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Abstract
We present a reduced-order approximation of the BGK equation leading to fast
and accurate computations. The BGK model describes the dynamics of a gas 
ow
in both hydrodynamic and rare�ed regimes. The particles of the gas are repre-
sented by a density distribution function depending on physical space, velocity
space and time. In this work, the density distribution function is approximated
in the velocity space by a small number of basis functions computed o�ine. In
the o�ine phase, the BGK equation is sampled in order to collect information on
the density distribution function. To complete this sampling, optimal transport
is used to add new information by interpolating the samples of the density dis-
tribution function. Finally, the basis functions are built by Proper Orthogonal
Decomposition. During the online phase, the o�ine knowledge is used to compute
approximations of the density distribution function at low cost. To do so, the BGK
equation is projected onto the basis functions, leading to a system of partial di�er-
ential equations. The system obtained is hyperbolic by construction and is solved
by an IMEX Runge-Kutta scheme in time and a �nite-volume scheme in space.
To improve the accuracy, the reduced-oder model is modi�ed to conserve mass,
momentum and energy of the gas. Numerical illustrations of 1D and 2D 
ows are
given. In particular, we investigate the reconstruction and the prediction of shock
waves, boundary layers and vortices. The results demonstrate the accuracy of the
reduced-order model and the signi�cant reduction of the computational cost.

Keywords: Reduced-order model, Proper Orthogonal Decomposition, Rare�ed

ows, Optimal transportation

1. Introduction

We present a model describing a gas 
ow in both hydrodynamic and rare�ed
regimes. These regimes are characterized by the Knudsen number

Kn =
�
L

�Corresponding author: sebastien.riffaud@u-bordeaux.fr, sebastien.riffaud@inria.fr

mailto:sebastien.riffaud@u-bordeaux.fr
mailto:sebastien.riffaud@inria.fr


where � is the mean free path of the particles and L is the characteristic length of
the problem. When the Knudsen number is low (roughly Kn < 10�2) the collisions
between the gas particles are preponderant compared to the free transport of
the particles and the regime is hydrodynamic. Conversely, the rare�ed regime
corresponds to 10�2 < Kn.

In the high-�delity model, the dynamics of the gas 
ow is described by the
Boltzmann equation

@f
@t

(x; �; t) + � � rxf(x; �; t) = Q(f; f) (1)

where f is the gas density distribution function at point x 2 R3, velocity � 2 R3

and time t 2 R. Q is the collision operator, approximated here by the BGK
operator [1]. The computational cost of this model can be prohibitive due to the
high number of dimensions of the grid (e.g. 3 in space + 3 in velocity + 1 in time).

For this reason, we develop a stable, accurate and e�cient reduced-order model
to compute approximations of the density distribution function f at low cost with
respect to the high-�delity model. To this end, several approaches were developed
in the literature: Proper Orthogonal Decomposition [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
Proper Generalised Decomposition [13], Empirical Interpolation Method [14, 15].
In this work, we adopt an approach based on Proper Orthogonal Decomposition
and Galerkin method. In this approach, the gas density distribution function f is
approximated in velocity space by Npod basis functions �n

ef(x; �; t) =
NpodX

n=1

an(x; t)�n(�)

The basis functions �n are computed o�ine by Proper Orthogonal Decomposition
[3] and the coe�cients an are computed online by the Galerkin method.

In the o�ine phase, the high-�delity model is sampled to collect information
on the density distribution function f that we want to approximate. The sampling
is based on two fundamental steps. Firstly, we collect samples of both the density
distribution function f and of the Maxwellian distribution function Mf , since Mf
will also be represented by the basis functions �n. Secondly, since the number
of simulations may be limited due to the computational cost of the high-�delity
model, the samples of the distribution functions f and Mf are interpolated by
optimal transport to compute additional samples, completing the sampling of the
high-�delity model. Finally, the basis functions �n are built by POD to be the
best representation in the least squares sense of the samples.

During the online phase, this o�ine knowledge is used to compute an approxi-
mation of the density distribution function ef at low cost. In the Galerkin method,
the Boltzmann equation (1) is projected onto the basis functions �n, leading to a
system of partial di�erential equations that is shown to be hyperbolic by construc-
tion. The equations are then decoupled by a linear change of variables and the
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system is solved by a �rst-order IMEX Runge-Kutta scheme [16, 17, 18] in time
and a �rst-order �nite volume scheme [19] in space. Due to projection error, the
approximation of the Maxwellian distribution function fMf does not necessarily
preserve conservation leading to signi�cant errors in ef . We introduce a constraint
projection to compute fMf in order to conserve the mass, the momentum and the
energy of the gas that signi�cantly improves accuracy.

These steps are detailed in the next sections. In section 2, we introduce the
high-�delity model. Then section 3 presents in details the reduced-order model
approximating the high-�delity model. In section 4, we describe the boundary
conditions and the numerical schemes used to discretize the reduced-order model.
Finally, the last section 5 demonstrates the accuracy of the reduced-order model
and the signi�cant reduction of the computational cost.

2. High-�delity model

We brie
y introduce the high-�delity model describing a gas 
ow in both hy-
drodynamic and rare�ed regimes. The detailed model can be found in [20].

2.1. Dimensionless BGK model
The high-�delity model uses the BGK operator [1] where the collision term Q

is linearised around the Maxwellian distribution function Mf in the Boltzmann
equation (1)

@f
@t

(x; �; t) + � � rxf(x; �; t) =
Mf (x; �; t)� f(x; �; t)

�(x; t)
(2)

with x = (x; y; z)T 2 R3, � = (�u; �v; �w)T 2 R3 and t 2 R. For simplicity, we
consider a monoatomic gas. In dimensionless form, the relaxation time � is

��1(x; t) =
�(x; t)T 1��(x; t)

Kn

with � 2 R the exponent of the viscosity law of the gas and Mf the Maxwellian
distribution function

Mf (x; �; t) =
�(x; t)

(2�T (x; t))
3
2

exp
�
�
k� � U(x; t)k2

2T (x; t)

�
(3)

where �(x; t) 2 R is the density, U(x; t) = (u(x; t); v(x; t); w(x; t))T 2 R3 is the
macroscopic velocity and T (x; t) 2 R is the temperature of the gas. The density,
the momentum and the energy of the gas are given by the moments of the density
distribution function f

Z

R3
f(x; �; t)

0

@
1
�
k�k2

2

1

A d� =

0

@
�(x; t)

�(x; t)U(x; t)
E(x; t)

1

A (4)
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where E(x; t) 2 R is the energy of the gas. The temperature T (x; t) and the
pressure p(x; t) 2 R of the gas are deduced from the moments

T (x; t) =
2E(x; t)
3�(x; t)

�
kU(x; t)k2

3
and p(x; t) = �(x; t)T (x; t)

2.2. Discrete Maxwellian distribution function
If h:; :i� denotes the discrete inner product used to approximate the continuous

inner product, the Maxwellian distribution function Mf does not necessarily verify
the equation

hMf (x; �; t);m(�)i� =

0

@
�(x; t)

�(x; t)U(x; t)
E(x; t)

1

A (5)

where m(�) = (1; �; k�k
2

2 )T 2 R5. For this reason, in the high-�delity model, the
discrete Maxwellian distribution function M f is not computed from the formula
(3). In [21, 22], it is proved that the discrete Maxwellian distribution function M f
can be express thanks to ! 2 R5

M f (x; �; t) = exp(!(x; t) �m(�))

To verify equation (5), ! must satisfy



M f (x; �; t);m(�)

�
� =

0

@
�(x; t)

�(x; t)U(x; t)
E(x; t)

1

A

This nonlinear system is solved by the Newton-Raphson method at any point in
space x and time t, see [20]. The equation (2) becomes after discretization in
velocity space

@f
@t

(x; �; t) + � � rxf(x; �; t) =
M f (x; �; t)� f(x; �; t)

�(x; t)
(6)

2.3. Reduced BGK model
To ensure equation (4), the velocity space has always 3 dimensions, even if the

physical space has less dimensions. In 1D and 2D, the high-�delity model uses two
density distribution functions � and  as explained in [23] to reduce the number of
dimensions in velocity space and to speed up the computations. In 1D, the density
distribution function f is replaced by

