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Photolatent Ring-Opening Metathesis Polymerization in 
Miniemulsion: a Powerful Approach to Produce Polynorbornene 

Latexes 

Loïc Pichavant,a Patrick Lacroix-Desmazes,b Abraham Chemtob,c,d Julien Pinaud,b and Valérie Héroguez,a* 

The use of miniemulsion Ring-Opening Metathesis Polymerization (ROMP) to form polyunsaturated latexes is still a largely unexplored field. The main obstacle 

remains the preparation of a chemically-stable monomer/catalyst miniemulsion, which is generally jeopardized by the high reactivity of ROMP catalysts at 

ambient temperature. To overcome this drawback, a photo-latent ROMP catalytic system has been employed for the first time. Our approach starts with a N-

heterocyclic carbene (NHC) photogenerating system (1,3-bis(mesityl)imidazolium tetraphenylborate / 2-isopropylthioxanthone) which enables the in situ 

formation of an active NHC-derived Ru catalyst. The ability to initiate the ROMP in miniemulsion by a photoactive way depends on the absorption conditions 

of the initial formulation due to irradiation attenuation by scattering. In this contribution, the optimization of an aqueous norbornene miniemulsion in order 

to improve the irradiation penetration depth is presented in a first part. In a second part, the miniemulsion ROMP is investigated by using the NHC 

photogenerating system and two ruthenium complex pre-catalysts [RuX2(p-cymene)] dimer (X = Cl or I). Stable PNb latexes with particle size in the range of 

100 nm were obtained. 
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Introduction 

Aqueous polymer latexes have high industrial interests, firstly, 

because water is a cheap, safe and environmentally friendly 

solvent. Secondly, because the aqueous polymer dispersions 

feature specific properties such as low viscosity and film-

forming ability (provided proper adjustment of the Tg of the 

polymer), which make them relevant for many applications 

including coatings, adhesives, paper coating, inks, additives for 

construction materials, and non-woven textiles.1 Although 

there is no commercial application known today, miniemulsion 

free radical polymerization is a powerful way to obtain polymer 

latexes thanks to the tolerance of free radicals towards 

water.2,3,4,5 In addition, miniemulsion polymerization relies on 

droplet nucleation allowing the polymerization of very 

hydrophobic monomers as well as the preparation of 

organic/inorganic nanocomposites, which are difficult to 

achieve with conventional ab initio emulsion polymerization. In 

a typical miniemulsion route, a mixture containing the 

monomer(s), a water-insoluble initiator, and a costabilizer (to 

avoid Ostwald ripening) forms an organic phase. This latter is 

then mixed with the aqueous phase containing a surfactant 

before being emulsified by high energy input usually through an 

ultrasonifier. Miniemulsion droplets typically display average 

diameters ranging from 40 to 400 nm, and are kinetically stable. 

Polymerization is generally triggered upon heating when using 

thermal radical initiators. Contrary to radical polymerization, 

only few contributions have been reported regarding the 

formation of latexes by Ring-Opening Metathesis 

Polymerization (ROMP) in aqueous dispersed media. The 

challenges of such route are firstly the water sensitivity of most 

ROMP catalysts, and secondly, their non-latent character. 

Therefore, the active catalyst jeopardizes the preparation of a 

chemically-stable monomer miniemulsion, causing premature 

polymerization. 

ROMP in miniemulsion was introduced by Claverie et al.6 in 

2001. To circumvent the issue of premature polymerization, 

they first prepared a miniemulsion containing a hydrophobic 

catalyst (1st generation Grubbs’ catalyst dissolved in a small 

amount of toluene) and added dropwise the cycloolefin 

monomer. Nevertheless, only the least reactive monomers 

(cyclooctene and cyclooctadiene) could be used without 

miniemulsion destabilization. In previous contributions, we 

reported the miniemulsion ROMP of norbornene (Nb) by the 

addition of well-defined poly(ethylene oxide)-based ruthenium 

carbene as water-soluble macroinitiators to monomer 

miniemulsion.7 Stable polynorbornene (PNb) latex particles 

with average diameter of 200-500 nm were obtained with 

almost quantitative monomer conversion. Following a similar 

strategy, a tandem ROMP and Atom Transfer Radical 

Polymerization (ATRP) in miniemulsion was also investigated.8,9 

However, the issue was the cumbersome and tricky synthesis of 

the macroinitiator. At the same time, miniemulsion ROMP of an 

amphiphilic PEO-based cyclobutene macromonomer was 

reported by Le et al.10 using Grubbs’ third generation catalyst. 

