (1, ξ, ‖ξ‖
2

2
)T ∈ R5. For this reason, in the high-fidelity model, the

discrete Maxwellian distribution function M f is not computed from the formula
(3). In [21, 22], it is proved that the discrete Maxwellian distribution function M f

can be express thanks to ω ∈ R5

M f (x, ξ, t) = exp(ω(x, t) ·m(ξ))

To verify equation (5), ω must satisfy

〈
M f (x, ξ, t),m(ξ)

〉
ξ

=

 ρ(x, t)
ρ(x, t)U(x, t)

E(x, t)


This nonlinear system is solved by the Newton-Raphson method at any point in
space x and time t, see [20]. The equation (2) becomes after discretization in
velocity space

∂f

∂t
(x, ξ, t) + ξ · ∇xf(x, ξ, t) =

M f (x, ξ, t)− f(x, ξ, t)

τ(x, t)
(6)

2.3. Reduced BGK model

To ensure equation (4), the velocity space has always 3 dimensions, even if the
physical space has less dimensions. In 1D and 2D, the high-fidelity model uses two
density distribution functions φ and ψ as explained in [23] to reduce the number of
dimensions in velocity space and to speed up the computations. In 1D, the density
distribution function f is replaced by

φ(x, ξu, t) =

∫
R2

f(x, ξ, t) dξv dξw and ψ(x, ξu, t) =

∫
R2

ξ2
v + ξ2

w

2
f(x, ξ, t) dξv dξw
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By integrating in velocity space, equation (6) becomes
∂φ

∂t
(x, ξu, t) + ξu

∂φ

∂x
(x, ξu, t) =

Mφ(x, ξu, t)− φ(x, ξu, t)

τ(x, t)
∂ψ

∂t
(x, ξu, t) + ξu

∂ψ

∂x
(x, ξu, t) =

Mψ(x, ξu, t)− ψ(x, ξu, t)

τ(x, t)

(7)

and the equation (4) is replaced by

∫
R
φ(x, ξu, t)

 1
ξu
ξ2u
2

 dξu +

∫
R
ψ(x, ξu, t)

0
0
1

 dξu =

 ρ(x, t)
ρ(x, t)u(x, t)
E(x, t)

 (8)

In 2D, the new density distribution functions are

φ(x, ξ2, t) =

∫
R
f(x, ξ, t) dξw and ψ(x, ξ2, t) =

∫
R

ξ2
w

2
f(x, ξ, t) dξw

with x = (x, y)T ∈ R2 and ξ2 = (ξu, ξv)
T ∈ R2. They verify

∂φ

∂t
(x, ξ2, t) + ξ2 · ∇xφ(x, ξ2, t) =

Mφ(x, ξ2, t)− φ(x, ξ2, t)

τ(x, t)
∂ψ

∂t
(x, ξ2, t) + ξ2 · ∇xψ(x, ξ2, t) =

Mψ(x, ξ2, t)− ψ(x, ξ2, t)

τ(x, t)

(9)

and the moments are given by

∫
R2

φ(x, ξ2, t)


1
ξu
ξv
‖ξ2‖2

2

 dξ2 +

∫
R2

ψ(x, ξ2, t)


0
0
0
1

 dξ2 =


ρ(x, t)

ρ(x, t)u(x, t)
ρ(x, t)v(x, t)
E(x, t)

 (10)

The discrete Maxwellians Mφ and Mψ are computed to verify the equation (8)
(resp. (10)) in 1D (resp. 2D), see [20].

3. Reduced-order model

In the reduced-order model the density distribution function f is approximated
in the velocity space by Npod basis functions Φn

f̃(x, ξ, t) =

Npod∑
n=1

an(x, t)Φn(ξ)

in order to reduce the number of degrees of freedom. The basis functions Φn

are built offline by Proper Orthogonal Decomposition and are orthonormal by
construction.
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In 1D and in 2D, the density distribution functions φ and ψ of the high-fidelity
model are modelled in the same way by

φ̃(x, ξu, t) =

Nφ
pod∑
n=1

aφn(x, t)Φφ
n(ξu) and ψ̃(x, ξu, t) =

Nψ
pod∑
n=1

aψn(x, t)Φψ
n(ξu) in 1D

φ̃(x, ξ2, t) =

Nφ
pod∑
n=1

aφn(x, t)Φφ
n(ξ2) and ψ̃(x, ξ2, t) =

Nψ
pod∑
n=1

aψn(x, t)Φψ
n(ξ2) in 2D

In the following we will detail the model for f̃ (the method for φ̃ and ψ̃ is similar).

3.1. Basis functions
In the offline phase, the high-fidelity model is sampled to collect information

on the solution. The basis functions are computed by POD as explained in the
following section.

3.1.1. Snapshot database

The sampling of the high-fidelity model provides a database S containing Nsnaps

snapshots sl of the density distribution function f

S = {s1, s2, . . . , sNsnaps}
where a snapshot sl is the density distribution function f at a point x and time t,
e.g., sl(ξ) = f(xi(l),j(l),k(l), ξ, tp(l)). In Figure 1, we show examples of snapshots in
1D and 2D where we take a low Knudsen number (Kn ≈ 10−5). In this case, the
snapshots are close to a Maxwellian distribution function.
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Figure 1: Examples of snapshots of φ in 1D (top) and in 2D (bottom) randomly choosen.
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3.1.1.1. High-fidelity snapshots.

The snapshots s are provided by the high-fidelity model and contains snapshots
of the density distribution function f taken at any points in space and every time
steps tp

S =
{
f(xi(m),j(m),k(m), ξ, tp)

}
1≤m≤Nx
1≤p≤Nt

(11)

where we use 3D indexing for the space grid (i.e. Ωx =
Nx⋃
m=1

xi(m),j(m),k(m)). In this

way, the snapshots are uniformly distributed to represent the density distribution
function f .

The database S contains also snapshots of the discrete Maxwellian distribution
function M f , since Mf will be represented by the basis functions Φn in section 3.2.2

S =
{
f(xi(m),j(m),k(m), ξ, tp)

}
1≤m≤Nx
1≤p≤Nt

⋃{
M f (xi(m),j(m),k(m), ξ, tp)

}
1≤m≤Nx
1≤p≤Nt

(12)

The results of this choice are presented in section 5.1.2.

3.1.1.2. Low-fidelity snapshots.

Due to the computational cost of the high-fidelity model, the number of sim-
ulations may be limited. To enrich the database S with new snapshots, optimal
transport [24] can be used to interpolate the distribution functions f and M f

in velocity space. These additional low-fidelity snapshots are computed by the
entropic regularization of optimal transport [25] which allows fast computations.

Let γ > 0, the discrete entropy-regularized Wasserstein distance Wγ between

two distributions µ1, µ2 ∈ RNξ
+ is defined by

W2
γ(µ1, µ2) = min

π∈Π(µ1,µ2)
〈C, π〉F − γH(π) (13)

where π ∈MNξ(R+) is the transportation plan (i.e. πi,j is the mass displaced from
ξi to ξj), Π is the polytope of couplings {π ∈MNξ(R+) : π1 = µ1 and πT1 = µ2}
with 1 = (1, . . . , 1)T , C ∈ MNξ(R+) is the cost matrix (i.e. Ci,j = ‖ξi − ξj‖2),
〈., .〉F is the Frobenius inner product and H(π) ∈ R is the entropy

H(π) = −
Nξ∑
i,j=1

πi,j(log(πi,j)− 1)

According to the Sinkhorn’s theorem, the transportation plan can be written as

π = diag(α)Kdiag(β) where Ki,j = exp
(
−Ci,j

γ

)
. Using the Kullback-Leibler di-

vergence [26], the optimal transportation plan is solved by the Sinkhorn-Knopp
algorithm where π is iteratively projected onto the affine constraint sets Π1 = {π ∈
MNξ(R+) : π1 = µ1} and Π2 = {π ∈MNξ(R+) : πT1 = µ2}.
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Algorithm 1 Entropic-regularized optimal transportation [25]

β ← 1

repeat
α← µ1 � (Kβ) . Projection onto Π1

β ← µ2 � (Kα) . Projection onto Π2

π ← diag(α)Kdiag(β)
until ‖π1− µ1‖∞ > ε
return π

An application of the regularized optimal transport is the computation of
Wasserstein barycenter. Given Nsimul high-fidelity snapshots sl, the low-fidelity
snapshot s∗ is the Wasserstein barycenter of the high-fidelity snapshots sl

min
s∗∈R

Nξ
+

Nsimul∑
l=1

λlWγ(sl, s
∗) (14)

where
Nsimul∑
l=1

λl = 1. Before computing the low-fidelity snapshot s∗, we need to use

3D indexing to transform the velocity grid in a vector of size Nξ and we have to
normalize the high-fidelity snapshots sl because they can have different densities
ρl. After computing the barycenter, the high-fidelity snapshots sl recover their old

densities ρl and the low-fidelity snapshot s∗ is rescaled by
Nsimul∑
l=1

λlρl.

