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The aim of this paper is to provide an analytical contribution which presents the application of

shear-horizontal (SH)-guided waves for the characterisation of a bi-layered structure which consists

of two isotropic plates adhesively bonded using a non-dissipative thin layer of glue. The thickness

of the layer of glue is assumed to be non-negligible, and the interfaces between this layer of glue

and the plates are both assumed to be roughened (parallel ridges with complex shape and depth pro-

files). The basis of the theoretical approach is an extension of the integral formulation, in the frame

of SH modal couplings due to the roughness, which has been developed previously for SH-wave

propagation over a single plate with a rough surface. This approach assumes that the average

roughness height is a small fraction of the thicknesses of the waveguides (the plates) everywhere.

The changes, due to the roughness, in the characteristics of the fields created by a harmonic source

set at the entrance edge of the structure are expressed through the mapping of the displacement and

stress perturbations. Preliminary tests of the effectiveness of the model are given; they rely on the

phase-matching effects of periodic profiles and pseudo-random experimental profile. VC 2015
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4937150]

I. INTRODUCTION

The nature and properties of ultrasonic waves within

elastic waveguides are topics of enduring importance in fun-

damental acoustics and its practical applications. The litera-

ture abounds with many papers in which topics of principal

focus involve guided waves techniques to non-destructively

characterize the engineering components. Such techniques

become particularly relevant whenever adhesive bonded

components (increasingly used in engineering applications)

are concerned.1–3

Many researches have been produced on the general

topic of ultrasonic non-destructive evaluation (NDE) of ad-

hesive bonds, using mainly either Lamb or Shear-Horizontal

(SH) guided waves.4,5 Most of the literature deals with the

characterization of the adhesive properties at the bonded

interfaces. We can quote, among others, characterization and

evaluation of adhesion, detection of defects, and lack of ad-

hesion.6–12 Concerning the rheological models used to

describe the behavior of the glue and the interfaces between

it and the structure, mainly two basic models are involved: a

cohesive rheological model that corresponds to the standard

approach in which the entire adhesive layer is replaced by a

spring surface, and an adhesive rheological model which

consists in describing only the contact zones by a spring sur-

face distribution (among inertia and dissipation).13,14 Indeed,

the cohesive rheological model makes it possible to quantify

global (cohesive) defects in the adhesive layer, while the ad-

hesive rheological model targets local (adhesive) defects on

the interface level.

Concerning the literature on the related subjects, one

can mention also articles that address the effects of complex

structures with rapid change of curvatures at the interfaces

and boundaries, including those which involve periodically

undulated interfaces between waveguides. Several theoreti-

cal methods are used: they include semi-analytical methods

(like the distributed point source method), method of multi-

ple scales, or Green’s tensor for fields in half space.15–21 It is

worth noting also that the class of problem mentioned above

is common in others fields (optic, electromagnetism, under-

water acoustics, atmospheric propagation, duct acoustics,

etc.)22–28 and bibliography therein. Besides, guided SH-

waves have been successfully used to characterise the rough-

ness of the surface of isotropic plates in using the same basic

formalism as the one used herein,29 which could be particu-

larly relevant before applying adhesive joints. Therefore, it

is of interest to understand the behaviour of SH-waves prop-

agating along a multi-layered structure consisting of two iso-

tropic plates glued together when complex shapes and depth

profiles of the roughness affect the characteristics of the

structure, thereby motivating the use of a new modelling.

As mentioned above, in much of the more practical

recent literature, the theoretical work is extensively numeri-

cal,13,14,30 relying on finite element programs based on avail-

able packages. Such approach is capable of modelling

complex problem, but it could inhibit insight which can be

offset if one has some benchmark analytical solution.
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Actually, these analytical solutions are for specialized geo-

metries, and their implementation could involve extensive

numerical calculation, but they could remain advantageous

in the analysis of the behaviour observed. On the other hand,

several authors investigate physical properties of bonded

structures in using also analyses which rely on the dispersion

or phase velocity curves.7,16,31–33 Here, the paper provides

an analytical model which enables to express the perturba-

tion of the displacement field and the stress fields in the

structure considered, considering both the depth and the

shape of the roughness.