�(x; �u; t) =
Z

R2
f(x; �; t) d�v d�w and  (x; �u; t) =

Z

R2

�2
v + �2

w

2
f(x; �; t) d�v d�w
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By integrating in velocity space, equation (6) becomes
8
>><

>>:

@�
@t

(x; �u; t) + �u
@�
@x

(x; �u; t) =
M�(x; �u; t)� �(x; �u; t)

�(x; t)
@ 
@t

(x; �u; t) + �u
@ 
@x

(x; �u; t) =
M (x; �u; t)�  (x; �u; t)

�(x; t)

(7)

and the equation (4) is replaced by

Z

R
�(x; �u; t)

0

@
1
�u
�2
u
2

1

A d�u +
Z

R
 (x; �u; t)

0

@
0
0
1

1

A d�u =

0

@
�(x; t)

�(x; t)u(x; t)
E(x; t)

1

A (8)

In 2D, the new density distribution functions are

�(x; �2; t) =
Z

R
f(x; �; t) d�w and  (x; �2; t) =

Z

R

�2
w

2
f(x; �; t) d�w

with x = (x; y)T 2 R2 and �2 = (�u; �v)T 2 R2. They verify
8
>><

>>:

@�
@t

(x; �2; t) + �2 � rx�(x; �2; t) =
M�(x; �2; t)� �(x; �2; t)

�(x; t)
@ 
@t

(x; �2; t) + �2 � rx (x; �2; t) =
M (x; �2; t)�  (x; �2; t)

�(x; t)

(9)

and the moments are given by

Z

R2
�(x; �2; t)

0

BB@

1
�u
�v
k�2k2

2

1

CCA d�2 +
Z

R2
 (x; �2; t)

0

BB@

0
0
0
1

1

CCA d�2 =

0

BB@

�(x; t)
�(x; t)u(x; t)
�(x; t)v(x; t)
E(x; t)

1

CCA (10)

The discrete Maxwellians M� and M are computed to verify the equation (8)
(resp. (10)) in 1D (resp. 2D), see [20].

3. Reduced-order model

In the reduced-order model the density distribution function f is approximated
in the velocity space by Npod basis functions �n

ef(x; �; t) =
NpodX

n=1

an(x; t)�n(�)

in order to reduce the number of degrees of freedom. The basis functions �n
are built o�ine by Proper Orthogonal Decomposition and are orthonormal by
construction.
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In 1D and in 2D, the density distribution functions � and  of the high-�delity
model are modelled in the same way by

e�(x; �u; t) =
N�
podX

n=1

a�n(x; t)��
n(�u) and e (x; �u; t) =

N 
podX

n=1

a n(x; t)� 
n(�u) in 1D

e�(x; �2; t) =
N�
podX

n=1

a�n(x; t)��
n(�2) and e (x; �2; t) =

N 
podX

n=1

a n(x; t)� 
n(�2) in 2D

In the following we will detail the model for ef (the method for e� and e is similar).

3.1. Basis functions
In the o�ine phase, the high-�delity model is sampled to collect information

on the solution. The basis functions are computed by POD as explained in the
following section.

3.1.1. Snapshot database
The sampling of the high-�delity model provides a database S containing Nsnaps

snapshots sl of the density distribution function f

S = fs1; s2; : : : ; sNsnapsg

where a snapshot sl is the density distribution function f at a point x and time t,
e.g., sl(�) = f(xi(l);j(l);k(l); �; tp(l)). In Figure 1, we show examples of snapshots in
1D and 2D where we take a low Knudsen number (Kn � 10�5). In this case, the
snapshots are close to a Maxwellian distribution function.
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Figure 1: Examples of snapshots of � in 1D (top) and in 2D (bottom) randomly choosen.
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3.1.1.1. High-�delity snapshots.
The snapshots s are provided by the high-�delity model and contains snapshots

of the density distribution function f taken at any points in space and every time
steps tp

S =
n
f(xi(m);j(m);k(m); �; tp)

o
1�m�Nx
1�p�Nt

(11)

where we use 3D indexing for the space grid (i.e. 
x =
NxS
m=1

xi(m);j(m);k(m)). In this

way, the snapshots are uniformly distributed to represent the density distribution
function f .

The database S contains also snapshots of the discrete Maxwellian distribution
function M f , since Mf will be represented by the basis functions �n in section 3.2.2

S =
n
f(xi(m);j(m);k(m); �; tp)

o
1�m�Nx
1�p�Nt

[n
M f (xi(m);j(m);k(m); �; tp)

o
1�m�Nx
1�p�Nt

(12)

The results of this choice are presented in section 5.1.2.

3.1.1.2. Low-�delity snapshots.
Due to the computational cost of the high-�delity model, the number of sim-

ulations may be limited. To enrich the database S with new snapshots, optimal
transport [24] can be used to interpolate the distribution functions f and M f
in velocity space. These additional low-�delity snapshots are computed by the
entropic regularization of optimal transport [25] which allows fast computations.

Let 
 > 0, the discrete entropy-regularized Wasserstein distance W
 between
two distributions �1, �2 2 RN�

+ is de�ned by

W2

(�1; �2) = min

�2�(�1;�2)
hC; �iF � 
H(�) (13)

where � 2MN�(R+) is the transportation plan (i.e. �i;j is the mass displaced from
�i to �j), � is the polytope of couplings f� 2MN�(R+) : �1 = �1 and �T1 = �2g
with 1 = (1; : : : ; 1)T , C 2 MN�(R+) is the cost matrix (i.e. Ci;j = k�i � �jk2),
h:; :iF is the Frobenius inner product and H(�) 2 R is the entropy

H(�) = �
N�X

i;j=1

�i;j(log(�i;j)� 1)

According to the Sinkhorn’s theorem, the transportation plan can be written as
� = diag(�)Kdiag(�) where Ki;j = exp

�
�Ci;j




�
. Using the Kullback-Leibler di-

vergence [26], the optimal transportation plan is solved by the Sinkhorn-Knopp
algorithm where � is iteratively projected onto the a�ne constraint sets �1 = f� 2
MN�(R+) : �1 = �1g and �2 = f� 2MN�(R+) : �T1 = �2g.
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Algorithm 1 Entropic-regularized optimal transportation [25]
�  1
repeat

� �1 � (K�) . Projection onto �1
�  �2 � (K�) . Projection onto �2
�  diag(�)Kdiag(�)

until k�1� �1k1 > �
return �

An application of the regularized optimal transport is the computation of
Wasserstein barycenter. Given Nsimul high-�delity snapshots sl, the low-�delity
snapshot s� is the Wasserstein barycenter of the high-�delity snapshots sl

min
s�2R

N�
+

NsimulX

l=1

�lW
(sl; s�) (14)

where
NsimulP

l=1
�l = 1. Before computing the low-�delity snapshot s�, we need to use

3D indexing to transform the velocity grid in a vector of size N� and we have to
normalize the high-�delity snapshots sl because they can have di�erent densities
�l. After computing the barycenter, the high-�delity snapshots sl recover their old

densities �l and the low-�delity snapshot s� is rescaled by
NsimulP

l=1
�l�l.

Algorithm 2 Wasserstein barycenter [25]
�1; : : : ; �Nsimul  1
repeat

for l = 1:::Nsimul do
�l  sl � (K�l) . Projection onto �1

end for

s�  
NsimulN

l=1

�
�l 
 (K�l)

��l
. Wasserstein barycenter

s�  Entropic-sharpening(s�; H0) . Algorithm 3 (optional)
for l = 1:::Nsimul do

�l  s� � (K�l) . Projection onto �2
end for

until max
1�l�Nsimul

k�l 
 (K�l)� slk1 > �
return s�

The main drawback of the entropic regularization of optimal transport method
is that the barycenter appears too di�use. To cure this issue, a constraint H0 2 R
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on the entropy is added as explained in [25]
8
><

>:
min
s�2R

N�
+

NsimulX

l=1

�lW
(sl; s�)

s.t. H(q) � H0

(15)

Algorithm 3 Entropic sharpening [25]
if H0 < H(s�) then

�  find
�
� 2 R+ : H0 = H((s�)�)

�

s�  (s�)�
end if
return s�

The function find is given in [27] and we choose H0 = max
1�l�Nsimul

H(sl), 
 = 5�10�4

and � = 10�4 from the experiments. Figure 2 shows an example in 1D of low-�delity
snapshots s� obtained from a set of two high-�delity snapshots s1 and s2.
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Figure 2: Wasserstein barycenters s��1;�2
at barycentric coordinates f(s1; �1); (s2; �2)g.

