
HAL Id: hal-01943440
https://hal.science/hal-01943440

Submitted on 6 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Symbolically Quantifying Response Time in Stochastic
Models using Moments and Semirings

Hugo Bazille, Eric Fabre, Blaise Genest

To cite this version:
Hugo Bazille, Eric Fabre, Blaise Genest. Symbolically Quantifying Response Time in Stochastic
Models using Moments and Semirings. FOSSACS 2018 - 21st International Conference on Founda-
tions of Software Science and Computation Structures, Apr 2018, Thessaloniki, Greece. pp.403-419,
�10.1007/978-3-319-89366-2_22�. �hal-01943440�

https://hal.science/hal-01943440
https://hal.archives-ouvertes.fr

Symbolically Quantifying Response Time in
Stochastic Models using Moments and Semirings.

Hugo Bazille1, Eric Fabre1, and Blaise Genest2

1 Univ Rennes, Inria, SUMO Team, Rennes, France
2 Univ Rennes, CNRS, IRISA, Rennes, France

Abstract. We study quantitative properties of the response time in
stochastic models. For instance, we are interested in quantifying bounds
such that a high percentage of the runs answers a query within these
bounds. To study such problems, computing probabilities on a state-space
blown-up by a factor depending on the bound could be used, but this
solution is not satisfactory when the bound is large.
In this paper, we propose a new symbolic method to quantify bounds
on the response time, using the moments of the distribution of simple
stochastic systems. We prove that the distribution (and hence the bounds)
is uniquely defined given its moments. We provide optimal bounds for
the response time over all distributions having a pair of these moments.
We explain how to symbolically compute in polynomial time any moment
of the distribution of response times using adequately-defined semirings.
This allows us to compute optimal bounds in parametric models and to
reduce complexity for computing optimal bounds in hierarchical models.

1 Introduction

Response time has been considered lately as an important property of systems [8,
15,21]. In this context, one does not simply want a query to be answered eventually,
but to be answered in a reasonable amount of time. In the model-checking
community, problems on response time have been studied mainly qualitatively,
in the context of (pure, that is non stochastic) two-player games [8,21]. There,
one looks for a strategy ensuring that the lim-sup of response time is finite. It
ensures that under this strategy, there will be a bound on the response time to
any query. This has been extended in [15] to a quantitative setting, where one
wants to optimize the mean response time in a pure two-player game.

In this paper, we consider stochastic systems. In such systems, the response
time is a random variable, unlikely to be bounded as even a single probabilistic
loop on a reachable state will make the response time longer than T for a set
of runs of small but positive probability, no matter T . Instead, we propose to
quantify such response times. One way to do that is to obtain the distribution
of response times. Another way is to compute, for a probability 0 < p < 1, the
bound T that is satisfied (by a set of runs) with probability at least 1 − p. In
this paper, we tackle both problems. For that, we use the concept of moments of
the distribution of response times, as described next.

The moment of order r of a probability distribution δ over R or R+ is defined
as the integral of xrδ(x) over the support of δ, when defined (that is if xrδ(x) is
measurable and the integral is defined). For instance, the moment of order 1 is
the expected value of δ, while the moment of order 2 allows one to compute the
standard deviation of δ. Inspired by the computation of entropy for automata [10]
(see also [1] for the computation of entropy for (non-Zeno) timed-automata), we
design new semirings in which each moment corresponds to the sum of weights of
runs reaching a state. This construction can be applied to probabilistic automata
(that is, labeled discrete time Markov chains), as well as labeled continuous time
Markov chains, where time is continuous and is drawn according to some rate.
Adapting the Floyd-Warshall algorithm provides a symbolic way to perform the
computation of the n first moments in time cubic in the number of states of the
Markov Chain, and quadratic in n. For any n, we can thus compute the value
of the first n moments. In some sense, we extend the approach of [12,16] from
computing probabilities to computing any moments. This allows us to evaluate
the distribution of response times in two ways:

Firstly, thanks to the symbolic expression of moments, we prove that there
is a unique distribution having the moments of a distribution of response times
of a probabilistic automaton. We can then build a sequence of distributions
matching the first n moments, for instance the maximal entropy one [11]. Here,
maximal entropy means assuming the least information besides these moments.
This sequence of distributions is then ensured to converge in law towards the
distribution of response times.

Secondly, we study optimal symbolic bounds on the time to answer a high
percentage of queries, obtained from moments. The Tchebychev inequality pro-
vides optimal symbolic bounds when considering the space of distributions having
one given moment, of any order i. We obtain bounds optimal in the space of
distributions having two given moments, of any orders i, j. We show how this
improves Tchebychev bounds on some example. Having symbolic methods allows
for instance to deal with parametric systems where the parameters represent
uncertain probabilities. In this case, we can compute optimal bounds satisfying
all valuations of parameters. For hierarchical systems [3], which are compact
representations of large systems, our symbolic method allows to design a much
more efficient algorithm (e.g. it does not consider twice the same component) to
compute the moments, and thus the bounds. Missing proofs can be found in [5].

Related work: Response times in stochastic systems have been studied for
a long time by the perf.eval. community under the name ”first passage times”,
e.g. in [22]. Techniques used in this community to compute moments of Markov
chains are mostly based on numerical methods, e.g. [13]. While [13] has the
same complexity as our symbolic technique, it is very efficient on explicit models.
However, these numerical methods are less adaptable than our symbolic algorithm,
in particular concerning parametric or hierarchical systems.

Concerning the determinacy of the distribution given moments, it is known [20]
that phase-type distributions of order n are determined by their first 2n − 1
moments. First passage distribution time in Markov chains with n states are

2

phase type distribution of order n. However, [20] does not help characterizing
bounds as it does not ensure that a non-phase type distribution cannot have the
exact same moments as a phase type distribution, unlike our result.

Bounding the response time has also been studied in the perf.eval. community.
Again, methods used there are mostly numerical [6, 19]. In [19](p.68-69), a
symbolic bound is also provided in the particular case of moments of order 1,2
and 3. In [2], it is shown how to use the two first moments of response time across
various components to compute general bounds, using techniques close to ours,
but restricted to moments of order 1 and 2. In our paper, we provide optimal
bounds for any order (i, j) ∈ N2. Taking into account moments of order i, j > 3
is important when the proportion of runs to answer is close to 1.

Last, computing moments find other applications. For instance, in [4,7, 14],
complex functions describing the evolution of molecular species are approximated
using the first k moments, for some k.

2 Probabilistic Automata

We first introduce a simple class of models, namely probabilistic automata (also
called labeled discrete time Markov chains), on which we can demonstrate our
techniques. Later, we will extend our results to handle continuous time, con-
sidering Continuous-Time Markov Chains (CTMC), as well as parametric and
hierarchical systems.

Definition 1. A probabilistic automaton A over a finite alphabet Σ is a tuple
(S, Pr, δ0) where:

– S is a finite set of states,
– Pr : S ×Σ × S → [0, 1] is a stochastic transition function such that for all
s ∈ S,

∑
a∈Σ,t∈S

Pr(s, a, t) = 1: the weights of paths leaving s sum to 1,

– δ0 : S → [0, 1] is the initial distribution over states such that
∑
s∈S

δ0(s) = 1.

Example 1. For instance, the model depicted on Fig. 1 is a probabilistic automa-
ton with 3 states {1, 2, 3}. There is a transition between 1 and 2 labeled query
with probability 1. From state 2, with probability .9 we stay in state 2 with a
transition labeled wait, and with probability .1 we go to state 3 with a transition
labeled response. We loop in state 3 with probability 1.