The main goal of this paper is to provide such an analyt-

ical model for SH-waves propagating along two plates stuck

together, each having the same lateral dimensions but differ-

ent thicknesses and material properties, the surfaces pasted

being roughened. More precisely, this analytical contribution

presents the application of SH-guided waves for the charac-

terisation of a multi-layered structure which consists of two

isotropic plates adhesively bonded using a non-dissipative

thin layer of glue described by a shear-spring model, the

interfaces between this layer of glue and the plates being

both assumed to be roughened (parallel ridges with complex

shape and depth profiles). The part of the plates stuck to-

gether behaves not really as a bilaminar plate comprised of

two perfectly bonded elastic plates, because the thickness of

the layer of glue is assumed to be non-negligible.

The basis of the theoretical approach is the integral for-

mulation which has been developed previously34,35 for SH-

wave propagation along a plate with a rough surface. This

approach assumes that the average roughness height is a

small fraction of the thicknesses of the waveguides (the

plates) everywhere. The development that follows involves

the modification of waveguide SH-modes which occurs

when roughness is involved. The behaviour of the acoustic

field perturbed by the roughness is presented mainly in terms

of both SH modal couplings inside each plate and SH modal

couplings between the plates through the layer of glue. The

changes, due to the roughness, in the characteristics of the

fields created by a harmonic source set at the entrance edge

of the structure are expressed through the mapping of the dis-

placement and stress perturbations. Preliminary tests of the

effectiveness of the model are given; they rely on the phase-

matching effects of periodic profiles and pseudo-random ex-

perimental profile.

The formulation gives a prominent role to an integral

formulation (involving a suitable Green’s function), in which

the field perturbation is expressed as an expansion on an or-

thogonal set of functions involving a finite number of non-

perturbed SH-modes. Therefore, after the presentation of the

three layered structure (Section II), the paper is divided in

three parts: the analytical modelling of the SH modes with-

out roughness (Section III), the integral formulation for the

field scattered by the roughness along with the resultant ap-

proximate solutions (Section IV), while supplementary

details are relegated to Appendix C, and finally (Section V),

the results, mainly the mapping of the displacement fields

and the stress fields and their perturbation due to the

roughness.

II. THE MULTILAYERED STRUCTURE (THREE
LAYERS)

The structure considered in the following (see Fig. 1) is

a two dimensional set of two homogeneous parallel plates

(labelled q ¼ 1; 2) adhesively bonded using a thin layer of

glue, the interfaces between this layer of glue and the plates

being both roughened (ridges parallel to the y-axis herein).

The structure is assumed to be infinite in the y-direction, set

in vacuum, and bounded by two parallel plane surfaces per-

pendicular to the z-direction. A SH-wave, polarized along

the ridges (parallel to the y-axis), is assumed to propagate

along the x-axis parallel to the external surfaces of the

structure.

Introducing a coordinate system in each plate q ¼ 1; 2,

labelled ðxq; zqÞ, each vertical axis zq having its origin Oq in

the middle of the plate and being directed towards the rough

surface of the considered plate (Fig. 1), the coordinates of

the ridged surfaces (which depend on the coordinate x
defined above) are given, respectively, by zq ¼ ZqðxÞ. Each

plate is assumed to be bounded by two parallel surfaces per-

pendicular to the z-axis, set, respectively, at the coordinates

zq ¼ 6Lq=2 ðLq > 0Þ. Therefore, denoting hqðxÞ > 0 the

depth of the corrugations, the coordinates of the corrugated

surfaces can be written as follows: ZqðxÞ ¼ ðLq=2Þ � hqðxÞ.
The shapes of these ridged surfaces are defined by their unit

vectors nq normal to the surfaces of the plates, directed out-

ward from the plate interior, given by

nq ¼ N�1
q ½ðd xq

hqÞe xq
þ e zq

� ¼ N�1
q ½ðdxhqÞex þ ð�1Þqþ1

ez�;
(1a)

with Nq¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð@xhqÞ2

q
, exq
¼ð�1Þqþ1

ex and ezq
¼ð�1Þqþ1

ez denoting the unit vectors that have, respectively, the posi-

tive direction of the xq- and zq-coordinates.

