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Abstract

This work presents implementation details of three time discretization strate-
gies to solve the 3D incompressible Navier-Stokes equations in velocity-vorticity
formulation using PETSc. These time discretization strategies take more and more
terms of the system of equation implicitly until to have a fully implicit system.
Second order finite differences are used for the discretization in space. The tar-
get application is the lid-driven cavity of spanwise aspect ratio 3:1 at a Reynolds
number Re = 3200 on uniform non-staggered grids covering all the span. Differ-
ent features of the PETSC software are investigated allowing fast prototyping of
parallel numerical methods adapted to the proposed time discretization strategies.
Comparisons on the parallel efficiency, numerical accuracy, and flow behavior for
these three time discretization strategies are given.

Keywords: High performance computing ; Navier-Stokes; lid-driven cavity
problem; Navier-Stokes system

Introduction
This paper is devoted to the use of the Portable, Extensible Toolkit for Scientific Com-
putation (PETSc) for solving the unsteady three-dimensional Navier-Stokes equations
written in a conservative form of the velocity-vorticity formulation applied to the lid-
driven cavity of spanwise aspect ratio 3:1 at a Reynolds number Re = 3200 on uniform
non-staggered grids covering all the span.

From the numerical viewpoint, the three-dimensional flows in a cavity serve as
ideal prototype non-linear problems for testing numerical codes. Geometry simplicity

1



and weIl defined flow structures make these flows very attractive as test cases for new
numerical techniques and also provide benchmark solutions to evaluate differencing
schemes and problem formulation. We use this test case to study the PETSc features
in the teaching of high performance computing to the fifth year engineer students in
applied mathematics at Polytech Lyon engineering school (graduate students that al-
ready having 240 European Credit Transfer and Accumulation System (ECTS) and an
M1 level in the bachelor’s master’s doctorate system ). These classes follow the teach-
ing of the Message Passing Interface library, which facilitates the understanding of the
PETSc data distribution and communication through MPI communicators.

We show how different time discretizations of this Navier-Stokes system of equa-
tions obtained with writing implicit in the time formulation more and more terms can
illustrate on this problem the use of linear and nonlinear solvers features of PETSc
software. Further investigations on the French national resources permitted some com-
parisons (up to 2048 cores) in terms of parallelism speed-up and efficiency of the time
discretization strategies .We also investigated the impact of the time discretizing strate-
gies on the flow behavior, showing that having some term explicit in time on the bound-
ary conditions leads to a delay in time in the flow behavior. From our knowledge there
no simulation of velocity-vorticity 3D formulation of Navier-Stokes with fully implicit
time discretization in the literature. Some works can be found for the fully time implicit
3D lid-driven cubic cavity in primitive variables with Reynolds 1000 [1] or also [2].
Comparison between the flow behaviors in a cubical cavity and in a cavity of spanwise
aspect ratio 3:1 is over the scope of this paper. We are mainly focus to see how the time
discretisation strategies (semi implicit or fully implicit) with the same set order for the
time and the space discretizations impact the flow.

The plan of this paper is as follows: section 2 describes the 3D Navier-Stokes
equations governing the flow written in vorticity-velocity formulation, and the special
care needed to define the boundary conditions on the vorticity. Section 3 focuses on the
time discretization and its programming counterpart in the PETSc coding framework.
We show three time discretizations strategies with taking implicitly more and more
terms in the system of equations. Section 4 gives the results in term of parallelism of
the three discretizations in time strategies while section 5 exhibits the flow behavior
with respect of the time strategies. Section 6 concludes this paper.

1 Lid-driven cavity test case and space discretization

1.1 Governing equations
The velocity-vorticity formulation of the unsteady three-dimensional NavierStokes equa-
tions is mathematically equivalent to the primitive variables velocity-pressure formula-
tion as demonstrated in [3] [4]. It is often chosen, as opposed to the primitive variable
velocity-pressure ~V − p formulation, as transport is the critical physical phenomenon
of unsteady viscous flows, it leads to a more natural decoupling of the governing equa-
tion by separating the spin dynamic of a fluid particle (represented by the vorticity
transport equation) from its translation kinematics (represented by the elliptic velocity
problem) [5] [6] and is completely independent of the pressure. Notably, as pointed



by [7], the vorticity transport equation is quasi-linear in vorticity and independent of
pressure, whereas the velocity transport equation (momentum equation) is nonlinear in
velocity and coupled to the pressure.