Algorithm 2 Wasserstein barycenter [25]

β1, . . . , βNsimul ← 1

repeat
for l = 1...Nsimul do

αl ← sl � (Kβl) . Projection onto Π1

end for

s∗ ←
Nsimul⊗
l=1

(
βl ⊗ (Kαl)

)λl
. Wasserstein barycenter

s∗ ← Entropic-sharpening(s∗, H0) . Algorithm 3 (optional)
for l = 1...Nsimul do

βl ← s∗ � (Kαl) . Projection onto Π2

end for
until max

1≤l≤Nsimul
‖αl ⊗ (Kβl)− sl‖∞ > ε

return s∗

The main drawback of the entropic regularization of optimal transport method
is that the barycenter appears too diffuse. To cure this issue, a constraint H0 ∈ R
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on the entropy is added as explained in [25] min
s∗∈R

Nξ
+

Nsimul∑
l=1

λlWγ(sl, s
∗)

s.t. H(q) ≤ H0

(15)

Algorithm 3 Entropic sharpening [25]

if H0 < H(s∗) then

η ← find
(
η ∈ R+ : H0 = H((s∗)η)

)
s∗ ← (s∗)η

end if
return s∗

The function find is given in [27] and we choose H0 = max
1≤l≤Nsimul

H(sl), γ = 5×10−4

and ε = 10−4 from the experiments. Figure 2 shows an example in 1D of low-fidelity
snapshots s∗ obtained from a set of two high-fidelity snapshots s1 and s2.

-20 -15 -10 -5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s1
s3/4,1/4
s1/2,1/2
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Figure 2: Wasserstein barycenters s∗λ1,λ2
at barycentric coordinates {(s1, λ1), (s2, λ2)}.

To speed up the computations, the matrix-vector multiplications Kαl and Kβl
are replaced by a convolution with the gaussian kernel K because the velocity
space is discretized by an uniform cartesian grid. Moreover, this kernel is separa-
ble and the convolution are written as successive 1D convolutions leading to faster
computations. The computational time of the optimal transport algorithm is eval-
uated with respect to the cost of the high-fidelity model for one time step and
one space point. In this respect, we included the cost of interpolating a snapshot
of the density distribution function f and a snapshot of the discrete Maxwellian
distribution function M f . Over 100 different runs, the computational time of Al-
gorithm 2 is in average approximately the half of the one of the high-fidelity model.
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The overall run time of the low-fidelity snapshot procedure will also depend on
the strategy adopted to enrich the database: only snapshots which will add new
information to the snapshot database are created. In addition, the optimal trans-
portation run time can be greatly improved by using GPU acceleration [28, 29].
Moreover, all low-fidelity snapshots can be independently computed in parallel
while the high-fidelity snapshots must be computed sequentially in time.

3.1.2. Proper Orthogonal Decomposition

The basis functions Φn are built by POD to be the best representation in
the least squares sense of the high-fidelity and low-fidelity snapshots contained in
the database S. For simplicity, the POD is presented in the case (11) where the
database contains only snapshots of the density distribution function f .

3.1.2.1. Optimality of the basis functions.

Let f(xi(l),j(l),k(l), ξ, tp(l)) be a snapshot of the density distribution function f
taken at point xi(l),j(l),k(l) and time tp(l). Given a database of Nsnaps snapshots,
the subspace spanned by the basis functions Φn is the subspace of rank Npod

minimizing in the least squares sense the difference between the snapshots and
their projections Pf onto this subspace minimize

Φ1(ξ)...ΦNpod (ξ)

Nsnaps∑
l=1

‖f(xi(l),j(l),k(l), ξ, tp(l))− Pf (xi(l),j(l),k(l), ξ, tp(l))‖2
ξ

subject to ∀n,m ∈ J1, NpodK, 〈Φn,Φm〉ξ = δn,m

(16)

where Pf (x, ξ, t) =

Npod∑
n=1

〈f(x, ξ′, t),Φn(ξ′)〉ξ′Φn(ξ). The snapshots fl(ξ) =

f(xi(l),j(l),k(l), ξ, tp(l)) are stored in matrix S ∈MNξ×Nsnaps(R)

S =


f1(ξ1) f2(ξ1) · · · fNsnaps(ξ1)
f1(ξ2) f2(ξ2) · · · fNsnaps(ξ2)

...
...

. . .
...

f1(ξNξ) f2(ξNξ) · · · fNsnaps(ξNξ)


where we use 3D indexing to transform the velocity grid to a vector of size Nξ.
If the database contains low-fidelity snapshots or high-fidelity snapshots of M f ,
these snapshots are added as new columns to S. The basis functions Φn are stored
in the matrix Φ ∈MNξ×Npod(R)

Φ =


Φ1(ξ1) Φ2(ξ1) · · · ΦNpod(ξ1)
Φ1(ξ2) Φ2(ξ2) · · · ΦNpod(ξ2)

...
...

. . .
...

Φ1(ξNξ) Φ2(ξNξ) · · · ΦNpod(ξNξ)
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The discrete inner product is represented by the matrix W ∈MNξ(R) (i.e.
〈Φn(ξ),Φm(ξ)〉ξ = ΦT

n (ξ)WΦm(ξ)). The integrals are approximated by the rectan-
gle rule and the associated matrix W is given in section 4.1.1 by

W = diag(∆ξ, . . . ,∆ξ) =

∆ξ 0
. . .

0 ∆ξ


Using the previous notations, the problem (16) can be written{

min
Φ
‖S − ΦΦTWS‖2

Fξ

s.t. ΦTWΦ = Id
(17)

where ‖A‖2
Fξ

= tr(ATWA). The solution of this problem is given by the Eckart-
Young theorem 1.

Theorem 1. Let S ∈Mn×m(R) be a real rectangular matrix with n ≤ m. Suppose
that the singular value decomposition of S is

S = UΣV T

where U ∈Mn(R) and V T ∈Mm(R) are orthogonal matrices, and Σ ∈Mn×m(R)
is a diagonal matrix with the singular values sorted in descending order. The best
rank k approximation to S is given by

min
rank(X)≤k

‖S −X‖2
F = ‖S − S∗‖2

F =
n∑

i=k+1

σ2
i

where ‖·‖F is the Frobenius norm and S∗ is the trounced singular values decompo-
sition of S

S∗ =

U1,1 · · · U1,k
...

...
Un,1 · · · Un,k


σ1 0

. . .

0 σk


V

T
1,1 · · · V T

1,m
...

...
V T
k,1 · · · V T

k,m

 ∈Mn,m(R)

By defining Ŝ = (W
1
2 )TS, the basis functions Φn are given by

Φ = (W
1
2 )−T

 U1,1 · · · U1,Npod
...

...
UNξ,1 · · · UNξ,Npod


where Ŝ = UΣV T is the SVD of Ŝ and W = W

1
2 (W

1
2 )T is the Cholesky decom-

position of W .
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3.1.2.2. Choice of the number of basis functions.