1 2 3query
0.1

response

0.9

wait

1

compute

Fig. 1. A simple example of a query-response model

3

A finite sequence π = s0, a1, s1, . . . , an, sn ∈ (SΣ)nS is called a finite path
starting from s0 and ending in sn, and a transition t ∈ π if t = siai+1si+1 for
some i. We denote |π| = n the length of the path π. For a path π1 ending in
sn and a path π2 starting from sn, we can define the concatenated path π1 · π2
where the last node of π1 and the first node of π2 are merged. A path π1 is a
prefix of π if there exists a path π2 such that π1 · π2 = π.

For a path π starting in a state s0, we define P(π) =
∏
t∈π

Pr(t) the probability

that a path with prefix π is executed from s0. A path π is realizable if P(π) > 0.
Let s be a state, and Π be a set of finite paths starting from s such that

no path in Π is a prefix of another path in Π. Then the probability that a
path starting from s has a prefix in Π is P(Π) =

∑
ρ∈Π

P(ρ). We say that Π is

disjoint if no path ρ of Π is a prefix of another path ρ′ 6= ρ of Π or similarly,
Cyl(ρ) ∩ Cyl(ρ′) = ∅ with Cyl(ρ) = {π, ρ prefix of π}.

Some labels of an automaton will be of particular interest concerning response
time. Let ΣQ ⊆ Σ be a subset of labels standing for queries, and ΣR ⊆ Σ be a
subset of labels standing for responses. For simplicity, we will assume that there
is a unique query type ΣQ = {q} and a unique response type ΣR = {r}, with
q 6= r. We will also assume that there is no path with two (similar) queries q.
To handle cases with several query/response types, it suffices for each type to
consider only queries and answers of that type and disregard other types.

Problem statement: We are interested in quantifying the time between queries
and responses, called the response time, which is a random variable. A way
to quantify it is to produce the distribution of response times, either for each
transition labeled by a query, or averaged on these transitions, weighted by the
probability to see each of these transitions. Another way is to answer model-
checking questions such as: what is the smallest delay T such that the mass of
paths unanswered after T units of time is smaller than some probability p?

To compute both the distribution and the delay T , we will use the so called
moments of the distribution of response times. The moment of order 1 is the mean
value, and the moment of order 2 allows to compute the standard deviation.

3 Symbolically computing moments using semirings

In this section, we define moments and explain how to compute them symbolically
using appropriately-defined semirings.

Let X be the random variable of the response time. If all queries are answered,
then X takes values in Nmax, else X takes values in Nmax ∪ {∞}. Let p(x) be
the probability that the response is obtained x units of time after the query, that
is, the probability that X = x. Variable p is a distribution over response time,
with

∑
x p(x) = 1.

Definition 2. For p : N→ [0, 1] and n ∈ N, we define the n-th moment of p by∑
x∈N p(x) · xn = E(Xn), that is the expected value of Xn.

4

3.1 Semirings associated with moments

We will compute moments of the distribution of response times by considering
each query individually. We can then take e.g. the average over all queries (as
we assumed that there are no two queries on the same path). Thus, we first fix
a state q, target of a transition labeled by a query. State q symbolizes that a
query has just been asked. We then let R be the set of target states of transitions
labeled by a response. A state is in R if a response to this query has just been
given. For instance, on Fig. 1, we have q = 2 and R = {3}.

We introduce a set of semirings that will allow us to compute symbolically the
moment of order n of the distribution of response times to the query associated
with state q, for all n ∈ N. We will compute the moment inductively on a
disjoint subset Π of paths of A from q to R. For an integer n, we denote
µn(Π) =

∑
ρ∈Π

P(ρ)|ρ|n. Let PathRq be the set of paths in the automaton A

between q and the first occurrence of R. Notice that PathRq is disjoint. Thus, we

have that µn(PathRq) is the moment of order n of the distribution of response
times to the query associated with state q. To avoid some heavy notations, when
R is reduced to one state t, let µn(Pathts) be the set of paths between s to the
first occurence of t and we denote µn(s, t) = µn(Pathts).

We now give some properties of µ. Let Π1 be a set of paths ending in some
state s and let Π2 be a set of paths starting from s. We denote by Π1 ·Π2 the
set of paths ρ1ρ2 with ρ1 ∈ Π1 and ρ2 ∈ Π2.

Proposition 1. For all n, we have µn(Π1 ·Π2) =
n∑
i=0

(
n
i

)
µi(Π1) · µn−i(Π2)

This property hints to a set of semirings (R,⊕n,⊗n, 0n, 1n) with good prop-
erties to compute moments. For (n+ 1)-tuples (x0, . . . , xn) and (y0, . . . , yn), we
define operations ⊕n and ⊗n:

– (x0, . . . , xn)⊕n (y0, . . . , yn) = (x0 + y0, . . . , xn + yn)

– (x0, . . . , xn)⊗n (y0, . . . , yn) = (z0, . . . , zn) with zi =
i∑

j=0

(
i
j

)
xjyi−j

The neutral element for ⊕n is 0n = (0, . . . , 0). 0n is an annihilator for ⊗n.
The neutral element for ⊗n is 1n = (1, 0, . . . , 0). In the following, we will denote
the different laws and elements by ⊕, ⊗, 0 and 1.

Proposition 2. For n ≥ 0, (Rn+1,⊕,⊗, 0, 1)defines a commutative semiring.

Notice that if for all i ≤ n, we have xi = µi(Π1) and yi = µi(Π2), denoting
(z0, . . . , zn) = (x0, . . . , xn) ⊗n (y0, . . . , yn), we get µi(Π1 ·Π2) = zi. Further, if
both Π1, Π2 are disjoint, and if no path of Π1 (resp. Π2) is a prefix of a path of
Π2 (resp. Π1), then µi(Π1 ∪Π2) = xi + yi.

5

3.2 Computations in a semiring

Following the Floyd-Warshall algorithm to sum weights of paths reaching a state,
we will decompose inductively PathRq using operations ∪ and ·. We will then use

the semiring (Rn+1,⊕,⊗, 0, 1)to perform these computations inductively. The
induction will be over the number of states in S. Let G be a subset of S disjoint
with R: G ∩ R = ∅. For all state s ∈ S \ R, we define Pathts(G) = {s0 · · · sn |
s0 = s, sn = t,∀1 ≤ i ≤ n − 1, si ∈ G} the set of paths from state s to state t
using only states G, except for the initial state, which is s and for the last state
which is t, even if s, t ∈ R or s, t /∈ G.

For a set of paths Π, we define wn(Π) = (P(Π), µ1(Π), . . . , µn(Π)). Let
g ∈ G be a state of G. A path ρ in Pathts(G) has two possibilities: either it does
not use g, or it uses g one or several times. We deduce the inductive formula:

Proposition 3. wn(Pathts(G)) = wn(Pathts(G \ {g}))⊕
wn(Pathgs(G \ {g}))⊗

(∞⊕
k=1

wn(Pathgg(G \ {g}))⊗k
)
⊗ wn(Pathtg(G \ {g}))

Proof (Sketch of). If ρ does not use g, we have ρ is in Pathts(G\{g}). Otherwise,
ρ can be expressed as ρ0 . . . ρk with:

– ρ0 is in Pathgs(G \ {g}),
– ρk is in Pathtg(G \ {g}),
– and for all 0 < j < k, ρj ∈ Pathgg(G \ {g}).

We can then write an inductive formula satisfied by Pathts(G):

Pathts(∅) = {(s, a, t) | Pr(s, a, t) 6= 0}

Pathts(G) = Pathts(G \ {g}) ∪
∞⋃
k=1

{ρ0...ρk | ρ0 ∈ Pathgs(G \ {g}),

ρk ∈ Pathtg(G \ {g}),∀j ∈ [1, k − 1], ρj ∈ Pathgg(G \ {g})}
ut

In order to use this formula, we need to compute
∞⊕
k=1

wn(Pathgg(G\{g}))⊗k =

wn(Pathgg(G)), which represents what happens along a cycle from g to g. Let
(g,Π) a pair with g a state and Π a set of paths (cycles) using g exactly twice:
the first state and the last states are g. The pair (g,Pathgg(G \{g})) satisfies this

property. We define w∗n(Π) =
∞⊕
k=1

wn(Π)⊗k. The restriction on (r,Π) ensures

that
∞⋃
k=1

Π⊗k is disjoint. We show that w∗n(Π) is defined in most cases, namely

when P(Π) < 1.