Inner plates of thicknesses dq > 0 with regularly shaped

surfaces are defined in such a way that the corrugations are

trapped between the surfaces zq ¼ Lq=2 and zq ffi dq=2

ðhq � dqÞ. Denoting Lg > 0 the thickness of the layer of

glue between the fictive planes zq ¼ Lq=2, it follows that the

sum

‘gðxÞ ¼ Lg þ h1ðxÞ þ h2ðxÞ
¼ Lg þ ½ðL2=2Þ � Z2ðxÞ� þ ½ðL1=2Þ � Z1ðxÞ�; (1b)

represents the thickness of the layer of glue (which depends

on the coordinate x). Note that each layer is characterized by

its density and its shear second Lam�e coefficient,

FIG. 1. Sketch of the 2D structure with smooth upper and lower surfaces,

and with rough interfaces between each plate and the thin layer of glue.

224904-2 Potel et al. J. Appl. Phys. 118, 224904 (2015)
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respectively, qq and lq for the plates, and qg and lg for the

layer of glue.

III. THE ANALYTICAL MODELLING

A. The basic equations

A harmonic [with a time factor exp ði x tÞ], incident

propagating SH-wave coming from the left end of the struc-

ture (Fig. 1), is characterised by its amplitude (depending on

the coordinate z) at the entrance x ¼ 0 of the ridged plate

[domains Dq, x 2 ð0; 1Þ; zq 2 ð�Lq=2; ZqÞ]. The shear

displacement fields in each plate ðq ¼ 1; 2Þ, assumed to be

polarized along the y-axis (along the ridges), are denoted

ûqðx; zq; tÞ ¼ Ûqðx; zqÞ exp ðix tÞ ey; (2)

where ey (ey ¼ e y1
¼ e y 2

) denotes the unit vector that has

the positive direction of the y-coordinate, and Ûqðx; zqÞ rep-

resents the y-component of the complex amplitude of the dis-

placement field. Their behaviours are governed by the set of

equations, including the propagation equation and the bound-

ary conditions, which takes the following form:

ð@2
xx þ @ 2

zqzq
þ k2

qÞ Ûqðx; zqÞ ¼ �f̂ ðzqÞ dðxÞ; ½x; zq� 2 Dq; ð3aÞ

Tqðx; zqÞ : nq ¼ 0; 8 x 2 ð0; 1Þ; zq ¼ �Lq=2; ð3bÞ

Tq ðx; zqÞ : nq ¼ Tg ðx; zqÞ : nq

Ûqðx; zqÞ ¼ Ûgðx; zqÞ

)
; x 2 ð0; 1Þ; zq ¼ ZqðxÞ;

No wave coming back fromþ1;

ð3cÞ

ð3dÞ

ð3eÞ

8>>>>>>>>>><
>>>>>>>>>>:

where kq ¼ x=cq, cq ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
lq=qq

q
being the speed of the shear

waves in the homogeneous solid plates, f̂ ðzqÞ represents the

source strength at x ¼ 0 [dðxÞ being the Dirac function], and

Tqðx; zÞ and Tgðx; zÞ represent the stress tensors, respec-

tively, in the plates and the glue.

Invoking the Hooke’s law and accounting for the polar-

ization along the y-axis of the SH-wave, the boundary condi-

tions (3b) and (3c) on the ridged surfaces involve the

following expression:

Tqðx; zqÞ : nq ¼ lq@nq
Ûqðx; zqÞ ey; (4)

with

Tqðx; zqÞ : nq ¼ N�1
q ½Ty xðx; zqÞ ðdx hqÞ

þ ð�1Þqþ1 Ty zðx; zqÞ� ey; (5)

and where

@nq
¼ nq:r ¼ N�1

q ½ðdxq
hqÞ @xq

þ @zq
�

¼ N�1
q ½ðdx hqÞ @x þ ð�1Þ qþ1@z�; (6)

is the normal derivative with respect to the normal nq

directed outward from the plate interior. Note that when the

slope of the roughness tends to infinity, this expression (6)

remains finite. Equivalent expressions for the parameters

involving the index “g” follow from the same definitions and

the same properties.