In the minimisation problem (16), the objective function is equivalent to

maximize
Φ1(ξ)...ΦNpod (ξ)

Nsnaps∑
l=1

Npod∑
n=1

〈f(xi(l),j(l),k(l), ξ, tp(l)),Φn(ξ)〉2
ξ

By writing this problem in matrix form, the Eckart-Young theorem 1 gives

max
Φ
‖STWΦ‖2

F =

Npod∑
n=1

σ2
n

where σn are the singular values of Ŝ sorted in descending order. The basis func-
tions Φn are also optimal to capture the most energy Epod as possible

Epod =

Npod∑
n=1

σ2
n

Given a threshold ε, the number of basis functions Npod is chosen to have at least
ε of total energy captured by the basis

Npod∑
n=1

σ2
n

Nξ∑
n=1

σ2
n

> ε

In practice, σn decrease quickly and a small number of basis functions Npod is
sufficient to exceed high threshold (i.e. ε ≈ 99.9%). We thus have a significant
reduction of the number of degrees of freedom because Npod � Nξ.

3.1.2.3. Construction of the basis functions.

To build the basis functions Φn, the number of snapshots can be in practice too
large (Nsnaps ≈ 107) to find the singular value decomposition of Ŝ. By considering

the correlation matrix ŜŜT ∈ MNξ(R), the left and right eigenvectors of this
matrix are

ŜŜT = (UΣV T )(UΣV T )T = UΣV TV ΣUT = UΣ2UT

U can be obtained by finding the eigendecomposition or the SVD of ŜŜT . We use
the SVD of ŜŜT to compute U because this method is more accurate for small
singular values. Figure 3 shows examples of basis functions Φn obtained from a
snapshot database S with this method.
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Figure 3: Examples of basis functions for φ in 1D (top) and in 2D (bottom).

The first basis function Φφ
1 (on the left) is close to the mean of the snapshots.

In this case, the snapshots (see Figure 1) are close to Maxwellian distribution func-
tions and Φφ

1 have the form of a Maxwellian distribution function. The other basis
functions are small perturbations to have better approximation of the snapshots.

3.2. Approximate density distribution function

Once the basis functions Φn are built, the approximate density distribution
function f̃ depends only on the coefficients an. These coefficients an are computed
online by the Galerkin method.

3.2.1. Galerkin method

In the Galerkin method, the approximate density distribution function f̃ is
inserted into the equation of the high-fidelity model (6) and leads to the residual

R(x, ξ, t) =
∂f̃

∂t
(x, ξ, t) + ξ · ∇xf̃(x, ξ, t)− M f (x, ξ, t)− f̃(x, ξ, t)

τ(x, t)

This residual R is taken orthogonal to the basis functions Φn. By projecting the
residual onto the basis functions Φn, we obtain the system ∀n ∈ J1, NpodK

∂an
∂t

(x, t)+

Npod∑
m=1

(
An,m

∂am
∂x

(x, t)+Ån,m
∂am
∂y

(x, t)+
?

An,m
∂am
∂z

(x, t)
)

=
aMn (x, t)− an(x, t)

τ (x, t)
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whereAn,m=

∫
R3

ξuΦn(ξ)Φm(ξ) dξ, Ån,m=

∫
R3

ξvΦn(ξ)Φm(ξ) dξ,
?

An,m=

∫
R3

ξwΦn(ξ)Φm(ξ) dξ

and aMn (x, t)=

∫
R3

Mf (x, ξ, t)Φn(ξ) dξ. In matrix form, this system reads

∂a

∂t
(x, t) + A

∂a

∂x
(x, t) + Å

∂a

∂y
(x, t) +

?

A
∂a

∂z
(x, t) =

aM(x, t)− a(x, t)

τ(x, t)
(18)

where a = (a1, . . . , aNpod)
T and aM = (aM1 , . . . , a

M
Npod

)T .

Definition 1. The system (18) is hyperbolic if A, Å and
?

A are diagonalizable with
real eigenvalues.

The matrices A, Å and
?

A are symmetric and thus diagonalizable by a real
orthogonal similarity. According to Definition 1, this system is hyperbolic and the
equations can be decoupled direction by direction with a linear change of variables.
Let the eigendecompositions be A = PDP T where D ∈ MNpod(R) is a diagonal
matrix and P ∈MNpod(R) is an orthogonal matrix, the system (18) becomes

∂a

∂t
(x, t) + PD

∂b

∂x
(x, t) + P̊ D̊

∂c

∂y
(x, t) +

?

P
?

D
∂d

∂z
(x, t) =

aM(x, t)− a(x, t)

τ(x, t)
(19)

where the changes of variable are b = P Ta, c = P̊ Ta and d =
?

P Ta. In this form,
the system (19) can be solved by a finite volume scheme in section 4.1.2. By
considering the change of variables b = P Ta, the system (19) is

∂b

∂t
(x, t) +D

∂b

∂x
(x, t) + P T ÅP

∂b

∂y
(x, t) + P T

?

AP
∂b

∂z
(x, t) =

bM(x, t)− b(x, t)
τ(x, t)

and the equations are decoupled for D
∂b

∂x
. In the same way by considering the

system (19) for c (resp. d), the equations will be decoupled for D̊
∂c

∂y
(resp.

?

D
∂d

∂z
).

3.2.2. Approximate Maxwellian distribution function

In the system of partial differential equations (19), the discrete Maxwellian
distribution function M f is projected onto the basis functions Φn

aMn (x, t) = 〈M(x, ξ, t),Φn(ξ)〉ξ (20)

and the approximate Maxwellian distribution function M̃f is given by

M̃f (x, ξ, t) =

Npod∑
n=1

aMn (x, t)Φn(ξ) (21)
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Due to projection error, the approximate Maxwellian distribution function M̃f

does not necessarily verify equation (5)〈
M̃f (x, ξ, t),

 1
ξ
‖ξ‖2

2

〉
ξ

6=

 ρ(x, t)
ρ(x, t)U(x, t)

E(x, t)


For this reason, the coefficients aMn are not computed thanks to formula (20). The

approximate Maxwellian distribution function M̃f is computed to conserve the
mass, the momentum and the energy of the gas and to be as close as possible to
the continuum Maxwellian Mf

minimize
aM (x,t)

1
2
‖M̃f (x, ξ, t)−Mf (x, ξ, t)‖2

ξ

subject to

〈
M̃f (x, ξ, t),

 1
ξ
‖ξ‖2

2

〉
ξ

=

 ρ(x, t)
ρ(x, t)U(x, t)

E(x, t)

 (22)

The approximate Maxwellian distribution function M̃ verifying this minimisation
problem is given by the theorem 2.

Theorem 2. Let A ∈ Mm×n(R) be a rectangular matrix such that ATA = Id,
C ∈Mk×n(R) be a rectangular matrix, b ∈ Rm and d ∈ Rk. The solution of{

min
X∈Rn

1
2
‖AX − b‖2

s.t. CX = d

is
X∗ = AT b+ C+(d− CAT b)

where C+ is the Moore-Penrose inverse of C.

Proof. The solution of this minimisation problem is given by the method of La-
grange multipliers

X∗ = (ATA)−1AT b+ (ATA)−1CT (C(ATA)−1CT )−1(d− C(ATA)−1AT b)

By using ATA = Id, the solution becomes

X∗ = AT b+ CT (CCT )−1(d− CAT b)

If CCT is non-invertible, there is no solution satisfying the constraints. In this case,
we replace the equality constraints CX = d by CX = CC+d, which is equivalent to
search the best approximation in the least squares sense of the constraints CX = d
minimizing 1

2
‖AX − b‖2. The corresponding solution is given by

X∗ = AT b+ C+(d− CAT b)

When CCT is invertible, this expression is still valid because C+ = CT (CCT )−1.
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In the problem (22), the objective function is a Nξ × Npod system usually
overdetermined

Φ1(ξ1) Φ2(ξ1) · · · ΦNpod(ξ1)
Φ1(ξ2) Φ2(ξ2) · · · ΦNpod(ξ2)

...
...