Proposition 4. Let Π be a set of paths using state g exactly twice, as first and
last state. If P(Π) < 1, then

w∗n(Π)[0] = w∗0(Π) = P(
∞⋃
k=1

Π⊗k) =
1

1− P(Π)
, and for i > 0

6

w∗n(Π)[i] = µi(
∞⋃
k=1

Π⊗k) =
1

1− P(Π)

i−1∑
j=0

Ç
i

j

å
wn(Π)[i− j]× w∗n(Π)[j]

Notice that P (Π) = 1 describes cases where s cannot reach t (as t /∈ G, if
P(wn(Pathgg(G)) = 1, it would mean that every path reaching g stays in G
forever, and in particular never meets t). Thus, we first compute the set of states
S1 from which there exists a path to R. Notice that for each set Π of paths
ending in g ∈ S1 \R, we have P(Π) < 1, because there is a positive probability
to reach R from g, which is not captured by paths in Π.

3.3 A symbolic algorithm

From the inductive formulae to compute set of paths from subsets of paths and to
compute w∗n(Π)[i] from w∗n(Π)[j] for j < i, we deduce Algorithm 1, following the
ideas of Floyd-Warshall, incrementally adding non response states from S1 \R,
which can be used as intermediate states. Notice that states in S \ S1 cannot
reach R anyway. This algorithm is symbolic (or algebraic) in that every constant
(e.g. Pr(s, a, t)) can be replaced by a variable (see e.g. Section 4.2).

Theorem 1. Let A = (S, δ, δ0) be a probabilistic automaton. One can compute
µi(s, t) for all i ≤ n and s, t ∈ S in time O(n2 × |S|3).

Proof. In Algorithm 1, after running the outer for-loop on g1, . . . , gj , we have
wn(s, t)[n] = µn(Pathts({g1, . . . , gj})). At the end of Algorithm 1, we obtain
wn(s, t)[n] = µn(Pathts) = µn(s, t).

To obtain µi(s, t) for all i ≤ n, it suffices to run Algorithm 1 inductively on
moment of order 1, . . . , n. Computing w∗n[i](s, t) in the inner for-loop takes time
O(i) as wn[j](s, t) = wj [j](s, t) has already been computed inductively for all
j < i. This yields the complexity of O(

∑n
j=1 i× |S|3) = O(n2 × |S|3). ut

Algorithm 1: Algorithm computing the moment of order n

for s ∈ S do
for t ∈ S do

%Initialization
w :=

∑
a∈Σ

Pr(s, a, t)

wn(s, t) := (w,w, . . . , w)
end

end
for g ∈ S1 \R do

for s ∈ S do
for t ∈ S do

wn(s, t) := wn(s, t)⊕ wn(s, g)⊗ w∗n(g, g)⊗ wn(g, t)
end

end

end

7

Now, for each query q, we have µi(PathRq) =
∑
r∈R µi(q, r), as Pathr1q and

Pathr2q have no path prefix of each other for r1 6= r2, r1, r2 ∈ R. Now, the
moment of order n of the distribution of response times of q is formally either ∞
if µ0(PathRq) < 1 (there is positive probability to never answer q, that is have

infinite response time), and µn(PathRq) otherwise.

Example 2. For the example of figure 1, unfolding the algorithm for n = 2 (that
is for probability, and moments of order 1 and 2) gives after initialization:

w(1, 2) = (1, 1, 1), w(2, 2) = (0.9, 0.9, 0.9), w(2, 3) = (0.1, 0.1, 0.1), and
w(1, 3) = (0, 0, 0), as there is no direct transition from state 1 to state 3.

There are no paths with intermediary states 1 or 3, so g = 1 or g = 3 does not
have any impact. For paths with intermediary states g = 2, the algorithm gives:

– w(2, 2)← w(2, 2)⊕ w(2, 2)⊗ w(2, 2)∗ ⊗ w(2, 2) = w(2, 2)⊗ w(2, 2)∗

– w(2, 3)← w(2, 3)⊕ w(2, 2)⊗ w(2, 2)∗ ⊗ w(2, 3) = w(2, 3)⊗ w(2, 2)∗

– w(1, 3)← w(1, 3)⊕ w(1, 2)⊗ w(2, 2)∗ ⊗ w(2, 3)

We have w(2, 2)∗ = (1
1−0.9 ,

0.9
(1−0.9)2 ,

0.9
(1−0.9)2 + 2×0.92

(1−0.9)3) = (10, 90, 1710)

At the end of the algorithm, we obtain µi(2, 3) = µi(Path
{2}
2) = w(2, 3) =

(0.1, 0.1, 0.1)⊗ (10, 90, 1710) = (1, 10, 190). Hence, in this probabilistic automata,
the probability of responding to the query is 1, in a mean time of 10, with a
standard deviation of

√
190− 102 = 9.5.

3.4 Extension to continuous time

We now extend the symbolic computation of moments to continuous time Markov
Chains (CTMCs). In order to be as close as possible to the setting of probabilistic
automata, we use the sojourn time representation of CTMCs. This representation
is fully equivalent with the more usual representation of CTMCs with transition
rates, see chapter 7.3 of [9].

Definition 3. A CTMC is a tuple (S, Pr, δ0, (λs)s∈S) with:

– (S, Pr, δ0) is a probabilistic automata, and
– for all s, λs is the sojourn parameter associated with state s. That is, the

PDF function of the sojourn time is Xs(t) = λse
−λs·t and the probability to

stay in s at least t units of time is e−λs·t.

In this continuous context, we need integrals instead of sums to define the
i-th moment of a variable X: µi(X) =

∫∞
0
X(t)tidt = 1. For every state s ∈ S,

let Xs(t) = λse
−λs·t. For all i, for all s, µi(Xs) is well defined and µi(Xs) = i!

λi
s

We can easily extend the computation of moments for CTMCs. The inductive
formulas for probabilities and moments of the reaching time distribution remain
unchanged. We only need to change the definition of moments for every transition,
which is input at the initialization phase of the algorithm 1: for all s, t ∈ S, we
set wn(s, t) to be (w0(s, t), w1(s, t), . . . , wn(s, t)), where w0(s, t) =

∑
a∈Σ

Pr(s, a, t)

and wi(s, t) =
∑
a∈Σ

Pr(s, a, t) i!λi
s

for all i ∈ [1, n].

8

Theorem 2. Let A = (S, Pr, δ0, (λs)s∈S) be a CTMC. One can compute µi(s, t)
for all i ≤ n and s, t ∈ S in time O(n2 × |S|3).

4 Uniqueness of distribution, parameters and hierarchy

In this section, we present cases where having a symbolic algorithm allows efficient
techniques, compared to numerical methods. We start with hierarchical systems
which are a way to compactly describe systems. Then, we present the possibility
to work on systems with parameters. Finally, thanks to the symbolic expression
of moments, we prove that there is a unique distribution having the moments of
a distribution of reaching times of a (continuous-time) Markov chain.