To express the behaviour of the glue, we assume that the

thickness ‘gðxÞ of the layer of glue is very thin (but it does

not vanish): it remains much smaller than the inverse of the

z-component of the wavenumber k zq
. Then, neglecting the

effects of inertia of this thin layer of glue, i.e., assuming

the zero order approximation with respect to the thickness

‘gðxÞ of the following basic equation, namely (see the orien-

tation of the zq-axis):

0 ffi ‘g qg@
2
ttU1 ffi ‘g qg@

2
tt U2

ffi l1@n1
U1ðx; z1 ¼ Z1Þ þ l 2@n 2

U2ðx; z 2 ¼ Z 2Þ; (7a)

which implies that the stress tensor is uniform over this

layer, and neglecting other effects (dissipation, relaxation,

etc.), the behaviour of this layer of glue can be expressed by

a classical spring-like model (Jones’ model), with a spring

stiffness ðlg=‘gÞ

lq@nq
Ûq ¼ �l s 6¼q@n s 6¼q

Ûs6¼q

¼
lg

‘g
Ûs 6¼q x0; Z sð Þ � Ûq x0; Zq

� �h i
: (7b)

This interface condition between the plates,36,37 described by

a shear-spring model (the stress is continuous but the displace-

ment is not), is successfully employed when the layer of the

glue is very thin (which is usually the case in practice).

B. Zero order approximation: Two plates with smooth
surfaces and with a thin layer of glue

In this subsection, we assume that ZqðxÞ ¼ ðLq=2Þ ðq ¼
1; 2Þ and ‘gðxÞ ¼ Lg, i.e., hqðxÞ ¼ 0 (no roughness). In each

plate, the displacement fields Ûqðx; zqÞ propagating along

the x-axis, denoted in this subsection (no roughness)

Û
ð0Þ
q ðx; zqÞ, takes the following form, accounting for the

boundary condition Tqðx; zqÞ : nq ¼ 0 at the outer surfaces of

the plates zq ¼ �Lq=2 (here, nq ¼ �e zq
):

Û
ð0Þ
q ðx; zqÞ ¼ 2 C ð0Þq exp ðikð0Þzq

Lq=2Þ cos kð0Þzq
ðzq

þ Lq=2Þ exp ð�ikð0Þx xÞ; (8a)

224904-3 Potel et al. J. Appl. Phys. 118, 224904 (2015)
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with

kð0Þzq
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k 2

q � ðk
ð0Þ
x Þ 2

q
6¼ 0; (8b)

C
ð0Þ
q denoting the amplitudes of the fields which depend on

the strength of the source.

Then, the continuity conditions at the interfaces

zq ¼ �Lq=2, q ¼ 1; 2 (Equation (7b)) give two homogeneous

algebraic equations for the unknown amplitudes C
ð0Þ
1 and C

ð0Þ
2 .

The determinant of the square matrix associated to this couple

of equations must vanish (details are given in Appendix A).

This leads to the following equation (dispersion equation)

which allows expressing the longitudinal x-components kð0Þx M

of the wavenumber (the z-component of the wavenumber

kð0Þzq
� kð0Þzq M

and the integration constants have also to be

thought of as labelled “M ¼ 1; 2; 3; :::” below):

L1=l1

k 0ð Þ
z1 M L1

� �
tan k 0ð Þ

z 1 M L1

� �þ L 2=l 2

k 0ð Þ
z 2 M L 2

� �
tan k 0ð Þ

z 2 M L 2

� �� Lg

lg

¼ 0:

(9)

IV. INTEGRAL FORMULATION

A. Orthonormal modes and Green’s function for each
plate

The solution of Equations (3) will be expressed

(through an integral formulation, see Section IV B) in the

frame of an expansion of a finite number of SH-modes,

using a set of relevant one-dimensional orthogonal, normal-

ised, functions wqm
ðzqÞ ðm ¼ 0; 1; 2; :::;M maxÞ at a given fre-

quency, for each two-dimensional waveguide bounded by

the regularly shaped, parallel, and plane surfaces set at

zq ¼ 6Lq=2. The incident displacement field U
ð0Þ
q I ðx; zÞ,

assumed in Section V to be a given SH-mode “I” at a given

frequency, undergoes scattering on the roughened surfaces,

initiating all the SH-modes U
ð0Þ
q M ðx; zÞ which can take place

in the process (in the frame of Born approximation). This

set of SH-modes, given in Section III, does not satisfy

standard orthogonality conditions. Then, in order to express

the perturbed field as an expansion involving this finite

number of SH-modes, an orthonormal set of functions is

retrieved from them on using the Gram-Schmidt process.38

This method for orthonormalising the set of SH-modes,

which span any displacement fields possible as a superposi-

tion of the existing SH modes at the given frequency, is pre-

sented in Appendix B.