The initial miniemulsion was stable and no coagulation 

appeared, but the system led to partial macromonomer 

conversion after 48 h of reaction at room temperature. 

In this context, we envision that a major improvement for 

miniemulsion ROMP could be made by incorporating a 

hydrophobic latent catalytic system into the organic droplet 



phase. Several pathways are described in the literature to 

generate latent ROMP catalytic systems using chemical,11,12 

thermal13 or mechanochemical means (ultrasound),14 but the 

convenient method would be the use of an irradiation 

stimulus15-17 In most examples in solution, photolatent systems 

consist in ruthenium complexes made inactive by chelating 

ligands or electron-rich carbene moieties.18 Conversion into an 

active form proceeds by photoinduced ligand 

dissociation/rearrangement19 or isomerisation reactions.20-24 In 

contrast, we recently proposed a completely different approach 

based on two consecutive steps: the photogeneration of N-

heterocyclic carbene (NHC) ligand, and its subsequent reaction 

with an inactive Ru precatalyst to form in situ an active NHC-

derived Ru ROMP catalyst.25 The combination of 1,3-

dimesitylimidazolium tetraphenylborate salt (IMesH+BPh4
-) 

(NHC protected form) with 2-isopropylthioxanthone (ITX) 

(sensitizer) proved to be able to generate the 1,3-

dimesitylimidazol-2-ylidene (IMes) NHC upon UV irradiation 

(365 nm).26 In regard to the second step, [RuCl2(p-cymene)] 

dimer27 as the inactive precatalyst, formed in situ the active 

RuCl2(p-cymene)(IMes) Noels’ catalyst28 in presence of IMes to 

initiate the ROMP of Nb. 

We show herein that such tricomponent catalytic system 

[RuCl2(p-cymene)] dimer/IMesH+BPh4
-/ITX can also serve for 

photoROMP in miniemulsion. To the best of our knowledge, no 

photolatent system for ROMP of cycloolefin in aqueous 

dispersed media has been reported yet. In a first part of this 

study, particular attention has been paid to miniemulsion 

formulation in order to optimize incident irradiation, and 

increase the uniformity of irradiation distribution within the 

reactor. Indeed, a photochemical reaction is only possible in 

irradiated volumes. In a heterogeneous or dispersed medium, 

the incident photon flux is attenuated because of light 

absorption and scattering.29 To mitigate the detrimental effect 

of scattering on photopolymerization in dispersed system, Nb 

miniemulsions with an average droplet smaller than 100 nm 

have been prepared and their optical properties (extinction) 

have been evaluated by UV/Vis Spectroscopy, based on 

measurements in regular transmission. Finally, photo-induced 

ROMP of Nb has been triggered through the water-insoluble 

tricomponent catalytic system dissolved in the monomer 

droplets, and the results have been compared with photo-

ROMP in solution. 

Experimental section 

Materials 

Ethanol (EtOH; 96%), chloroform (CHCl3; 99.4%), 

dichloromethane (DCM; 99.8%) from VWR Chemicals and 1,2-

dichloroethane (DCE; 99.8%) from Aldrich were used without 

further purifications. 1,3-bis(mesityl)imidazolium chloride 

(IMesH+Cl-; 97%) and sodium tetraphenylborate (NaBPh4; 

99.5%) were purchased from ABCR. Dichloro(p-

cymene)ruthenium(II) dimer ([RuCl2(pCy)]2; 98%) and diiodo(p-

cymene)ruthenium(II) dimer ([RuI2(pCy)]2) were purchased 

from Alfa Aesar. 2-isopropylthioxanthone (ITX; 98%) was 

obtained from TCI Europe. CREMOPHOR CO40 and 

CREMOPHOR RH60 (steric surfactants) were obtained from 

BASF. Merpol®HCS, Tween®20, Brij®S100 (steric surfactants), 

norbornene (Nb) and hexadecane were purchased from Aldrich. 

The structure of the steric surfactants is described in the results 

and discussion part. Deionized water was obtained with a 

Millipore Milli-Q Biocel A10 purification unit. 

 

Irradiation source 

UV irradiation was performed with a LIGHTNINGCURE® Series 

apparatus from HAMAMATSU equipped with a light guide, a 

medium pressure mercury-xenon lamp and a filter at 365 nm. 