4.1 Hierarchical Probabilistic Automata

We use notations mainly from [3] to describe hierarchical structures:

Definition 4. A hierarchical probabilistic automaton (HPA) A over a finite

alphabet Σ is a tuple of n modules (Si, P ri, λi, s
0
i , s

f
i)1≤i≤n where for all i,

– Si is the finite set of states of module i,
– s0i ∈ Si is the initial state of module i, and sfi the finial state of module i,

– Pri : Si \ {sfi } ×Σ × Si → [0, 1] is a stochastic transition function such that
for all s ∈ Si \ {sf} (resp. s ∈ S1 for i = 1),

∑
a∈Σ,t∈Si

Pri(s, a, t) = 1,

– λi : Si → {i + 1, . . . , n} is a partial mapping associating some states of Si
from module i to deeper modules.

Intuitively, the system starts in module 1, in state s01. Each time a state s ∈ Si
associated with a module j > i, that is λi(s) = j, is entered by a transition

t→ s, the system goes to state s0j and stays in Sj till sfj is seen, in which case it
comes back to state s and takes a transition s→ t′ (according to the probability
distribution from s). This process can be repeated from any state in a module i
to any module j as long as j > i.

To define the semantics of (Si, P ri, λi, s
0
i , s

f
i)1≤i≤n formally, we inductively

replace states associated with the deepest module by their definition. Indeed,
nodes from the deepest module are not associated with any module by definition.
Once every module has been replaced, a (flat) probabilistic automaton is obtained
with the intended semantics.

s0i Si+1 Si+1 sfi

s0n s1n s2n sfn

1
2

1
2

Fig. 2. An HPA with an exponential number of states.

9

si0 sifSi+1
0.1

0.9

Fig. 3. An HPA without redundancy

Hence, HPA have the same expressive power as probabilistic automata. Yet,
they may be much more compact: we denote by |A| the size of the description
of the hierarchical automaton and by ‖A‖ the size of the unfolded automaton.
The interest of such a description is that it may be exponentially smaller than
the size of the unfolded automaton, as depicted in figure 2: here, every module
contains two copies of the next module, with the exception of the last one. While
the number of states in the description is linear (4n), the number of states in the
unfolded automaton is equal to 3 · 2n − 2.

The symbolic Algorithm 1 is naturally modular, in that computations on
a module used several times can be performed only once by considering states
of the deepest module first. Indeed, one module can be summarized by three
information items: the probability (and moments) to answer the query in this
module, the probability (and moments) to leave this module without answering
the query in the module and the probability to stay forever in this module without
answering the query. Then the information can be used for shallower modules:
every time a state s in a module i is associated with the deepest module, it can
be replaced by this small set of states containing all the relevant information
about the deepest module (and computed only once). Then, this process can
be repeated to eliminate modules recursively. This leads to a complexity in the
small size |A| of the compact HPA representation rather than in the large size
||A|| of the unfolded PA:

Theorem 3. Let A be an HPA with k modules of size at most m. The n first
moments of the distribution associated with A can be computed in time O(n2km3).

Not only does Theorem 3 reduces the complexity for hierarchical representa-
tions with redundancy (O(n2k) for the example in Fig. 2 instead of O(n223k)
when running the algorithm in [13] on the equivalent flat PA), it also gives a
better complexity on structure without redundancy. Consider the example in
figure 3, without redundancy, with an unfolded PA with 3k+ 1 states. Theorem 3
takes time O(n2k33), while the algorithm in [13] on the equivalent flat PA would
take time O(n2(3k)3).

4.2 Parametric systems

Another case where having a symbolic algorithm is helpful is when the system
has parameters standing for probability values (see for instance Fig. 4, where p
is such a parameter). We illustrate two cases here.

10

32

4

1

5

1

1

1
4

1
2

1
2

p 1− p

1
4

1
4

Fig. 4. Example of a parametric system with set of parameters {p}

The first case is when parameters help with redundancy. Often, stochastic
systems reuse the same constructions, but with different probability values. This
would be naturally encoded as a module M of a hierarchical system using a set
of parameters P . This module M would be used several times, with different
values of parameters specified in each module using it.

In this case, one can run Algorithm 1 on M , using the parameter values
literally in the equations. This yields rational functions fn : [0, 1]P → (0, 1] of
the parameters expressing the moments of order n for module M , for all n. For
instance with the example of Fig. 4, the probability to reach state 4 from state 1

is equal to 2p+4
5p+4 , and the mean time is equal to 112+44p−12p2

(5p+4)(2p+4) . Each time module

M is used, fn can be evaluated using the value of the parameters P for this
particular usage.

Another possible use of parameters is to model uncertainty of values. In the
example of Fig. 4, we may not know exactly the value of parameter p, but only
know that it is above 0.8. In this case, one may be interested of synthesizing
the largest (resp. smallest) moment of order n which is smaller (resp. larger)
than the moment of any system realizing the parametric system, that is where p
is replaced by any value above 0.8. This will be particularly interesting in the
next section discussing bounds. To do so, one can use the rational function fn to
compute its minimal and maximal values (e.g. deriving it and looking for 0 with
Euler’s method). In this way, we also obtain the best/worst value for p.

4.3 Uniqueness of the distribution

Last, we use the symbolic expression of moments obtained in Section 3 in order
to prove the uniqueness of the distribution having moments of first passage times
of (continuous-time) Markov chains. Thus this distribution is the distribution of
response times of the system considered.

Notice that in general, there may be several distributions that correspond to
a given sequence of moments (µn)n∈N. This would compromise approximating
the distribution using moments, as there would not be a unique such distribution.

11

Example 3. Let us consider a distribution δ on R+. If δ has the sequence of
moments {µn = n! | n ∈ N}, then δ is the exponential distribution with parameter
1. Similarly, the sequence of moments {µn = (2n)! | n ∈ N} for a distribution on
R+ is characteristic of the square of the exponential distribution of parameter 1.

Now, consider the cube of the exponential distribution of parameter 1. Its
sequence of moments is {µn = (3n!) | n ∈ N}. However, there exist an infinite
number of distributions with this sequence of moments [18]

We now prove answer positevely to the Stieljes moment problem for the
case of the distribution of response time in a (continuous-time) Markov chain,
that is its sequence of moments respects the Carleman’s condition from year
1922, that guarantees the uniqueness of the distribution. The condition is that∑

n∈N µn(δ)−
1
2n =∞.

Theorem 4. Let A be a probabilistic automaton or a CTMC. For all n ∈ N, let
µn be the moment of order n of the times of first passage in a set of state R of
A. Then there exists a unique distribution δ such that µn(δ) = µn for all n ∈ N.

Sketch of proof : We first consider CTMC where all states have the same
sojourn time λ. Then, a path that uses i transitions to answer a query will follow
the gamma distribution with parameters (i, λ). We have a symbolic expression for
moments of this distribution thanks to Section 3. This can be used to minimize∑∞
n=0 µn(δ)−

1
2n by a diverging sum.

For general CTMCs, we use the fact that E(Γ (i, λ1)n) ≤ E((E(λ1) + · · · +
E(λi))

n) iff λ1 = min(λj)
i
j=1. It allows us to minimize the Carleman’s sum of

the CTMC considered by the Carleman’s sum of the CTMC where all sojourn
times are replaced by the smallest sojourn time λ, hence the divergence.

The case of probabilistic automaton is simpler. ut

We show how this theorem allows to approximate distribution δ in the next
subsection.

4.4 A sequence of distributions converging towards δ

Since we have unicity of the distribution corresponding to the sequence of moments
of the distribution of response time of a probabilistic automaton, we obtain the
following convergence in law:

Proposition 5. [17] Let δ be the distribution of response times of a probabilistic
automaton. Let (δi)i∈N be a sequence of distributions on R+ such that for all n,
lim
i→∞

µn(δi) = µn(δ). Then, if Ci is the cumulative distribution function of δi and

C the cumulative distribution function of δ, then for all x lim
i→∞

Ci(x) = C(x).

