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Abstract. Variational methods are widely applied to ill-posed inverse problems
for they have the ability to embed prior knowledge about the solution. However,
the level of performance of these methods significantly depends on a set of
parameters, which can be estimated through computationally expensive and time-
consuming methods. In contrast, deep learning offers very generic and efficient
architectures, at the expense of explainability, since it is often used as a black-box,
without any fine control over its output. Deep unfolding provides a convenient
approach to combine variational-based and deep learning approaches. Starting
from a variational formulation for image restoration, we develop iRestNet, a
neural network architecture obtained by unfolding a proximal interior point
algorithm. Hard constraints, encoding desirable properties for the restored image,
are incorporated into the network thanks to a logarithmic barrier, while the
barrier parameter, the stepsize, and the penalization weight are learned by the
network. We derive explicit expressions for the gradient of the proximity operator
for various choices of constraints, which allows training iRestNet with gradient
descent and backpropagation. In addition, we provide theoretical results regarding
the stability of the network for a common inverse problem example. Numerical
experiments on image deblurring problems show that the proposed approach
compares favorably with both state-of-the-art variational and machine learning
methods in terms of image quality.
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1. Introduction

In this work we focus on inverse problems related to the following model:

y = D(Hx), (1)

where y ∈ Rm is the observed data, x ∈ Rn is the sought signal or image, H ∈ Rm×n
is the observation operator, which is presumed linear for simplicity, and D is the noise
perturbation operator. The linear operator H is assumed to be known from a physical
model or prior identification step [1, 2]. In this context, both variational and deep
learning approaches provide efficient methods for delivering an estimate of x, while
offering different benefits and drawbacks, which are discussed hereafter.

In order to find an appropriate solution to an ill-posed inverse problem like (1), vari-
ational methods incorporate prior information on the sought variable x, through con-
straints or regularization functions, such as the total variation and its various exten-
sions [3] or sparsity-promoting functions [4]. This leads to the following minimization
problem:

min
x∈C

f(Hx, y) + λR(x) (2)

where f : Rm × Rm → R is the data-fidelity function, related to the degradation
model, R : Rn → R is the regularization, λ ∈ ]0,+∞[ is a regularization parameter
and C is a subset of Rn. Although useful, this approach is sometimes limited by its
complexity: solving (2) may require advanced algorithms that may be too slow for
real-time applications. In addition, λ is a parameter that needs to be set and R is
usually parametrized by one or several parameters, whose optimal choice may strongly
depend on the data at hand. These parameters are often tuned manually or computed
using, for instance, cross validation, the discrepancy principle [5], or methods based
on Stein unbiased risk estimates (SURE) [6]. However, these methods are often time-
consuming and their success is not always guaranteed. Furthermore, despite numerous
efforts in designing sophisticated models, solving (2) does not necessarily lead to the
best estimate for x, hence the development of early stopping methods, where the iter-
ative procedure is stopped before convergence [7]. Finding the optimal stopping time
depends on the algorithm and requires the use of an oracle such as SURE, which may
explain why these techniques are currently restricted to relatively simple cost func-
tions.

Deep Neural Networks (DNNs), and in particular Convolutional Neural Networks
(CNNs), provide good performance for various applications related to inverse prob-
lems, such as denoising [8], non-blind and blind deblurring [9, 10, 11], super-resolution
[12], or CT reconstruction [13]. As detailed in [14], DNNs for inverse problems are very
often preceded by a pre-processing step. Indeed, a rough estimation of x can be found
by using the inverse or pseudoinverse of H. The latter tends, however, to strongly am-
plify noise. Hence, in this context, DNNs are used as denoisers and artifact-removers.
However, since prior knowledge about its output can hardly be incorporated into a
DNN, which in most of the cases is viewed as a black-box, the explainability and relia-
bility [15] of such methods could be questioned. Furthermore, the pre-processing step,
in itself, can include a penalty, thus amounting to solving a problem of the form (2),
where the regularization weight strongly depends on the noise level, e.g. [10, 16]. One
straightforward way to combine the benefits of both variational-based methods and
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DNNs is to unfold an iterative method and untie the parameters of both the model
and the algorithm across the layers of the network [17]. Interestingly, the fact that
this approach makes use of a limited number of layers can be viewed as an analogue
of early stopping methods.

In this paper, we propose a novel neural network architecture called iRestNet, which
is obtained by unfolding a proximal interior point algorithm over a finite number of
iterations. One key feature of this algorithm is that it produces only feasible iterates
thanks to a logarithmic barrier. This barrier enables prior knowledge to be directly
incorporated into iRestNet and, as opposed to a projection onto C, it allows differ-
entiation and gradient backpropagation throughout the network. Hence, gradient
descent can be used for training. The stepsize, barrier parameter, and regularization
weights are untied across the network and learned for each layer, which leads to a bet-
ter reconstruction than traditional variational methods without any parameter search.

Related works apply deep unfolding to probabilistic models, such as Markov ran-
dom fields [17], topic models [18], and to different algorithms like primal-dual solvers
[19], the proximal gradient method [20, 21] or ISTA [22]. FISTA and ADMM have
been unfolded to perform sparse coding [23] and image reconstruction [24], respec-
tively. However, in both cases, all functions and operators are learned, which weakens
the link between the resulting network and the original algorithm. Deep unfolding is
also used to learn shrinkage functions, which can be viewed as proximity operators
of sparsity-promoting functions [25, 26], or to optimize hyperparameters in nonlinear
reaction diffusion models [27]. Several recent works consider replacing handcrafted
algorithms by learned iterative methods [28, 29]. In these approaches, however, the
final goal is to find the minimizer of a given objective function and not to search for
the optimal quality solution of an inverse problem, as we propose in this paper. Only
a few works so far have considered combining interior point methods (IPMs) with
deep learning. Every layer of the network from [30] solves a small quadratic problem
using an IPM, while in [31], hard constraints are enforced on weights by using the
logarithmic barrier function during training. More recently, an interior point strategy
was used to design a recurrent network, whose purpose is to solve a specific convex
constrained problem [32]. Our proposed network appears to have more flexibility since
the regularization weight can vary among layers and it is trained to solve an inverse
problem, not to solve directly a given optimization problem.

To the best of our knowledge, this paper presents the first architecture corresponding
to a deep unfolded version of an interior point algorithm with untied stepsize and
regularization parameter. As opposed to other unfolding methods like [20, 21], the
proximity operator and the regularization term are kept explicit, which establishes a
direct relation between the original algorithm and the network. Other contributions
of this work include the expression of the required proximity operator, and of its cor-
responding gradient, for three standard variational formulations, along with numerical
experiments demonstrating the benefit of using the proposed approach over other ma-
chine learning and variational methods for image deblurring.

This paper is organized as follows: in Section 2, we describe the proximal interior
point optimization method which is at the core of our approach, and we provide the
proximity operator of the barrier for three useful cases in Section 3. In Section 4, we
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present the proposed neural network architecture and its associated backpropagation
method. In Section 5, we conduct a stability analysis of the proposed network when
the data fidelity term and the regularization function are quadratic. Section 6 is dedi-
cated to numerical experiments and comparison to state-of-the-art methods for image
deblurring; finally, some conclusions are drawn in Section 7.