Samples were placed at 10 cm of the light guide. Irradiance was 

measured with a Power Puck II radiometer from EIT® (20 

mW/cm² at 365 nm). 

 

Characterization methods 

1H NMR studies were acquired using a Bruker spectrometer 400 

MHz employing CDCl3 or DMSO-d6 as solvent at 25°C. 

Conversions of Nb were determined by gas chromatography 

(GC) with hexadecane as internal standard, using a VARIAN 

GC3900 (apolar capillary column BP1-30m; injector 

temperature: 250°C; detector temperature: 300°C; ramp 

temperature: 2 min at 50°C + 10°C/min until 250°C; GC 

retention times: tGC
Nb = 1.77 min; tGC

dodecane = 13.25 min). UV/Vis 

measurements were performed with a UV/Vis spectrometer 

Agilent Carry 4000 (optical path length: 1 mm). Dynamic light 

scattering (DLS) measurements were performed using a 

MALVERN Zetasizer Nano ZS equipped with He-Ne laser (4 mW; 

633 nm). All spectra are the average of three measurements. 

Before measurements, latexes were diluted about 250 times to 

minimize multiple scatterings caused by high concentration. 

The scattering angle used was 90°. Size-exclusion 

chromatography (SEC) was performed in tetrahydrofuran (THF) 

(1 mL min-1) with trichlorobenzene as the flow marker, using 

both refractometric and UV detectors. TEM pictures were 

performed with a HITACHI H7650 microscope operating at an 

accelerating voltage of 80 kV. Latexes were diluted 70 times and 

10 µL of the final latexes were poured on carbon-carbon grids 

and dried in normal atmosphere. The pictures were recorded 

with Digital Micrograph (GATAN) and analyzed with the 

software ImageJ to determine the particle average diameter 

and the polydispersity (PDI). PDI is calculated with the following 

formula (Equation 1): 

𝑃𝐷𝐼 = (
𝜎

𝐷
)
2

 Equation 1 

With: 

D: the average diameter 

σ: the standard deviation 

 

Synthesis of 1,3-dimesitylimidazolium tetraphenylborate 

(IMesH+BPh4
-)30 

In a typical experiment, 2.28 g of IMesH+Cl- (341 g/mol; 6.7 10-3 

mol) are dissolved in 67.5 mL of degassed ethanol (Freeze-

Pump-Thaw method). A solution of NaBPh4 (3.59 g; 342 g/mol; 

10.5 10-3 mol) in degassed ethanol (67.5 mL) is added dropwise 

under a nitrogen flux. The formed precipitate (IMesH+BPh4
-) is 

filtrated, washed with water and ethanol and dried overnight 
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under vacuum. Mass Yield: 85% - 1H NMR data in DMSO-d6:  

(ppm) (400 MHz): 2.12 (s; 12H); 2.36 (s; 6H); 6.79 (t; 4H); 6.94 

(m; 8H); 7.21 (m; 12H); 8.26 (s; 2H); 9.64 (s; 1H). (Supplementary 

information, Figure S1) 

 

Miniemulsion formation 

Aqueous phase was prepared by adding a variable amount 

(0.01-1 g) of surfactant (CREMOPHOR CO40, CREMOPHOR 

RH60, Merpol® HCS, Tween®20 or Brij®S100) to 10 mL of milliQ 

water. The organic phase was prepared by mixing Nb (25 w-%) 

with hexadecane (10 w-%) in the solvent (DCM or DCE) (65 w-

%). Then, the organic phase (0.5, 1 or 2 g for miniemulsions at 

5, 10 or 20 w/w-% of dispersed phase versus the continuous 

phase respectively) was added to the aqueous phase and the 

pre-miniemulsion was stirred during 1 hour. Then a 

miniemulsion was formed by ultrasonication with a BioBlock 

Vibra-Cell 75043 (750 W) equipped with an ultrasonic tip (from 

2 min to 20 min; pulse mode, 5.0 s on 5.0 s off). During 

ultrasonication, samples were placed in an ice bath to avoid any 

temperature increase. 