The lid-driven cavity is a classical test case in fluid mechanics. Several papers in-
vestigated the flow behavior with respect to the Reynolds numbers [8, 9]. The flow in
a lid-driven cavity of spanwise aspect ratio 3:1 at a Reynolds number Re = 3200 is a
challenging problem as fully transient solutions are expected to show up. The diffi-
culties for meaningful calculations come from both space and temporal discretizations
which have to be sufficiently accurate to resolve detailed structures like Taylor-Görtler-
like vortices and the appropriate time development. We expect to exhibit in the plan
parallel to the flow a primary eddy at the center and three secondary eddies that rotate
in the opposite way than the primary eddy. In the plan orthogonal to the flow some
Taylor-Görtler (TG) vortices in the flow appear after some time. The number of these
TG vortices seems to be 7 at time T = 100 and 9 at time T = 200 [10]. This flow
structures are depicted in the figure 1.

Figure 1: Lid-driven cavity with aspect ratio 3:1

The dimensionless unsteady incompressible Navier-Stokes equations in velocity-
vorticity (~V −~ω) conservative form are formulated as folIows, neglecting body forces:

∂~ω

∂t
−~∇× (~V ×~ω) =

1
Re

∆~ω+B.C.+ I.C (1)

∆~V = −~∇×~ω+B.C.+ I.C. (2)

The Reynolds number is defined as Re=
U∞L

ν
where ν is the kinematic viscosity, L= 1

is the characteristic length of the cavity and U∞ = 1 is the velocity modulus of the lid

driven. We have a transport equation with a time derivative for the vorticity~ω
de f
= ~∇×~V

while an elliptic equation gives the velocity. These equations have the advantages to
avoid the difficult computing of the pressure that guarantees the incompressibility in



primitive variables and also to compute directly the vorticity for rotating flows. The
drawback is the definition of the vorticity boundary condition that is not naturally de-
fined and must be deduced from the vorticity definition. The elliptic equation must be
accurately solved as it guarantees the incompressibility. The other drawback is that we
have to solve six scalar equations: three for the velocity and three for the vorticity al-
though some mathematical manipulations can reduced the number of equation for the
velocity.

1.2 Space discretization
We discretize the computational domain using the same regular step size in the three
dimensions. Then we approximate the differential operators using second order fi-
nite differences. This leads to the standard discretization stencil with 7 points for the
Laplacian and we use centered second order discretization for the first order partial
derivatives of the convection term (for the forthcoming time discretization strategies 1
and 3 and first order decentered finite differences discretization for time discretization
strategy 2). This space discretization gives regular data dependencies that links each
points to its six neighbor points if they exist (see figure 2. Our approach has the ad-
vantage to avoid the corner singularities in the computation but misses the effect on the
flow of this corner singularities [11]. This effect should be taken in account in further
developments. Here, we are mainly focused on the effect of the time discretization on
the parallelism efficiency of its PETSc implementation and on the flow behavior.

Figure 2: Stencil of the data dependancies.

1.3 Boundary conditions
For t ≥ 0 we impose no-slip boundary condition for the velocity:
~V = (Vx = 0,Vy = 0,Vz = 0) for (x =± 3

2 ,y =±
1
2 ,z =−

1
2 ),

~V = (0,1,0) for (z =+ 1
2 ).