2. Proximal interior point algorithm

2.1. Variational formulation and notation

As detailed in Section 1, the sought image x can be classically approximated by
the minimizer of a penalized cost function expressed as the sum of a data-fitting
term, which measures the fidelity of the solution to the observation model (1), and
a regularization term, which is introduced so as to avoid meaningless solutions and
improve stability to noise. This leads to problem (2) with λ ∈ ]0,+∞[ a regularization
parameter. In the remaining of the paper, we will assume that f(·, y) : Rm → R
is a twice-differentiable data-fidelity term, and R : Rn → R is a twice-differentiable
regularization function. Note that such assumption is necessary to define the derivative
steps involved in the backpropagation procedure for the training of our network. Let
Γ0(Rn) denote the set of functions which take values in R ∪ {+∞} and are proper,
convex, lower semicontinuous on Rn. The feasible set C is defined by p inequality
constraints which enforce the fulfillment of some properties that are expected to be
satisfied a priori by the image:

C = {x ∈ Rn | (∀i ∈ {1, . . . , p}) ci(x) ≥ 0}, (3)

where, for every i ∈ {1, . . . , p}, −ci ∈ Γ0(Rn). The strict interior of the feasible
domain, intC, is equal to

intC = {x ∈ Rn | (∀i ∈ {1, . . . , p}) ci(x) > 0}, (4)

and it is assumed to be nonempty. Finally, we will assume that either f(H·, y) + λR
is coercive, or C is bounded. Then the existence of solutions for (2) is guaranteed.
It is worthy to emphasize that a large class of penalized formulations encountered in
the literature of image restoration fulfills the above requirements, see e.g. [33] and
references therein.

Let us introduce additional notations, which will be useful in the rest of the paper.
First, for every g ∈ Γ0(Rn), γ ∈ ]0,+∞[, and x ∈ Rn, the proximity operator [34] of
γg at x is uniquely defined as

proxγg(x) = argmin
u∈Rn

1

2
‖x− u‖2 + γg(u). (5)

Finally, for all (x, y, λ) ∈ Rn × Rm× ]0,+∞[, we define

h(x, y, λ) = f(Hx, y) + λR(x), (6)

and
∇1h(x, y, λ) = H>∇1f(Hx, y) + λ∇R(x), (7)

where ∇1f is the partial gradient of f with respect to its first variable.
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2.2. Interior point approaches

In general, problem (2) does not have a closed-form solution on account of the in-
equality constraints, even for simple regularizations, hence an iterative solver must be
used. Several resolution approaches are available, either based on projected gradient
strategies [35, 36], ADMM [37], primal-dual schemes [38], or interior point techniques
[39]. Standard interior point methods (IPMs) require to invert several n × n linear
systems, which leads to a high computational complexity for large scale problems.
Nonetheless, it has recently been shown that combining the interior point framework
with a proximal forward–backward strategy [40, 41] leads to very competitive solvers
for inverse problems [42, 43].

The idea behind IPMs is to replace the initial constrained optimization problem by a
sequence of unconstrained subproblems of the form:

min
x∈Rn

f(Hx, y) + λR(x) + µB(x) (8)

where B : Rn → R ∪ {+∞} is the logarithmic barrier function with unbounded
derivative at the boundary of the feasible domain:

(∀x ∈ Rn) B(x) =

 −
p∑
i=1

ln(ci(x)) if x ∈ intC

+∞ otherwise,

(9)

and µ ∈ ]0,+∞[ is the so–called barrier parameter which vanishes along the
minimization process. We assumed that either f(H·, y) + λR is coercive, or C is
bounded, hence, the set of solutions to (2) is bounded. Since intC is not empty we can
apply [44, Theorem 5(ii)] and the existence of solutions to (8) is guaranteed.

2.3. Proposed iterative schemes

Thanks to the proximity operator, the IPM from [45] does not require any matrix
inversion. When the proximity operator is computed in an exact manner, the proposed
IPM can be rewritten as Algorithm 1, whose convergence has been proven under some
assumptions [45, Theorem 4.1].

Algorithm 1 Exact version of the proximal IPM in [45] applied to problem (2).

Let x0 ∈ intC, γ > 0 and (γk)k∈N be a sequence such that (∀k ∈ N) γ ≤ γk;
for k = 0, 1, . . . do
xk+1 = proxγk(h(·,y,λ)+µkB) (xk)

end for

Algorithm 1 requires evaluating the proximity operator of the sum of the barrier and
the regularized cost function, which can be an issue since, in most of the cases, it does
not have a closed-form solution. This is the reason why we propose to modify it by
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introducing a forward step, which leads to Algorithm 2.

Algorithm 2 Proposed forward–backward proximal IPM.

Let x0 ∈ intC, γ > 0 and (γk)k∈N be a sequence such that (∀k ∈ N) γ ≤ γk;
for k = 0, 1, . . . do
xk+1 = proxγkµkB (xk − γk∇1h (xk, y, λ))

end for

Algorithm 2 only requires computing the proximity operator of the logarithmic barrier.
We will provide its expression in Section 3 for three different types of constraints.

2.4. Limitations

In IPMs, the barrier parameter and stepsize sequences, (µk)k∈N and (γk)k∈N, are usu-
ally set by following some heuristic rules complying with the convergence conditions of
the method. These heuristics however do not account for the final goal of the problem,
which is to reach an optimal image quality. They can thus lead to a loss in efficiency
and versatility of the resulting restoration schemes. Moreover, as already mentioned,
an accurate setting of the regularization weights is particularly critical in order to
obtain a satisfactory image quality when using such penalized restoration approaches.
Existing approaches for selecting λ, which are based on statistical considerations, are
usually associated with a substantial increase of the computational cost.

To overcome these limitations, we propose to unfold Algorithm 2 over a given number
of iterations and to learn the stepsize, the barrier and the regularization parameters for
every iteration in a supervised fashion. Our machine learning method will make use of
gradient backpropagation for its training step. The latter requires the derivatives of
the proximity operator in Algorithm 2 with respect to its input and to the aforemen-
tioned parameters which are to be learned. Therefore, we first conduct an analysis
of the proximity operator of the barrier and of its derivatives, for three examples of
interest in Section 3.

3. Proximity operator of the barrier

Let B be defined as in (9) and for all µ > 0, γ > 0 and x ∈ Rn, let ϕ be defined as
follows:

ϕ(x, µ, γ) = proxγµB(x). (10)

We provide in this section expressions of ϕ and of its derivatives with respect to its
input variable x and the involved barrier and stepsize parameters (µ, γ), for three
common types of constraints. The latter will be necessary for training the proposed
neural network using a gradient backpropagation scheme.

3.1. Affine constraints

Let us first consider the following half space constraint:

C = {x ∈ Rn | a>x ≤ b}, (11)



7

with a ∈ Rn \ {0} and b ∈ R.

Proposition 1 Let γ > 0, µ > 0, and B be the function associated to (11), defined
as

(∀u ∈ Rn) B(u) =

{
− ln(b− a>u) if a>u < b,

+∞ otherwise.
(12)

Then, for every x ∈ Rn, the proximity operator of γµB at x is given by

ϕ(x, µ, γ) = x+
b− a>x−

√
(b− a>x)2 + 4γµ‖a‖2

2‖a‖2
a. (13)

In addition, the Jacobian matrix of ϕ with respect to x and the gradients of ϕ with
respect to µ and γ are given by

J (x)
ϕ (x, µ, γ) = In −

1

2‖a‖2

(
1 +

a>x− b√
(b− a>x)2 + 4γµ‖a‖2

)
aa>, (14)

∇(µ)
ϕ (x, µ, γ) =

−γ√
(b− a>x)2 + 4γµ‖a‖2

a, (15)

and

∇(γ)
ϕ (x, µ, γ) =

−µ√
(b− a>x)2 + 4γµ‖a‖2

a, (16)

where In ∈ Rn×n denotes the identity matrix.