Note that the orthogonal normalised functions wqm
ðzqÞ

do not depend on the x-coordinate and that the index m ¼ 0

is chosen to label the incident SH-mode M ¼ I, the other

modes being then ordered sequentially.

The solution method of Equation (3) (integral formula-

tion presented below) involves an appropriate Green’s func-

tion, at a given frequency, in each plate in the absence of

roughness, corresponding to a point source located at a posi-

tion ðx0; z0qÞ in the plate labelled “q,” which does not depend

on the SH-mode considered. The Green’s function chosen is

required to satisfy the following relations, in the domain

D q 0
¼ ½x 2 ð0; 1Þ; zq 2 ð�Lq=2; Lq=2Þ�:

½@ 2
xq xq
þ @ 2

zq zq
þ k2

q�Gqðxq; zq; x0q; z
0
qÞ ¼ �dðxq; x

0
qÞ dðzq; z

0
qÞ; zq 2 ð�Lq=2; Lq=2Þ; ð10aÞ

@zq
Gqðxq; zq; x0q; z

0
qÞ ¼ 0; zq ¼ �Lq=2; ð10bÞ

(

The Green’s function which obeys this system of equations

(10) has the explicit form39,40

Gq xq; zq; x0q; z
0
q

� �
¼ � i

4
fH�0 ðkqj rq � r0q jÞ

þ H�0 ðkqj rq � r00q jÞg; (11a)

with

j rq � r0q j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxq � x0qÞ

2 þ ðzq � z0qÞ
2

q
;

j rq � r00q j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxq � x0qÞ 2 þ ðzq � z00qÞ

2
q

;

z00q ¼ ðz0q þ LqÞ; (11b)

where H�n denotes the first Hankel function of order “n.”

It is noteworthy that this cylindrical Green’s function

Gqðrq; r0qÞ and its derivative have a singularity at rq ¼ r0q.

But it is readily verifiable that, despite this integrand singu-

larity which occurs in the integrals below (Section IV B), the

limits of the integrations are finite.

It should be emphasized that the Green’s function does

not satisfy any interface condition on the plane surface zq

¼ Lq=2 and that the interface condition for the SH fields is

applied on the rough boundary zqðxÞ ¼ ZqðxÞ, denoted below

zqðx0Þ ¼ Z0q.

B. The integral formulation

With both the Green function (11) and the displacement

field Ûqðx; zqÞ satisfying the same Neumann boundary condi-

tion at the outer surface ð�Lq=2Þ of each plate, the integral

formulation equivalent to the problem inside the plates stated

above (3a)–(3d), which involves domains

D q 0
¼ ½x 2 ð0; 1Þ; zq 2 ð�Lq=2; Lq=2Þ� and

Dq ¼ ½x 2 ð0; 1Þ; zq 2 ð�Lq=2; ZqÞ�;

can be written as follows (the source term being described

by an adapted function ŜqðzqÞ at the entrance x0 ¼ 0 of each

plate):39,40
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ðx; zqÞ 2 ðDqÞ; Ûqðx; zqÞ
ðx; zqÞ 2 ðD q 0

� DqÞ; 0

)

¼
ðLq=2

�Lq=2

Gqðxq; zq; x 0; z
0
qÞŜqðz0qÞdz0q

þ
ðþ1

0

½Gqðx; zq; x0; Z0qÞ @n0q Ûqðx0; Z0qÞ

� Ûqðx0; Z0qÞ @n0q Gqðx; zq; x0; Z0qÞ � d x0 : (12)

This approach can be considered as an extension of the one

used previously to describe successfully the effect of the

roughness on the propagation of SH-waves in a single plate.

But the derivations presented below depart deeply from the

previous one because, while appropriate to addressing the

example of single plate, they fail when the coupling between

glued plates is considered.

Note that, owing to the choice of the Green’s functions

(boundary conditions on the outer surfaces set at z ¼ �Lq=2),

the integral over these surfaces vanish. Then, the remaining

integral over the surfaces z ¼ þLq=2 in Eq. (12) permits to

express analytically the scattering on the roughness.

It is noteworthy that the perturbed displacement field

due to the scattering on the roughness represents both the

self-coupling of the incoming mode with itself and the cross-

coupling between this incident SH-wave and the other modes

which can exist at the working frequency.