Thus, C can be approximated by taking a sequence (δn)n∈N of distribution
such that for all i ≤ n, µi(δn) = µi(δ). A reasonable choice for δn is to consider
the distribution of maximal entropy corresponding to the moments µ1, . . . , µn, as
presented in [11]. The distribution of maximal entropy can be understood as the

12

distribution that assume the least information. It can be approximated as close
as desired, for instance 1

n close to the distribution of maximal entropy having
moments (µ1(δ), . . . , µn(δ)). Applying Prop. 5, we thus obtain that the cumula-
tive distribution function associated with δi converges towards the cumulative
distribution function associated with δ.

5 Bounding the response time

We now explain how to use moments in order to obtain optimal bounds on the
response time. First, notice that as soon as there exists a loop between a query
and a response (as in Fig.1), then there will be runs with arbitrarily long response
times, although there might be probability 1 to eventually answer every query
(which is the case for Fig.1). We thus turn to a more quantitative evaluation of
the response time.

Let 0 < p < 1. We are interested in a bound T on the delay between a query
and a response such that more than 1− p of the queries are answered before this
bound. For a distribution δ : R+ → R+ of response times, we denote by B(δ, p)
the lowest T such that the probability to have a response time above T is lower
than p. Equivalently, we look for the highest T such that the probability of a
response time above T is at least p.

We place ourselves in the general setting of continuous distributions, where
Dirac delta functions are allowed for simplicity. Discrete distributions form a
special case, with delta functions at integer values. One could get rid of Dirac delta
functions by ε-approximating them without changing the moments, obtaining
the same bounds as we prove here.

5.1 Tchebychev bounds associated with one moment

Let i ∈ N and µi > 0. We let ∆i,µi
be the set of distributions of response time

which have µi as moment of order i. We are interested in bounding B(δ, p) for
all δ ∈ ∆i,µi

, that is for all distributions with µi as moment of order i. Such a
bound is provided by Tchebychev inequality, and it is optimal:

Proposition 6. Let i ∈ N and µi. Let αi(µi, p) = i

»
µi

p . Then for all δ ∈ ∆i,µi
,

we have B(δ, p) ≤ αi(µi, p). Further, ∃δ ∈ ∆i,µi such that B(δ, p) = αi(µi, p).

Proof. It suffices to remark that µi > pbi for b the bound we want to reach.
Further, this bound is trivially optimal: it suffices to consider a distribution with
a Dirac of mass (1− p) at 0 and a Dirac of mass p at αi(µi, p). ut

Given a probabilistic automaton, let δ be its associated distribution of response
time. We can compute its associated moments µi using Algorithm 1, described
in the previous section. We thus know that δ ∈ ∆i,µi

. Given different values of i,
one can compute the different moments and apply for each of the Tchebychev
bound and use the minimal bound obtained.

13

Understanding the relationship between the αi is thus important. For i < j,

one can use Jensen’s inequality for the convex function f : x→ x
j
i over R+, and

obtain: (µi)
j ≤ (µj)

i. For instance, µ2
1 < µ2.

For p = 1, this gives αi(p = 1) < αj(p = 1). On the other hand, for p
sufficiently close to 0, we have αj(p) < αi(p). That is, when p is very small,
moments of high orders will give better bounds than moments of lower order. On
the other hand, if p is not that small, moments of small order will suffice.

5.2 Optimal bounds for a pair of moments

We now explain how to extend Tchebychev bounds to pairs of moments: We
consider the set of distributions where two moments are fixed. Let i < j be two
orders of moments and µi, µj > 0. We denote by ∆

j,µj

i,µi
the set of distributions

with µi, µj as moments of order i, j respectively. As ∆
j,µj

i,µi
is strictly included into

∆i,µi and in ∆j,µj , min(αi(p), αj(p)) is a bound for any δ ∈ ∆j,µj

i,µi
. However, it

may be the case that min(αi(p), αj(p)) is not optimal. We now provide optimal

bounds αji (p) for any pair i < j of order of moments and probability p:

Theorem 5. Let i < j be natural integers, p ∈ (0, 1), and let µi, µj > 0. Let

αi = (µi

p)
1
i and αj = (

µj

p)
1
j . We define αji (p) to be:

– αi if αi ≤ αj,
– (

µj−M
p)

1
j otherwise, where 0 ≤M ≤ µj is the smallest positive real root of:

µi = (1− p)
j−i
j M

i
j + p

j−i
j (µj −M)

i
j .

For all δ ∈ ∆j,µj

i,µi
, we have B(δ, p) ≤ αji , and ∃δ ∈ ∆j,µj

i,µi
with B(δ, p) = αji

To obtain a value for M , one can use for instance Newton’s method. For
i = 1, j = 2, we can compute explicitly M and obtain:

α2
1 = µ1 +

(1− p)
p

(µ2 − µ2
1).

Example 4. Consider the distribution associated with the system of Fig.1. We
obtain the following bounds αi(p), α

i−1
i (p) considering different values of p and i:

i µi αi(0.1) αi−1i (0.1) αi(0.01) αi−1i (0.01)
1 10 100 100 1000 1000
2 190 43.6 38.5 137.8 104.9
3 5410 37.8 36.8 81.5 73.9
4 205390 37.9 37.8 67.4 63.8
5 9747010 39.6 37.9 64.2 61.43
6 555066190 42.1 39.6 62.8 61.47

For p = 0.1, it is not useful to consider moments of order higher than 3. On
the other hand, for p = 0.01, the moment of order 5 provides better bounds than
moment of lower orders.

14

For hierarchical systems, one can compute moments in an efficient way using
Theorem 3, and then use Theorem 5 to obtain the associated optimal bounds. In
order to handle parametric systems, we use the following result which allows to
underapproximate the value of M , and thus overapproximate the optimal bound,
by iterating the following operator f from x = 0:

f : x 7→ (µi − [µj − x]
i
j p

j−i
j)

j
i

(1− p) j−i
i

Lemma 1. (fn(0))n∈N is strictly increasing and converges towards M .

We show how to ε-approximate the optimal bound B of a parametric proba-
bilistic automaton A with set of parameters P , that is such that for all val ∈ V P ,
the probabilistic automaton A with valuation val for parameter values has a
bound b(val) ≤ B and there exists a val ∈ V P such that b(val) = B. First, we
obtain the moments as symbolic functions of the parameters using Section 4.2.
Then, we compute M1 = f(0) as a function of the parameters, using Lemma 1
and replacing µi, µj by their expression. One can then compute the minimum m1

of function M1 over all the parameters. We then proceed with M2 = f(m1), and
so on till obtaining a value m. This allows to obtain a lower bound m over values
of M for all parameter values. Computing the largest µj over all parameters

allows to obtain an upper bound Bup: B ≤ Bup = (
µj−m
p)

1
j . A lower bound

Blw is easily obtained by considering the value ≥ m of M for the parameters
maximizing µj . If the distance between Bup and Blw is larger than ε, one can
partition the space of parameter values in zones and proceed in the same way on
each zone, forgetting zones for which Bup is lower than the Blw of another zone,
till the distance between max(Blw) and max(Bup) over zones is smaller than ε.

6 Conclusion

In this paper, we have shown how to compute moments symbolically for proba-
bilistic automata and CTMCs, using adequately defined semirings. This method
has the same complexity as the efficient numerical methods already known [13].
The proof of this symbolic computation allows proving that there is a unique
distribution of response time corresponding to a probabilistic automaton or a
CTMC. This allows obtaining simple approximated distributions scheme converg-
ing in law towards the distribution of response time. The symbolic computation
of moments also allows computing moments in compact (hierarchical) models
faster, as well as finding lowest/highest value of moments in parametric systems.