For the vorticity boundary condition we use the vorticity definition, ~∇×~V asso-
ciated to the values of the velocity derivatives at the walll. For example, at the wall



z0 =± 1
2 , we have :

Vx = Vy =Vz = 0, and
∂Vx

∂x
=

∂Vx

∂y
=

∂Vy

∂x
=

∂Vy

∂y
=

∂Vz

∂x
=

∂Vz

∂y
= 0 (3)

Using the definition of the vorticity we obtain:

z0 =±
1
2

: ωx(x,y,z0) =−
∂Vy

∂z
; ωy(x,y,z0) =

∂Vx

∂z
; ωz(x,y,z0) = 0

The same considerations lead to the other vorticity boundary conditions:

x0 =±
3
2

: ωx(x0,y,z) = 0; ωy(x0,y,z) =−
∂Vz

∂x
; ωz(x0,y,z) =

∂Vy

∂x
y0 =±

1
2

: ωx(x,y0,z) =
∂Vz

∂y
; ωy(x,y0,z) = 0; ωz(x,y0,z) =−

∂Vx

∂y

In order to have a second order approximation for the vorticity boundary conditions,
we use a limited development of the velocity components at the neighborhood of the
wall of the cavity. Considering, the Poisson equations for the velocity on the wall
z =− 1

2 , we have :

∂2Vx

∂z2 =
∂ωy

∂z
,

∂2Vy

∂z2 =−∂ωx

∂z

Using a Taylor series of Vx and Vy at the viscinity of the wall z0 =−
1
2

, we have:

Vx(x,y,−
1
2
+∆z)−Vx(x,y,−

1
2
) = ∆z

∂Vx

∂z
(x,y,−1

2
)+

∆z2

2
∂2Vx

∂z2 (x,y,−1
2
)+O(∆z3)

Vy(x,y,−
1
2
+∆z)−Vy(x,y,−

1
2
) = ∆z

∂Vy

∂z
(x,y,−1

2
)+

∆z2

2
∂2V2y
∂z2 (x,y,−1

2
)+O(∆z3)

With replacing the partial derivatives of Vx and Vy with respect of those of ωx and ωy:

Vx(x,y,−
1
2
+∆z)−Vx(x,y,−

1
2
) = ∆zωy(x,y,−

1
2
)+

∆z2

2
∂ωy

∂z
(x,y,−1

2
)+O(∆z3)

Vy(x,y,−
1
2
+∆z)−Vy(x,y,−

1
2
) =−∆zωx(x,y,−

1
2
)− ∆z2

2
∂ωx

∂z
(x,y,−1

2
)+O(∆z3)

With discretizing
∂ωy

∂z
and

∂ωx

∂z
at the first order, we deduce the boundary condi-

tions at z =− 1
2 :

ωx(x,y,−
1
2
)+ωx(x,y,−

1
2
+∆z) = − 2

∆z
(Vy(x,y,−

1
2
+∆z)−Vy(x,y,−

1
2
))

ωy(x,y,−
1
2
)+ωy(x,y,−

1
2
+∆z) =

2
∆z

(Vx(x,y,−
1
2
+∆z)−Vx(x,y,−

1
2
))

ωz(x,y,−
1
2
) = 0



We see that the boundary condition on the vorticity connects the point on the bound-
ary and the neighbor point within the computational domain. This is an important
consideration as all the flow dynamics come from the lid-driven. The other point to
highlight is the introduction of a certain delay in time between the vorticity and the ve-
locity if these boundary conditions are not implicitly treated (considering the vorticity
and the velocity at the same time step).

2 Time discretization strategies and their coding in PETSc
This lid-driven cavity problem has been implemented in a research parallel code, re-
quiring three years man of development, and using ADI for time marching on vorticity
(second order in time) and multigrid accelerated by schur dual domain decomposition
with generalized conjugate residual Krylov method for the velocity [12]. This code im-
plementation was efficient numerically and in elapsed time in the benchmark of codes
dedicated to solve this test case in the workshop[10].

A direct implementation of this code in the PETSc framework would not be possi-
ble without devoting a lot of effort as there is no ADI solvers implemented in PETSc.
The two difficulties would have been to define Krylov solvers associated to the tridiag-
onal operator in each direction of space and to split the vector of unknowns defiined on
the 3D distributed mesh in a set of vectors of unknowns associated to a 2D distributed
mesh for each space direction. This can be an opportunity of development of PETSc
solvers.