 

Polymerization in solution 

A solution of Nb (25 w-%; 823 mg; 8.75 10-3 mol; 510 eq.) and 

hexadecane (10 w-%; 329 mg; 427 µL) in dichloroethane (2.47 

mL; 2 mL) was prepared and degassed (Freeze-Pump-Thaw 

method). Then, [RuCl2(p-Cy)]2 (1 eq.; 1.71 10-5 mol; 10 mg) or 

[RuI2(p-Cy)]2 (1eq.; 1.71 10-5 mol; 17 mg) and IMesH+BPh4
- (5 

eq.; 8.6 10-5 mol; 54 mg)/ITX (2.5 eq.; 4.3 10-5 mol; 11 mg) were 

added under inert atmosphere (glovebox). This solution was 

then transferred inside a quartz cuvette (optical path length: 1 

mm) and irradiated during different times. After irradiation, the 

samples were dissolved in a minimum of dichloromethane and 

analyzed by gas chromatography (Nb conversion). Finally, the 

samples were precipitated in acetone, filtrated, dried under 

vacuum and the obtained polymers were analyzed by 1H NMR 

and SEC (data are given in the Results and discussion part, 

Figure S3 and Figure S5). 

 

Polymerization in miniemulsion 

10 mL of a solution of Brij®S100 in millQ water (100 g/L) were 

degassed by bubbling nitrogen during 1 hour. Then, 0.5, 1 or 2 

g (for miniemulsions at 5, 10 or 20 w/w-% respectively) of 

degassed organic phase containing the catalytic system were 

added under nitrogen (preparation of the organic solution are 

described in the previous section “polymerization in solution »). 

The pre-miniemulsion was stirred during 1 hour. Then, the 

miniemulsion was formed by ultrasonication during 2 min 

(pulse mode, 5.0 s on 5.0 s off). The miniemulsion was then 

transferred inside a quartz cuvette (optical path length: 1 mm) 

and irradiated during different times. After irradiation, the 

samples were dissolved in a minimum of THF and analyzed by 

gas chromatography (Nb conversion). Finally, the samples were 

precipitated in acetone, filtrated, dried under vacuum and the 

obtained polymers were analyzed by 1H NMR and SEC (data are 

given in the Results and discussion part Figure S4 and Figure S6). 

Results and discussion 

In a first stage of this study, attention has been paid to optimize 

the formulation of the miniemulsion to obtain droplets sizes 

lower than 100 nm (to minimize radiation scattering). For the 

sake of simplicity, this part of the study was performed without 

ROMP initiator. 

 

Formulation of the Nb miniemulsion 

The aqueous miniemulsion is composed of a continuous phase 

– water and surfactant – and a dispersed phase – organic 

solvent, monomer (Nb) and hexadecane used as costabilizer to 

prevent Ostwald ripening. The miniemulsion is formed by first 

stirring the two-phases (pre-emulsion) and second by 

ultrasonication. Several parameters have been screened in 

order to optimize the formulation. 

 

Influence of the type of surfactant: In this part, the dispersed 

phase concentration was 10 w/w-% and was composed of Nb 

(80 w-%) and hexadecane (20 w-%). 

The type of surfactant must be chosen with care. Indeed, we 

have shown that convensional ionic surfactants such as SDS can 

interact with IMesH+BPh4
- by counterion exchange having a 

negative effect on the initiator formation (Figure S2, 

supplementary information). This kind of reaction is well known 

in ionic liquid synthesis.31 Consequently, nonionic surfactants 

were employed. A series of five polymeric surfactants has been 

selected as a function of their hydrophilic/lipophilic balance 

(HLB); a high HLB being required to stabilize an oil-in-water 

emulsion. The miniemulsion was formed by ultrasonication 

during 10 minutes at 50 % of the maximal power. For each 

surfactant, the droplet size determined by DLS has been plotted 

as a function of the surfactant concentration. From these curves 

can be extracted two fundamental parameters: the critical 

micelle concentration (CMC), from this concentration the 

droplet stabilization is optimal and the addition of more 

stabilizer would induce the undesirable formation of micelles in 

the continue phase in the presence of the organic dispersed 

 
Figure 1: Droplet size as a function of the Brij®S100 concentration 
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phase and the minimal diameter of the droplets (Dmin) (Figure 

1). 

The results for the five tested surfactants are summarized in the 

Table 1. The smallest droplets were obtained with the Brij®S100 

and the CREMOPHOR CO40 with a concentration of 100 g/L 

(Dmin around 120 nm)). As the Brij®S100 is a more common and 

cheaper surfactant, it has been chosen for the rest of the study. 