To speed up the computations, the matrix-vector multiplications K�l and K�l
are replaced by a convolution with the gaussian kernel K because the velocity
space is discretized by an uniform cartesian grid. Moreover, this kernel is separa-
ble and the convolution are written as successive 1D convolutions leading to faster
computations. The computational time of the optimal transport algorithm is eval-
uated with respect to the cost of the high-�delity model for one time step and
one space point. In this respect, we included the cost of interpolating a snapshot
of the density distribution function f and a snapshot of the discrete Maxwellian
distribution function M f . Over 100 di�erent runs, the computational time of Al-
gorithm 2 is in average approximately the half of the one of the high-�delity model.
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The overall run time of the low-�delity snapshot procedure will also depend on
the strategy adopted to enrich the database: only snapshots which will add new
information to the snapshot database are created. In addition, the optimal trans-
portation run time can be greatly improved by using GPU acceleration [28, 29].
Moreover, all low-�delity snapshots can be independently computed in parallel
while the high-�delity snapshots must be computed sequentially in time.

3.1.2. Proper Orthogonal Decomposition
The basis functions �n are built by POD to be the best representation in

the least squares sense of the high-�delity and low-�delity snapshots contained in
the database S. For simplicity, the POD is presented in the case (11) where the
database contains only snapshots of the density distribution function f .

3.1.2.1. Optimality of the basis functions.
Let f(xi(l);j(l);k(l); �; tp(l)) be a snapshot of the density distribution function f

taken at point xi(l);j(l);k(l) and time tp(l). Given a database of Nsnaps snapshots,
the subspace spanned by the basis functions �n is the subspace of rank Npod
minimizing in the least squares sense the di�erence between the snapshots and
their projections Pf onto this subspace
8
><

>:

minimize
�1(�):::�Npod (�)

NsnapsP

l=1
kf(xi(l);j(l);k(l); �; tp(l))� Pf (xi(l);j(l);k(l); �; tp(l))k2

�

subject to 8n;m 2 J1; NpodK; h�n;�mi� = �n;m

(16)

where Pf (x; �; t) =
NpodX

n=1

hf(x; �0; t);�n(�0)i�0�n(�). The snapshots fl(�) =

f(xi(l);j(l);k(l); �; tp(l)) are stored in matrix S 2MN��Nsnaps(R)

S =

0

BBB@

f1(�1) f2(�1) � � � fNsnaps(�1)
f1(�2) f2(�2) � � � fNsnaps(�2)

...
... . . . ...

f1(�N�) f2(�N�) � � � fNsnaps(�N�)

1

CCCA

where we use 3D indexing to transform the velocity grid to a vector of size N�.
If the database contains low-�delity snapshots or high-�delity snapshots of M f ,
these snapshots are added as new columns to S. The basis functions �n are stored
in the matrix � 2MN��Npod(R)

� =

0

BBB@

�1(�1) �2(�1) � � � �Npod(�1)
�1(�2) �2(�2) � � � �Npod(�2)

...
... . . . ...

�1(�N�) �2(�N�) � � � �Npod(�N�)

1

CCCA
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The discrete inner product is represented by the matrix W 2MN�(R) (i.e.
h�n(�);�m(�)i� = �T

n (�)W�m(�)). The integrals are approximated by the rectan-
gle rule and the associated matrix W is given in section 4.1.1 by

W = diag(��; : : : ;��) =

0

B@
�� 0

. . .
0 ��

1

CA

Using the previous notations, the problem (16) can be written
(

min
�
kS � ��TWSk2

F�

s.t. �TW� = Id
(17)

where kAk2
F� = tr(ATWA). The solution of this problem is given by the Eckart-

Young theorem 1.

Theorem 1. Let S 2Mn�m(R) be a real rectangular matrix with n � m. Suppose
that the singular value decomposition of S is

S = U�V T

where U 2Mn(R) and V T 2Mm(R) are orthogonal matrices, and � 2Mn�m(R)
is a diagonal matrix with the singular values sorted in descending order. The best
rank k approximation to S is given by

min
rank(X)�k

kS �Xk2
F = kS � S�k2

F =
nX

i=k+1

�2
i

where k�kF is the Frobenius norm and S� is the trounced singular values decompo-
sition of S

S� =

0

B@
U1;1 � � � U1;k

...
...

Un;1 � � � Un;k

1

CA

0

B@
�1 0

. . .
0 �k

1

CA

0

B@
V T

1;1 � � � V T
1;m

...
...

V T
k;1 � � � V T

k;m

1

CA 2Mn;m(R)

By de�ning bS = (W
1
2 )TS, the basis functions �n are given by

� = (W
1
2 )�T

0

B@
U1;1 � � � U1;Npod

...
...

UN�;1 � � � UN�;Npod

1

CA

where bS = U�V T is the SVD of bS and W = W
1
2 (W

1
2 )T is the Cholesky decom-

position of W .
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3.1.2.2. Choice of the number of basis functions.
In the minimisation problem (16), the objective function is equivalent to

maximize
�1(�):::�Npod (�)

NsnapsX

l=1

NpodX

n=1

hf(xi(l);j(l);k(l); �; tp(l));�n(�)i2�

By writing this problem in matrix form, the Eckart-Young theorem 1 gives

max
�
kSTW�k2

F =
NpodX

n=1

�2
n

where �n are the singular values of bS sorted in descending order. The basis func-
tions �n are also optimal to capture the most energy Epod as possible

Epod =
NpodX

n=1

�2
n

Given a threshold �, the number of basis functions Npod is chosen to have at least
� of total energy captured by the basis

NpodP
n=1

�2
n

N�P
n=1

�2
n

> �

In practice, �n decrease quickly and a small number of basis functions Npod is
su�cient to exceed high threshold (i.e. � � 99:9%). We thus have a signi�cant
reduction of the number of degrees of freedom because Npod � N�.

3.1.2.3. Construction of the basis functions.
To build the basis functions �n, the number of snapshots can be in practice too

large (Nsnaps � 107) to �nd the singular value decomposition of bS. By considering
the correlation matrix bS bST 2 MN�(R), the left and right eigenvectors of this
matrix are

bS bST = (U�V T )(U�V T )T = U�V TV �UT = U�2UT

U can be obtained by �nding the eigendecomposition or the SVD of bS bST . We use
the SVD of bS bST to compute U because this method is more accurate for small
singular values. Figure 3 shows examples of basis functions �n obtained from a
snapshot database S with this method.
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Figure 3: Examples of basis functions for � in 1D (top) and in 2D (bottom).

The �rst basis function ��
1 (on the left) is close to the mean of the snapshots.

In this case, the snapshots (see Figure 1) are close to Maxwellian distribution func-
tions and ��

1 have the form of a Maxwellian distribution function. The other basis
functions are small perturbations to have better approximation of the snapshots.

3.2. Approximate density distribution function
Once the basis functions �n are built, the approximate density distribution

function ef depends only on the coe�cients an. These coe�cients an are computed
online by the Galerkin method.

3.2.1. Galerkin method
In the Galerkin method, the approximate density distribution function ef is

inserted into the equation of the high-�delity model (6) and leads to the residual

R(x; �; t) =
@ ef
@t

(x; �; t) + � � rx ef(x; �; t)�
M f (x; �; t)� ef(x; �; t)

�(x; t)

This residual R is taken orthogonal to the basis functions �n. By projecting the
residual onto the basis functions �n, we obtain the system 8n 2 J1; NpodK

@an
@t

(x; t)+
NpodX

m=1

�
An;m

@am
@x

(x; t)+ �An;m
@am
@y

(x; t)+
?
An;m

@am
@z

(x; t)
�

=
aMn (x; t)� an(x; t)

� (x; t)
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whereAn;m=
Z

R3
�u�n(�)�m(�) d�, �An;m=

Z

R3
�v�n(�)�m(�) d�,

?
An;m=

Z

R3
�w�n(�)�m(�) d�

and aMn (x; t)=
Z

R3
Mf (x; �; t)�n(�) d�. In matrix form, this system reads

@a
@t

(x; t) + A
@a
@x

(x; t) + �A
@a
@y

(x; t) +
?
A
@a
@z

(x; t) =
aM(x; t)� a(x; t)

�(x; t)
(18)

where a = (a1; : : : ; aNpod)T and aM = (aM1 ; : : : ; aMNpod)
T .