We also provide optimal bounds on the delay after which very few queries stay
unanswered. It is optimal when considering distribution displaying a given pair
of moments, and we showed on a simple example how this improves Tchebychev
bounds. This can be used efficiently to obtain bounds for compact (hierarchical)
models or to compute an optimal bound which fulfills the response of almost all
queries even for systems where some parameter values are not known exactly.

15

References

1. E. Asarin, N. Basset, A. Degorre. Entropy of regular timed languages. In Information
and Computation 241, p.142-176, Elsevier, 2015.

2. R. Angrish, S. Chakraborty. Probabilistic Timing Analysis of Asynchronous Systems
with Moments of Delay. ASYNC’02, IEEE, 2002.

3. R. Alur. Formal analysis of hierarchical state machines. In Verification: Theory
and Practice, p.42-66, 2002.

4. M. Backenköhler, L. Bortolussi, V. Wolf. Generalized Method of Moments for
Stochastic Reaction Networks in Equilibrium. CMSB’16, LNCS 9859, 2016.

5. H. Bazille, E. Fabre, B. Genest. Symbolically Quantifying Response Time in
Stochastic Models using Moments and Semirings. https://perso.crans.org/

~genest/BFG18.pdf
6. J. Bradley, N. Dingle, U. Harder, P. Harrison, W. Knottenbelt. Response Time

Densities and Quantiles in Large Markov and Semi-Markov Models. In Performance
Evaluation of Parallel, Distributed and Emergent Systems 1, 2006.

7. S. Bogomolov, T. Henzinger, A. Podelski, J. Ruess, C. Schilling. Adaptive Moment
Closure for Parameter Inference of Biochemical Reaction Networks. CMSB’15,
LNCS 9308, 2015.

8. K.Charterjee, T. Henzinger, F. Horn. The complexity of request-response games.
LATA’11, LNCS 6638, 2011.

9. C. Cassandras, S. Lafortune. Introduction to Discrete Event Systems. Springer,
2007.

10. C. Cortes, M. Mohri, A. Rastogi, M. Riley. On the computation of the Relative
Entropy of Probabilistic Automata. In International Journal of Foundations of
Computer Science (IJFCS), p.219-242 , 2006.

11. T. Cover, J. Thomas. Elements of Information Theory. Wiley, 2006.
12. C. Daws. Symbolic and Parametric Model Checking of Discrete-Time Markov

Chains. ICTACT’04, LNCS 3407, p. 280-294, 2004.
13. T. Dayar, N. Akar. Computing moments of first passage times to a subset of states

in Markov chains. In SIAM Journal on Matrix Analysis and Applications, p.396-412,
2005.

14. A.M. Gonzalez, J. Uhlendorf, J. Schaul, E. Cinquemani, G. Batt, G. Ferrari-Trecate.
Identification of biological models from single-cell data: a comparison between
mixed-effects and moment-based inference. ECC’13, IEEE, p.3652-3657, 2013.

15. F. Horn, W. Thomas, N. Wallmeier, M. Zimmerman. Optimal Strategy Synthesis
for Request-Response Games. In RAIRO 49(3), p.179-203, 2015.

16. N. Jansen, F. Corzilius, M. Volk, R. Wimmer, E. Abrahm, J.-P. Katoen, B. Becker.
Accelerating Parametric Probabilistic Verification. In QEST’14, LNCS 8657, p.
404-420, 2014.

17. Y. Prohorov, Y. Rozanov. Probability Theory, Basic Concepts · Limit Theorems
Random Processes. Translated from Russian, Springer, 1969.

18. J. Stoyanov. Determinacy of Distributions by Their Moments. ICMSM’06, 2006.
19. Á. Tari. Moments based bounds in stochastic models, PhD Thesis. Budapesti

Műszaki és Gazdaságtudományi Egyetem, 2005.
20. M. Telek, G. Horvéth. A minimal representation of Markov arrival processes and a

moments matching method. In Performance Evaluation, p.1153-1168, 2007.
21. N. Wallmeier, P. Hütten, W. Thomas. Symbolic Synthesis of Finite-State Controllers

for Request-Response Specifications. CIAA’03, 2003.
22. D. Yao. First-passage-time moments of Markov processes. In Journal of Applied

Probability, p.939-945, 1985.

16

https://perso.crans.org/~genest/BFG18.pdf
https://perso.crans.org/~genest/BFG18.pdf

Appendix

Proofs for Section 3

Proposition 1. For all n, we have µn(Π1 ·Π2) =
n

Σ
i=0

(
n
i

)
µi(Π1) · µn−i(Π2)

Proof. µn(Π1.Π2) = Σ
π1∈Π1

Σ
π2∈Π2

P(π1π2)|π1π2|n

= Σ
π1∈Π1

Σ
π2∈Π2

P(π1)P(π2)
n

Σ
i=0

(
n
i

)
|π1|i|π1|n−i

=
n

Σ
i=0

(
n
i

)
Σ

π1∈Π1

P(π1)|π1|i Σ
π2∈Π2

P(π2)|π2|n−i

=
n

Σ
i=0

(
n
i

)
µi(Π1)µn−i(Π2) ut

Proposition 2. For n ≥ 0, (Rn+1,⊕,⊗, 0, 1)defines a commutative semiring.

Proof. It is clear that (Rn+1
+ ,⊕, 0) is a commutative monoid. Associativity and

commutativity in (Rn+1
+ ,⊗, 1) come from the symmetric role of the xi and yi in

⊗. Thus, we have to prove that ⊗ is distributive over ⊕. Since ⊗ is commutative,
we only have to prove that for all x, y, z ∈ Rn+1

+ , (x⊗ y)⊕ (x⊗ z) = x⊗ (y ⊕ z).
For i ≥ 0, we check the i-th component:

((x⊗ y)⊕ (x⊗ z))i =
i

Σ
j=0

(
j
i

)
xjyi−j +

i

Σ
j=0

(
j
i

)
xjzi−j

=
i

Σ
j=0

(
j
i

)
xj(yi−j + zi−j)

=
(
x⊗ (y ⊕ z)

)
i

which completes the proof. ut

Proposition 3. wn(Pathts(G)) = wn(Pathts(G \ {g}))⊕
wn(Pathgs(G \ {g}))⊗

(∞⊕
k=1

wn(Pathgg(G \ {g}))⊗k
)
⊗ wn(Pathtg(G \ {g}))

Proof. We have the inductive formula:

Pathts(∅) = {(s, a, t) | Pr(s, a, t) 6= 0}

Pathts(G) = Pathts(G \ {g}) ∪
∞⋃
k=1

{ρ0...ρk | ρ0 ∈ Pathgs(G \ {g}),

ρk ∈ Pathtg(G \ {g}),∀j ∈ [1, k − 1], ρj ∈ Pathgg(G \ {g})}

Thus, we get ∀n, µn(Pathts(G)) = µn(Pathts(G \ {g}))+
∞
Σ
k=1

µn
(
(Pathgs(G \ {g})) · ((Pathgg(G \ {g})))k · (Pathtg(G \ {g}))

)
. By using

proposition 1, we can deduce that wn(Pathts(G)) = wn(Pathts(G \ {g}))⊕

17

∞⊕
k=1

(
wn(Pathgs(G \ {g}))⊗ wn(Pathgg(G \ {g}))⊗k ⊗ wn(Pathtg(G \ {g}))

)
.

Notice that by associativity, the second part of the sum is equal to:

wn(Pathgs(G \ {g}))⊗
(∞⊕
k=1

wn(Pathgg(G \ {g}))⊗k
)
⊗ wn(Pathtg(G \ {g})).