Proof. The expression for the proximity operator (13) directly follows from [34,
Example 24.40], [34, Proposition 24.8 (v)] and [34, Corollary 24.15]. Taking the deriva-
tive of (13) with respect to x, µ and γ leads to (14)–(16). �

3.2. Hyperslab constraints

We now consider the following hyperslab set:

C = {x ∈ Rn | bm ≤ a>x ≤ bM}, (17)

where a ∈ Rn \ {0}, bm ∈ R and bM ∈ R with bm < bM.

Proposition 2 Let γ > 0, µ > 0, and B be the barrier function associated to (17),
defined as

(∀u ∈ Rn) B(u) =

{
− ln(bM − a>u)− ln(a>u− bm) if bm < a>u < bM,

+∞ otherwise.
(18)

Then, for every x ∈ Rn, the proximity operator of γµB at x is given by

ϕ(x, µ, γ) = x+
κ(x, µ, γ)− a>x

‖a‖2
a, (19)

where κ(x, µ, γ) is the unique solution in ]bm, bM[, of the following cubic equation:

0 = z3 − (bm + bM + a>x)z2 + (bmbM + a>x(bm + bM)− 2γµ‖a‖2)z

− bmbMa>x+ γµ(bm + bM)‖a‖2.
(20)
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In addition, the Jacobian matrix of ϕ with respect to x and the gradients of ϕ with
respect to µ and γ are given by

J (x)
ϕ (x, µ, γ) = In +

1

‖a‖2

(
(bM − κ(x, µ, γ))(bm − κ(x, µ, γ))

η(x, µ, γ)
− 1

)
aa>, (21)

∇(µ)
ϕ (x, µ, γ) =

−γ(bm + bM − 2κ(x, µ, γ))

η(x, µ, γ)
a, (22)

and

∇(γ)
ϕ (x, µ, γ) =

−µ(bm + bM − 2κ(x, µ, γ))

η(x, µ, γ)
a, (23)

where

η(x, µ, γ) = (bM − κ(x, µ, γ))(bm − κ(x, µ, γ))

− (bm + bM − 2κ(x, µ, γ))(κ(x, µ, γ)− a>x)− 2γµ‖a‖2.
(24)

Proof. Let x ∈ Rn, γ > 0, and µ > 0. The expression for the proximity operator
(19) follows from [46, Example 4.15] and [34, Corollary 24.15]. Let F be defined as
follows:

F (x, µ, γ, z) = (bM − z)(bm − z)(z − a>x) + γµ(bM + bm − 2z)‖a‖2, (25)

for z ∈ ]bm, bM[. Expanding (25) gives the following:

F (x, µ, γ, z) = z3 − (a>x+ bm + bM)z2 + (bmbM + a>x(bm + bM)− 2γµ‖a‖2)z

− bmbMa>x+ γµ(bm + bM)‖a‖2.
(26)

Hence, by definition of κ(x, µ, γ), we have F (x, µ, γ, κ(x, µ, γ)) = 0. In addition, the
derivative of F with respect to its last variable is equal to

∇F (z)(x, µ, γ, z) = (bM − z)(bm − z)− (bm + bM − 2z)(z − a>x)− 2γµ‖a‖2. (27)

By construction, (bM−κ(x, µ, γ))(bm−κ(x, µ, γ)) < 0. Moreover, −2γµ‖a‖2 < 0 and,
since F (x, µ, γ, κ(x, µ, γ)) = 0, it follows that (bm+bM−2κ(x, µ, γ)) and κ(x, µ, γ)−a>x
share the same sign. Hence,

η(x, µ, γ) = ∇F (z)(x, µ, γ, κ(x, µ, γ)) 6= 0. (28)

From the implicit function theorem [47, Theorem 1B.1], we deduce that the gradient
of κ with respect to x and the partial derivatives of κ with respect to µ and γ exist
and are equal to

∇κ(x)(x, µ, γ) =
(bM − κ(x, µ, γ))(bm − κ(x, µ, γ))

η(x, µ, γ)
a, (29)

∇κ(µ)(x, µ, γ) =
−γ‖a‖2(bm + bM − 2κ(x, µ, γ))

η(x, µ, γ)
, (30)

and

∇κ(γ)(x, µ, γ) =
−µ‖a‖2(bm + bM − 2κ(x, µ, γ))

η(x, µ, γ)
. (31)
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Figure 1. Proximity operator of the logarithmic barrier: proxγµB(x) for
hyperslab constraint as in Section 3.2 with bm = 0 and bM = 1 (left),(
proxγµB(x)

)
1

for a constraint on the `2-norm as in Section 3.3 with α = 0.7

(right).

Differentiating (19) with respect to x, µ and γ and using (29)–(31) yields (21)–(23). �

Note that the three roots of (20) can easily be computed using the Cardano formula.
The graph of the resulting proximity operator is plotted on Figure 1 (left) for n = 1,
a = 1, bm = 0, bM = 1, and various values for γµ.

3.3. Bounded `2-norm

We now consider the case when the feasible set in (2) is an Euclidean ball

C = {x ∈ Rn | ‖x− c‖2 ≤ α}, (32)

with α > 0 and c ∈ Rn.

Proposition 3 Let γ > 0 and let µ > 0. Let B be the barrier function associated to
(32), defined as

(∀u ∈ Rn) B(u) =

{
− ln(α− ‖u− c‖2) if ‖u− c‖2 < α,

+∞ otherwise.
(33)

Then, for every x ∈ Rn, the proximity operator of γµB at x is given by

ϕ(x, µ, γ) = c+
α− κ(x, µ, γ)2

α− κ(x, µ, γ)2 + 2γµ
(x− c), (34)

where κ(x, µ, γ) is the unique solution in [0,
√
α[ of the cubic equation:

0 = z3 − ‖x− c‖z2 − (α+ 2γµ)z + α‖x− c‖. (35)

In addition, the Jacobian matrix of ϕ with respect to x and the gradients of ϕ with
respect to µ and γ are given by

J (x)
ϕ (x, µ, γ) =

α− ‖ϕ(x, µ, γ)− c‖2

α− ‖ϕ(x, µ, γ)− c‖2 + 2γµ
M(x, µ, γ), (36)
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∇(µ)
ϕ (x, µ, γ) =

−2γ

α− ‖ϕ(x, µ, γ)− c‖2 + 2γµ
M(x, µ, γ)(ϕ(x, µ, γ)− c), (37)

and

∇(γ)
ϕ (x, µ, γ) =

−2µ

α− ‖ϕ(x, µ, γ)− c‖2 + 2γµ
M(x, µ, γ)(ϕ(x, µ, γ)− c), (38)

where

M(x, µ, γ) = In −
2(x− ϕ(x, µ, γ))(ϕ(x, µ, γ)− c)>

α− 3‖ϕ(x, µ, γ)− c‖2 + 2γµ+ 2(ϕ(x, µ, γ)− c)>(x− c)
. (39)