De�nition 1. The system (18) is hyperbolic if A, �A and
?
A are diagonalizable with

real eigenvalues.

The matrices A, �A and
?
A are symmetric and thus diagonalizable by a real

orthogonal similarity. According to De�nition 1, this system is hyperbolic and the
equations can be decoupled direction by direction with a linear change of variables.
Let the eigendecompositions be A = PDP T where D 2 MNpod(R) is a diagonal
matrix and P 2MNpod(R) is an orthogonal matrix, the system (18) becomes

@a
@t

(x; t) + PD
@b
@x

(x; t) + �P �D
@c
@y

(x; t) +
?
P

?
D
@d
@z

(x; t) =
aM(x; t)� a(x; t)

�(x; t)
(19)

where the changes of variable are b = P Ta, c = �P Ta and d =
?
P Ta. In this form,

the system (19) can be solved by a �nite volume scheme in section 4.1.2. By
considering the change of variables b = P Ta, the system (19) is

@b
@t

(x; t) +D
@b
@x

(x; t) + P T �AP
@b
@y

(x; t) + P T ?
AP

@b
@z

(x; t) =
bM(x; t)� b(x; t)

�(x; t)

and the equations are decoupled for D
@b
@x

. In the same way by considering the

system (19) for c (resp. d), the equations will be decoupled for �D
@c
@y

(resp.
?
D
@d
@z

).

3.2.2. Approximate Maxwellian distribution function
In the system of partial di�erential equations (19), the discrete Maxwellian

distribution function M f is projected onto the basis functions �n

aMn (x; t) = hM(x; �; t);�n(�)i� (20)

and the approximate Maxwellian distribution function fMf is given by

fMf (x; �; t) =
NpodX

n=1

aMn (x; t)�n(�) (21)

14



Due to projection error, the approximate Maxwellian distribution function fMf
does not necessarily verify equation (5)

*
fMf (x; �; t);

0

@
1
�
k�k2

2

1

A
+

�

6=

0

@
�(x; t)

�(x; t)U(x; t)
E(x; t)

1

A

For this reason, the coe�cients aMn are not computed thanks to formula (20). The
approximate Maxwellian distribution function fMf is computed to conserve the
mass, the momentum and the energy of the gas and to be as close as possible to
the continuum Maxwellian Mf

8
>>>><

>>>>:

minimize
aM (x;t)

1
2kfMf (x; �; t)�Mf (x; �; t)k2

�

subject to

*
fMf (x; �; t);

0

@
1
�
k�k2

2

1

A
+

�

=

0

@
�(x; t)

�(x; t)U(x; t)
E(x; t)

1

A
(22)

The approximate Maxwellian distribution function fM verifying this minimisation
problem is given by the theorem 2.

Theorem 2. Let A 2 Mm�n(R) be a rectangular matrix such that ATA = Id,
C 2Mk�n(R) be a rectangular matrix, b 2 Rm and d 2 Rk. The solution of

(
min
X2Rn

1
2kAX � bk

2

s.t. CX = d

is
X� = AT b+ C+(d� CAT b)

where C+ is the Moore-Penrose inverse of C.

Proof. The solution of this minimisation problem is given by the method of La-
grange multipliers

X� = (ATA)�1AT b+ (ATA)�1CT (C(ATA)�1CT )�1(d� C(ATA)�1AT b)

By using ATA = Id, the solution becomes

X� = AT b+ CT (CCT )�1(d� CAT b)

If CCT is non-invertible, there is no solution satisfying the constraints. In this case,
we replace the equality constraints CX = d by CX = CC+d, which is equivalent to
search the best approximation in the least squares sense of the constraints CX = d
minimizing 1

2kAX � bk
2. The corresponding solution is given by

X� = AT b+ C+(d� CAT b)

When CCT is invertible, this expression is still valid because C+ = CT (CCT )�1.
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In the problem (22), the objective function is a N� � Npod system usually
overdetermined
0

BBB@

�1(�1) �2(�1) � � � �Npod(�1)
�1(�2) �2(�2) � � � �Npod(�2)

...
... . . . ...

�1(�N�) �2(�N�) � � � �Npod(�N�)

1

CCCA

0

BBB@

aM1 (x; t)
aM2 (x; t)

...
aMNpod(x; t)

1

CCCA
�

0

BBB@

Mf (x; �1; t)
Mf (x; �2; t)

...
Mf (x; �N� ; t)

1

CCCA

= = =

� aM
�!
Mf

and the equality constraints are a 5�Npod system generally underdetermined
0

BBBBBB@

h�1(�); 1i� h�2(�); 1i� � � � h�Npod(�); 1i�
h�1(�); �ui� h�2(�); �ui� � � � h�Npod(�); �ui�
h�1(�); �vi� h�2(�); �vi� � � � h�Npod(�); �vi�
h�1(�); �wi� h�2(�); �wi� � � � h�Npod(�); �wi�
h�1(�); k�k

2

2 i� h�2(�); k�k
2

2 i� � � � h�Npod(�); k�k
2

2 i�

1

CCCCCCA

0

BBB@

aM1 (x; t)
aM2 (x; t)

...
aMNpod(x; t)

1

CCCA
=

0

BBBB@

�(x; t)
�(x; t)u(x; t)
�(x; t)v(x; t)
�(x; t)w(x; t)

E(x; t)

1

CCCCA

= = =

	 aM �!�

Using the previous notations and the theorem 2, the coe�cients aM are computed
at any point in space and every time step at cost O(N�Npod) by the formula

aM(x; t) = �TW
�!
Mf (x; t) + 	+(�!� (x; t)�	�TW

�!
Mf (x; t)) (23)

where 	+ is the Moore-Penrose inverse of 	. The matrices �TW , 	+ and 	�TW
do not depend on x and t, and they can be pre-calculated to save computing time.
The approximate Maxwellian distribution function depends on the density �, the
macroscopic velocity U and the temperature T of the gas and in the following,
aM [�; U; T ] are the coe�cients of the approximate Maxwellian distribution function
corresponding to (�; U; T ). In 1D and 2D, we use the same idea by rede�ning �,
	, aM ,

�!
Mf and �!� . In 1D, the objective function is the (2N�) � (N�

pod + N 
pod)

system
0

BBBBBBBBBBBB@

��1 (�u1) � � � ��
N�pod

(�u1) 0 � � � 0
...

...
...

...
��1 (�uN� ) � � � ��

N�pod
(�uN� ) 0 � � � 0

0 � � � 0 � 1 (�u1) � � � � 
N pod

(�u1)
...

...
...

...
0 � � � 0 � 1 (�uN� ) � � � � 

N pod
(�uN� )

1

CCCCCCCCCCCCA

0

BBBBBBBBBBB@

aM�
1 (x; t)

...
aM�

N�pod
(x; t)

aM 
1 (x; t)

...
aM 

N pod
(x; t)

1

CCCCCCCCCCCA

�

0

BBBBBBBB@

M�(x; �u1 ; t)
...

M�(x; �uN� ; t)
M (x; �u1 ; t)

...
M (x; �uN� ; t)

1

CCCCCCCCA
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and the equality constraints are the 3� (N�
pod +N 

pod) system

0

BBBB@

h��1 ; 1i� � � � h�
�
N�pod

; 1i
�

0 � � � 0

h��1 ; �ui� � � � h�
�
N�pod

; �ui
�

0 � � � 0

h��1 ;
�2
u
2 i� � � � h�

�
N�pod

; �
2
u
2 i

�
h� 1 ; 1i� � � � h�

 
N pod

; 1i
�

1

CCCCA

0

BBBBBBBBBBB@

aM�
1 (x; t)

...
aM�

N�pod
(x; t)

aM 
1 (x; t)

...
aM 

N pod
(x; t)

1

CCCCCCCCCCCA

=

0

@
�(x; t)

�(x; t)u(x; t)
E(x; t)

1

A

In 2D, the objective function is the (2N�)� (N�
pod +N 

pod) system
0

BBBBBBBBBBBB@

��1 (�21) � � � ��
N�pod

(�21) 0 � � � 0
...