. . .
...

Φ1(ξNξ) Φ2(ξNξ) · · · ΦNpod(ξNξ)




aM1 (x, t)
aM2 (x, t)

...
aMNpod(x, t)

 ≈


Mf (x, ξ1, t)
Mf (x, ξ2, t)

...
Mf (x, ξNξ , t)


= = =

Φ aM
−→
Mf

and the equality constraints are a 5×Npod system generally underdetermined
〈Φ1(ξ), 1〉ξ 〈Φ2(ξ), 1〉ξ · · · 〈ΦNpod(ξ), 1〉

ξ

〈Φ1(ξ), ξu〉ξ 〈Φ2(ξ), ξu〉ξ · · · 〈ΦNpod(ξ), ξu〉ξ
〈Φ1(ξ), ξv〉ξ 〈Φ2(ξ), ξv〉ξ · · · 〈ΦNpod(ξ), ξv〉ξ
〈Φ1(ξ), ξw〉ξ 〈Φ2(ξ), ξw〉ξ · · · 〈ΦNpod(ξ), ξw〉ξ
〈Φ1(ξ), ‖ξ‖

2

2 〉ξ 〈Φ2(ξ), ‖ξ‖
2

2 〉ξ · · · 〈ΦNpod(ξ), ‖ξ‖
2

2 〉ξ




aM1 (x, t)
aM2 (x, t)

...
aMNpod(x, t)

 =


ρ(x, t)

ρ(x, t)u(x, t)
ρ(x, t)v(x, t)
ρ(x, t)w(x, t)

E(x, t)



= = =

Ψ aM −→ρ

Using the previous notations and the theorem 2, the coefficients aM are computed
at any point in space and every time step at cost O(NξNpod) by the formula

aM(x, t) = ΦTW
−→
Mf (x, t) + Ψ+(−→ρ (x, t)−ΨΦTW

−→
Mf (x, t)) (23)

where Ψ+ is the Moore-Penrose inverse of Ψ. The matrices ΦTW , Ψ+ and ΨΦTW
do not depend on x and t, and they can be pre-calculated to save computing time.
The approximate Maxwellian distribution function depends on the density ρ, the
macroscopic velocity U and the temperature T of the gas and in the following,
aM [ρ, U, T ] are the coefficients of the approximate Maxwellian distribution function
corresponding to (ρ, U, T ). In 1D and 2D, we use the same idea by redefining Φ,

Ψ, aM ,
−→
Mf and −→ρ . In 1D, the objective function is the (2Nξ) × (Nφ

pod + Nψ
pod)

system

Φφ1 (ξu1) · · · Φφ
Nφpod

(ξu1) 0 · · · 0

...
...

...
...

Φφ1 (ξuNξ ) · · · Φφ
Nφpod

(ξuNξ ) 0 · · · 0

0 · · · 0 Φψ1 (ξu1
) · · · Φψ

Nψpod
(ξu1

)

...
...

...
...

0 · · · 0 Φψ1 (ξuNξ ) · · · Φψ
Nψpod

(ξuNξ )





a
Mφ

1 (x, t)
...

a
Mφ

Nφpod
(x, t)

a
Mψ

1 (x, t)
...

a
Mψ

Nψpod
(x, t)


≈



Mφ(x, ξu1
, t)

...
Mφ(x, ξuNξ , t)

Mψ(x, ξu1
, t)

...
Mψ(x, ξuNξ , t)
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and the equality constraints are the 3× (Nφ
pod +Nψ

pod) system


〈Φφ1 , 1〉ξ · · · 〈Φ

φ

Nφpod
, 1〉

ξ

0 · · · 0

〈Φφ1 , ξu〉ξ · · · 〈Φ
φ

Nφpod
, ξu〉

ξ

0 · · · 0

〈Φφ1 ,
ξ2u
2 〉ξ · · · 〈Φ

φ

Nφpod
,
ξ2u
2 〉

ξ

〈Φψ1 , 1〉ξ · · · 〈Φ
ψ

Nψpod
, 1〉

ξ





a
Mφ

1 (x, t)
...

a
Mφ

Nφpod
(x, t)

a
Mψ

1 (x, t)
...

a
Mψ

Nψpod
(x, t)


=

 ρ(x, t)
ρ(x, t)u(x, t)
E(x, t)



In 2D, the objective function is the (2Nξ)× (Nφ
pod +Nψ

pod) system

Φφ1 (ξ21) · · · Φφ
Nφpod

(ξ21) 0 · · · 0

...
...

...
...

Φφ1 (ξ2Nξ ) · · · Φφ
Nφpod

(ξ2Nξ ) 0 · · · 0

0 · · · 0 Φψ1 (ξ21) · · · Φψ
Nψpod

(ξ21)

...
...

...
...

0 · · · 0 Φψ1 (ξ2Nξ ) · · · Φψ
Nψpod

(ξ2Nξ )





a
Mφ

1 (x, t)
...

a
Mφ

Nφpod
(x, t)

a
Mψ

1 (x, t)
...

a
Mψ

Nψpod
(x, t)


≈



Mφ(x, ξ21
, t)

...
Mφ(x, ξ2Nξ , t)

Mψ(x, ξ21 , t)
...

Mψ(x, ξ2Nξ , t)



and the equality constraints are the 4× (Nφ
pod +Nψ

pod) system



〈Φφ1 , 1〉ξ · · · 〈Φφ
Nφpod

, 1〉
ξ

0 · · · 0

〈Φφ1 , ξu〉ξ · · · 〈Φφ
Nφpod

, ξu〉
ξ

0 · · · 0

〈Φφ1 , ξv〉ξ · · · 〈Φφ
Nφpod

, ξv〉
ξ

0 · · · 0

〈Φφ1 ,
‖ξ2‖2

2 〉ξ · · · 〈Φ
φ

Nφpod
, ‖ξ2‖

2

2 〉
ξ

〈Φψ1 , 1〉ξ · · · 〈Φ
ψ

Nψpod
, 1〉

ξ





a
Mφ

1 (x, t)
...

a
Mφ

Nφpod
(x, t)

a
Mψ

1 (x, t)
...

a
Mψ

Nψpod
(x, t)


=


ρ(x, t)

ρ(x, t)u(x, t)
ρ(x, t)v(x, t)
E(x, t)



With these redefinitions, the approximate Maxwellian distribution functions M̃φ

and M̃ψ are given by the formula (23) in 1D and 2D.

4. Numerical methods for the reduced-order model

This section describes the numerical schemes used to discretized the reduced-
order model.

4.1. Numerical scheme

The numerical schemes for the physical space, the velocity space and the time
are first-order schemes.
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4.1.1. Velocity space discretization

The velocity space Ωξ = [−Lξu , Lξu ] × [−Lξv , Lξv ] × [−Lξw , Lξw ] is discretized
by a cartesian grid. The lengths of the grid Lξu , Lξv and Lξw are chosen to capture
at least 99.99% of the integral of the density distribution function f . The velocity
grid contains Nξ points ξi,j,k = (ξui , ξvj , ξwk) where ξui = −Lξu + (i − 1

2
)∆ξu and

∆ξu =
2Lξu
Nξu

. The rectangle rules is used to approximate the integrals

∫
Ωξ

g(ξ) dξ ≈ ∆ξu∆ξv∆ξw

Nξu∑
i=1

Nξv∑
j=1

Nξw∑
k=1

g(ξi,j,k)

By using 3D indexing (i.e. ξl = ξi(l),j(l),k(l)) and by defining Nξ = NξuNξvNξw and
∆ξ = ∆ξu∆ξv∆ξw, the discrete inner product is

〈g1, g2〉ξ = ∆ξ

Nξ∑
l=1

g1(ξl)g2(ξl)

and corresponds in matrix form to

〈g1, g2〉ξ =
(
g1(ξ1) g1(ξ2) · · · g1(ξNξ)

) ∆ξ 0
. . .

