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ABSTRACT

At high Reynolds and Froude numbers, lee waves due to the horizontal motion of a body in a stratified fluid

are superseded by random waves generated by its wake. The origin of these waves lies in the buoyant collapse

of the large-scale coherent structures of the wake, and can be modelled as a source moving at the velocity of the

body and of strength oscillating at the frequency of vortex shedding. In the present paper two parallel studies of the

associated wave field are described. The first of these is theoretical and considers localized and extended models of

the source, while the second is experimental and involves a vertically oscillating and horizontally translating sphere.

Oscillation frequencies both smaller and larger than the Brunt–Väisälä frequency are considered, and reasonably

good agreement between theory and experiment is obtained concerning, e.g., the shape of the surfaces of constant

phase, the streamwise evolution of the wavelength, and the domain of existence of the waves. Calculations are then

presented for a realistic turbulent wake, and comparison with available experimental results is performed.
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1. INTRODUCTION

A body moving horizontally in a stratified fluid generates several systems of internal waves,

each of which is associated with a distinct perturbation of the basic stratification. In this respect,

the important parameters are the Froude number Fr = U/Na, which represents the ratio of

inertial forces to buoyancy forces, and the Reynolds number Re = Ul/ν, which represents the

ratio of inertial forces to viscous forces, with U the velocity of the body, a its transverse radius,

l its axial length, N the Brunt–Väisälä frequency and ν the kinematic viscosity. In particular,

experiments over the past twenty years (Lin and Pao, 1979; Gilreath and Brandt, 1985; Hopfinger

et al., 1991; Bonneton et al., 1993; Lin et al., 1993) have shown that, at sufficiently high Fr and

Re, lee waves generated by the motion of the body are superseded by random waves generated

by its wake, and have traced back the origin of these waves to the large-scale coherent structures

of the wake.

The modelling of this phenomenon was discussed by Voisin (1994b). In the Reynolds and

Froude numbers range involved, the wake is turbulent and develops initially as in a homogeneous

fluid. Coherent structures, in the form of vortex loops or turbulent bursts, are released periodically

behind the body at the frequency ω0 of the near wake spiral instability; after a dimensionless time

Ntc ≈ 3 they collapse impulsively under the influence of buoyancy, generating internal waves.

As far as these waves are concerned, a turbulent wake is thus amenable to a series of impulses,

of alternating signs so as to take into account its geometry, periodically spaced in both space

and time, and separated from one another by a distance πU/ω0 and time π/ω0. Two equivalent

views of this series arise naturally: a source moving at velocity U and emitting impulses at

time intervals π/ω0; a source moving at velocity U and of strength oscillating at the frequency
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ω0 and at all its odd harmonics. The first view is appropriate at small axial distances from the

body, when the waves generated by each collapse have not yet had time to interfere; then each

impulse can be considered individually. Conversely, the second view is appropriate at large

axial distances, when interference has taken place; then the collective effect of all the impulses

is observed, resulting in a predominance of the fundamental frequency ω0.

A first step towards assessment of this interpretation was carried out by Bonneton et al.

(1993), who studied each coherent structure individually. The present paper investigates the

second, collective, aspect. Specifically, Section 2 describes a theoretical approach of internal

waves generated by the simplest practical realization of a horizontally translating source of

oscillatory strength, i.e., a sphere both translating horizontally and oscillating vertically. Then

Section 3 compares the results of this theory with experiments, and Section 4 applies them to a

realistic turbulent wake.