...
...

...
��1 (�2N� ) � � � ��

N�pod
(�2N� ) 0 � � � 0

0 � � � 0 � 1 (�21) � � � � 
N pod

(�21)
...

...
...

...
0 � � � 0 � 1 (�2N� ) � � � � 

N pod
(�2N� )

1

CCCCCCCCCCCCA

0

BBBBBBBBBBB@

aM�
1 (x; t)

...
aM�

N�pod
(x; t)

aM 
1 (x; t)

...
aM 

N pod
(x; t)

1

CCCCCCCCCCCA

�

0

BBBBBBBB@

M�(x; �21 ; t)
...

M�(x; �2N� ; t)
M (x; �21 ; t)

...
M (x; �2N� ; t)

1

CCCCCCCCA

and the equality constraints are the 4� (N�
pod +N 

pod) system

0

BBBBBBB@

h��1 ; 1i� � � � h��
N�pod

; 1i
�

0 � � � 0

h��1 ; �ui� � � � h��
N�pod

; �ui
�

0 � � � 0

h��1 ; �vi� � � � h��
N�pod

; �vi
�

0 � � � 0

h��1 ;
k�2k2

2 i� � � � h�
�
N�pod

; k�2k2

2 i
�
h� 1 ; 1i� � � � h�

 
N pod

; 1i
�

1

CCCCCCCA

0

BBBBBBBBBBB@

aM�
1 (x; t)

...
aM�

N�pod
(x; t)

aM 
1 (x; t)

...
aM 

N pod
(x; t)

1

CCCCCCCCCCCA

=

0

BB@

�(x; t)
�(x; t)u(x; t)
�(x; t)v(x; t)
E(x; t)

1

CCA

With these rede�nitions, the approximate Maxwellian distribution functions fM�

and fM are given by the formula (23) in 1D and 2D.

4. Numerical methods for the reduced-order model

This section describes the numerical schemes used to discretized the reduced-
order model.

4.1. Numerical scheme
The numerical schemes for the physical space, the velocity space and the time

are �rst-order schemes.
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4.1.1. Velocity space discretization
The velocity space 
� = [�L�u ; L�u ] � [�L�v ; L�v ] � [�L�w ; L�w ] is discretized

by a cartesian grid. The lengths of the grid L�u , L�v and L�w are chosen to capture
at least 99:99% of the integral of the density distribution function f . The velocity
grid contains N� points �i;j;k = (�ui ; �vj ; �wk) where �ui = �L�u + (i � 1

2)��u and
��u = 2L�u

N�u
. The rectangle rules is used to approximate the integrals

Z


�
g(�) d� � ��u��v��w

N�uX

i=1

N�vX

j=1

N�wX

k=1

g(�i;j;k)

By using 3D indexing (i.e. �l = �i(l);j(l);k(l)) and by de�ning N� = N�uN�vN�w and
�� = ��u��v��w, the discrete inner product is

hg1; g2i� = ��
N�X

l=1

g1(�l)g2(�l)

and corresponds in matrix form to

hg1; g2i� =
�
g1(�1) g1(�2) � � � g1(�N�)

�
0

B@
�� 0

. . .
0 ��

1

CA

0

BBB@

g2(�1)
g2(�2)

...
g2(�N�)

1

CCCA
=

W

4.1.2. Physical space discretization
The physical space 
x = [xmin; xmax]� [ymin; ymax]� [zmin; zmax] is discretized

by a cartesian grid. The grid contains Nx points xi;j;k = (xi; yj; zk) where xi =
xmin + (i� 1

2)�x and �x = xmax�xmin
Nx

. The grid contains also cells 
xi;j;k of center
xi;j;k and of size �x � �y � �z. In the hyperbolic system (19), a �nite volume
scheme [19] is used for the convective term and a centered approximation is used
for the collision term on each cell 
xi;j;k

@axi;j;k

@t
(t) + PD

Z

@
xi;j;k

b(x; t)nx d� + �P �D
Z

@
xi;j;k

c(x; t)ny d� +
?
P

?
D
Z

@
xi;j;k

d(x; t)nz d� =
aMxi;j;k(t)� axi;j;k(t)

�xi;j;k(t)

where axi;j;k(t) = 1
j
xi;j;k j

Z


xi;j;k

a(x; t) dx and n = (nx; ny; nz)T 2 R3 is the outward

normal of the cell 
xi;j;k . On cartesian grid, the �nite volume scheme reads :

D
Z

@
xi;j;k

b(x; t)nx d� =
Fi+ 1

2 ;j;k
� Fi� 1

2 ;j;k

�x
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where the 
ux Fi+ 1
2 ;j;k

between cells 
xi;j;k and 
xi+1;j;k is

Fi+ 1
2 ;j;k

= max(D; 0)bxi;j;k(t) + min(D; 0)bxi+1;j;k(t)

and max(D; 0) is the diagonal matrix D with the negative elements replaced by 0.
Moreover P and D are constant and we can avoid the change of variable b
Z


xi;j;k

A
@a
@x

(x; t) dx = PD
Z

@
xi;j;k

b(x; t)nx d�

= P
Fi+ 1

2 ;j;k
� Fi� 1

2 ;j;k

�x

= P
�

max(D; 0)
bxi;j;k(t)� bxi�1;j;k(t)

�x
+ min(D; 0)

bxi+1;j;k(t)� bxi;j;k(t)
�x

�

= P max(D; 0)PT
axi;j;k(t)� axi�1;j;k(t)

�x
+P min(D; 0)PT

axi+1;j;k(t)� axi;j;k(t)
�x

where the matrices P max(D; 0)P T and P min(D; 0)P T can be pre-calculated to
save computing time. In the same way, the �nite volume scheme for the variable
a is
Z


xi;j;k

�A
@a
@y

(x; t) dx = �P max(�D; 0)�PT
axi;j;k(t)� axi;j�1;k(t)

�y
+�P min(�D; 0)�PT

axi;j+1;k(t)� axi;j;k(t)
�y

Z


xi;j;k

?
A
@a
@z

(x; t) dx =
?
P max(

?
D; 0)

?
PT

axi;j;k(t)� axi;j;k�1(t)
�z

+
?
P min(

?
D; 0)

?
PT

axi;j;k+1(t)� axi;j;k(t)
�z

The boundary conditions are given in the section 4.2.

4.1.3. Time discretization
A �rst-order IMEX Runge-Kutta scheme [16, 17, 18] is used in time. In this

scheme, the convective term is treated explicitly while the collision term is treated
implicitly

@axi;j;k

@t
(t) +

Z


xi;j;k

A
@a
@x

(x; t) + �A
@a
@y

(x; t) +
?
A
@a
@z

(x; t) dx

| {z }
convective term

=
aMxi;j;k(t)� axi;j;k(t)

�xi;j;k(t)
| {z }

collision term

In this way, the time step �t doesn’t depend on the collision term which can be
very small due to �xi;j;k . We have one intermediate step given by the implicit
formula

axi;j;k(tp+ 1
2
) = axi;j;k(tp) + �t

aMxi;j;k(tp+ 1
2
)� axi;j;k(tp+ 1

2
)

�xi;j;k(tp+ 1
2
)

By integrating in velocity space this formula, efxi;j;k(�; tp) and efxi;j;k(�; tp+ 1
2
) have

the same moments because fMxi;j;k(�; tp+ 1
2
) and efxi;j;k(�; tp+ 1

2
) have the same mo-

ments. Moreover fMxi;j;k(�; tp+ 1
2
) and efxi;j;k(�; tp) have the same moments, which
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implies that fMxi;j;k(�; tp+ 1
2
) is equal to fMxi;j;k(�; tp). The explicit formula of the

intermediate time step is

axi;j;k(tp+ 1
2
) =

�xi;j;k(tp)
�t+ �xi;j;k(tp)

�
axi;j;k(tp) +

�t
�xi;j;k(tp)

aMxi;j;k(tp)
�

and the next time step is given by

axi;j;k(tp+1) = axi;j;k(tp)��t
Z


xi;j;k

A
@a
@x

(x; tp+ 1
2
) + �A

@a
@y

(x; tp+ 1
2
) +

?
A
@a
@z

(x; tp+ 1
2
) dx

+ �t
aMxi;j;k(tp)� axi;j;k(tp+ 1

2
)

�xi;j;k(tp)

The stability condition is �t < min
1�n�Npod

�
�x
jDn;nj

; �y
j�Dn;nj

; �z
j
?
Dn;nj

�
. Moreover, the ap-

proximate density distribution function ef is initialised with the approximate Max-
wellian distribution function fMf corresponding to the initial density �0, the initial
macroscopic velocity U0 and the initial temperature T0 of the gas

axi;j;k(t0) = aMxi;j;k [�0(xi;j;k); U0(xi;j;k); T0(xi;j;k)]

where aM [�; U; T ] are the coe�cients of the approximate Maxwellian distribution
function determined by (�; U; T ) (see section 3.2.2).