Instead, we investigate different features of the PETSc [13, 14] parallel software
to implement three time discretization strategies for (1)-(2) that take more and more
terms implicitly in the equations and boundary conditions. This benchmark constitutes
the core content to teach PETSc software to engineer students in applied mathematics
in few hours. We must notice that the computational domain is simple with structured
data. If we need to deal with more complex geometries and still use this structured
data we should use some domain decomposition strategies to split the computational
domain in block structured data and use some transformation mapping of the block
structured meshes to fit the complex geometry. The other solution should be to work
with unstructured data, and use some graph partitioning such as par-metis available in
PETSc to distribute the vector components between processors.

As the problem geometry is a cavity and the space discretization is with second or-
der finite differences then the velocity and vorticity fields can be represented by struc-
tured data like the PETSc distributed array (DA). This is done by the DMDACreate3D
function of Table 1. The User can let PETSc choose how to distribute the data between
the MPI processes. He has to give the dimensions in each direction, the type and the
length l of the computing stencils (stencil box for data dependencies in (i± l, j± l,k± l)
or Stencil star for data dependencies in (i± l, j,k),(i, j± l,k),(i, j,k± l)) ) and the
degree of freedom per point DOF. This DA defines the data dependencies and conse-
quently the maximum number of coefficient entries per row in the discretization matri-
ces.



Table 1: PETSc coding to distribute the fields between processors

2.1 Strategy 1 : time explicit convection term
The first strategy solves (1) with taking the convection term explicitly and then solves
(2) with taking the curl of the computed vorticity as right hand side:

(I− ∆t
Re

∆)~ωn+1 = ~ωn +∆t~∇× (~V n×~ωn) (4)

∆~V n+1 = −~∇×~ωn+1, after solving (4) (5)

We use a distributed array with 3 DOF and we define two Krylov Space Projection

Table 2: PETSc coding of the KSP set up for velocity

solvers KSP one for the velocity (KSPV) and one for the vorticity (KSPW) (see Ta-
ble 2). The KSP and its preconditioner PC have to be defined with the KSPSetType
and PCSetType functions. The KSP is associated to the DM through the KSPSetDM
function. This defines the potential matrix structure of the operator associated to the



KSP. The user provides two functions, one for building the matrix (here MatrixVe-
locity) and for building the right hand side (here RHSVelocity) that are associated to
the KSP through the KSPSetComputeOperators and KSPSetComputeRHS functions
respectively (see Table 2).

Table 3: Part of the PETSc coding for the RHS vorticity function

The main programming effort is to define the functions giving the matrix and the
RHS (see Table 3). The DM is retrieved from the KSP through KSPGetDM, then
DMDAGetLocalInfo gets the sizes (xm,ym,zm) of the subdomain managed by the pro-
cess and the size (mx,my,mz) of the global computational domain aand also the starting
point (xs,ys,zs) at the left down corner of the subdomain. The data are extracted from



the vector by DMDAVecGetArrayDOF. Extracting the data field with its ghost points
in the subdomain needs to create a local vector using DMGetLocalVector, then to ex-
tract a localArray with again DMDAVecGetArrayDOF and finally to update the ghost
point with neighbor subdomains with DMGlobalToLocalBegin and DMGlobalToLo-
calEnd. The data of the RHS are then computed using the 4-index array [k][j][i][dof]
The data associated to the RHS have to be restore in the vector using DMDAVecRe-
storeArrayDOF and must be assembly with VecAssemblyBegin and VecAssemblyEnd.
Local vectors have to been restored before leaving with DMRestoreLocalVector.

Then for strategy 1 one time step consists to solve the linear system with KSPSolve
and to extract the solution from KSP with KSPGetSolution. We tested several KSP

Table 4: PETSc coding of the time loop for strategy 1

solvers associated to different preconditioners. It appears that the best pair KSP/PC
for the elliptic equation is the GMRES [15, 16] associated to the HYPRE Algebraic
multigrid [17] preconditioner that converges in 5 (respectively 3) iterations per time
step for the velocity (respectively the vorticity) for the 192×64×64 mesh.

As both operators for the vorticity solution and the velocity solution do not de-
pend on the time iteration, we also studied the choice of KSP composed by KSPPRE-
ONLY where only the PC is applied with the choice of Gauss factorizaton with the
SuperLU dist package [18]. This is done simply by passing the "-ksp type preonly"
option in the execution order.