2. THEORETICAL BACKGROUND

2.1. Source model

In a homogeneous fluid, a sphere of radius a moving at velocity v0(t) along a path r0(t),

with v0(t) = dr0/dt , can be modelled either approximately, for R ≫ a, as the dipole

md(r, t) = −2πa3
v0 · ∇δ(R), (1)

or exactly, for all R/a, as the surface distribution of monopoles

ms(r, t) =
3

2
v0 ·

R

a
δ(R − a), (2)

where r = [x, y, z] denotes position, with r = |r|, t denotes time, R = r − r0 is the position

relative to the centre of the sphere, v = [vx , vy, vz] the fluid velocity and m = ∇ · v the
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source strength (rate of volume outflow from the source) per unit volume. Use of these models

in a stratified fluid was introduced by Miles (1971) and Gorodtsov and Teodorovich (1982),

respectively, on the assumption that the Froude number be large, so that the flow around the

sphere is locally unaffected by gravity. Experiments suggest, however, that these models remain

valid even for moderate values of Fr, the only difference being the replacement of the far-field

condition R ≫ a by the compactness condition a ≪ λ, with λ the wavelength of the waves (see,

e.g., Voisin 1994a). Another approximation implicit in (1) and (2) is that the Reynolds number

Re be moderate, so that no wake is formed.

A motion composed of horizontal translation at velocity U and vertical oscillation of fre-

quency ω0 and amplitude h corresponds to the path r0(t) = −Utex − h sin(ω0t)ez, where the x-

and z-axes are horizontal and vertical, respectively, and of unit vectors ex and ez. The change

x1 = x + Ut defines a system of coordinates, shown in Fig. 1(a), of origin the mean position O1

of the centre of the sphere and x1-axis opposite to the mean motion. Small oscillations h ≪ a

can be neglected in the position of the source but not in its velocity, so that (1) and (2) become

md(r, t) = 2πa3

[

U
∂

∂x
+ hω0 cos(ω0t)

∂

∂z

]

δ(x1)δ(y)δ(z), (3)

ms(r, t) = −
3

2

[

U
x1

a
+ hω0 cos(ω0t)

z

a

]

δ(r1 − a). (4)

This approximation is straightforward for the surface source; for the dipole it follows from

remarking that ms(r, t) is asymptotic to md(r, t) in the limit of large wavelengths λ ≫ a, as can

be seen by comparing the spectra

md(k, t) = −2iπa3[Ukx + hω0 cos(ω0t)kz], (5)

ms(k, t) = −6iπa3[Ukx + hω0 cos(ω0t)kz]
j1(ka)

ka
, (6)
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defined by

m(r, t) =
1

(2π)3

∫

m(k, t)e−ik·r d3k, (7)

where k = [kx , ky, kz] is the wavenumber vector, with k = |k| = 2π/λ, and j1(z) = (sin z)/z2 −

(cos z)/z is the spherical Bessel function of order 1.

The sphere can thus be modelled as the linear superposition of two sources, both in uniform

horizontal motion, and whose strengths are constant and oscillatory, respectively. For oscillation

velocities hω0 large compared with the translation velocity U the second component becomes

large compared with the first component (i.e., lee waves); in what follows this is only the situation

that we shall consider and lee waves will accordingly be omitted. In terms of the dimensionless

parameters introduced, e.g., by Davies et al. (1994), we have: moderate Reynolds number

Re = 2Ua/ν, large Froude number Fr = U/Na, small Keulegan–Carpenter number Ke = h/a

and large velocity ratio hω0/U .

2.2. Wave field

Internal waves generated by the uniform horizontal motion of a source of oscillatory strength

have been studied both theoretically (Stevenson and Thomas, 1969; Redekopp, 1975; Rehm and

Radt, 1975; Peat and Stevenson, 1975) and experimentally (Stevenson and Thomas, 1969; Peat

and Stevenson, 1975; Davies et al., 1994). Emphasis was on the determination of the surfaces of

constant phase. Here we adopt the approach exposed in Voisin (1994a), in which the amplitude

and the phase are obtained jointly.