4.2. Boundary conditions
For the boundary conditions, ghost cells contain the approximate density dis-

tribution function ef bc determined by the boundary condition. In the following, abc
are the coe�cients in the ghost cell which has an interface with the cell 
x and a
are the coe�cients in the cell 
x.

4.2.1. Free 
ow
For free 
ow, the approximate density distribution functions in the ghost cell

xbc and in the domain x are the same

abc(t) = a(x; t)

In this case, the gradients are zeros at the boundary.

4.2.2. In
ow/out
ow
The in
ow (or out
ow) is represented by a 
uid state in the ghost cell xbc. The


uid state depends on the density �bc, the macroscopic velocity Ubc and the tem-
perature Tbc, and corresponds to the approximate Maxwellian distribution function
fMf

abc(t) = aM [�bc(t); Ubc(t); Tbc(t)]
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4.2.3. Specular re
ection
The specular re
ection is a wall re
ecting the particles in opposite normal

direction. The wall is moving with macroscopic velocity Ubc and there is no mass
and energy 
uxes through the wall. The microscopic velocity of the particles
becomes after the collision

�refl = � � 2((� � Ubc(t)) � nw) nw

where nw is the outward normal at the wall. The particles, hitting the wall, verify
0 < (� � Ubc) � nw and the boundary condition reads

bf bc(�; t) =

(
ef(x; �refl; t) if 0 < (� � Ubc(t)) � nw
ef(x; �; t) otherwise

The function bf bc do not necessarily belong to the subspace spanned by the basis
functions �n. In the same way as in section 3.2.2, bf bc is projected in order to
conserve the moments �!�bc

abc(t) = �TW
�!
f bc(t) + 	+(�!�bc(t)�	�TW

�!
f bc(t))

where
�!
f bc(t) = ( bf bc(�1; t); : : : ; bf bc(�N� ; t))T and �!�bc(t) = h bf bc(�; t);m(�)i�.

4.2.4. Di�use re
ection
The di�use re
ection is a wall re
ecting the particles as Maxwellian distribution

function. The wall has the macroscopic velocity Ubc, the temperature Tbc and there
is zero mass 
ux through the wall. In the ghost cell, the boundary condition is
represented by the approximate Maxwellian distribution function determined by
(�bc; Ubc; Tbc). The density �bc is computed to guarantee zero mass 
ux
Z

(��Ubc(t))�nw<0
(� � Ubc(t)) ef(x; �; t) d� +

Z

(��Ubc(t))�nw>0
(� � Ubc(t))fMf [�bc(t); Ubc(t); Tbc(t)] d� = 0

Z

(��Ubc(t))�nw<0
(� � Ubc(t)) ef(x;�; t) d� +

Z

(��Ubc(t))�nw>0
(� � Ubc(t))�bc(t)fMf [1; Ubc(t); Tbc(t)] d� = 0

�bc(t) = �

Z

(��Ubc(t))�nw<0
(� � Ubc(t)) ef(x; �; t) d�

Z

(��Ubc(t))�nw>0
(� � Ubc(t))fMf [1; Ubc(t); Tbc(t)] d�

where we use

fMf [�; U; T ] = �TWMf [�; U; T ] + 	+(�!� [�; U; T ]�	�TWMf [�; U; T ])
= �TW�Mf [1; U; T ] + 	+(��!� [1; U; T ]�	�TW�Mf [1; U; T ])
= �(�TWMf [1; U; T ] + 	+(�!� [1; U; T ]�	�TWMf [1; U; T ]))

= �fMf [1; U; T ]
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with �!� [�; U; T ] the moments of Mf [�; U; T ]. We re
ect only the particles hitting
the wall

ef bc(�; t) =

(
�bc(t)fMf [1; Ubc(t); Tbc(t)] if 0 < (� � Ubc(t)) � nw
ef(x; �; t) otherwise

The coe�cients abcn are given by projection

abcn (t) = h ef bc(�; t);�n(�)i�

This projection is exact and conserves the moments of ef bc.

5. Tests and results

The reduced-order model is tested in 1D and 2D. We evaluate the accuracy and
the run time of the reduced-order model with respect to the high-�delity model.
We use the approximation error

Error =
1
2
k�(�; �; tmax)� e�(�; �; tmax)kL2

k�(�; �; tmax)kL2
+

1
2
k (�; �; tmax)� e (�; �; tmax)kL2

k (�; �; tmax)kL2

and the run time

Run time =
Reduced-order model run time
High-�delity model run time

where tmax is the �nal time.

5.1. Reconstruction tests
In section 3.2.2 and 3.1.1.1, we propose to modify the approximate Maxwellian

distribution function and the snapshot database in order to improve the reduced-
order model. These modi�cations are evaluated on reconstruction tests where
the density distribution function that we want to approximate is in the snapshot
database used to built the basis functions. The prediction of density distribution
function will be performed in the next section 5.2.

5.1.1. Reconstruction of a shock wave
In the Galerkin method, the approximate Maxwellian distribution function fMf

is the projection of the discrete Maxwellian distribution function M f onto the basis
functions �n. In section 3.2.2, we propose to compute the approximate Maxwellian
distribution function fMf by constrained projection in order to conserve the mass,
the momentum and the energy of the gas. We compare these two methods to
compute the approximate Maxwellian distribution function fMf .
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The test case is the Sod shock tube problem [30] with Kn = 10�5. The
physical space is 
x = [0; 1] discretized with Nx = 200 points, the velocity space
is 
� = [�10; 10] discretized with N� = 41 points and the CFL condition is 0:1.
The initial conditions are

�
�(x; 0) = 1; u(x; 0) = 0; T (x; 0) = 1 if x 2 ]0; 0:5[
�(x; 0) = 0:125; u(x; 0) = 0; T (x; 0) = 0:8 otherwise

We consider free 
ow boundary conditions and the �nal time is tmax = 0:12. To
build the basis functions, the database S� (resp. S ) contains snapshots of � (resp.
 ) taken at any points in space and every 0:005 time units. The �gure 4 shows
the singular values of bS� and bS .
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Figure 4: Singular values of bS� (blue) and bS (red) for the shock wave reconstruction.

For �� and � , the singular values decrease quickly and the energy Epod cap-
tured by the basis functions �� and � is more than 99:99% of the total energy
with 3 basis functions (i.e. 7:3% of the complete basis). In Figure 5, we plot
the density �, the macroscopic velocity u, and the temperature T of the gas at
�nal time obtained by the reduced-order model where the approximate Maxwellian
distribution function fMf is computed by constrained projection.

23



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

High-fidelity model
Reduced-order model

Figure 5: Density �, macroscopic velocity u and temperature T of the gas at �nal time for the
shock wave reconstruction with N�

pod = N 
pod = 9.

In Figure 6, we compare the approximation error and the run time of these two
methods as a function of the number of basis functions Npod = N�

pod = N 
pod.
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Figure 6: Comparison of the approximate Maxwellian distribution function fMf .

The constrained projection leads to more accuracy because the approximate
Maxwellian distribution function fMf veri�es the equation (4). Moreover, the con-
strained projection is faster because we have an explicit formula for the coe�cients
while for the projection we have to solve a nonlinear system. More speci�cally in
the projection, the Maxwellian distribution function Mf must be computed to ini-
tialize the Newton-Raphson method (section 2.2). Then this nonlinear system is
solved to obtain the discrete Maxwellian distribution function M f , which is �nally
projected onto the basis functions. In the constrained projection, the Maxwellian
distribution function Mf is computed and the formula (23) is used to obtain the
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approximate Maxwellian fMf . Therefore, the approximate Maxwellian distribu-
tion function fMf is computed by constrained projection in the following since this
approach is much faster and more accurate.