Proof. Let x ∈ Rn, γ > 0, µ > 0. Let us first consider the case when c = 0. We
denote with ϕ0 the following proximity operator:

ϕ0(x, µ, γ) = argmin
u∈intC

1

2
‖x− u‖2 − γµ ln(α− ‖u‖2). (40)

Hence, ‖ϕ0(x, µ, γ)‖2 < α and ϕ0(x, µ, γ) is a solution to the following equation:

0 = ϕ0(x, µ, γ)− x+
2γµ

α− ‖ϕ0(x, µ, γ)‖2
ϕ0(x, µ, γ). (41)

Since α− ‖ϕ0(x, µ, γ)‖2 + 2γµ > 0, (41) becomes

ϕ0(x, µ, γ) =
α− ‖ϕ0(x, µ, γ)‖2

α− ‖ϕ0(x, µ, γ)‖2 + 2γµ
x. (42)

By taking the norm in both sides of (42), we deduce that ‖ϕ0(x, µ, γ)‖ = κ(x, µ, γ)
is a solution to the cubic equation (35). Since the proximity operator at a given x is
uniquely defined, there exists only one real solution to (35) which belongs to [0,

√
α[.

Plugging the latter into (42) leads to (34). The analysis when c 6= 0 is deduced from
the case c = 0 by using [34, Proposition 24.8 (v)]: the proximity operator of γµB at
x is given by

ϕ(x, µ, γ) = c+ ϕ0(x− c, µ, γ). (43)

Let us study the derivatives of ϕ0. For every v ∈ Rn, let F be defined as

F (x, µ, γ, v) = (α− ‖v‖2)(v − x) + 2γµv. (44)

The Jacobian of F with respect to its last variable is equal to

J
(v)
F (x, µ, γ, v) = (α− ‖v‖2 + 2γµ)In + 2(x− v)v>. (45)

Since α − ‖ϕ0(x, µ, γ)‖2 > 0, according to the Sherman–Morrison Lemma [48],

J
(v)
F (x, µ, γ, ϕ0(x, µ, γ)) is invertible if and only if

α− ‖ϕ0(x, µ, γ)‖2 + 2γµ+ 2ϕ0(x, µ, γ)>(x− ϕ0(x, µ, γ)) 6= 0. (46)

Furthermore, it follows from (41) that

F (x, µ, γ, ϕ0(x, µ, γ)) = 0. (47)
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Applying ϕ0(x, µ, γ)> on (47) leads to ϕ0(x, µ, γ)>(x− ϕ0(x, µ, γ)) ≥ 0. In addition,

α − ‖ϕ0(x, µ, γ)‖2 + 2γµ > 0. Hence, J
(v)
F (x, µ, γ, ϕ0(x, µ, γ)) is invertible and its

inverse is given by the Sherman–Morrison formula:

J
(v)
F (x, µ, γ, ϕ0(x, µ, γ))−1 =

1

α− ‖ϕ0(x, µ, γ)‖2 + 2γµ
×[

In −
2(x− ϕ0(x, µ, γ))ϕ0(x, µ, γ)>

α− 3‖ϕ0(x, µ, γ)‖2 + 2γµ+ 2ϕ0(x, µ, γ)>x

]
.

(48)

From the implicit function theorem [47, Theorem 1B.1] we deduce that the Jacobian
of ϕ0 with respect to x and the gradients of ϕ0 with respect to µ and γ exist and are
equal to

J (x)
ϕ0

(x, µ, γ) = −J (v)
F (x, µ, γ, ϕ0(x, µ, γ))−1J

(x)
F (x, µ, γ, ϕ0(x, µ, γ)), (49)

∇(µ)
ϕ0

(x, µ, γ) = −J (v)
F (x, µ, γ, ϕ0(x, µ, γ))−1∇(µ)

F (x, µ, γ, ϕ0(x, µ, γ)), (50)

and
∇(γ)
ϕ0

(x, µ, γ) = −J (v)
F (x, µ, γ, ϕ0(x, µ, γ))−1∇(γ)

F (x, µ, γ, ϕ0(x, µ, γ)). (51)

When c 6= 0, the derivatives of ϕ are deduced from those of ϕ0 using (43):

J (x)
ϕ (x, µ, γ) = −J (v)

F (x− c, µ, γ, ϕ(x, µ, γ)− c)−1J (x)
F (x− c, µ, γ, ϕ(x, µ, γ)− c), (52)

∇(µ)
ϕ (x, µ, γ) = −J (v)

F (x− c, µ, γ, ϕ(x, µ, γ)− c)−1∇(µ)
F (x− c, µ, γ, ϕ(x, µ, γ)− c), (53)

and

∇(γ)
ϕ (x, µ, γ) = −J (v)

F (x− c, µ, γ, ϕ(x, µ, γ)− c)−1∇(γ)
F (x− c, µ, γ, ϕ(x, µ, γ)− c), (54)

which lead to (36)-(38). �

Similarly to the previous case, the three solutions to (35) can be obtained by using the
Cardano formula. The form of the resulting proximity operator for n = 2 is plotted
on Figure 1 (right) for α = 0.7, c = 0, and several values of γµ and x; for symmetry
reasons, only the first component

(
proxγµB(x)

)
1

is represented.

As shown in this section, the proximity operator of the barrier is easily computat-
ble and differentiable for several classic types of constraints. Next, we detail the
proposed approach in Section 4.

4. iRestNet architecture

4.1. Overview

Our proposal is to adopt a supervised learning strategy in order to determine, from
a training set of images, an optimal setting for the parameters of Algorithm 2, which
should lead to an optimal image restoration quality. To this aim, Algorithm 2 is
unfolded over K iterations and the regularization parameter λ is untied accross the
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Figure 2. iRestNet global architecture.

network, so as to provide more flexibility to the approach [17]. The update rule at a
given iteration k ∈ {0, . . . ,K − 1} reads

xk+1 = A (xk, µk, γk, λk) (55)

with
A (xk, µk, γk, λk) = proxγkµkB (xk − γk∇1h (xk, y, λk)) . (56)

For every k ∈ {0, . . . ,K − 1}, we build the k-th layer Lk as the association of three

hidden structures, L(µ)
k , L(γ)

k and L(λ)
k , followed by the update A. Structures L(µ)

k ,

L(γ)
k , and L(λ)

k aim at inferring the barrier parameter µk, the stepsize γk and the
regularization weight λk, respectively. Since a finite number K of layers (i.e., updates)
is used, the convergence of the resulting scheme is not an issue. Note that we also
allow in our framework the use of a post–processing step after going through the K
layers, that will be denoted as Lpp. The resulting architecture is depicted in Figure 2.

4.2. Hidden structures

Let us now provide more details about the hidden structures. For every k ∈
{0, . . . ,K − 1}, the outputs (µk, γk, λk) of the structures L(µ)

k , L(γ)
k , and L(λ)

k must be
positive. To enforce such constraint, we use the Softplus function [49], defined below,
which can be viewed as a smooth approximation of the ReLU activation function:

(∀z ∈ R) Softplus(z) = ln(1 + exp(z)). (57)

Unlike the ReLU, the gradient of Softplus is never stricly equal to zero, which, given
our architecture, helps to propagate the gradient through the network. The stepsize
is estimated as follows,

γk = L(γ)
k = Softplus (ak) , (58)

where ak is a scalar parameter of the network learned during training. The barrier
parameter is obtained using two convolutional and average pooling layers followed by

a fully connected layer. The detailed architecture of L(µ)
k is depicted in Figure 3.