Proposition 4. Let Π be a set of paths using state g exactly twice, as first and
last state. If P(Π) < 1, then

w∗n(Π)[0] = P(
∞⋃
k=1

Π⊗k) =
1

1− P(Π)
, and

w∗n(Π)[i] = µi(
∞⋃
k=1

Π⊗k) =
1

1− P(Π)

i−1∑
j=0

Ç
i

j

å
wn(Π)[i− j]× w∗n(Π)[j]

Proof. For k > 0, define Rk = (x0, . . . , xn)⊗· · ·⊗(x0, . . . , xn) with x0 = P(Π) <
1 and xi = wi(Π) for all i. We denote (x(k,0), . . . , x(k,n)) = Rk. For k > 0, we

have x(k,i) =
i

Σ
j=0

(
i
j

)
x(1,j)x(k−1,i−j). In particular, for all i, x(1,i) = xi.

First, let us prove by induction on i that x(m,i) →
m→∞

0. It is true for i = 0, as

xm0 → 0 since 0 ≤ x0 < 1. Assume by induction that it is true for all j < i. Then

as x(m,i) =
i

Σ
j=0

(
i
j

)
xjx(m−1,i−j) is a linear combination of the x(m−1,i−j), and all

x(m−1,i−j) converges towards 0, then so does x(m,i) converge to 0.

Then, define Sm =
m⊕
k=0

Rk, with R0 = 1. We have Sm = (z(m,0), . . . , z(m,n))

with z(m,i) =
m

Σ
k=0

x(k,i) = x(0,i) +
m

Σ
k=1

i

Σ
j=0

(
i
j

)
x(1,j)x(k−1,i−j) = w∗m(Π)[i].

Let us prove that the series zm,i converges by induction on i. For i = 0, it is
easy to see that lim

m→∞
zm,0 = 1

(1−x0)
. Assume by induction that for all j < i with

i > 0, the series z(m,j) converges. We denote its limit x∗|j . We have:

z(m,i) =
m

Σ
k=1

i

Σ
j=0

(
i
j

)
x(1,j)x(k−1,i−j)

=
i

Σ
j=1

(
i
j

)
x(1,j)

m

Σ
k=1

x(k−1,i−j) + x(1,0)
m

Σ
k=1

x(k−1,i)

Then,
m−1
Σ
k=0

x(k,i)(1 − x(1,0)) + xm,i =
i

Σ
j=1

(
i
j

)
x(1,j)

m

Σ
k=1

x(k−1,i−j). Furthermore,

xm,i →
m→∞

0 and x1,0 = x0. Then we can conclude that

lim
m→∞

m

Σ
k=0

x(k,i) = 1
(1−x0)

i−1
Σ
j=0

(
i
j

)
x(i−j)x

∗
|j

Hence we obtained the formulation of w∗m(Π)[i] = z(m,i) by induction. ut

18

Proofs of Section 4

Formal Semantics of a Hierarchical Probabilistic Automaton.

Let A = (Si, P ri, s
0
i , s

f
i)i≤n be a hierarchical automaton. We give now a

formal semantics to A, defining the flat probabilistic automaton associated to it.
Let r ∈ Si such that λi(r) = n. We redefine module i as (S′i, P r

′
i, s
′0
i , s
′f
i)

with:

– S′i = Si \ {r} ∪ Sn.

– We define Pr′i(s, a, t) as follows for all s ∈ S′i \ s
f
i , t ∈ S′i and a ∈ Σ:

• for s, t ∈ Si \ {r}, Pr′i(s, a, t) = Pri(s, a, t)
• for s, t ∈ Sn, Pr′i(s, a, t) = Prn(s, a, t)
• for s ∈ Si and t = s0n, we have Pr′i(s, a, t) = Pri(s, a, r),

• for r 6= sfi , s = sfn and t, we have Pr′i(s, a, t) = Pri(r, a, t),
• Otherwise, Pr′i(s, a, t) = 0,

– If r = s0i , then s′0i = s0n, else s′0i = s0i ,

– If r = sfi , then s′fi = sfn, else s′fi = sfi ,

We proceed by replacing inductively all nodes associated with the deepest
module n till there is no more such node. Then we can remove module n altogether
and proceed inductively with nodes associated with module n− 1.

Adaptation of the algorithm to the HPA model We now turn to the proof of
Theorem 3.

Theorem 3. Given an HPA A, with k modules of size at most m. Then one
can compute the n first moments of the distribution associated with A in time
O(n2km3).

In the model of probabilistic automata, sojourn time in each state takes exactly
one time unit. We extend trivially the computation of moments to systems where
the sojourn time in a state s depends on the output transition (s, a, t) and follows
a distribution δs,a,t: it suffices to replace in Algorithm 1 the initialization from∑
a∈Σ Pr(s, a, t) to

∑
a∈Σ(Pr(s, a, t) · µn(δs,a,t)). Equivalently, we can specify

(µi(δs,a,t))i≤n on each transition.

Proof. Algorithm 1 is suitable for HPA because it can be performed be going
through states module by module, deepest module first. We now show how to
replace a module Si by a set of four states S̃i carrying an equivalent information,
thanks to transition characterized by probabilities and moments.

Assume that a query has been performed and not yet answered before entering
a module. There are three possibilities. Firstly, it can be answered in the module.
Secondly, it is not answered in the module but it the run leaves this module.
The last possibility is the query is not answered and the run does not leave the
module. Thus, the module can be summarized by four states,as presented in
figure 5: the initial state, a final state, a self looping state representing paths

19

si0 sif

G ¬G

p, µ1, ..., µn

p
G ,
µ
G
n
, .
..,
µ
G
n

p ¬
G

Fig. 5. Replacing a module by four states.

where the query is answered in the module, and another self looping state that
represents paths where the query is neither answered nor leave the module.

We recall that in each module the final state has no transition to another state
in the module. Now, we need to compute the following quantities: the probability
(and moments) for reaching the goal from si0 and the ones for reaching sif from
si0 without having reached the goal before. These two quantities can be computed
inductively by the algorithm 1 as presented before.

Then, the module si can be replaced by the new four states module in
modules of higher rank. Instead of having a cubic complexity over the size of the
automaton, this procedure allows us to have a complexity proportional to the
sum of the cube of the sizes of the modules, which can lead to great improvement,
especially in redundant systems.

ut

Proofs for section 5

We now give a sequence of lemmas that will yield the proof of Theorem 5 and
Lemma 1.

Let p such that 0 < p < 1. Let µi, µj .

case αi < αj We prove that in the case where αi < αj , αi is actually optimal in

∆
j,µj

i,µi
. This is the first item in Theorem 5

As it is a bound for all δ ∈ ∆j,µj

i,µi
, we just need to show that it is optimal

Let 0 < η < 1 and 0 < p < 1. We let z be a positive real that we will choose
big enough, bigger than αi and actually larger, that will be set later.

Let δ be the distribution with mass (1− p) in 0, mass p1 in ηαi mass p2 in
αj and mass p3 in z, with p1 + p2 + p3 = p.

We want to choose p1, p2, p3 such that µi is the moment of order i and µj is

the moment of order j, that is such that δ ∈ ∆j,µj

i,µi
. We thus have the following

equations:

20

p1 + p2 + p3 = p(1)

p1(ηαi)
i + p2α

i
j + p3z

i = µi(2)

p1(ηαi)
j + p2α

j
j + p3z

j = µj(3)

We denote A = αii , B = αij , C = zi, D = (ηαi)
j and F = zj .

Using (1) and (3), we obtain:

p3 = (p− p2)
(µj − p(ηαi)j)
p(F − (ηαi)j)

(4)

Granted p2 < p, for F > (ηαi)
j (that is z > αi which we assumed), we get

p3 > 0.
Now, using (2), we obtain: p3(C−ηiA)+p2(B−ηiA) = µi−pηiA. As µi = pA,

we get p2(B − ηiA) + p3(C − ηiA) = pA(1− ηi).
Using equivalents for z going to ∞, we get p3(C − ηiA) equivalent to (1 −

p2/p)C/F . Notice that C/F tends to 0. We obtain p2 = (1−ηi)pA−O(C/F)
(B−ηiA)−O(C/F) . For z

big enough (η being fixed), we get p2 > 0.