5.1.2. Reconstruction of two boundary layers
The second improvement of the reduced-oder model concerns the choice of the

snapshots. Originally, the database S contains snapshots of the density distribu-
tion functions f , because we want the basis functions � to be the best representa-
tion of f . In the section 3.2.2, the approximate Maxwellian distribution function
fMf is represented by the basis functions �n. For this reason, we evaluate the
interest of adding snapshots of the discrete Maxwellian distribution function M f .

We consider two walls (di�use re
ection) placed at x = 0 and x = 1 with
di�erent temperatures. The physical space is 
x = [0; 1] discretized with Nx = 100
points, the velocity space is 
� = [�20; 20] discretized with N� = 100 points and
the �nal time is tmax = 13:03. The initial and boundary conditions are

�
�0(x) = 1; u0(x) = 0; T0(x) = 1
ubc(0; t) = 0; Tbc(0; t) = 0:5; ubc(1; t) = 0; Tbc(1; t) = 1:5

The CFL condition is 0:1 and the Knudsen number is Kn = 10�2. To build the
basis functions, we use two methods. In the �rst one, the database S� (resp. S )
contains snapshots of � (resp.  ) taken at any points in space and every 0:4 time
units. In the second one, the database S� (resp. S ) contains snapshots of � and
M� (resp.  and M ) taken at any points in space and every 0:4 time units.
Figure 7 shows the singular values of bS� and bS for the two methods.
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Figure 7: Singular values of bS� and bS with (on the right) and without (on the left) Maxwellian
snapshots for the boundary layers reconstruction.

The singular values of bS� and bS decrease quickly and the energy Epod captured
by the basis functions �� and � is more than 99:99% of the total energy with 4
basis functions (i.e. 4% of the complete basis). In Figure 8, we plot the density �,
the macroscopic velocity u and the temperature T of the gas at �nal time obtained
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by the reduced-order model where the database contains snapshots of the density
and of the Maxwellian distribution functions.
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Figure 8: Density �, macroscopic velocity u and temperature T of the gas at �nal time for the
boundary layers reconstruction with N�

pod = N 
pod = 12.

In Figure 9, we compare the error and the run time of these two methods
depending on the number of basis functions Npod = N�

pod = N 
pod.
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Figure 9: Comparison of the choice of the snapshot database S.

The enrichment of the snapshot database with the discrete Maxwellian dis-
tribution function reduces the error because the Maxwellian distribution function
is better approximated. Moreover, it reduces the run time for Npod = 6 and in-
creases it in the other cases. The run time is slightly di�erent because the time
step �t is determined by the basis functions (see section 4.1.3). A priori, we can
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not know which method leads to the biggest time step �t and in the following,
the database contains snapshots of the density distribution function and of the
discrete Maxwellian distribution function to increase the accuracy of the reduced-
order model.

5.1.3. Reconstruction of a vortex
To evaluate the reduced-order model in 2D, we consider a 
ow past a vertical

plate [31]. The physical space is 
x = [�1:33; 2]� [0; 3:33] discretized with Nx =
642 points and the velocity space is 
� = [�10; 10]2 discretized with N� = 412

points. The �nal time is tmax = 5:3332 and the CFL condition is 0:5. An in
ow
condition is imposed at the boundary (x = �1:33, x = 2 and y = 3:33) with the
density �bc = 1, the macroscopic velocity Ubc = (0:68; 0)T and the temperature
Tbc = 1. A vertical plate (specular re
ection) is placed at x = 0 � ]0; 1[. The
initial and boundary conditions are
8
>><

>>:

�(x; 0) = 1; u(x; 0) = 0:68; v(x; 0) = 0; T (x; 0) = 1 if x 2 
x
�(x; t) = 1; u(x; t) = 0:68; v(x; t) = 0; T (x; t) = 1 if x = �1:33; t 2 [0; 5:33]
�(x; t) = 1; u(x; t) = 0:68; v(x; t) = 0; T (x; t) = 1 if x = 2; t 2 [0; 5:33]
�(x; t) = 1; u(x; t) = 0:68; v(x; t) = 0; T (x; t) = 1 if y = 3:33; t 2 [0; 5:33]

and we consider a specular re
ection at the boundary y = 0. The basis functions
�� (resp. � ) are built from the database S� (resp. S ) containing snapshots of
� and M� (resp.  and M ) taken at any points in space and every 0:2665 time
units. The Figure 10 shows the singular values of bS� and bS at Kn = 0:0345.
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Figure 10: Singular values of bS� (blue) and bS (red) for the vortex reconstruction.

The singular values of bS� and bS decrease rapidly and the energy Epod captured
by the basis functions �� and � is more than 99:99% of the total energy with 6 ba-
sis functions (i.e. 0:4% of the complete basis). In Figure 11, we plot the streamlines
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of the macroscopic velocity U of the gas at �nal time obtained by the reduced-order
model for di�erent Knudsen number Kn 2 f0:0345; 0:0689; 0:115; 0:23g.

(a) Kn = 0:0345 (b) Kn = 0:0689

(c) Kn = 0:115 (d) Kn = 0:23

Figure 11: Streamlines of U for the vortex reconstruction with N�
pod = N 

pod = 20.

According to the high-�delity simulations, a vortex is formed at the back of the
wall and the vortex becomes stronger when the Knudsen number Kn decreases. In
Figure 12, we evaluate the approximation error and the run time of the reduced-
order model depending on the number of basis functions Npod = N�

pod = N 
pod.
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Figure 12: Results of the vortex reconstruction.

When the number of basis functions Npod increases, the approximation error
decreases and the run time increases. The approximate density distribution func-
tion becomes more accurate because the subspace spanned by the basis functions
converges to the total space. The computational cost increases because we solve
more equations in the system (19) and because the time step �t decreases. The
number Npod of basis functions represents the trade-o� between accuracy and com-
putational cost. In average by taking Npod = 20 basis functions, the approximation
error is less than 1% and the run time is divided by 45 approximately.

5.2. Prediction tests
In the previous tests, the density distribution function that we want to ap-

proximate was sampled with the high-�delity model. We now predict density
distribution functions which are not is in the snapshot database used to build the
basis functions.

5.2.1. Limits of the Proper Orthogonal Decomposition
The di�culty of the prediction is that the basis functions are not necessar-

ily the best representation in the least squares sense of the density distribution
function that we want to predict. The density distribution function contained
in the snapshots may be di�erent from the density distribution function that we
want to predict and the approximation error can be huge especially with few basis
functions.

Given a set of snapshots f snapl , we begin to investigate which density distribu-
tion function fpred can be predicted. To simplify, we consider only one cell and
one time step (i.e. the density distribution function that we want to predict fpred
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depends only on � as the snapshots f snapl ). Moreover by considering low Knud-
sen number, we assume that the density distribution functions fpred and f snapl are
Maxwellian distribution functions (see Figure 1) and are determined by the density
�, the macroscopic velocity U and the temperature T of the gas.

The macroscopic velocity U and the temperature T are important for the pre-
diction. If at least one of the snapshots (for example f snapl� ) has the same macro-
scopic velocity U snap

l� = Upred and the same temperature T snapl� = T pred than the
density distribution function fpred, the basis functions �n can give an accurate
approximation of fpred by taking Npod large enough

fpred =
�pred

�snap
f snap �

�pred

�snap

NpodX

n=1

asnapn �n �
NpodX

n=1

�pred

�snap
asnapn �n �

NpodX

n=1

apredn �n

More generally, every linear combinations of the snapshots can be approximated
accurately.

Since the density distribution function decreases rapidly, we de�ne supp(f) �
R3 the subspace which contains at least 99.99% of the density distribution function
f (i.e.

Z

supp(f)
f(�) d� > 99:99%

Z

R3
f(�) d�). In the case where U snap

l 6= Upred or

T snapl 6= T pred for all snapshots f snapl , the supports of the density distribution
function supp(fpred) and of the snapshots supp(f snapl ) are di�erent, which leads to
approximation error. Moreover if supp(fpred)\(

S

l
supp(f snapl )) = ?, then the basis

functions (associated to strictly positive singular values) are zero on supp(fpred)
and can’t represent fpred.