Traditional methods for estimating the regularization parameter generally depend on
the signal-to-noise ratio and on the image statistics [50]. For most applications the
noise level is unknown and can be estimated, for instance, by applying a median filter
over the wavelet diagonal coefficients of the image [51]. Here, we propose to infer
the regularization parameter λk from the image statistics only, the noise level being
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accounted for in an implicit manner, by introducing a multiplicative factor for example.
The advantage of this approach is to yield a network which can handle datasets for
which the signal-to-noise ratio is unknown and can vary within a reasonable range. The

expression of L(λ)
k is then problem–dependent since it is built upon the regularization

strategy. A specific example is given in Section 6 for the total variation regularization
function.
Regarding the post-processing step Lpp, its detailed architecture also depends on the
task to be performed. An example is provided in Section 6 for the case of deblurring:
the purpose of Lpp is then to remove remaining artifacts using convolutional layers,
residual learning, batch normalization, and dilation.

4.3. Differential calculus

To train the neural network presented in Figure 2 using gradient descent, one needs to
compute the gradient of xK with respect to the different parameters of the network.
The chain rule can be applied since most of the steps in the network correspond to
operators having straightforward derivatives. However, particular care should be taken
when differentiating A. Since f and R are assumed to be twice differentiable, the only
area of concern is related to proxγµB. If proxγµB is simple enough, autodifferentiation
can be used. Otherwise, as shown in Section 3, for common examples of barrier
functions, the differential of this term is well-defined. The corresponding expressions
for the derivatives are provided in Propositions 1–3.

5. Network stability

One critical issue concerning neural networks is to guarantee that their performance
remain acceptable when the input is perturbed. For example, the authors of [15] show
that the class prediction made by AlexNet can be arbitrarily changed by using small
nonrandom perturbations on the test image. For some applications involving high risk
and legal responsibility, for instance in medical image processing, the lack of theoretical
guarantees is a significant curb on the utilization of deep learning approaches. A recent
work [52] provides a theoretical framework which enables to evaluate the robustness
of a network. In this section, we will focus on a subclass of problem (2) where both
f(·, y) and R are quadratic functions while C is defined as in (3). After highlighting
the similarities between the proposed architecture and generic feedforward networks in
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that case, we will give explicit conditions under which the robustness of the proposed
architecture is ensured.

5.1. Relation to generic deep neural networks

Although the proposed architecture may seem specific to Algorithm 2, it is actually
very similar to generic feedforward neural networks. Classical feedforward (acyclic)
architectures [53] can be expressed as RK−1◦(WK−1·+bK−1)◦· · ·◦R0◦(W0·+b0), where
(Rk)0≤k≤K−1 are nonlinear activation functions, (Wk)0≤k≤K−1 are weight operators
and (bk)0≤k≤K−1 are bias parameters. Let us show that iRestNet actually shares a
similar structure. For the sake of simplicity, we will consider the variational problem,

minimize
x∈C

1

2
‖Hx− y‖2 +

λ

2
‖Dx‖2, (59)

where y ∈ Rn, H ∈ Rn×n, D ∈ Rn×n, and C is defined as in (3). Moreover, we
assume that no post–processing layer Lpp is used. Following the notation of Section 4,
(∀k ∈ {0, . . . ,K−1}) (µk, γk, λk) are given positive real numbers, K being the number
of layers of the network. Then, for every k ∈ {0, . . . ,K − 1}, layer Lk corresponds to
the following update,

xk+1 = proxγkµkB
(
xk − γk

(
H> (Hxk − y) + λkD

>Dxx
))

= proxγkµkB
([
In − γk

(
H>H + λkD

>D
)]
xk + γkH

>y
)
, (60)

where B is defined as in (9). For every k ∈ {0, . . . ,K − 1}, we set

Wk = In − γk
(
H>H + λkD

>D
)
, bk = γkH

>y, and Rk = proxγkµkB. (61)

Then, the K-layer network LK−1 ◦ · · · ◦ L0 is equivalent to RK−1 ◦ (WK−1 ·+bK−1) ◦
· · · ◦R0 ◦ (W0 ·+b0), where (Wk)0≤k≤K−1 and (bk)0≤k≤K−1 are interpreted as weight
operators and bias parameters, respectively. It is worth noticing that the operators
(Rk)0≤k≤K−1 defined in (61) can be viewed as specific activation functions since, as
shown in [52], every standard activation function can be derived from a proximity
operator. In addition, using [34, Proposition 24.8(iii)], for every k ∈ {0, . . . ,K − 1},
Rk can be re-written as

Rk = proxB̃k
+ b̃k, (62)

where b̃k = proxγkµkB(0) and (∀x ∈ Rn) B̃k(x) = γkµkB(x + b̃k) + x>b̃k. The zero

vector is therefore a fixed point of proxB̃k
with B̃k ∈ Γ0(Rn). Hence, for every

k ∈ {0, . . . ,K − 1}, Rk is the sum of a stable activation operator [52, Definition 2.20]
proxB̃k

and a bias b̃k.

5.2. Preliminary results

Before stating our main stability theorem, let us first derive in this subsection some
preliminary results, which will appear useful when addressing the robustness of the
global network. In the following, Sn denotes the set of symmetric matrices in Rn×n
and, for every W ∈ Sn, ‖W‖ denotes its spectral norm.

Assumption 1 Assume that K ≥ 1 is an integer and that, for every k ∈ {0, . . . ,K−
1}, Wk ∈ Sn. In addition, there exists a common basis P such that, for every
k ∈ {0, . . . ,K − 1}, Wk is diagonalizable in P.
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Proposition 4 Let K ≥ 1 be an integer and set θ−1 = 1. Suppose that Assumption 1
holds. For every k ∈ {0, . . . ,K − 1}, let θk be defined by

θk =‖Wk ◦ · · · ◦W0‖

+

k−1∑
`=0

∑
0≤j0<···<j`≤k−1

‖Wk ◦ · · · ◦Wj`+1‖‖Wj` ◦ · · · ◦Wj`−1+1‖ · · · ‖Wj0 ◦ · · · ◦W0‖.

(63)

Then, for every k ∈ {0, . . . ,K − 1},

θk = max
1≤p≤n

∣∣∣β(p)
k · · ·β

(p)
0

∣∣∣
+

k−1∑
`=0

∑
0≤j0<···<j`≤k−1

max
1≤q`≤n

∣∣∣β(q`)
k · · ·β(q`)

j`+1

∣∣∣ max
1≤q`−1≤n

∣∣∣β(q`−1)
j`

· · ·β(q`−1)
j`−1+1

∣∣∣ · · · max
1≤q0≤n

∣∣∣β(q0)
j0
· · ·β(q0)

0

∣∣∣ ,
(64)

where for every (k ∈ {0, . . . ,K − 1} and p ∈ {1, . . . , n}, β(p)
k is the pth eigenvalue of

Wk in P. In addition,

(∀k ∈ {0, . . . ,K − 1}) θk =

k∑
`=0

θ`−1 max
1≤q`≤n

∣∣∣β(q`)
k · · ·β(q`)

`

∣∣∣ . (65)

Proof. Assumption 1 directly yields (64). Equation (65) follows from [52, Lemma 3.3].
�

Proposition 5 Let K ≥ 1 be an integer and let α ∈ [1/2, 1]. Suppose that
Assumption 1 holds. Define W = WK−1 ◦ · · · ◦ W0 ∈ Sn. Let β− and β+ denote
the smallest and largest eigenvalues of W , respectively. Let (θk)0≤k≤K−1 be defined as
in Proposition 4. The condition

‖W − 2K(1− α)In‖ − ‖W‖+ 2θK−1 ≤ 2Kα (66)

is satisfied if and only if one of the following conditions holds:

(i) β+ + β− ≤ 0 and θK−1 ≤ 2K−1(2α− 1);

(ii) 0 ≤ β+ + β− ≤ 2K+1(1− α) and 2θK−1 ≤ β+ + β− + 2K(2α− 1);

(iii) 2K+1(1− α) ≤ β+ + β− and θK−1 ≤ 2K−1.