Waves are ruled by the frequency ratio ϒ = ω0/N , and are expressed in terms of the auxiliary
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variable ξ , which in spherical coordinates (r1, θ1, ϕ1) (see Fig. 1(a)) satisfies the equation

tan θ1 =
ξ 2(sin2 ϕ1 − ξ 2)

1
2

ϒ sin2 ϕ1 − ξ 3
sign(ϒ − ξ), (8)

subject to the condition |ξ | < | sin ϕ1|. The solution to this equation defines two systems of waves,

sum waves with positive ξ and difference waves with negative ξ , each of which system is itself

separated into transverse and divergent components. Both systems are contained within fronts,

parts of which are caustics, and which correspond to the maxima or jumps (ξ = 4±, θ1 = 2±)

observed in Fig. 1(b). The analytical expression of 4± and 2± was given in Voisin (1994a)

and will not be repeated here. For each wave system the divergent and transverse components

merge on the caustic; associated ranges of ξ are −| sin ϕ1| < ξ < 4− for divergent difference

waves, 4− < ξ < 0 for transverse difference waves, 0 < ξ < 4+ for transverse sum waves and

4+ < ξ < | sin ϕ1| for divergent sum waves.

The name of those components refers to the shape of their horizontal curves of constant

phase, shown in Fig. 2(a). For ϒ > 1 difference waves are upstream facing and sum waves

downstream facing; both of them have cusps on the caustic where divergent and transverse

waves meet, and extend only downstream. For ϒ < 1 difference waves and transverse sum

waves remain essentially unchanged, while divergent sum waves, starting up from the caustic,

tend towards infinity downstream as |y| → |z|(1 − ϒ2)
1
2 /ϒ , come then back towards regions

of smaller x1 and finally close up upstream.

The derivation of the characteristics of the waves is straightforward and yields, for the

frequency and wavenumber vector,

ω = Nξ, k =
N

U

[

ϒ − ξ, ξ
|ϒ − ξ | cos ϕ1

(sin2 ϕ1 − ξ 2)
1
2

, −
1 − ξ 2

ξ

|ϒ − ξ | sin ϕ1

(sin2 ϕ1 − ξ 2)
1
2

]

. (9)
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The vertical displacement ζ , related to the vertical velocity vz by vz = ∂ζ/∂t , follows similarly

from replacing in Voisin (1994a) the monopole strength m0 of the source by the spectrum

m(k, t). The resulting expressions, combining (5), (6) and (9), fail to describe the vicinity of

the caustics, where they diverge; a more elaborate description of this vicinity, involving Airy

functions (Lighthill, 1978, Section 4.11), was not attempted.

3. SPHERE EXPERIMENTS

Experiments were conducted in a transparent tank 50 cm wide, 50 cm deep and 400 cm long.

A heavy sphere of radius 1.12 cm was towed horizontally through a linearly stratified fluid, a

vertical sinusoidal oscillation being superimposed on the uniform horizontal translation of the

support of the sphere. The towing and visualization techniques were identical to those used by

Bonneton et al. (1993). Five frequency ratios ϒ = 0.4, 0.6, 0.8, 1.01 and 1.2, both smaller and

larger than 1, were selected. Other parameters were chosen so that three of the four conditions

mentioned in Section 2.1 be satisfied: moderate Reynolds number, small Keulegan–Carpenter

number, large velocity ratio. The Froude number was then fixed by experimental requirements.

Experimental results are summarized in Fig. 2(d). Two factors appear to distort them sig-

nificantly: the presence of lee waves, easily recognized by their hyperbolic curves of constant

phase, and the reflection of the waves on the walls of the tank. Lee waves are all the more

pronounced as ϒ is small, since the velocity ratio hω0/U = ϒKe/Fr is, for given Fr and Ke,

proportional to ϒ . For a discussion of the effects and occurrence of tank wall reflections the

reader is referred to Graham and Graham (1980).

The first conclusion to be drawn from Fig. 2 is the inadequacy of the dipole representation
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(3) of the sphere, since the displacement field shown in Fig. 2(b) is dominated by high-amplitude

difference waves which are absent from experiments. The reason for this lies in the compactness

condition a ≪ λ, which is not satisfied by the short difference waves. Alternatively, this can

be explained by remarking that the dipolar spectrum (5) varies as ka, overemphasizing the

contribution of large wavenumbers, while the surface source spectrum (6) varies as j1(ka) and

is thus a maximum at ka ≈ 2 (Abramowitz and Stegun, 1972, Chapter 10). Only the surface

source model can thus be expected to yield satisfactory agreement with experiments.