0 ∆ξ



g2(ξ1)
g2(ξ2)

...
g2(ξNξ)


=

W

4.1.2. Physical space discretization
The physical space Ωx = [xmin, xmax]× [ymin, ymax]× [zmin, zmax] is discretized

by a cartesian grid. The grid contains Nx points xi,j,k = (xi, yj, zk) where xi =
xmin + (i− 1

2
)∆x and ∆x = xmax−xmin

Nx
. The grid contains also cells Ωxi,j,k of center

xi,j,k and of size ∆x × ∆y × ∆z. In the hyperbolic system (19), a finite volume
scheme [19] is used for the convective term and a centered approximation is used
for the collision term on each cell Ωxi,j,k

∂axi,j,k
∂t

(t) + PD

∫
∂Ωxi,j,k

b(x, t)nx dσ + P̊ D̊

∫
∂Ωxi,j,k

c(x, t)ny dσ +
?

P
?

D

∫
∂Ωxi,j,k

d(x, t)nz dσ =
aMxi,j,k(t)− axi,j,k(t)

τxi,j,k(t)

where axi,j,k(t) = 1
|Ωxi,j,k

|

∫
Ωxi,j,k

a(x, t) dx and n = (nx, ny, nz)
T ∈ R3 is the outward

normal of the cell Ωxi,j,k . On cartesian grid, the finite volume scheme reads :

D

∫
∂Ωxi,j,k

b(x, t)nx dσ =
Fi+ 1

2
,j,k − Fi− 1

2
,j,k

∆x
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where the flux Fi+ 1
2
,j,k between cells Ωxi,j,k and Ωxi+1,j,k

is

Fi+ 1
2
,j,k = max(D, 0)bxi,j,k(t) + min(D, 0)bxi+1,j,k

(t)

and max(D, 0) is the diagonal matrix D with the negative elements replaced by 0.
Moreover P and D are constant and we can avoid the change of variable b∫

Ωxi,j,k

A
∂a

∂x
(x, t) dx = PD

∫
∂Ωxi,j,k

b(x, t)nx dσ

= P
Fi+ 1

2 ,j,k
− Fi− 1

2 ,j,k

∆x

= P

(
max(D, 0)

bxi,j,k(t)− bxi−1,j,k
(t)

∆x
+ min(D, 0)

bxi+1,j,k
(t)− bxi,j,k(t)

∆x

)
= P max(D, 0)PT

axi,j,k(t)− axi−1,j,k
(t)

∆x
+P min(D, 0)PT

axi+1,j,k
(t)− axi,j,k(t)

∆x

where the matrices P max(D, 0)P T and P min(D, 0)P T can be pre-calculated to
save computing time. In the same way, the finite volume scheme for the variable
a is∫

Ωxi,j,k

Å
∂a

∂y
(x, t) dx = P̊ max(D̊, 0)P̊T

axi,j,k(t)− axi,j−1,k
(t)

∆y
+P̊ min(D̊, 0)P̊T

axi,j+1,k
(t)− axi,j,k(t)

∆y∫
Ωxi,j,k

?

A
∂a

∂z
(x, t) dx =

?

P max(
?

D, 0)
?

PT
axi,j,k(t)− axi,j,k−1

(t)

∆z
+

?

P min(
?

D, 0)
?

PT
axi,j,k+1

(t)− axi,j,k(t)

∆z

The boundary conditions are given in the section 4.2.

4.1.3. Time discretization

A first-order IMEX Runge-Kutta scheme [16, 17, 18] is used in time. In this
scheme, the convective term is treated explicitly while the collision term is treated
implicitly

∂axi,j,k
∂t

(t) +

∫
Ωxi,j,k

A
∂a

∂x
(x, t) + Å

∂a

∂y
(x, t) +

?

A
∂a

∂z
(x, t) dx︸ ︷︷ ︸

convective term

=
aMxi,j,k(t)− axi,j,k(t)

τxi,j,k(t)︸ ︷︷ ︸
collision term

In this way, the time step ∆t doesn’t depend on the collision term which can be
very small due to τxi,j,k . We have one intermediate step given by the implicit
formula

axi,j,k(tp+ 1
2
) = axi,j,k(tp) + ∆t

aMxi,j,k(tp+ 1
2
)− axi,j,k(tp+ 1

2
)

τxi,j,k(tp+ 1
2
)

By integrating in velocity space this formula, f̃xi,j,k(ξ, tp) and f̃xi,j,k(ξ, tp+ 1
2
) have

the same moments because M̃xi,j,k(ξ, tp+ 1
2
) and f̃xi,j,k(ξ, tp+ 1

2
) have the same mo-

ments. Moreover M̃xi,j,k(ξ, tp+ 1
2
) and f̃xi,j,k(ξ, tp) have the same moments, which
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implies that M̃xi,j,k(ξ, tp+ 1
2
) is equal to M̃xi,j,k(ξ, tp). The explicit formula of the

intermediate time step is

axi,j,k(tp+ 1
2
) =

τxi,j,k(tp)

∆t+ τxi,j,k(tp)

(
axi,j,k(tp) +

∆t

τxi,j,k(tp)
aMxi,j,k(tp)

)
and the next time step is given by

axi,j,k(tp+1) = axi,j,k(tp)−∆t

∫
Ωxi,j,k

A
∂a

∂x
(x, tp+ 1

2
) + Å

∂a

∂y
(x, tp+ 1

2
) +

?

A
∂a

∂z
(x, tp+ 1

2
) dx

+ ∆t
aMxi,j,k(tp)− axi,j,k(tp+ 1

2
)

τxi,j,k(tp)

The stability condition is ∆t < min
1≤n≤Npod

(
∆x

|Dn,n|
, ∆y

|D̊n,n|
, ∆z

|
?
Dn,n|

)
. Moreover, the ap-

proximate density distribution function f̃ is initialised with the approximate Max-
wellian distribution function M̃f corresponding to the initial density ρ0, the initial
macroscopic velocity U0 and the initial temperature T0 of the gas

axi,j,k(t0) = aMxi,j,k [ρ0(xi,j,k), U0(xi,j,k), T0(xi,j,k)]

where aM [ρ, U, T ] are the coefficients of the approximate Maxwellian distribution
function determined by (ρ, U, T ) (see section 3.2.2).

4.2. Boundary conditions

For the boundary conditions, ghost cells contain the approximate density dis-
tribution function f̃ bc determined by the boundary condition. In the following, abc

are the coefficients in the ghost cell which has an interface with the cell Ωx and a
are the coefficients in the cell Ωx.

4.2.1. Free flow

For free flow, the approximate density distribution functions in the ghost cell
xbc and in the domain x are the same

abc(t) = a(x, t)

In this case, the gradients are zeros at the boundary.

4.2.2. Inflow/outflow

The inflow (or outflow) is represented by a fluid state in the ghost cell xbc. The
fluid state depends on the density ρbc, the macroscopic velocity Ubc and the tem-
perature Tbc, and corresponds to the approximate Maxwellian distribution function
M̃f

abc(t) = aM [ρbc(t), Ubc(t), Tbc(t)]

20



4.2.3. Specular reflection

The specular reflection is a wall reflecting the particles in opposite normal
direction. The wall is moving with macroscopic velocity Ubc and there is no mass
and energy fluxes through the wall. The microscopic velocity of the particles
becomes after the collision

ξrefl = ξ − 2((ξ − Ubc(t)) · nw) nw

where nw is the outward normal at the wall. The particles, hitting the wall, verify
0 < (ξ − Ubc) · nw and the boundary condition reads

f̂ bc(ξ, t) =

{
f̃(x, ξrefl, t) if 0 < (ξ − Ubc(t)) · nw
f̃(x, ξ, t) otherwise

The function f̂ bc do not necessarily belong to the subspace spanned by the basis
functions Φn. In the same way as in section 3.2.2, f̂ bc is projected in order to
conserve the moments −→ρbc

abc(t) = ΦTW
−→
f bc(t) + Ψ+(−→ρbc(t)−ΨΦTW

−→
f bc(t))

where
−→
f bc(t) = (f̂ bc(ξ1, t), . . . , f̂

bc(ξNξ , t))
T and −→ρbc(t) = 〈f̂ bc(ξ, t),m(ξ)〉ξ.