2.2 Strategy 2 : semi-implicit convection term
Strategy 2 solves (1)-(2) with taking the convection term semi-implicitly:(

(I− ∆t
Re ∆).+∆t∇× (~Vn× .) 0

∇× . ∆.

)(
~ωn+1

~V n+1

)
=

(
~ωn

0

)
(6)

Let us notice that for strategy 2, we still use the boundary condition for the vorticity
using the ~Vn as we split the solution of (6) in two stages, the solution of the velocity
and then the solution for the vorticity.



The PETSc implementation of strategy 2 involves two distributed array (DA) with
three degree of freedom (DOF) with two Krylov solvers (KSP) with updating a part
of the matrix vorticity at each time step. The vorticity boundary condition would have
been taken implicitly if we used a DA with six DOF and on KSP taking in account the
six equations. One time step for strategy 2 differs from those of strategy 1 with calling

Table 5: PETSc coding of the time loop for strategy 2

KSPSetComputeOperators function to update the matrix vorticity before KSPSolve
associated to the vorticity equation (see Table 5).

Again the best pair KSP/PC for strategy 2 is the GMRES/HYPRE pair , that con-
verges in 5 (respectively 3) iterates per time step for the velocity (respectively the
vorticity) for the 192×64×64 mesh and in 6 (respectively 4) iterates per time step for
the velocity (respectively the vorticity) for the 384×128×128 .

2.3 Strategy 3 : totaly implicit formulation
The third strategy solves (1)-(2) totally implicitly:(

(I− ∆t
Re ∆)(~ωn+1−∆t~∇× (~Vn+1×~ω

n+1
)− ~ωn

∆~Vn+1 +∇×~ωn+1

)
= ~0 (7)

In this strategy the boundary condition for the vorticity is totally implicit as well as the
convection term as the six equations are solved together.



Table 6: PETSc coding of the SNES setup for strategy 3 and the time loop associated

For strategy 3 the DM has six DOF and we create a SNES (system of Nonlinear
Equations Solver) object. This DM is associated to the SNES through the command
SNESSetDM. Then the user has to provide the function to minimize, implementing
the six discretized equations and boundary conditions with SNESSetFunction. As the
SNES may needs the Jacobian of the function to minimize we can provide the jacobian
to the SNES with the SNESSetJacobian function or we can let the Jacobian be eval-
uated with differentiating with providing a Index Set coloring associated to the data
dependencies in the function to minimize in order to optimize the number of call to the
function. This is done by the MatFDColoringCreate creating a MatFDColoring object
that has been associated to the SNES through the SNESSetJacobian command.We also
can change the KSP from the SNES through SNESGetKSP. One time step iteration
consists in applying SNESSolve and then get de solution with SNESGetSolution.

We also tested several SNES solver the two candidates have been newtonls (for



Newton based nonlinear solver that uses a line search [19]), and ngmres (for Nonlinear
Generalized Minimum Residual method [20] [21] that combines m previous solutions
into a minimum-residual solution by solving a small linearized optimization problem
at each iteration, very similar to the Anderson mixing [22]). While newtonls was per-
forming better to reach a relative tolerance of 1e-6 ,ngmres with up to 300 previous
solutions was prefered to reach a relative tolerance of 1e-8 as we will discuss in the
flow behavior result.

Figure 3: Comparison of the number of ngmres iterations with respect to the simulaton
Time (s) for the 192×64×64 mesh and for two time steps dt = 0.005 (full line) and
dt = 0.02 (dash line)

Figure 3 gives the comparison of the number of ngmres iterations with respect to
the simulaton Time (s) for the 192× 64× 64 mesh and for two time steps dt = 0.005
and dt = 0.02. We see that for the two simulations the number of ngmres oscillates
with quite the same behavior until T = 40. The mean of the number of iteration is
245.19 (respectively 259.17) for dt = 0.005 (respectively dt = 0.02). We see that the
computational effort for ngmres is slightly greater with the time step dt = 0.02 than for
dt = 0.005 but not in the ratio of 4 that the no limitation on the CFL condition allows.