On assuming that the energy transfer from the external

source to the plate “q,” represented by the first integral in the

right hand side of Equation (12), is not perturbed significantly by

the scattering on the roughness (this is coherent with the usual

experimental output data which are normalized to the incoming

ones), Equation (12) becomes, for non-roughened plates

Û
ð0Þ
q ðx; zqÞ ¼

ðLq=2

�Lq=2

Gqðx; zq; x0; z0qÞ Ŝqðz0qÞdz0q

þ
ðþ1
0

½Gqðx; zq; x0; Lq=2Þ

� @z0q Û
ð0Þ
q ðx0; Z0q ¼ Lq=2Þ � Û

ð0Þ
q ðx0; Lq=2Þ

� @z0q Gqðx; zq; x0; Z0q ¼ Lq=2Þ � d x0; (13)

and then Equation (12) can be written as follows:

ðx; zqÞ 2 ðDqÞ; Ûqðx; zqÞ
ðx; zqÞ 2 ðDq 0

� DqÞ; 0

)

¼ Û
ð0Þ
q ðx; zqÞ þ

ðþ1
0

½Gqðx; zq; x0; Z0qÞ @n0q Ûqðx0; Z0qÞ

� Ûqðx0; Z0qÞ @n0q Gqðx; zq; x0; Z0qÞ � d x0

�
ðþ1
0

½Gqðx; zq; x0; Lq=2Þ @z0q Û
ð0Þ
q ðx0; Z0q ¼ Lq=2Þ

� Û
ð0Þ
q ðx0; Lq=2Þ @z0q Gqðx; zq; x0; Z0q ¼ Lq=2Þ � d x0;

(14)

namely,

ðx; zqÞ 2 ðDqÞ; Ûq ðIÞ ðx; zqÞ
ðx; zqÞ 2 ðDq 0

� DqÞ; 0

)

¼ Û
ð0Þ
q I
ðx; zqÞ þ

ð1
0

fd1½Gqðx; zq; x0; Z0qÞ @n0q Ûq I
ðx0; Z0qÞ�

� d 2½Ûq I
ðx0; Z0qÞ @n0q Gqðx; zq; x0; Z0qÞ�g d x0; (15a)

where

d1½Gqðx; zq; x0; Z0qÞ @n0q Ûq I
ðx0; Z0qÞ�

¼ Gqðx; zq; x0; Z0qÞ @n0q Ûq I
ðx0; Z0qÞ

� Gqðx; zq; x0; Lq=2Þ @z0q Û
ð0Þ
q I
ðx0; Lq=2Þ; (15b)

and

d 2½Ûq I
ðx0; Z0qÞ @n0q Gqðx; zq; x0; Z0qÞ�

¼ Ûq I
ðx0; Z0qÞ @n0q Gqðx; zq; x0; Z0qÞ

� Û
ð0Þ
q I
ðx0; Lq=2Þ @z0q Gqðx; zq; x0; Lq=2Þ; (15c)

represent the difference between the function inside the

square brackets with roughness expressed on the roughened

surface z0q ¼ Z0q and the same function [with the superscript

(0)] without roughness expressed on the smooth surface

z0q ¼ Lq=2.

Given the orthonormal functions wqm
ðzqÞ mentioned in

Section IV A and displayed in Appendix A, the displacement

field ÛqðIÞðx; zqÞ in the domains ðDq � Dq0
Þ is expressed as

an expansion on these orthonormal functions wqm
ðzqÞ

labelled below wq m ðIÞ
ðzqÞ when the incident field is the mode

denoted M ¼ I, namely,

ÛqðIÞðx; zqÞ ¼
Xm max

m¼0

Â qm ðIÞ
ðxÞwqm ðIÞ

ðzqÞ; (16)

where the coefficients Â qm ðIÞ
ðxÞ are the unknowns of the

problem and m max ¼ M max.