4.2.4. Diffuse reflection

The diffuse reflection is a wall reflecting the particles as Maxwellian distribution
function. The wall has the macroscopic velocity Ubc, the temperature Tbc and there
is zero mass flux through the wall. In the ghost cell, the boundary condition is
represented by the approximate Maxwellian distribution function determined by
(ρbc, Ubc, Tbc). The density ρbc is computed to guarantee zero mass flux∫

(ξ−Ubc(t))·nw<0

(ξ − Ubc(t))f̃(x, ξ, t) dξ +

∫
(ξ−Ubc(t))·nw>0

(ξ − Ubc(t))M̃f [ρbc(t), Ubc(t), Tbc(t)] dξ = 0∫
(ξ−Ubc(t))·nw<0

(ξ − Ubc(t))f̃(x,ξ, t) dξ +

∫
(ξ−Ubc(t))·nw>0

(ξ − Ubc(t))ρbc(t)M̃f [1, Ubc(t), Tbc(t)] dξ = 0

ρbc(t) = −

∫
(ξ−Ubc(t))·nw<0

(ξ − Ubc(t))f̃(x, ξ, t) dξ∫
(ξ−Ubc(t))·nw>0

(ξ − Ubc(t))M̃f [1, Ubc(t), Tbc(t)] dξ

where we use

M̃f [ρ, U, T ] = ΦTWMf [ρ, U, T ] + Ψ+(−→ρ [ρ, U, T ]−ΨΦTWMf [ρ, U, T ])

= ΦTWρMf [1, U, T ] + Ψ+(ρ−→ρ [1, U, T ]−ΨΦTWρMf [1, U, T ])

= ρ(ΦTWMf [1, U, T ] + Ψ+(−→ρ [1, U, T ]−ΨΦTWMf [1, U, T ]))

= ρM̃f [1, U, T ]
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with −→ρ [ρ, U, T ] the moments of Mf [ρ, U, T ]. We reflect only the particles hitting
the wall

f̃ bc(ξ, t) =

{
ρbc(t)M̃f [1, Ubc(t), Tbc(t)] if 0 < (ξ − Ubc(t)) · nw
f̃(x, ξ, t) otherwise

The coefficients abcn are given by projection

abcn (t) = 〈f̃ bc(ξ, t),Φn(ξ)〉ξ

This projection is exact and conserves the moments of f̃ bc.

5. Tests and results

The reduced-order model is tested in 1D and 2D. We evaluate the accuracy and
the run time of the reduced-order model with respect to the high-fidelity model.
We use the approximation error

Error =
1

2

‖φ(·, ·, tmax)− φ̃(·, ·, tmax)‖L2

‖φ(·, ·, tmax)‖L2

+
1

2

‖ψ(·, ·, tmax)− ψ̃(·, ·, tmax)‖L2

‖ψ(·, ·, tmax)‖L2

and the run time

Run time =
Reduced-order model run time

High-fidelity model run time

where tmax is the final time.

5.1. Reconstruction tests

In section 3.2.2 and 3.1.1.1, we propose to modify the approximate Maxwellian
distribution function and the snapshot database in order to improve the reduced-
order model. These modifications are evaluated on reconstruction tests where
the density distribution function that we want to approximate is in the snapshot
database used to built the basis functions. The prediction of density distribution
function will be performed in the next section 5.2.

5.1.1. Reconstruction of a shock wave

In the Galerkin method, the approximate Maxwellian distribution function M̃f

is the projection of the discrete Maxwellian distribution function M f onto the basis
functions Φn. In section 3.2.2, we propose to compute the approximate Maxwellian
distribution function M̃f by constrained projection in order to conserve the mass,
the momentum and the energy of the gas. We compare these two methods to
compute the approximate Maxwellian distribution function M̃f .
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The test case is the Sod shock tube problem [30] with Kn = 10−5. The
physical space is Ωx = [0, 1] discretized with Nx = 200 points, the velocity space
is Ωξ = [−10, 10] discretized with Nξ = 41 points and the CFL condition is 0.1.
The initial conditions are{

ρ(x, 0) = 1, u(x, 0) = 0, T (x, 0) = 1 if x ∈ ]0, 0.5[
ρ(x, 0) = 0.125, u(x, 0) = 0, T (x, 0) = 0.8 otherwise

We consider free flow boundary conditions and the final time is tmax = 0.12. To
build the basis functions, the database Sφ (resp. Sψ) contains snapshots of φ (resp.
ψ) taken at any points in space and every 0.005 time units. The figure 4 shows

the singular values of Ŝφ and Ŝψ.
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Figure 4: Singular values of Ŝφ (blue) and Ŝψ (red) for the shock wave reconstruction.

For Φφ and Φψ, the singular values decrease quickly and the energy Epod cap-
tured by the basis functions Φφ and Φψ is more than 99.99% of the total energy
with 3 basis functions (i.e. 7.3% of the complete basis). In Figure 5, we plot
the density ρ, the macroscopic velocity u, and the temperature T of the gas at
final time obtained by the reduced-order model where the approximate Maxwellian
distribution function M̃f is computed by constrained projection.
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Figure 5: Density ρ, macroscopic velocity u and temperature T of the gas at final time for the
shock wave reconstruction with Nφ

pod = Nψ
pod = 9.

In Figure 6, we compare the approximation error and the run time of these two
methods as a function of the number of basis functions Npod = Nφ

pod = Nψ
pod.
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Figure 6: Comparison of the approximate Maxwellian distribution function M̃f .

The constrained projection leads to more accuracy because the approximate
Maxwellian distribution function M̃f verifies the equation (4). Moreover, the con-
strained projection is faster because we have an explicit formula for the coefficients
while for the projection we have to solve a nonlinear system. More specifically in
the projection, the Maxwellian distribution function Mf must be computed to ini-
tialize the Newton-Raphson method (section 2.2). Then this nonlinear system is
solved to obtain the discrete Maxwellian distribution function M f , which is finally
projected onto the basis functions. In the constrained projection, the Maxwellian
distribution function Mf is computed and the formula (23) is used to obtain the
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approximate Maxwellian M̃f . Therefore, the approximate Maxwellian distribu-

tion function M̃f is computed by constrained projection in the following since this
approach is much faster and more accurate.

5.1.2. Reconstruction of two boundary layers

The second improvement of the reduced-oder model concerns the choice of the
snapshots. Originally, the database S contains snapshots of the density distribu-
tion functions f , because we want the basis functions Φ to be the best representa-
tion of f . In the section 3.2.2, the approximate Maxwellian distribution function
M̃f is represented by the basis functions Φn. For this reason, we evaluate the
interest of adding snapshots of the discrete Maxwellian distribution function M f .

We consider two walls (diffuse reflection) placed at x = 0 and x = 1 with
different temperatures. The physical space is Ωx = [0, 1] discretized with Nx = 100
points, the velocity space is Ωξ = [−20, 20] discretized with Nξ = 100 points and
the final time is tmax = 13.03. The initial and boundary conditions are{

ρ0(x) = 1, u0(x) = 0, T0(x) = 1
ubc(0, t) = 0, Tbc(0, t) = 0.5, ubc(1, t) = 0, Tbc(1, t) = 1.5

The CFL condition is 0.1 and the Knudsen number is Kn = 10−2. To build the
basis functions, we use two methods. In the first one, the database Sφ (resp. Sψ)
contains snapshots of φ (resp. ψ) taken at any points in space and every 0.4 time
units. In the second one, the database Sφ (resp. Sψ) contains snapshots of φ and
Mφ (resp. ψ and Mψ) taken at any points in space and every 0.4 time units.