3 Parallelism results

3.1 Computational resources and time measurement
Table 7 presents the characteristics of computational resources used to obtain the paral-
lelism results. We dispose of a local computational resource that allows us to define the
methodology and to obtain the flow behavior and some results on parallel efficiency in



a shared memory environment. The national allocated computing resource occigen is
finite 50000 hours and is used to obtain parallel speed-up in an dedicated environment
with up to date software framework by an expert dedicated team. The results on occi-
gen will use as much as possible the load balancing between memory and CPU with
using, when is possible, not all CPUs of each node.

Computer glenan occigen
Model Dell PE920 bulx DLC
Processor Xeon Xeon

E7-4880v2 E5-2690v3
4x15C 2.5Ghz 1x12C 2.6Ghz

Memory/Node 512Gb 110Gb
Network shared memory Infinityband FDR
Resource laboratory national (cines)

∞ hours 50000 hours
Use speed-up tests speed-up tests

flow behavior

Table 7: Computing resources characteristics

Table 8: Coding of the event log for parallel performances

PETSc provides a smart mechanism to monitor the performance with a command
line option -log view that provides counters on events defined by the user. The user has
to declare PetscLogStage and use the PetscLogStagePush(stage) and PetscLogStage-
Pop(); before and after the portion of code that must be monitored as illustrated in
Table 8. Then when the code terminates, the log of selected events with their time
measurement are displayed as shown in table 9.



Table 9: PETSc log of the code for 10+1(first) time steps of strategy 1 on glenan for
the mesh 192×64×64

We made the observation that the first solve always takes more elapse time, this
why we separated the first solve from other iterations in the time measurement.



3.2 Speed-up for strategy 1

Figure 4: Speed-up (strong scaling) of strategy 1 on glenan (left) and occigen (right)
for domain sizes 192×64×64 (top) and 384×128×128

Figure 4 gives the speed-up for strategy 1 for two meshes 192× 64× 64 and 384×
128× 128 on glenan and occigen with the GMRES+Hypre solver. We see that the
speed-up on glenan is limited to 8 for 64 threads while the KSPW scales better on oc-
cigen with a speed-up of 512 for 1024 processes for the 192×64×64 mesh and 741,86
for 2048 processes for the 384×128×128 mesh. We also note that the KSPW scales
better than the KSPV on occigen due to the nature of the operator nearby the identity
compared to the Laplacian operator, that should give less complex algebraic multigrid
projection and restriction operators and so more efficient in term of parallelism precon-
ditioner. Nevertheless the speed-up on glenan for the KSPW is strongly degraded on
the 384× 64× 64 with nearby 4 for 32 threads. This degradation is less sensible on
occigen.



3.3 Speed-up for strategy 2

Figure 5: Speed-up (strong scaling) of strategy 2 on glenan (left) and occigen (right)
for domain sizes 192×64×64 (top) and 384×128×128

Figure 5 gives the speed-up for strategy 2 for two meshes 192× 64× 64 and 384×
128×128 on glenan and on occigen with the GMRES+Hypre solver. Again the speed-
up is better for the KSPW than for KSPV, even if the stagnation of the speed-up comes
more early with the introduction of convective term in the vorticity operator that leads
to an operator with the diagonal dominance reinforced . A speed-up of 426.67 for 1024
processes is reach on the 192×64×64 on occigen for KSPW. This speed-up stagnates
on 2048 processes. The speed-up is again around 786.36 for 2048 processes on occigen
for the 384×128×128 mesh.

3.4 Speed-up for strategy 3
Figure 6 gives the speed-up for the strategy 3 on occigen for a mesh of 192×64×64
with Nonlinear GMRES with up to 300 previous solutions. A speed-up of is obtained
for 1024 CPUs. We see that the SNES’s initialization (Snes init), that corresponds to the



Figure 6: Speed-up for strategy 3 with ngmres and 192×64×64

buliding of the data structures for the snes, scales until 64 and the scaling performances
are degraded after. As this initialization time is small compared to the time associated
to the number of time iterates, this result is not significant. We still spearate the first
solve to the other iterations as it takes more time. The SNES solving scales well until
64 processes on occigen, and a speed-up of 298 ( 357 respectively) is obtained on 1024
processes (respectively 2048 processes).