 

Influence of the type and amount of solvent in the dispersed 

phase: For these experiments, Brij®S100 was used as surfactant 

and the organic phase was composed of the solvent (65 w-%; 

minimal concentration for which the catalytic systems is still 

soluble), Nb (25 w-%) and hexadecane (10 w-%). For the 

preparation of the organic phase, the two main parameters 

were studied: the nature of the solvent (DCM or DCE), and its 

weight content (5, 10 or 20 w/w-%). The results are presented 

in Table 2. 

Regarding the nature of the solvent (entries (1) and (5) and 

entries (3) and (6)) the use of DCE leads to smaller droplets. The 

organic phase content has also an influence on droplet size 

(entries (5), (7) and (8)). As expected, the less the organic phase 

ratio is, the smaller the droplets are3. With a dispersed phase at 

5 w/w-%, very small droplets are obtained (36 nm; entry (7)). 

 

Ultrasonication parameters optimization: The last studied 

parameters for the optimization of the miniemulsion were the 

ultrasonication conditions such as the ultrasonication time and 

the power of the ultrasonication probe (Table 2). Regarding the 

first parameter (entries (1), (3) and (4) and entries (5) and (6)), 

an increase of the droplet size was observed with the 

ultrasonication time. The same behavior was observed with the 

increase of the sonication power (entries (1) and (2)). This 

phenomenon is very surprising because droplet size usually 

decreases with these parameters essentially due to the greater 

efficiency of the emulsification step but sometime partially due 

to an increase of the temperature which involves a partial 

evaporation of the organic phase homogenization.3 In our case, 

this increase in size of the droplets could be explained by the 

partial precipitation of the surfactant with the increase of the 

medium temperature particularly marked beyond 60% 

ultrasonication power.32 Indeed, even if an ice bath is used 

during the sonication step to avoid the temperature increase it 

is not possible to prevent it completely and the reactor is a little 

bit hot after the homogenization step. Final temperature can 

locally reach 70°C. Supplementary experiments, consisting in 

placing a miniemulsion of 83nm droplets (entry (1), Table 2) 

diameter in a hot water-bath during one hour confirmed the 

increase of the droplet size with the temperature (final droplet 

size D=104 nm). By contrast, no destabilization occurred within 

24 hours at room temperature for the same miniemulsion, 

which confirmed the miniemulsion stability during the 

polymerizations. Because miniemulsions prepared using DCE as 

solvent and 2 min ultrasonication at a power of 50% (entries (5), 

(7) and (8), Table 2) displayed the smallest droplets sizes, this 

system was selected for the rest of the study. 

 

Evaluation of the miniemulsion optical properties 

In IMesH+BPh4
-/ITX 2-component NHC generating system, the 

primary photochemical step is electron transfer sensitized by 

excited triplet ITX. To match with ITX absorption in the UV-A 

range and avoid IMesH+BPh4
- absorption, a medium pressure Hg 

lamp equipped with a filter at 365 nm has been used. In order 

to assess the level of extinction (due to the combined effect of 

scattering and absorption of ITX), the miniemulsions were 

analyzed by spectrophotometric methods based on 

measurements in regular transmission at 365 nm. 

Measurements were performed on three miniemulsions with 

variable organic phase content: 5, 10 and 20 w/w-% contained 

in a 1 mm thick cell (Table 2 entry (5), (7) and (8)) (Figure 2). UV-

visible analysis was also carried out on the organic phase before 

its emulsification as a reference (blue curve, Figure 2). By 

following the definition of the absorbance (Equation 2), the 

percentage of transmitted irradiation can be determined to 

evaluate the extent of scattering. 
 

𝐴 = log⁡(
𝐼

𝐼0
) Equation 2 

With: 

- A: the measured absorbance 

- I: the transmitted intensity 

- I0: the initial intensity 

 

As observed on the Figure 2, in the non‐absorbing region (300–

800 nm), the decrease in organic phase content is manifested 

by a dramatic increase of the miniemulsion transparency arising 

from a diminished scattering coefficient. Below 300 nm, 

monomer absorption domain is very large, involving an 

important fall of the transparency regardless of the droplet size 

and consequently of the scattering. At 20 w/w-% in droplet 

phase (D=103 nm), the transmittance is very low (It/I0=0.3%). At 

10 w/w-%, the miniemulsion is slightly transparent but only 8% 

of the light is transmitted. The best conditions for a highly 

penetrative miniemulsion is 5 w/w-% (D=36 nm; I/I0=57%). 

 

 

Table 1: Characteristics of the tested steric surfactants. 