Proof. Let α ∈ [1/2, 1]. Since W ∈ Sn, we have,

‖W‖ = max{β+,−β−}, (67)

and
‖W − 2K(1− α)In‖ = max

{
β+ − 2K(1− α),−β− + 2K(1− α)

}
. (68)

Three different cases arise that we review below.
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(i) If β+ + β− ≤ 0 then ‖W‖ = −β− and

β+ − 2K(1− α) ≤ −β− + 2K(1− α). (69)

Hence, ‖W − 2K(1− α)In‖ = −β− + 2K(1− α) and (66) is equivalent to

− β− + 2K(1− α) + β− + 2θK−1 ≤ 2Kα

⇔ θK−1 ≤ 2K−1(2α− 1). (70)

(ii) If 0 ≤ β+ + β− ≤ 2K+1(1 − α) then ‖W‖ = β+ and (69) is satisfied. Hence,
‖W − 2K(1− α)In‖ = −β− + 2K(1− α) and (66) is equivalent to

− β− + 2K(1− α)− β+ + 2θK−1 ≤ 2Kα

⇔ 2θK−1 ≤ β− + β+ + 2K(2α− 1). (71)

(iii) If 2K+1(1− α) ≤ β+ + β− then ‖W‖ = β+ and

β+ − 2K(1− α) ≥ −β− + 2K(1− α). (72)

Hence, ‖W − 2K(1− α)In‖ = β+ − 2K(1− α) and (66) is satisfied if and only if

β+ − 2K(1− α)− β+ + 2θK−1 ≤ 2Kα

⇔ θK−1 ≤ 2K−1, (73)

which completes the proof.

�

5.3. Averaged operator

The notion of nonexpansiveness, whose definition is recalled below, plays a central
role in the analysis of the robustness of nonlinear operators. Indeed, it indicates that
a perturbation on the output of a given operator is bounded by the amplitude of the
input perturbation.

Definition 1 (Nonexpansiveness) Let T : Rn → Rn. Then, T is nonexpansive if
it is Lipschitz continuous with constant 1, i.e.,

(∀x ∈ Rn)(∀y ∈ Rn) ‖T (x)− T (y)‖ ≤ ‖x− y‖. (74)

In the present study we make use of the notion of averaged operator [34], which is
stronger than nonexpansiveness.

Definition 2 (α-averaged operator) Let T : Rn → Rn be nonexpansive, and let
α ∈ [0, 1]. Then T is averaged with constant α, or α–averaged, if there exists a
nonexpansive operator R : Rn → Rn such that T = (1− α)In + αR, where In denotes
the identity operator of Rn.

The following property provides an upper bound of the effect of an input pertubation,
which depends on the constant of a given α–averaged operator.
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Proposition 6 [34, Remark 4.34, Proposition 4.35] Let T : Rn → Rn.

(i) If T is averaged, then it is nonexpansive.

(ii) Let α ∈ ]0, 1]. T is α–averaged if and only if for every x ∈ Rn and y ∈ Rn,

‖T (x)− T (y)‖2 ≤ ‖x− y‖2 − 1− α
α
‖(In − T )(x)− (In − T )(y)‖2. (75)

One can see, in particular, that the smaller the averageness constant α is, the more
stable the operator T is.

5.4. Robustness of iRestNet to an input pertubation

Let us consider problem (59), where we assume additionally that H>H and D>D are
diagonalizable in a same basis denoted P. The latter is satisfied for instance if H and

D are the results of cyclic convolutive operators. For every p ∈ {1, . . . , n}, let β
(p)
H

and β
(p)
D denote the pth eigenvalue of H>H and D>D in P, respectively. Let β+ and

β− be defined as follows,

β+ = max
1≤p≤n

K−1∏
k=0

(
1− γk

(
β
(p)
H + λkβ

(p)
D

))
(76)

and

β− = min
1≤p≤n

K−1∏
k=0

(
1− γk

(
β
(p)
H + λkβ

(p)
D

))
. (77)

Theorem 1 below gives sufficient conditions under which the proposed network applied
to problem (59) is an averaged operator.

Theorem 1 Let α ∈ [1/2, 1], (Wk, bk, Rk)0≤k≤K−1 be defined by (61), and θK−1 be
defined as in Proposition 4. Assume that H>H and D>D are diagonalizable in the
same basis. Let β+ and β− be defined by (76) and (77), respectively. If one of the
following conditions is satisfied

(i) β+ + β− ≤ 0 and θK−1 ≤ 2K−1(2α− 1);

(ii) 0 ≤ β+ + β− ≤ 2K+1(1− α) and 2θK−1 ≤ β+ + β− + 2K(2α− 1);

(iii) 2K+1(1− α) ≤ β+ + β− and θK−1 ≤ 2K−1,

then the operator RK−1 ◦ (WK−1 ·+bK−1) ◦ · · · ◦R0 ◦ (W0 ·+b0) is α–averaged.

Proof. Since H>H and D>D are diagonalizable in the same basis, Assumption 1 holds
and the set {Wk}0≤k≤K−1 satisfies the assumptions of Proposition 5. If one of the
conditions (i)–(iii) is satisfied, then we deduce from Proposition 5 that the operator
W = WK−1 ◦ · · · ◦W0 satisfies [52, Proposition 3.6(iii)]. Therefore, W satisfies [52,
Condition 3.1]. In addition, for every k ∈ {0, . . . ,K − 1}, Rk(·+ bk) is firmly nonex-
pansive [34, Proposition 12.28]. Finally, [52, Theorem 3.8] completes the proof. �

The conditions provided by Theorem 1 can be easily checked: they only depend on
the eigenvalues of H>H and D>D (i.e. the singular values of H and D), and on
the parameters (γk)0≤k≤K−1 and (λk)0≤k≤K−1. Note that θK−1 can be calculated
by using Proposition 4. Theorem 1 provides a framework under which iRestNet is
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robust to a perturbation of its input: the upper bound of the output perturbation
is then controlled and can be derived from Proposition 6. The ability to control the
robustness of the network appears as a very desirable property in many application
fields, such as medical image processing.

6. Numerical experiments

In this section, we present numerical experiments on a set of problems of image
restoration, demonstrating that in many cases the proposed approach yields a better
reconstruction quality than standard variational and machine learning methods.