3.5 Elapsed time comparison for the three strategies
Table 10 gives the elapse time per iteration for all the strategies for the 192×64×64
mesh with dt = 0.005 on occigen computer.

• The strategy 1 with superLU didn’t run onto occigen due to lack of memory
with 110Gb. Strategies 1 and 2 take quite the same time on one processor while
strategy 3 took 74.76 times more time than strategy 2 on one process. This ratio
drops to 20 on 256 processes. Strategy 3 still reduces the elapsed time after 256
processes.

• Strategy 2 is quite always better than strategy 1 even if the matrix for the vorticity
change. This is quite surprising. This may due to the decentered discretization
of the convection term for the vorticity equation that leads to more diagonal
dominant matrix than for the Laplacian and consequently has a better Krylov
convergence. The velocity equations are solved identically in both strategies.

• For 256 processors the strategy 3 becomes reachable as there is no CFL condition
on the time step.



P S1 S1 LU S2 S3 comments
1 12.61 - 12.59 941.25 too much even with no CFL
2 9.97 32.89 9.09 479.35
4 6.69 20.48 6.78 316.63 S1 vs S2 similar (<>tol)
8 4.56 10.77 3.82 311.45
16 2.91 8.50 2.52 99.18
32 1.83 4.54 1.58 39.20
64 0.99 4.16 0.83 17.84
128 0.68 2.37 0.56 10.03
256 0.40 2.42 0.34 6.04 S3 reachable with no CFL
512 0.30 1.83 0.28 4.11
1024 0.23 5.05 0.28 3.15
2048 - - 0.26 2.63

Table 10: Time (s) per iteration: occigen dt=0.005 192x64x64

To be complete, we must notice that the elapsed time per point and time step is
around 1.60e−6 to 3e−7 for strategy 2 that is not impressive compared to the elapsed
time of the optimized research code with ADI and multigrid and domain decomposition
done on the CRAY YMP 25 years ago with 2.510−5 s per point and time step for a
81×41×41 mesh [10].

Nevertheless the programming effort was low (once understanding the PETSc phi-
losophy of implementation); we also let PETSc deciding of the data distribution and
the equations have been solved with a better accuracy at each time step.

4 Flow behavior
For the flow behavior comparison between the three strategies, we restrict ourselves
to compare the flow behavior in the x− z plane at y = 1/6 where the Taylor-Gortler
vortices should appear. We extract the distributed component ωy from the distributed
mesh through MPI implementation although we could use some vecGather function
from the PETSc library. The figures have been generated with matlab contourf function
for isovalues equal to [−10,−5,−3,−1,−0.5,0,0.5,1,3,5,10]



4.1 Underresolved problem for strategy 3

Figure 7: Effect on the undersolve time step solution on the flow behavior: up the
Newton LS algorithm for strategy 3 with a tol = 1e−6 at T = 38 and bottom the lost of
the flow symmetry at T = 60 .

Figure 7 exhibits a problem that occurred for the strategy 3 when the solver a newtonls
with a rtol = 1e− 6 was used. It presents the flow behavior at T = 38 that keeps its
symmetry while it loses its symmetry for T = 60. This is due to some underresolved
solution at some time after T = 38. We advocate that as the equations are symmetric as
the boundary conditions also, we should keep the symmetry of the flow. The problem
was solved by changing the solver with the ngmres with up to 300 previous solutions
that allows to solve the problem with a rtol = 1e−8.

Figure 7 gives the flow behavior for T = 38 and T = 60 for strategy 3 with newtonls
solver with a tolerance of 1e− 6. We see that the flow loses its symmetry due to an
underresolving during some time step. This why we easely changed the solver with
ngmres with 300 fixed-point iterations in order to reach a tolerance of 1e−8.



4.2 Flow behavior comparison for the three strategies
Figures 8 , 9, and 10 compare the flow behavior for the three strategies at time T =
{20.28,45.00,73.48} for the mesh 192×64×64 and a time step value of dt = 0.005
(which is imposed by the CFL condition of strategy 1). The solvers used are su-
perlu+dist, gmres+hypre and ngmres 300 for strategies 1, 2 and 3 respectively.