Figure 7 shows the singular values of Ŝφ and Ŝψ for the two methods.
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Figure 7: Singular values of Ŝφ and Ŝψ with (on the right) and without (on the left) Maxwellian
snapshots for the boundary layers reconstruction.

The singular values of Ŝφ and Ŝψ decrease quickly and the energy Epod captured
by the basis functions Φφ and Φψ is more than 99.99% of the total energy with 4
basis functions (i.e. 4% of the complete basis). In Figure 8, we plot the density ρ,
the macroscopic velocity u and the temperature T of the gas at final time obtained
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by the reduced-order model where the database contains snapshots of the density
and of the Maxwellian distribution functions.
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Figure 8: Density ρ, macroscopic velocity u and temperature T of the gas at final time for the
boundary layers reconstruction with Nφ

pod = Nψ
pod = 12.

In Figure 9, we compare the error and the run time of these two methods
depending on the number of basis functions Npod = Nφ

pod = Nψ
pod.
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Figure 9: Comparison of the choice of the snapshot database S.

The enrichment of the snapshot database with the discrete Maxwellian dis-
tribution function reduces the error because the Maxwellian distribution function
is better approximated. Moreover, it reduces the run time for Npod = 6 and in-
creases it in the other cases. The run time is slightly different because the time
step ∆t is determined by the basis functions (see section 4.1.3). A priori, we can
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not know which method leads to the biggest time step ∆t and in the following,
the database contains snapshots of the density distribution function and of the
discrete Maxwellian distribution function to increase the accuracy of the reduced-
order model.

5.1.3. Reconstruction of a vortex

To evaluate the reduced-order model in 2D, we consider a flow past a vertical
plate [31]. The physical space is Ωx = [−1.33, 2]× [0, 3.33] discretized with Nx =
642 points and the velocity space is Ωξ = [−10, 10]2 discretized with Nξ = 412

points. The final time is tmax = 5.3332 and the CFL condition is 0.5. An inflow
condition is imposed at the boundary (x = −1.33, x = 2 and y = 3.33) with the
density ρbc = 1, the macroscopic velocity Ubc = (0.68, 0)T and the temperature
Tbc = 1. A vertical plate (specular reflection) is placed at x = 0 × ]0, 1[. The
initial and boundary conditions are

ρ(x, 0) = 1, u(x, 0) = 0.68, v(x, 0) = 0, T (x, 0) = 1 if x ∈ Ωx

ρ(x, t) = 1, u(x, t) = 0.68, v(x, t) = 0, T (x, t) = 1 if x = −1.33, t ∈ [0, 5.33]
ρ(x, t) = 1, u(x, t) = 0.68, v(x, t) = 0, T (x, t) = 1 if x = 2, t ∈ [0, 5.33]
ρ(x, t) = 1, u(x, t) = 0.68, v(x, t) = 0, T (x, t) = 1 if y = 3.33, t ∈ [0, 5.33]

and we consider a specular reflection at the boundary y = 0. The basis functions
Φφ (resp. Φψ) are built from the database Sφ (resp. Sψ) containing snapshots of
φ and Mφ (resp. ψ and Mψ) taken at any points in space and every 0.2665 time

units. The Figure 10 shows the singular values of Ŝφ and Ŝψ at Kn = 0.0345.
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Figure 10: Singular values of Ŝφ (blue) and Ŝψ (red) for the vortex reconstruction.

The singular values of Ŝφ and Ŝψ decrease rapidly and the energy Epod captured
by the basis functions Φφ and Φψ is more than 99.99% of the total energy with 6 ba-
sis functions (i.e. 0.4% of the complete basis). In Figure 11, we plot the streamlines
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of the macroscopic velocity U of the gas at final time obtained by the reduced-order
model for different Knudsen number Kn ∈ {0.0345, 0.0689, 0.115, 0.23}.

(a) Kn = 0.0345 (b) Kn = 0.0689

(c) Kn = 0.115 (d) Kn = 0.23

Figure 11: Streamlines of U for the vortex reconstruction with Nφ
pod = Nψ

pod = 20.

According to the high-fidelity simulations, a vortex is formed at the back of the
wall and the vortex becomes stronger when the Knudsen number Kn decreases. In
Figure 12, we evaluate the approximation error and the run time of the reduced-
order model depending on the number of basis functions Npod = Nφ

pod = Nψ
pod.
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Figure 12: Results of the vortex reconstruction.

When the number of basis functions Npod increases, the approximation error
decreases and the run time increases. The approximate density distribution func-
tion becomes more accurate because the subspace spanned by the basis functions
converges to the total space. The computational cost increases because we solve
more equations in the system (19) and because the time step ∆t decreases. The
number Npod of basis functions represents the trade-off between accuracy and com-
putational cost. In average by taking Npod = 20 basis functions, the approximation
error is less than 1% and the run time is divided by 45 approximately.

5.2. Prediction tests

In the previous tests, the density distribution function that we want to ap-
proximate was sampled with the high-fidelity model. We now predict density
distribution functions which are not is in the snapshot database used to build the
basis functions.

5.2.1. Limits of the Proper Orthogonal Decomposition

The difficulty of the prediction is that the basis functions are not necessar-
ily the best representation in the least squares sense of the density distribution
function that we want to predict. The density distribution function contained
in the snapshots may be different from the density distribution function that we
want to predict and the approximation error can be huge especially with few basis
functions.

Given a set of snapshots f snapl , we begin to investigate which density distribu-
tion function fpred can be predicted. To simplify, we consider only one cell and
one time step (i.e. the density distribution function that we want to predict fpred
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depends only on ξ as the snapshots f snapl ). Moreover by considering low Knud-
sen number, we assume that the density distribution functions fpred and f snapl are
Maxwellian distribution functions (see Figure 1) and are determined by the density
ρ, the macroscopic velocity U and the temperature T of the gas.

The macroscopic velocity U and the temperature T are important for the pre-
diction. If at least one of the snapshots (for example f snapl∗ ) has the same macro-
scopic velocity U snap

l∗ = Upred and the same temperature T snapl∗ = T pred than the
density distribution function fpred, the basis functions Φn can give an accurate
approximation of fpred by taking Npod large enough

fpred =
ρpred

ρsnap
f snap ≈ ρpred

ρsnap

Npod∑
n=1

asnapn Φn ≈
Npod∑
n=1

ρpred

ρsnap
asnapn Φn ≈

Npod∑
n=1

apredn Φn

More generally, every linear combinations of the snapshots can be approximated
accurately.

Since the density distribution function decreases rapidly, we define supp(f) ⊆
R3 the subspace which contains at least 99.99% of the density distribution function

f (i.e.
∫
supp(f)

f(ξ) dξ > 99.99%
∫
R3

f(ξ) dξ). In the case where U snap
l 6= Upred or

T snapl 6= T pred for all snapshots f snapl , the supports of the density distribution
function supp(fpred) and of the snapshots supp(f snapl ) are different, which leads to
approximation error. Moreover if supp(fpred)∩(

⋃
l

supp(f snapl )) = ∅, then the basis

functions (associated to strictly positive singular values) are zero on supp(fpred)
and can’t represent fpred.

Hence, to predict a distribution function fpred, the database must contain snap-
shots of distribution functions corresponding to velocities U snap

l ≈ Upred and tem-
peratures T snapl ≈ T pred. The snapshots are uniformly collected at all points in
space and every time steps which provides a big database (Nsnaps ≈ 106) with
a large set of different velocities and temperatures. As explained before, addi-
tional low-fidelity snapshots can complete this sampling as shown in the following
example.

5.2.2. Prediction of a shock wave

We consider the 1D case where the macroscopic velocities u of the density
distribution function that we want to approximate and of the density distribution
function containing in the snapshot database are significantly different from each
other.