Therefore, we assume Born approximation in the terms

of order of magnitude of the thickness hq ¼ Lq=2� Zq of the

roughness and its slope (the higher order terms being

neglected), i.e., assuming that the differences denoted

d i½•� ði ¼ 1; 2Þ [Equations (15b) and (15c)] are much lower

than the functions in the square bracket (they vanish when

the thickness of the roughness tends to zero). Then, taking

into account the orthogonality properties of the functions

wq m ðIÞ
ðzqÞ, in each plate labelled “q,” the displacement field

perturbation due to the scattering of the incident SH-wave

labelled “I” on the roughened surfaces is given by (see

Appendix C)

Ûq ðIÞ ðx; zqÞ � Û
ð0Þ
q I
ðx; zqÞ ¼

XM max

m¼0

½ ~̂H
qm ðIÞ
ðxÞ þ ~̂E

qm ðIÞ
ðxÞ�

� wqm ðIÞ
ðzqÞ; (17a)
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where

~̂H qmðIÞ
ðxÞ ffi �

ð‘
0

fd 2½Û
ð0Þ
qI
ðx0; Z0qÞ

� h@n0q Gqðx; zq; x0; Z0qÞ kwqm
ðzqÞi�gdx0; (17b)

~̂Eqm Ið Þ
xð Þ ffi �

lg

lq

ð‘
0

n
d 3

h
‘�1

g Û
0ð Þ

qI
x0; Z0q

� �
� Û

0ð Þ
s6¼qI

x0; Z0sð Þ
� �

� hGq x; zq; x0; Z0q

� �
kwqm

zqð Þi
io

dx0; (17c)

with

hf1 k f 2i ffi
ðLq=2

�Lq=2

f1ðzqÞ f 2ðzqÞ d zq; (17d)

d 3 being given in Eq. (C4b).

The second term in the left hand side of Equation (17a)

represents the effect of the incident field, the first one in the

right hand side represents the boundary modal coupling due

to both the slope and the depth of the roughness, and the sec-

ond one in the right hand side represents the perturbation on

the coupling between the plates through the layer of glue

(both due also to the shape profile and the depth of the

roughness), which account for the effect of the thickness of

the layer of glue (depending on the x-coordinate). It is worth

noting that when the thickness of the glue vanishes, the dif-

ference between the displacements on the boundaries of the

glue vanishes so that the expression

‘�1
g ½ Û

ð0Þ
qI
ðx0; Z0qÞ � Û

ð0Þ
s 6¼qI
ðx0; Z0sÞ � ¼ ðlq=lgÞ@n0q Û

ð0Þ
q I
ðx0; Z0qÞ;

(17e)

in the integrand of expression (17c) remains finite.

V. RESULTS AND DISCUSSION

A. Two plates with smooth surface (no roughness) and
with a layer of glue (zero order approximation)

The results given in this sub-section correspond to two

plates (aluminium and plexiglas) in vacuo stick together, the

thickness of the layer of glue Lg being assumed much

smaller than the thicknesses Lq of the plates. The physical

parameters considered (shear second Lam�e coefficient lq,

shear wave velocity c T q, and density qq) for aluminium ðq ¼
1Þ and plexiglas ðq ¼ 2Þ, and the thicknesses of the plates

are given in Table I.

The dispersion curves for each plate q separately

(Equation (9) with L s 6¼q ¼ Lg ¼ 0, namely, sin ðk ð0Þz q M
LqÞ ¼ 0)

are shown in Figure 2, and the dispersion curves for the

plates stuck together (Equation (9) with Lg 6¼ 0) are shown in

Figure 3, the thickness of reference being chosen arbitrarily

equals to the thickness L1 of the aluminium plate (the vertical

lines mark the values of the parameter f :L1, and the dots mark

the coordinates chosen in the results presented in Section V B).

Note that the values of the components kð0ÞxM
and kð0Þzq

for

aluminium plate “q ¼ 1” and plexiglas plate “q ¼ 2,” when

fL1 ¼ 7:460 MHz mm (corresponding to the vertical line in

Figure 3), are given in Table II.

It is worth noting that all the fields presented in the

remaining of the paper represent the non-dimensional ratio

Û
ð0Þ
q I¼6

=C
ð0Þ
2 (18)

TABLE I. Physical and geometrical parameters for aluminium plate

“q ¼ 1,” plexiglas plate “q ¼ 2,” and glue “q ¼ g.”

q ¼ 1 q ¼ 2 q ¼ g

lq (GPa) 23.003 2.4110 1

qqðkg m 3Þ 2705.8 1180.0 1300.0

c Tq
ðm s�1Þ 3100.0 1429.4 877.0

Lq (mm) 2 0.5 0.08

FIG. 2. Dispersion curves for each plate separately, plexiglas plate blue full

thin line numbered SHnp and aluminium plate pink full thick line numbered

SHna (see Table I).

FIG. 3. Dispersion curves for the tri-layered structure (two plates and layer

of glue, see Table I). The dots mark the coordinates chosen in the results pre-

sented in this paper.