Figure 8 exhibits some quite similar results for strategy 1 and strategy 2 with
slightly more strong vortex in position i=45 and k=50. The difference coming from
taking the vorticity term implicit in time in the convection term but the treatment of
the vorticity boundary conditions are unchanged between the two strategies. For the
strategy 3, it shows that the vortices attached to the boundaries are more strong, and the
flow is slightly in advance compared to the two other strategies as the vortex in position
i=20, k=55 is already attached to the vortex on the boundary. We conclude that taking
explicit in time the convection term and with more impact taking explicit in time the
right hand side of the vorticity boundary conditions introduce a delay on the flow.

The flow behavior at T=45 on Figure 9 still exhibits the quite same flow structure
for the three strategy, with more strong vortices for the strategy 3. The flow keeps
its symmetry. This is also the case for Figure 10 where the strategy 3 exhibits more
defined vortices structures.



Figure 8: Comparison of the flow behavior for the three strategies (strategy 3 up, strat-
egy 2 middle, strategy 1 bottom) at time t=20.



Figure 9: Comparison of the flow behavior for the three strategies (strategy 3 up, strat-
egy 2 middle, strategy 1 bottom) at time t=45.



Figure 10: Comparison of the flow behavior for the three strategies (strategy 3 up,
strategy 2 middle, strategy 1 bottom) at time t=74.



4.3 Flow behavior comparison with respect to the time step for
strategy 3

Figure 11 gives the flow behavior at time T = 76 for the strategy 3 with the ngmres
solver for two time steps dt = 2.10−2 and dt = 5.10−3. We see a good agreement
between the two computations and see the advantage of strategy 3 that has no CFL
condition. The limitation for the time step is only due to physics consideration, in
order to catch the right dynamics and we see that we can take a 4 times greater time
step for this flow behavior computation.

Figure 11: Comparison for strategy 3 (with no CFL time step limitation) for two time
steps dt = 2.10−2 (top) and dt = 5.10−3 (bottom).

5 Conclusions
This paper shows the use of different functionalities of PETSc to solve the lid-driven
cavity problem with aspect ratio 3:1 for Reynolds 3200 from a semi-implicit to a fully
implicit in time formulations. We notably exhibits that writing all the terms of the



vorticity boundary condition at time step tn+1 leads to stronger vortices much more
than writing all the terms involved in the convective term at same time step tn+1. This
conclusion is somewhat foreseeable as all the dynamics of the flow comes from the
boundaries. The PETSc library permits us to tests different solvers and to choose the
solver and its parameters the best adapted for the computation. It was somewhat sur-
prising in a first approach that taking the convective term implicit gives better results
on the parallelism for the solver associated to the vorticity. This is mainly due to the
HYPRE preconditioner behavior, that creates algebraically the restriction and projec-
tion operators, which performs well for the operator where we reinforce the diagonal
dominance.

The fully implicit formulation has the advantage to not have CFL condition and
allows us to violate at least 4 times this CFL of the strategy 1 with keeping the right
flow behavior. One output of this work, is to demonstrates that the fully implicit in
time strategy can be competitive (reachable) with a sufficient number of processes.
Nevertheless, we must mention that we could provide to the PETSc library with the
KSPRegister instruction our owner implementation of gmres where we can stored the
directions of descent from different consecutive time steps in a cumulative Krylov
space since the operator for strategy 1 does not change. Then we can initialize the new
time step solution with projecting the new right hand side with respect to this Krylov
space [12, 23, 24]. We now have a non-trivial PETSc base test case that can allow us
to develop non-linear acceleration methods by further entering in the PETSc coding
to define our own SNES solvers, using for example singular value decomposition of
previous time step solutions to accelerate the Newton [24]. The discretization could
also be improve by several way, with at least better space discretization with compact
schemes [25] for example and better discretization in time. The perspective of this
work could be also to go further in controling the error on the solution with using for
example BDF schemes with adaptive time step of the SUNDIALS [26] library.
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