Hence, to predict a distribution function fpred, the database must contain snap-
shots of distribution functions corresponding to velocities U snap

l � Upred and tem-
peratures T snapl � T pred. The snapshots are uniformly collected at all points in
space and every time steps which provides a big database (Nsnaps � 106) with
a large set of di�erent velocities and temperatures. As explained before, addi-
tional low-�delity snapshots can complete this sampling as shown in the following
example.

5.2.2. Prediction of a shock wave
We consider the 1D case where the macroscopic velocities u of the density

distribution function that we want to approximate and of the density distribution
function containing in the snapshot database are signi�cantly di�erent from each
other.

The test case is the Sod shock tube problem with Kn = 10�5. The physical
space is 
x = [0; 1] discretized with Nx = 100 points and the velocity space is

� = [�20; 20] discretized with N� = 500 points. We want to predict the density
distribution function de�ned by

�
�(x; 0) = 1; u(x; 0) = u0; T (x; 0) = 0:5 if x 2 ]0; 0:5[
�(x; 0) = 0:125; u(x; 0) = u0; T (x; 0) = 0:4 otherwise
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where u0 belongs to [�2; 2], the boundary conditions are free 
ows and the �nal
time is tmax = 0:1. In this way, the density distribution functions depends only on
the initial macroscopic velocity u0. To build the basis functions, two high-�delity
simulations are available

�
�(x; 0) = 1; u(x; 0) = �2; T (x; 0) = 0:5 if x 2 ]0; 0:5[
�(x; 0) = 0:125; u(x; 0) = �2; T (x; 0) = 0:4 otherwise (S1)

and �
�(x; 0) = 1; u(x; 0) = 2; T (x; 0) = 0:5 if x 2 ]0; 0:5[
�(x; 0) = 0:125; u(x; 0) = 2; T (x; 0) = 0:4 otherwise (S2)

with free 
ow boundary conditions and tmax = 0:1. The snapshot database S�
(resp. S ) contains snapshots of � and M� (resp.  and M ) of the simulations
(S1) and (S2) taken at any point in space and every 0.005 time units. The tem-
perature T of the density distribution function of these two simulations are almost
in the same interval [0:38; 0:6], but the macroscopic velocities u are very di�erent
as shown by Figure 13.
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Figure 13: Examples of 4 snapshots of the simulation (S1) (left) and simulation (S2) (right).

The macroscopic velocities u(x; t) =
Z

R
�u�(x; �u; t) d�u correspond to the mean

of the distribution function in velocity space and are around -2.5 (resp. 2.5) in the
simulation (S1) (resp. (S2)). If we want to compute a density distribution function
with macroscopic velocity 0, the approximation error can be huge even with a
large number of basis functions. Optimal transport can interpolate the density
distribution function of the snapshots to have new density distribution function
with velocities between -2.5 and 2.5. In our case, we use it to add new snapshots
with macroscopic velocities around 0 to the database. At any point in space x
and every 0:005 time units, we compute the Wasserstein barycenter s� between
the distribution function s1 of the simulation (S1) and the distribution function s2
of the simulation (S2) at barycentric coordinates f(s1; �1 = 1

2); (s2; �2 = 1
2)g.
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Figure 14: Examples of low-�delity snapshots created from the simulations (S1) and (S2).

We evaluate two di�erent basis functions �n. The �rst one is created from the
snapshots of the simulations (S1) and (S2), and the second one is creates from the
low-�delity snapshots and from the snapshots of the simulations (S1) and (S2). In
Figure 15, we evaluate the approximation error corresponding to di�erent initial
macroscopic velocities u(x; 0).
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Figure 15: Results of the shock wave prediction with N�
pod = N 

pod = 9.

The low-�delity snapshots allow the basis functions to signi�cantly improve
the approximation of the density distribution functions corresponding to u(x; 0) 2
[�1:5; 1:5]. For u(x; 0) = �2 and u(x; 0) = 2, the approximation is slightly less
accurate because the low-�delity snapshots add useless information to represent
the density distribution functions corresponding to u(x; 0) = �2 and u(x; 0) = 2.
In average, the reduced-order model is signi�cantly more accurate with the low-
�delity snapshots.
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5.2.3. Prediction of a vortex
We consider now the case of a 2D 
ow past a vertical plate with Kn = 0:0345.

The physical space is 
x = [�1:33; 2]� [0; 3:33] discretized with Nx = 642 points,
the velocity space is 
� = [�10; 10]2 discretized with N� = 412 points and the �nal
time is tmax = 5:3332. We want to predict the density distribution functions with
di�erent velocities of the in
ow ubc corresponding to Mach number in [0:23; 0:63]
8
>><

>>:

�(x; 0) = 1; u(x; 0) = ubc; v(x; 0) = 0; T (x; 0) = 1 if x 2 
x
�(x; t) = 1; u(x; t) = ubc; v(x; t) = 0; T (x; t) = 1 if x = �1:33; t 2 [0; 5:33]
�(x; t) = 1; u(x; t) = ubc; v(x; t) = 0; T (x; t) = 1 if x = 2; t 2 [0; 5:33]
�(x; t) = 1; u(x; t) = ubc; v(x; t) = 0; T (x; t) = 1 if y = 3:33; t 2 [0; 5:33]

where the boundary condition at y = 0 is a specular re
ection.
To build the snapshot database, we use only one high-�delity simulation. The

database S� (resp. S ) contains snapshots of � and M� (resp.  and M ) corre-
sponding to the simulation at Mach = 0:63 taken at any points in space and every
0.2665 time units. In this way, the database contains all macroscopic velocities
U and temperatures T which will appear in the simulations corresponding to ubc
such that the Mach number is in [0:23; 0:63]. For the macroscopic velocity U , the
database contains distribution functions with the minimum (below the vortex) and
the maximum (above the vortex) �rst component of macroscopic velocities u which
can arise as shown by Figure 16. Similarly, the simulation at Mach 0:63 contains
the distribution functions with the minimum (at the right side of the plate) and
the maximum (at the left side of the plate) temperatures T which can appear.

(a) Mach = 0:23 (b) Mach = 0:43 (c) Mach = 0:63

Figure 16: Streamlines of U for the vortex prediction with N�
pod = N 

pod = 20.

In Figure 17, we evaluate the approximation error corresponding to di�erent
velocities of the in
ow ubc.
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Figure 17: Results of the vortex prediction. Error as a function of the inlet velocity obtained for
given Mach number.

For ubc corresponding to Mach in [0:23; 0:53], the basis functions are able to
represent the density distribution function even if this one was not use to build
the snapshot database. Moreover when the number of basis functions Npod =
N�
pod = N 

pod increases, the solution becomes more accurate. With Npod = 20 basis
functions, the error is less than 1% for all prediction tests.

6. Conclusion

We have presented a reduced-order approximation of the BGK equation. In
the reduced-order model, the density distribution function f is represented in
velocity space by few basis functions �n so that the number of degrees of freedom
is drastically reduced compared to the high-�delity model. The basis functions �n
are built o�ine by POD and the approximate density distribution function ef is
computed online by the Galerkin method.

In the o�ine phase, we have proposed two improvements concerning the sam-
pling of the high-�delity model. The �rst one is to collect snapshots of f and of the
discrete Maxwellian M f since the discrete Maxwellian distribution function M f
is to be approximated by the basis functions �n in the reduced-order model. An
additional improvement is to use optimal transport to complete the sampling of
the high-�delity model avoiding new simulations of the costly high-�delity model.
The new snapshots created by optimal transport add missing information and the
basis functions are able to represent new features as shown in the shock wave
prediction.
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In the online phase, we have shown that the system is hyperbolic by con-
struction. We have presented a linear change of variables to solve by decoupling
direction by direction the resulting partial di�erential equations in space and time.
This system is then integrated by a �rst-order IMEX Runge-Kutta scheme in time
and a �rst-order �nite volume scheme in space. Also, we have shown how to com-
pute the approximate Maxwellian distribution function fMf in order to conserve
the mass, the momentum and the energy of the gas. This modi�cation signi�cantly
improves the accuracy and reduces the computational cost of the reduced-order
model.

The reduced-order model has been evaluated on 1D and 2D test cases. We have
investigated the reconstruction and prediction of shock waves, boundary layers
and vortices. The results demonstrate the accuracy of the reduced-order model
(less than 1% of error) and a signi�cant reduction of the run time (approximately
divided by 45).
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