6.1. Problem formulation

We consider the non-blind color image deblurring problem, whose degradation model
reads

y = Hx+ ω, (78)

where n is the number of pixels, y = (y(j))1≤j≤3 ∈ R3n is the blurred RGB image,
x = (x(j))1≤j≤3 ∈ R3n is the ground-truth, H ∈ R3n×3n is a linear operator that
models the circular convolution of a known blur kernel with each channel of the color
image, and ω ∈ R3n is a realization of an additive white Gaussian noise with standard
deviation σ. An estimate of x can be derived from the following penalized formulation,
which includes a smoothed total variation regularization,

minimize
x∈[0,1]3n

1

2
‖Hx− y‖2 +

3∑
j=1

λ(j)
n∑
i=1

√(
Dvx(j)

)2
i

+
(
Dhx(j)

)2
i

δ2
+ 1, (79)

where Dv ∈ Rn×n and Dh ∈ Rn×n are the vertical and horizontal gradient operators,
respectively, δ > 0 is a smoothing parameter and (∀j ∈ {1, 2, 3}) λ(j) > 0 is the
regularization parameter for the jth channel x(j). For simplicity, we take δ = 0.01 in
all experiments; note that the proposed architecture could easily be modified to include
the inference of δ. The update A, which is defined in (56), is derived from (79), and is
unfolded over K iterations, as it is described in Section 4. The bound constraints in
problem (79) fall under the framework studied in Section 3.2, which provides us with
the expression for the proximity operator of the barrier and its gradient.

6.2. Network characteristics

The depth of iRestNet is fixed at K = 50. Regarding the hidden structures

(L(λ)
k )0≤k≤K−1, which are used to predict the regularization parameter, they are

chosen with regards to the regularization term in problem (79). For every j ∈ {1, 2, 3},
the penalization weight is taken as a function of the standard deviation of the image

vertical and horizontal gradients, std(Dvx
(j)
k ) and std(Dhx

(j)
k ), respectively. This leads

to the following expression,

(∀k ∈ {0, . . . ,K−1}) λ(j)k = L(λ)
k

(
x
(j)
k

)
=

Softplus (bk)σapp(xk)√
std
(
Dvx

(j)
k

)2
+ std

(
Dhx

(j)
k

)2
+ Softplus (ck)

,

(80)
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Figure 4. Architecture of Lpp. BN: batch normalization.

where (bk, ck) is a pair of scalars learned by the network and σapp(xk) is an
approximation of the noise level in the input image. The noise level is estimated as in
[51], where the median is replaced by the average, leading to the following expression
for σapp,

(∀k ∈ {0, . . . ,K − 1}) σapp(xk) =
4

3n× 0.6745

3∑
j=1

∥∥∥WHx
(j)
k

∥∥∥
1
, (81)

where WHx
(j)
k is the vector gathering the diagonal coefficients of the first level Haar

wavelet decomposition of x
(j)
k . It is worth noticing that the proposed architecture does

not require any prior knowledge about the noise level, in particular it does not have
to be the same for all input images.
The architecture of the post-processing layer Lpp is inspired from [54]: it is made of 9
convolutional layers with filters of size 3×3. The dilation factor changes from one layer
to another, so as to widen the window without creating memory issues. The artifacts
that remain in the image after going through the 50 blocks of iRestNet map a small
space, which is well captured by residual learning. Hence, we add a skip connection
between the input of Lpp and its output. Finally, a ReLU activation function is used
after each convolution, and residual learning is combined with batch normalization,
a technique which is widely used in deep learning to fasten and stabilize the training
process [54]. The final architecture of Lpp can be found in Figure 4.

6.3. Dataset and experimental settings

The training set is made of 1200 RGB images: 200 images stem from the Berkeley
segmentation (BSD500) training set, while the remaining 1000 images are taken from
the COCO training set. We use the BSD500 validation set, which is made of 100
images, to monitor the training and check if there is overfitting. The performance
of the proposed method is evaluated on two different test sets: the BSD500 test set,
which is made of 200 RGB images, and the Flickr30 test set used in [9], which is made
of 30 RGB images. The test images have been center-cropped using a window of size
256 × 256. Blurry images are produced using the following 25 × 25 blur kernels and
noise levels:

- A Gaussian kernel, which models atmospheric turbulence, with a standard
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deviation of 1.6, and a Gaussian noise standard deviation of σ = 0.008. This
configuration is denoted as GaussianA. To evaluate the robustness of the proposed
method with respect to the noise level, the same kernel is used with a Gaussian
noise whose standard deviation is uniformly distributed between 0.01 and 0.05.
The latter is denoted as GaussianB.

- The Gaussian kernel with a standard deviation of 3, and a Gaussian noise standard
deviation of σ = 0.04, denoted as GaussianC.

- The eighth and third motion test kernels from [55], which are a real-world camera
shake kernels, with a Gaussian noise standard deviation of σ = 0.01. These
settings are denoted as MotionA and MotionB, respectively.

- The square uniform kernel of size 7×7, with a Gaussian noise standard deviation
of σ = 0.01. This configuration is referred to as Square.

6.4. Training

For each degradation model, one iRestNet network is trained. We use a greedy
approach for training the first 40 layers. For L0, a minibatch of 10 images is selected
at every iteration, randomly cropped using a window of size 256 × 256, blurred with
the given kernel, and degraded with Gaussian noise; the training of L0 stops after a
fixed number of epochs: 50 for Square and 40 for the other configurations. Then, for
each image of the training set, a random crop of size 256 × 256 is selected, blurred,
corrupted with noise and passed through L0, the output is saved and used as an input
to train L1. When the training of L1 is complete, its output is used to train the next
layer, etc... For every block, the learning rate is initially set at 10−2, and multiplied
by 0.9 every 10 epochs. The rest of the network, Lpp ◦ L49 · · · ◦ L40, is trained as
one block during 300-1200 epochs, depending on the blur kernel and noise level. The
validation set is used to monitor this last step of the training. In particular, the
parameter configuration that gives the best performance on the validation set during
the training is the one saved and used for the tests.
To accelerate the training, for every k ∈ {1, . . . ,K−1}, the weights of Lk are initialized
with those of Lk−1. This training strategy is chosen with regards to its low memory
requirement: the number of layers is not limited by the hardware. Note that for
the first 40 layers, after each layer the quality of the restored training images should
improve. This property comes from the training strategy, it is not encoded in the
network: if memory was not an issue, then iRestNet could be trained in an end-to-end
fashion.
We use the ADAM optimizer to minimize the training loss, which is taken as the
opposite of the structural similarity measure (SSIM) [56] defined below

SSIM(x, x) =
(2µxµx + c1)(2σxσx + c2)(2covxx + c3)

(µ2
x + µ2

x + c1)(σ2
x + σ2

x + c2)(σxσx + c3)
, (82)

where x is the ground truth, x is the restored image, (µx, σx) and (µx, σx) are mean
and standard deviation of x and x, respectively, covxx is the cross–covariance of x and
x, and c1, c2 and c3 are constants. As the SSIM captures features that are related
to the human eye perception, it is more discriminative with regards to artifacts than
the mean square error for instance. The gradient of the SSIM loss with respect to
the trainable parameters of the network is computed using the code provided by
the authors of [56], the chainrule, autodifferentiation, and the expression given in
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Section 3.2 for the derivatives of the barrier proximity operator.
Codes are implemented in Pytorch. Some hidden layers make use of functions that
are not differentiable everywhere, like ReLU or the absolute value for instance. Since
this nondifferentiability happens only at specific points for which the left and right
derivatives are well–defined, Pytorch can handle it as explained in [57]. All trainings
are conducted using a GeForce GTX 1080 or 1070 GPU, or a Tesla V100 GPU. The
training takes approximately 3 to 4 days for each kernel.