This agreement is first qualitative, and concerns the structure of the wave field. As shown

in Fig. 2(d), divergent sum waves are dominant for ϒ = 0.4; as ϒ increases and reaches

0.8 transverse sum waves appear at some distance downstream, and finally for ϒ = 1.2 they

supersede divergent waves in the vicinity of the sphere. This results from the combination of

several factors: position of the wavefronts θ1 = 2± within which each wave system is found;

amplitude associated with these systems in the spectrum m(k, t) of the source; restrictions

imposed on the domain of observation of the waves by the presence of lee waves and by tank

wall reflections. These arguments can be made quantitative, e.g., by plotting the function j1(ka)

as a function of x1 for y = 0 (not shown here). As ϒ increases from 0.4 to 1.2, zones of rapid

phase variations (nay inversions) appear near the caustics. This is attributable to an interference

between transverse and divergent waves, of similar wavelengths in that zone.

The evolution of the wavefronts with ϒ , i.e., their narrowing as ϒ increases, is confirmed by

experiment. Their position is difficult to determine because of the perturbation of the wave field

by the lee waves and by the wall reflections. For relatively small x1, however, this perturbation

is negligible, and the theoretical and experimental wavefronts differ by a lateral distance of the

same order as the diameter of the sphere. A possible explanation for this is the diffraction of
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the waves outside the caustics, a phenomenon not taken into account in the formulae used to

compute the theoretical wave field.

More quantitatively, Fig. 3(a) compares, for ϒ = 0.6, the theoretical and experimental values

of the axial wavelength λx = 2π/|kx | in the plane y = 0, measured from several images similar

to Fig. 2(d). The number of experimental runs compensates for the relatively poor precision

of the method. Good agreement is obtained with the interpretation of the wave field in terms

of mainly divergent sum waves. As N x1/U → ∞ we have for divergent difference waves,

transverse waves and divergent sum waves, respectively,

λx ∼ 2π
U

ω0

(

1

ϒ + 1
, 1,

1

|ϒ − 1|

)

, (10)

indicating that the axial wavelength of transverse waves tends towards the spatial period 2πU/ω0

of the path of the source. Figure 3(a) shows that this period is never observed in the wave field.

4. WAKE APPLICATION

Application of the preceding analysis to a realistic stratified turbulent wake, created by

horizontal motion at velocity U ′ of a body of transverse radius a′ and axial length l ′, supposes that

the various parameters arising in this analysis be expressed in terms of the parameters associated

with the wake. According to the discussion of Section 1, the velocity U and frequency ω0 of the

source equivalent to the wake are identical to the velocity U ′ of the body and to the frequency

ω′
0 of the near wake spiral instability. Similarly, the radius a of this source represents in some

phenomenological way the radius of the coherent structures before their collapse, and will be

assumed to be of the same order as the radius a′ of the body. The amplitude h of the oscillations

is just a device to reproduce experimentally a source of oscillatory strength and, as this strength,
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depends on the precise dynamics of the collapse. Hereafter these approximations will be used

and primes will be omitted.

The main conclusion of Sections 2 and 3 was the strong dependence of the wave field

on the frequency ratio ϒ = ω0/N , which can be expressed in terms of the Strouhal number

St = aω0/πU as ϒ = πStFr. In the Reynolds and Froude numbers range considered in the

literature, the Strouhal number is 0.2 for towed bodies and 1.0 for self-propelled bodies (see, e.g.,

Voisin, 1994b). A sphere towed at a Froude number Fr = 5 corresponds thus to ϒ = π , value

that we adopted in Figs. 3(b) and 4 to compute the axial wavelength and vertical displacement

field, respectively; these are to be compared with Figs. 8 and 9 of Bonneton et al. (1993).