The test case is the Sod shock tube problem with Kn = 10−5. The physical
space is Ωx = [0, 1] discretized with Nx = 100 points and the velocity space is
Ωξ = [−20, 20] discretized with Nξ = 500 points. We want to predict the density
distribution function defined by{

ρ(x, 0) = 1, u(x, 0) = u0, T (x, 0) = 0.5 if x ∈ ]0, 0.5[
ρ(x, 0) = 0.125, u(x, 0) = u0, T (x, 0) = 0.4 otherwise
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where u0 belongs to [−2, 2], the boundary conditions are free flows and the final
time is tmax = 0.1. In this way, the density distribution functions depends only on
the initial macroscopic velocity u0. To build the basis functions, two high-fidelity
simulations are available{

ρ(x, 0) = 1, u(x, 0) = −2, T (x, 0) = 0.5 if x ∈ ]0, 0.5[
ρ(x, 0) = 0.125, u(x, 0) = −2, T (x, 0) = 0.4 otherwise

(S1)

and {
ρ(x, 0) = 1, u(x, 0) = 2, T (x, 0) = 0.5 if x ∈ ]0, 0.5[
ρ(x, 0) = 0.125, u(x, 0) = 2, T (x, 0) = 0.4 otherwise

(S2)

with free flow boundary conditions and tmax = 0.1. The snapshot database Sφ
(resp. Sψ) contains snapshots of φ and Mφ (resp. ψ and Mψ) of the simulations
(S1) and (S2) taken at any point in space and every 0.005 time units. The tem-
perature T of the density distribution function of these two simulations are almost
in the same interval [0.38, 0.6], but the macroscopic velocities u are very different
as shown by Figure 13.
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Figure 13: Examples of 4 snapshots of the simulation (S1) (left) and simulation (S2) (right).

The macroscopic velocities u(x, t) =

∫
R
ξuφ(x, ξu, t) dξu correspond to the mean

of the distribution function in velocity space and are around -2.5 (resp. 2.5) in the
simulation (S1) (resp. (S2)). If we want to compute a density distribution function
with macroscopic velocity 0, the approximation error can be huge even with a
large number of basis functions. Optimal transport can interpolate the density
distribution function of the snapshots to have new density distribution function
with velocities between -2.5 and 2.5. In our case, we use it to add new snapshots
with macroscopic velocities around 0 to the database. At any point in space x
and every 0.005 time units, we compute the Wasserstein barycenter s∗ between
the distribution function s1 of the simulation (S1) and the distribution function s2

of the simulation (S2) at barycentric coordinates {(s1, λ1 = 1
2
), (s2, λ2 = 1

2
)}.
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Figure 14: Examples of low-fidelity snapshots created from the simulations (S1) and (S2).

We evaluate two different basis functions Φn. The first one is created from the
snapshots of the simulations (S1) and (S2), and the second one is creates from the
low-fidelity snapshots and from the snapshots of the simulations (S1) and (S2). In
Figure 15, we evaluate the approximation error corresponding to different initial
macroscopic velocities u(x, 0).

u(x, 0)
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

E
rr

o
r 

(%
)

0

5

10

15

20

25

30

35

40

45

50
Without low-fidelity snapshots
With low-fidelity snapshots

Figure 15: Results of the shock wave prediction with Nφ
pod = Nψ

pod = 9.

The low-fidelity snapshots allow the basis functions to significantly improve
the approximation of the density distribution functions corresponding to u(x, 0) ∈
[−1.5, 1.5]. For u(x, 0) = −2 and u(x, 0) = 2, the approximation is slightly less
accurate because the low-fidelity snapshots add useless information to represent
the density distribution functions corresponding to u(x, 0) = −2 and u(x, 0) = 2.
In average, the reduced-order model is significantly more accurate with the low-
fidelity snapshots.
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5.2.3. Prediction of a vortex

We consider now the case of a 2D flow past a vertical plate with Kn = 0.0345.
The physical space is Ωx = [−1.33, 2]× [0, 3.33] discretized with Nx = 642 points,
the velocity space is Ωξ = [−10, 10]2 discretized with Nξ = 412 points and the final
time is tmax = 5.3332. We want to predict the density distribution functions with
different velocities of the inflow ubc corresponding to Mach number in [0.23, 0.63]

ρ(x, 0) = 1, u(x, 0) = ubc, v(x, 0) = 0, T (x, 0) = 1 if x ∈ Ωx

ρ(x, t) = 1, u(x, t) = ubc, v(x, t) = 0, T (x, t) = 1 if x = −1.33, t ∈ [0, 5.33]
ρ(x, t) = 1, u(x, t) = ubc, v(x, t) = 0, T (x, t) = 1 if x = 2, t ∈ [0, 5.33]
ρ(x, t) = 1, u(x, t) = ubc, v(x, t) = 0, T (x, t) = 1 if y = 3.33, t ∈ [0, 5.33]

where the boundary condition at y = 0 is a specular reflection.
To build the snapshot database, we use only one high-fidelity simulation. The

database Sφ (resp. Sψ) contains snapshots of φ and Mφ (resp. ψ and Mψ) corre-
sponding to the simulation at Mach = 0.63 taken at any points in space and every
0.2665 time units. In this way, the database contains all macroscopic velocities
U and temperatures T which will appear in the simulations corresponding to ubc

such that the Mach number is in [0.23, 0.63]. For the macroscopic velocity U , the
database contains distribution functions with the minimum (below the vortex) and
the maximum (above the vortex) first component of macroscopic velocities u which
can arise as shown by Figure 16. Similarly, the simulation at Mach 0.63 contains
the distribution functions with the minimum (at the right side of the plate) and
the maximum (at the left side of the plate) temperatures T which can appear.

(a) Mach = 0.23 (b) Mach = 0.43 (c) Mach = 0.63

Figure 16: Streamlines of U for the vortex prediction with Nφ
pod = Nψ

pod = 20.

In Figure 17, we evaluate the approximation error corresponding to different
velocities of the inflow ubc.
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Figure 17: Results of the vortex prediction. Error as a function of the inlet velocity obtained for
given Mach number.

For ubc corresponding to Mach in [0.23, 0.53], the basis functions are able to
represent the density distribution function even if this one was not use to build
the snapshot database. Moreover when the number of basis functions Npod =

Nφ
pod = Nψ

pod increases, the solution becomes more accurate. With Npod = 20 basis
functions, the error is less than 1% for all prediction tests.

6. Conclusion

We have presented a reduced-order approximation of the BGK equation. In
the reduced-order model, the density distribution function f is represented in
velocity space by few basis functions Φn so that the number of degrees of freedom
is drastically reduced compared to the high-fidelity model. The basis functions Φn

are built offline by POD and the approximate density distribution function f̃ is
computed online by the Galerkin method.

In the offline phase, we have proposed two improvements concerning the sam-
pling of the high-fidelity model. The first one is to collect snapshots of f and of the
discrete Maxwellian M f since the discrete Maxwellian distribution function M f

is to be approximated by the basis functions Φn in the reduced-order model. An
additional improvement is to use optimal transport to complete the sampling of
the high-fidelity model avoiding new simulations of the costly high-fidelity model.
The new snapshots created by optimal transport add missing information and the
basis functions are able to represent new features as shown in the shock wave
prediction.
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In the online phase, we have shown that the system is hyperbolic by con-
struction. We have presented a linear change of variables to solve by decoupling
direction by direction the resulting partial differential equations in space and time.
This system is then integrated by a first-order IMEX Runge-Kutta scheme in time
and a first-order finite volume scheme in space. Also, we have shown how to com-
pute the approximate Maxwellian distribution function M̃f in order to conserve
the mass, the momentum and the energy of the gas. This modification significantly
improves the accuracy and reduces the computational cost of the reduced-order
model.

The reduced-order model has been evaluated on 1D and 2D test cases. We have
investigated the reconstruction and prediction of shock waves, boundary layers
and vortices. The results demonstrate the accuracy of the reduced-order model
(less than 1% of error) and a significant reduction of the run time (approximately
divided by 45).
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