6.5. Evaluation metrics and competitors

The restoration is evaluated in terms of the SSIM metric. The reconstruction given by
the proposed approach is compared with a solution to problem (79) obtained using the
projected gradient algorithm [35]. For every blurred image, the same regularization
parameter is taken for all channels, λ(1) = λ(2) = λ(3) = λ, and the pair (λ, δ) which
leads to the best SSIM is selected using the simplex method. The solution given by this
variational approach is referred to as VAR. The latter is an unrealistic scenario since
it assumes that there is a perfect estimator of the error, but it gives an upperbound
on the image quality that one can expect by solving (79). We also use the following
deep learning image restoration methods for comparison: EPLL [58], MLP [10], and
IRCNN [54]. In order to provide a fair comparison, these methods are tested under
the same conditions as they were trained for, and, when the setting is not relevant, no
score is provided. Since MLP, EPLL and IRCNN require the knowledge of the noise
level, for the GaussianB degradation model, we make use of the estimation of the noise
standard deviation given by the method in [51]. In addition, since some comparison
methods, like EPLL for instance, do not estimate well the borders of the images, the
SSIM index is computed excluding a 6-pixel-wide frame for all images and all tested
methods.

6.6. Results and discussion

The average SSIM obtained with the different methods for the various blur kernels
and noise levels on the BSD500 test set can be found in Table 1. The mean SSIM
achieved with iRestNet on this test set is greater than those obtained with the other
methods for all degradation models except MotionA. For this kernel, the average SSIM
achieved with iRestNet is higher than the results of VAR, EPLL and MLP, and it is
close to, but lower than the one obtained with IRCNN, which appears as the most
competitive method. IRCNN involves two steps: first, a Wiener filter is applied to
the blurred image, then, a neural network is used to predict the residual and denoise
the image. These two steps are repeated 30 times, for 30 different manually tuned
regularization parameters. In contrast, iRestNet does not require any tuning from the
user regarding the regularization parameters during training.
For completeness, the SSIM of all images of the BSD500 test set are plotted in Figure 5
for the 6 different degradation models. As one can see, iRestNet performs well in
terms of SSIM on almost all images: except for MotionA, the percentage of images on
which the proposed approach achieves a better SSIM than the comparison methods
lies between 76% (Square) and 96% (GaussianA).
An example of the visual results obtained with the different methods can be found
on Figure 6 for one image from the BSD500 test set, on which GaussianC has been
applied. One can see from inspecting Figure 6 that the contrast and the details are
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GaussianA GaussianB GaussianC MotionA MotionB Square

Blurred 0.678 0.523 0.327 0.385 0.552 0.547
VAR 0.805 0.726 0.589 0.819 0.830 0.758
EPLL 0.786 0.701 0.564 0.803 0.822 0.744
MLP 0.822 0.735 0.611 0.855 - -
IRCNN 0.842 0.770 0.622 0.902 0.908 0.834
iRestNet 0.853 0.788 0.635 0.900 0.912 0.839

Table 1. SSIM results on the BSD500 test set.

GaussianA GaussianB GaussianC MotionA MotionB Square

Blurred 0.725 0.547 0.356 0.377 0.593 0.581
VAR 0.860 0.778 0.641 0.856 0.869 0.819
EPLL 0.846 0.760 0.613 0.843 0.870 0.815
MLP 0.874 0.798 0.669 0.891 - -
IRCNN 0.886 0.819 0.678 0.927 0.930 0.887
iRestNet 0.893 0.833 0.687 0.922 0.933 0.883

Table 2. SSIM results on the Flickr30 test set.

better retrieved with iRestNet than with the competitors on this image. Figures 7
and 8 show, respectively, the barrier parameter, and the stepsize and regularization
parameters, obtained by passing the image from Figure 6 through the 50 layers of
iRestNet. As one can expect, the barrier parameter decreases and rapidly reaches
a small value, while the stepsize and regularization parameters seem to behave in
opposite ways. There is almost no blue in the image, which could explain why the
regularization parameter for the blue channel is higher than for the red and green
ones.
Since no image was taken from Flickr for training iRestNet, the results on the Flickr30
test set show how well the performance of the trained networks are transferable on
test sets with statistics that are different from those of the training set. Table 2
contains the average SSIM obtained with the different methods on the Flickr30 test
set. Similarly to the BSD500 test set, iRestNet compares favorably with the other
approaches on the Flickr30 test set. This is confirmed by the inspection of Figure 9,
which shows the visual results for one image from Flickr30 and GaussianA settings.

7. Conclusion

From a variational formulation of an inverse problem, we have derived in this paper
a novel neural network architecture by unfolding a proximal interior point algorithm.
It can be noted that the proposed approach can be extended to a set of regularization
functions, or to penalizations which are parametrized by several variables. Useful
constraints on the sought solution can be enforced thanks to a logarithmic barrier,
so providing more control over the output of the network. We have shown for
three standard types of constraints that the involved proximity operator can easily
be computed, and that its derivatives are well-defined and computable. In the
case of a quadratic case cost function, the theoretical result of Section 5 regarding
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Sorted improvement of iRestNet with regards to other methods on
the BSD500 test set using the SSIM metric: a negative value indicates a better
performance of iRestNet. (a): GaussianA, (b): GaussianB, (c): GaussianC, (d):
MotionA, (e): MotionB, (f): Square.
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Ground-truth VAR: 0.376 EPLL: 0.322

MLP: 0.395 IRCNN: 0.408 iRestNet: 0.443

Figure 6. Visual results and SSIM obtained with the different methods on one
image from the BSD500 test set degraded with GaussianC.

Figure 7. Image from Figure 6 with GaussianC: barrier parameter
(µk)0≤k≤K−1. For clarity, there is a break on the y-axis from 10−3 to 10−12,
which is indicated by two red lines.

the robustness of the network with respect to an input perturbation, ensures the
reliability of the proposed method, which is crucial for many applications. It would
be interesting to extend the scope of this study to a wider class of problems, and to
illustrate this stability result by numerical experiments on different applications like
classification. As demonstrated by our experiments in image restoration, iRestNet
performs favorably compared to state-of-the-art variational and machine learning
methods. An advantage of the proposed approach is that, in contrast with its evaluated
competitors, it does not require any knowledge about the noise level and it does
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Figure 8. Image from Figure 6 with GaussianC: stepsize (γk)0≤k≤K−1 (left) and
regularization parameter for all 3 channels for every layer (Lk)0≤k≤K−1 (right).

Ground-truth VAR: 0.861 EPLL: 0.853

MLP: 0.878 IRCNN: 0.888 iRestNet: 0.902

Figure 9. Visual results and SSIM obtained with the different methods on one
image from the Flickr30 test set degraded with GaussianA.

not involve any hand-selection of the regularization parameters. One limitation of
iRestNet is that the network needs to be trained for a given blur kernel. A direction
for future works is to extend the method to situations in which the observation model
is not fully known, so as to address blind or semi-blind deconvolution problems.
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