Surfactant 
Description 

/formula 
HLB 

CMC 
(g/L) 
(DLS) 

Dmin 
(nm) 
(DLS) 

CREMOPHOR 
CO40 

PEG-hydroxylated 
castor oil 

- 7-8 118 

CREMOPHOR 
RH60 

PEG-hydroxylated 
castor oil 

- 5 190 

Merpol® HCS Oleyl-PEG 15 12-13 190 

Tween®20 

 

16 5 170 

Brij®S100 
 

18 10 119 
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Polymerization tests 

The formulation study for the formation of the miniemulsion 

was performed with droplets containing only Nb, solvent and 

hexadecane. The tricomponent catalytic system [RuCl2(p-

cymene)] dimer/IMesH+BPh4
-/ITX needs to be added in the 

organic phase for the photoROMP. As previously reported, this 

catalytic system is very effective for the photoROMP of Nb in 

solution using DCM as solvent, allowing to reach full conversion 

in less than 5 min.33 Nevertheless, because DCE was selected as 

solvent for the organic phase of the miniemulsion, we decided 

to study the behavior of the catalytic system in this solvent. In 

addition, the ruthenium dimer pre-catalyst [RuI2(pCy)]2, instead 

of [RuCl2(pCy)]2, was also evaluated  for the photoROMP of Nb 

(Scheme 1). 

 

System IMesH+BPh4
-/ITX/[RuCl2(pCy)]2: First, polymerization 

tests were carried out with IMesH+BPh4
-/ITX (5 eq./2.5 eq.) in 

presence of [RuCl2(pCy)]2 (1 eq.) as pre-catalyst in solution and 

in miniemulsion with different dispersed phase contents (5, 10 

and 20 w/w-%). For this study, the formulations were irradiated 

at 365 nm (20 mW/cm2) during 30 min. Nb conversions as a 

function of irradiation times were plotted in Figure 3 while 

values of molecular weights were reported in Table 3. 

In solution, using DCE as solvent, Nb conversion reached 90% 

after 20 min irradiation. Experimental average molar masses 

were 10 times higher than the theoretical ones, indicating a 

poor initiation efficiency of the polymerization (Table 3). 

Moreover, the polymer obtained exhibit broad molecular 

weight dispersity decreasing with the conversion, which is 

characteristic of an initiation rate much lower than that of 

propagation. The 1H NMR spectrum of the obtained polymer 

showed the characteristic signals of PNb, with in particular, the 

presence of the signal corresponding to the unsaturations of the 

PNb chains with the suitable integrations. The cis/trans ratios of 

the obtained polymers were about 50/50. (Figure S3, 

supplementary information). 

A control experiment was also carried out with [RuCl2(pCy)]2 

alone (without IMesH+BPh4
-/ITX), without the NHC precursor 

(Figure S7, blue curve). Indeed, this precatalyst has proved to be 

active for the ROMP of Norbornene in DCM under UV 

irradiation at 365 nm in the presence of ITX.27 In DCE, it appears 

that [RuCl2(pCy)]2 alone, is able to polymerize Nb (Nb 

conversion is higher than 40 % after 30 minutes of irradiation). 

Thus, during the Nb ROMP initiated with IMesH+BPh4
-

/ITX/[RuCl2(pCy)]2, a secondary ROMP initiated by [RuCl2(pCy)]2 

alone occurs. However, it is much less active than with the 

IMesH+BPh4
-/ITX system: 70% monomer conversion is reached 

after 5 min irradiation with IMesH+BPh4
-/ITX/[RuCl2(pCy)]2 

versus 10% at the same time with [RuCl2(pCy)]2 alone. 

Table 2: Droplets size as a function of the dispersed phase composition and of the sonication parameters. 

Entry Solvent Dispersed phase 
ratio 

(w- %) 

Ultrasonication 
time 
(min) 

Ultrasonication 
power 

(%) 

Droplet size (nm) 
(PDI) 

(1) DCM 10  2  50 83 (0.291) 
(2) DCM 10  2  70 168 (0.205) 
(3) DCM 10  10  50 174 (0.187) 
(4) DCM 10  20  50 183 (0.181) 
(5) DCE 10  2  50 64 (0.228) 
(6) DCE 10  10  50 162 (0.264) 
(7) DCE 5  2  50 36 (0.264) 
(8) DCE 20  2  50 103 (0.290) 

 

 
Figure 2: UV-visible analysis of the organic phase (DCE 65 w-%, Nb 25 w-%, 

hexadecane 10 w-%) and of the miniemulsions at 5, 10 and 20 w-%. 