Dividing terms by A, we get p2 < p (1−ηi)
(B/A−ηi)−O(C/AF) . We have B/A > 1.

For z big enough, O(C/AF) < B/A− 1, and we get p2 < p. That is p3 > 0 as
well.

Also, remark that in (4), we have
(µj−p(ηαi)

j)
p(F−(ηαi)j)

tends to 0 when z tends to

infinity. Hence for z big enough, p3 < (p− p2). That is, p1 = p− p2 − p1 > 0.
That is, for z big enough, we can chose p1, p2, p3 positive and satisfying the

equations we wanted to obtain. That is, p1, p2, p3 < p as p = p1 + p2 + p3, and
µ1(δ) = µ1 and µ2(δ) = µ2. Thus, δ ∈ ∆j,µj

i,µi
Last, we have B(δ, p) = ηαi.

Case αj < αi We now consider the case where αj < αi, that is the second item

of Theorem 5. We first prove that the αji defined is a bound for all δ ∈ ∆j,µj

i,µi
. We

take δ any distribution with µi, µj for moment of response time of order i, j. We
let b = B(δ, p). We partition δ in 2 parts: δ1 between 0 and b (and 0 elsewhere),
and δ2 after b (and 0 before). We denote µk(δ`) =

∫∞
0
δ`(t)t

kdt, for ` ∈ {1, 2}.
As δ2 represents a proportion p of the distribution, and as all the mass is

after b, we have the following:

µj(δ2) = µj − µj(δ1) ≥ pbj

Lemma 2.

µj(δ1) ≥ (µi − [µj − µj(δ1)]
i
j p

j−i
j)

j
i

(1− p) j−i
i

Proof. We apply Jensen inequality to both δ1 and δ2.

We obtain µj(δ1) ≥ µi(δ1)
j
i

(1−p)
j−i
i

and µi(δ2) ≤ µj(δ2)
i
j p

j−i
j .

As µi(δ1) = µi − µi(δ2), we obtain µi(δ1) ≥ µi − µj(δ2)
i
j p

j−i
j = µi − [µj −

µj(δ1)]
i
j p

j−i
j , which yields the statement. ut

21

The M of Lemma 1 and Theorem 5 will be µj(δ1) for δ a distribution realizing

B(δ, p) = αji (p). We now prove the second part of Theorem 5 and Lemma 1.

Lemma 3. Let µi, µj and p such that αj(p, µj) < αi(p, µi). Then for all δ ∈
∆
j,µj

i,µi
, we have:

B(δ, p) ≤ (
µj −M

p
)

1
j

for M ≤ µj the smallest positive real root of:

µi = (1− p)
j−i
j M

i
j + p

j−i
j (µj −M)

i
j .

For i = 1, j = 2, we can compute explicitly M and obtain:

B(δ, p) ≤ µ1 +

(1− p)
p

(µ2 − µ2
1)

Proof. Let δ ∈ ∆j,µj

i,µi
. We denote b = B(δ, p). We decompose δ = δ1 + δ2 with δ1

on [0, b) and δ2 from [b,∞).
One can define the operator f with:

f(x) =
(µi − [µj − x]

i
j p

j−i
j)

j
i

(1− p) j−i
i

By applying Lemma 2 with µj(δ1) ≥ 0 on the left hand side, we obtain
µj(δ1) ≥ f(0). Hence we can apply Lemma 2 with µj(δ1) ≥ f(0) on the left hand
side, yielding µj(δ1) ≥ f(f(0)). By a trivial induction, we obtain µj(δ1) ≥ fn(0)
for all n.

Let us show that the iteration of f converges from 0. First, for all n, we
have fn(0) is bounded: 0 ≤ fn(0) ≤ µj(δ1). Indeed, let x be a real such that
0 ≤ x ≤ µj(δ1). Then, we got:

(µi − µ
i
j

j p
j−i
j)

j
i

(1− p) j−i
i

≤ f(x) ≤ (µi − (µj − µj(δ1))
i
j p

j−i
j)

j
i

(1− p) j−i
i

Since α2 ≤ α1, we have (µi − µ
i
j

j p
j−i
j)

j
i ≥ 0.

Also, thanks to Lemma 2, we have µj(δ1) ≥ (µi−[µj−µj(δ1)]
i
j p

j−i
j)

j
i

(1−p)
j−i
i

.

Thus, by a trivial induction, we obtain 0 ≤ fn(0) ≤ µj(δ1) for all n.

Secondly, we show by induction on n that fn(0) is an increasing sequence.
We already proved the first step of the induction: f(0) ≥ 0.

Inductive step: let n ∈ N such that fn(0) ≥ fn−1(0). Then,

(µi − [µj − fn(0)]
i
j p

j−i
j)

j
i

(1− p) j−i
i

≥ (µi − [µj − fn−1(0)]
i
j (p)

j−i
j)

j
i

(1− p) j−i
i

22

And so, fn+1(0) ≥ fn(0).
Then, the sequence (fn(0)) converges. Let M be its convergence point. We

thus proved Lemma 1. We also have f(M) = M . Thus, M ≤ µj and it is the
smallest positive real root of:

(1− p)
j−i
j M

i
j = µi − p

j−i
j (µj −M)

i
j .

Now, we know that µj(δ1) ≥M . This gives pB(δ, p)j ≤ µj −M .

We now tackle the last item of the statement. Let i = 1, j = 2. We have

B(δ, p) ≤
»

µ2−M
p = µ1−

√
1−p
√
M

p .

We let x =
√
M . This x satisfies the equation√

1− px = µ1 −
√
p
»

(µ2 − x2).

That is √
p
»

(µ2 − x2) = µ1 −
»

(1− p)x

and hence:

pµ2 − px2 = µ2
1 + (1− p)x2 − 2µ1

»
(1− p)x

We have the second degree equation:

x2 − 2µ1

»
(1− p)x+ µ2

1 − pµ2 = 0

The smallest solution is x = µ1

√
1− p−

√
(1− p)µ2

1 + pµ2 − µ2
1 = µ1

√
1− p−

√
p
√
µ2 − µ2

1.
This gives:

B(δ, p) ≤
µ1 −

√
1− p(µ1

√
1− p−√p

√
µ2 − µ2

1)

p
= µ1 +

1− p
p

(µ2 − µ2
1).

ut

We end the proof of Theorem 5 by showing optimality of the bound for ∆
j,µj

i,µi
:

Lemma 4. Let µi, µj and p such that αj(µj , p) < αi(µi, p). Then there exists

a distribution δ ∈ ∆j,µj

i,µi
with B(δ, p) = j

»
1
p (µj −M1) for M1 ≤ µj the smallest

positive real root of:

µi = (1− p)
j−i
j (M1)

i
j + p

j−i
j (µj −M1)

i
j .

Proof. Let us consider the distribution δ with:

– (1− p) of the mass at j

»
M1

1−p and

– p of the mass at j

√
(µj−M1)

p

23

It trivially satisfies B(δ, p) = j

√
(µj−M1)

p . Also, we have easily µj(δ) = (1−
p) M1

1−p + p
µj−M1

p = µj .

Now, consider µi(δ) = (1− p)
j−i
j (M1)

i
j + p

j−i
j (µj −M1)

i
j . By definition of

M1 as a root of the equation µi = (1 − p)
j−i
j (M1)

i
j + p(µj −M1)

i
j , we obtain

µi(δ) = µi. ut

24

	Symbolically Quantifying Response Time in Stochastic Models using Moments and Semirings.