Comparison between the theoretical and experimental wavefronts has already been suc-

cessfully performed by Gilreath and Brandt (1985) and Bonneton et al. (1993) and will not

be repeated here. As this wavefront is passed all waves are observed nearly simultaneously,

with axial wavelengths close to one another and tending rapidly towards the asymptotic values

(10), which themselves do not differ much from the spatial period 2πU/ω0 of the wake. Then,

consistently with Hopfinger et al. (1991), Bonneton et al. (1993) and Lin et al. (1993), a régime

is reached in which the wavelength is independent of the Froude number and identical to the

mean spacing of the coherent structures, which in terms of the diameter 2a of the body means

λx/2a ∼ St−1 ≈ 5.

It is tempting to associate this régime with the coherent wave régime reported by Bonneton

et al. (1993) and already distinguishable in the results of Hopfinger et al. (1991). In particular,

λx/2a is roughly of the same order as the wavelength of the first coherent waves identified by

Bonneton et al. (1993). However, the associated wave field, shown in Fig. 4, exhibits a very

complicated phase structure resulting from the interference between the four wave systems,
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and differs from the more or less organized structure observed by Hopfinger et al. (1991) and

Bonneton et al. (1993). This makes the present interpretation just tentative.

We finally point out that the analysis exposed in the present paper relies entirely on the

assumption that advection of the coherent structures before the collapse is negligible, so that

the process of emission of the waves is impulsive. There may, however, be situations where

advection is significant before the collapse. Then each structure generates not an impulsive wave

field but a lee wave field, as reported by Sysoeva and Chashechkin (1991) for a towed sphere

and by Dupont and Kadri (1994) for a bell-shaped obstacle.
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FIGURE CAPTIONS

Fig. 1. Determination of the wave field of a horizontally translating source of oscillatory

strength. (a) System of coordinates; (b) graphical solution of equation (8) for the parameter

ξ∗ = ξ/| sin ϕ1|, for ϒ/| sin ϕ1| = 0.5 ( ) and ϒ/| sin ϕ1| = 1.2 ( ).

Fig. 2. Vertical displacement field generated by horizontal translation of a vertically oscillating

sphere, for ϒ = 0.4, 0.8 and 1.2, with Fr = 0.25 and Ke = 0.6. Dimensionless coordinates r∗ =

Nr1/U are used, with z∗ = 24 (except for ϒ = 0.4, in which case z∗ = 17). (a) shows the first

few curves of constant phase of each wave system ( ) and the associated wavefronts ( );

for ϒ < 1 these fronts comprise a circle, whose upstream and downstream halves correspond to

divergent and transverse sum waves, respectively. The theoretical displacement field is shown

in (b) for the dipole and in (c) for the surface source, while (d) is the experimental visualization;

gray scale units are arbitrary.

Fig. 3. Dimensionless axial wavelength λ∗ = (Nλx)/(2πU ) versus dimensionless axial dis-

tance x∗ in the plane y∗ = 0, for ϒ = 0.6 and z∗ = 24 (a) and ϒ = π and z∗ = 0.6 (b).

, Theoretical curves; ·, experimental points; , lee wave length; , spatial period of

the source path.

Fig. 4. Vertical displacement field generated by horizontal translation of a vertically oscillating

sphere, for ϒ = π , Fr = 5 and z∗ = 0.6.
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Fig. 1. Determination of the wave field of a horizontally translating source of oscillatory strength.

(a) System of coordinates; (b) graphical solution of equation (8) for the parameter ξ∗ = ξ/| sin ϕ1|, for

ϒ/| sin ϕ1| = 0.5 ( ) and ϒ/| sin ϕ1| = 1.2 ( ).
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Fig. 2. Vertical displacement field generated by horizontal translation of a vertically oscillating sphere,

for ϒ = 0.4, 0.8 and 1.2, with Fr = 0.25 and Ke = 0.6. Dimensionless coordinates r∗ = Nr1/U are

used, with z∗ = 24 (except for ϒ = 0.4, in which case z∗ = 17). (a) shows the first few curves of

constant phase of each wave system ( ) and the associated wavefronts ( ); for ϒ < 1 these fronts

comprise a circle, whose upstream and downstream halves correspond to divergent and transverse sum

waves, respectively. The theoretical displacement field is shown in (b) for the dipole and in (c) for the

surface source, while (d) is the experimental visualization; gray scale units are arbitrary.
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