Ultrasonication: 2 min at 50 %; optical path length: 1mm. 
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Figure 3: Nb conversion as a function of the irradiation time with the catalytic 

system IMes+BPh4
-/ITX/[RuCl2(pCy)]2 in solution (blue curve) and in miniemulsion 

at 5 w-% (green curve) at 10 w-% (red curve) and at 20 w-% (purple curve). 
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Miniemulsion polymerization was first carried out with a 5 w/w-

% organic phase content (Figure 3, green curve). Unfortunately, 

no conversion was observed although this miniemulsion 

exhibited the best penetration depth. The organic dispersed 

phase was probably too diluted and the droplets size too small 

to be activated by irradiation. By contrast, at 10 w/w-% (Figure 

3, red curve), conversion reached 40 % after 30 minutes of 

irradiation (versus 90 % in solution). The characteristic signals 

of PNb were observed by 1H NMR spectroscopy (cis/trans ratio 

also around 50/50) (Figure S4, supplementary information). As 

in solution ROMP, both ROMP initiated by the formed Noels’ 

catalyst after irradiation and by [RuCl2(pCy)]2 alone take place 

(Figure S7, red curve). Experimental average molar masses are 

also much higher than the theoretical ones and after 20 minutes 

of irradiation, they became so high that the PNb could not be 

solubilized in THF for SEC analysis (Table 3). The absence of 

correlation between the molar masses and the irradiation time 

probably comes from the difficulty of solubilizing PNb chains of 

high molar masses and the uncontrolled polymerization 

initiation. The DLS measurements showed that the particle size 

after polymerization was very close to the initial droplet size, 

attesting the good colloidal stability of the miniemulsion upon 

polymerization (Table 3; Figure 4). In addition, TEM pictures 

(Figure 4) analyses showed spherical particles with sizes 

consistent with the sizes measured by DLS (D=103 nm (0.14) for 

TEM and D=105 nm (0.23) for DLS). 

 

Finally, the polymerization of the miniemulsion at 20 w/w-% of 

dispersed phase was performed in order to check if an increase 

of the droplet concentration could further improve the 

initiation process and thus Nb conversion (Figure 3, purple 

curve). Nevertheless, no significant improvement was 

observed. Indeed, the miniemulsion ROMP at 20 w/w-% 

exhibits almost the same conversion profile as the miniemulsion 

at 10 w/w-%. This phenomenon can be explained by the fact 

that the increase of nucleation sites (droplets nucleation) is 

counterbalanced by a decrease of the transparency (initial 

droplet size: D=143 nm (0.240) involving a very low 

miniemulsion transparency). The final particle size (D=147 nm 

(0.202)) close to the initial droplet size, proved the good 

stability of the emulsion. 

 
Scheme 1: : In situ formation of the Noels’ type catalysts active in ROMP by irradiation of the photo-sensitive imidazolium salt IMes+BPh4

-/ITX in presence of either 

[RuCl2(pCy)]2 or [RuI2(pCy)]2 ruthenium pre-catalyst. 

 

Table 3: Characteristics of the obtained polymers with the catalytic system IMes+BPh4
-/ITX/[RuCl2(pCy)]2  (5/2.5/1 equiv.) and particle sizes for the polymerization in 

miniemulsion at 10 w-%. 

 
Irradiation 
time (min) 

0 0.5 1 2 5 10 15 20 30 

Polymerization in 
solution 

Mn;th 
(kg/mol)* 

- 11 11 15 17 17 17 22 23 

Mn;exp 
(kg/mol) 

(SEC) 
- 196 251 181 386 214 583 239 196 

Ɖ - 4.69 3.47 4.74 2.41 2.59 1.78 2.14 2.42 

Polymerization in 
miniemulsion 

10 w-% 

Mn;th 

(kg/mol)* 
- - - - 2.4 4.1 5.5 8.6 10.1 

Mn;exp 

(kg/mol) 
(SEC) 

- - - - 486 203 Not soluble 
in THF 

Ɖ - - - - 3.43 8.9 

Average 
diameter 

(nm) (DLS) 
82 - - - 79 88 88 104 105 

* Mn;th=NbxMNbxnNb/(n[RuCl2(pCy)]2/2) where Nb is the Nb conversion, MNb is the molecular weight of Nb, nNb is the initial amount 
of Nb, n[RuCl2(pCy)]2 is the initial amount of [RuCl2(pCy)]2 
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Polymerization with [RuI2(pCy)]2 as ruthenium pre-catalyst: As 

shown in previous section, [RuCl2(pCy)]2 alone can catalyze 

without NHC the ROMP of Nb in solution and in miniemulsion, 

leading to a competitive initiation mechanism. To overcome this 

issue, [RuI2(pCy)]2 was proposed as a good candidate to gain 

complete photolatency in absence of NHC. Indeed, changing the 

chloride ligands by iodide ligands could induce latency of this 

system because of an increase of the steric hindrance and thus 

a limited coordination of Nb.34 Figure 5 (blue and green curves) 

displays the Nb conversion versus the irradiation time for the 

NHC precursor system IMesH+BPh4
-/ITX together with the pre-

catalyst [RuI2(pCy)]2. In solution (Figure 5, blue curve), this 

tricomponent system allowed monomer conversion to reach 

only 45% after 30 minutes of irradiation, revealing a less active 

catalytic system for ROMP of Nb than the tricomponent system 

employing [RuCl2(pCy)]2. Nevertheless, in sharp contrast with 

[RuCl2(pCy)]2, no Nb conversion was observed when 

[RuI2(pCy)]2 ruthenium complex was used alone (red curve, 

Figure 5). Thus, the combination of IMesH+BPh4
-/ITX with 

[RuI2(pCy)]2 provides a fully photolatent system for the ROMP of 

Nb, with no competitive initiation mechanism. 

 

Regarding the ROMP in miniemulsion at 10 w/w-% with this 

new catalytic system IMesH+BPh4
-/ITX/[RuI2(pCy)]2, polymers 

were obtained with slightly lower conversion (30% after 30 

minutes of irradiation) than in solution. Good colloidal stability 

of the final dispersion could also be noted with particle sizes (D 

= 74 nm (0.49)) close to the initial droplet size (D = 83 nm (0.32)). 

Conclusions 

In this contribution, Nb ROMP in miniemulsion was performed 

through a new photo-latent catalytic system. First, the 

miniemulsion formulation was optimized in order to obtain 

aqueous Nb miniemulsions with initial droplets smaller than 

100 nm. Droplets with diameter of 36 nm (PDI=0.271) and 64 

nm (PDI=0.228) for miniemulsion at 5 w/w-% and 10 w/w-% 

respectively were obtained. The UV attenuation of these 

emulsions was checked by UV-visible spectroscopy. 

Then, polymerizations were carried out by adding in the organic 

phase IMesH+BPh4
-, ITX and [RuCl2(pCy)]2, in order to generate 

in situ a Noels’ catalyst type complex in the droplets. Thanks to 

this new initiator, PNb were obtained by ROMP of Nb in solution 

and in miniemulsion with conversions up to 98% and 55% 

respectively. Despite these encouraging results, [RuCl2(pCy)]2 

alone appears to initiate the ROMP of Nb under UV irradiation, 

giving rise to a competition between two initiation mechanisms. 

In order to overcome this drawback, its iodine homologue 

[RuI2(pCy)]2 was used and proved to be fully inactive alone for 

the ROMP of Nb under UV irradiation (fully latent system), while 

in the presence of IMesH+BPh4
- and ITX it allowed reaching Nb 

conversions of about 50% in solution and about 35% in 

miniemulsion at 10 w/w-% of dispersed phase. 

In this first study, we thus demonstrated the potential of photo-

latent catalytic systems to obtain PNb by ROMP in aqueous 

miniemulsion. In a future work, use of another irradiation 

system, composed of a LED lamp and an annular reactor will be 

explored with this photoROMP system, with the aim to scale-up 

the production of PNb particles. Particular attention will be paid 

to the influence of the reactor geometry and the lamp power 

on the reactions efficiencies. 

 
Figure 5: Nb conversion as a function of the irradiation time with the catalytic 

system IMes+BPh4
-/ITX/[RuI2(pCy)]2 in solution (blue curve) and in miniemulsion at 

10 w-% (green curve). Red curve represents the conversion as a function of the 

irradiation time in solution for [RuI2(pCy)]2 alone (without IMes+BPh4
-/ITX). 
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Figure 4: Particle size distribution (Intensity (%)) of the PNb latex obtained after ROMP in miniemulsion at 10 w-% and TEM picture of the final particles. 
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