TABLE II. Components kð0ÞxM
and kð0Þzq

for aluminium plate “q ¼ 1” and plexi-

glas plate “q ¼ 2,” when fL1 ¼ 7:460 MHz mm (see Figure 3).

Mode M kð0ÞxM
ðmm�1Þ kð0Þz1

ðmm�1Þ kð0Þz2
ðmm�1Þ

0 16.235 �i 14.368 2.287

1 15.599 �i 12.489 7.462

2 5.642 �i 5.985 13.261

3 7.546 0.469 14.556

4 7.358 1.738 14.652

5 6.836 3.228 14.903

6 5.868 4.7666 15.310

7 4.148 6.320 15.862
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for the displacement fields and the normalized stress fields

defined as

lq

l1

@ nq
Û

0ð Þ
q I¼6

x; zqð Þ=C 0ð Þ
2

h i
in mm�1: (19)

Figures 4(a) and 4(b) present the mapping of the real parts

of, respectively, the displacement and stress fields of SH-

waves (Equation (8a)) as a function of the coordinates x and

z, for a driving frequency such as the coupling between the

mode SH2 in the plexiglas plate and the mode SH3 in the al-

uminium lead to the mode SH6 ðM ¼ 6Þ in the tri-layered

structure (coordinates fL1 ¼ 7:460 MHz mm and k ð0Þx M
L1

¼ 11:737, dot marked “M ¼ 6” on Figure 3). The linear dis-

placement field and the uniform stress field inside the glue

are not presented on the mapping. As expected, the SH-

waves are stationary in the z-direction in both plates, the dis-

placement field shows a gap from one boundary of the glue

to the other one, while the continuity of the stress field

through the layer of glue appears, and the stresses vanish at

the outer boundaries of the structure [it is obvious on the

cuts shown in Figures 4(c) and 4(d)].

Figures 5(a) and 5(b) present the mapping of the real parts

of, respectively, the displacement and stress fields of SH-

waves (Equation (8a)) as a function of the coordinates x and z,

for the mode SH M ¼ 7 (coordinates fL1 ¼ 7:460 MHz mm

and kð0ÞxM
L1 ¼ 8:297, lower dot marked “M ¼ 7” on Figure 3).

The perturbation of this mode, due to the roughness, is consid-

ered in Section V B.

For the coordinates fL1 ¼ 7:460 MHz mm and kð0ÞxM
L1 ¼

32:471 (upper dot marked “M ¼ 0” on Figure 3), the map-

ping of the real parts of, respectively, the displacement and

stress fields of SH-waves (Equation (8a)) as a function of the

coordinates x and z is presented, respectively, in Figures 6(a)

and 6(b). As expected, the SH-waves in the plexiglas plate is

stationary in the z-direction, while it is evanescent (green on

the map) in the same direction in the aluminium plate.

Figures 7(a) and 7(b) present the mapping of the real

parts of, respectively, the displacement and stress fields of

SH-waves (Equation (8a)) as a function of the coordinates x and

z, for the mode SH M ¼ 5 (coordinates fL1 ¼ 7:460 MHz mm

and kð0ÞxM
L1 ¼ 13:672, dot marked “M ¼ 5” on Figure 3). The

perturbation of this mode, due to the roughness, is considered in

Section V B.

The results presented above can be considered as represen-

tative samples of the other situations of interest (the other results

calculated, not presented herein, show the same behaviour).

B. Effect of the roughness on the behaviour
of SH-waves

Being concerned by the use of the analytical approach

mentioned above, results involving several roughness pro-

files, yet typical of applications, are presented below.

Mapping of scattered waves (displacement and stress pertur-

bations) as functions of the coordinates x and z is shown and

FIG. 4. Mode SH M ¼ 6. Mapping of the real part of (a) the non-

dimensional displacement field [Eq. (18)] and (b) the normalized stress field

[Eq. (19)] for fL1 ¼ 7:460 MHz mm and kð0ÞxM
L1 ¼ 11:737 (dot marked M ¼

6 on Figure 3). Cuts of the maps (a) and (b), amplitudes of both the real part

of the displacement field (c) and the stress field (d).

FIG. 5. Mapping of the real part of (a) the non-dimensional displacement

field [Eq. (18)] and (b) the normalized stress field [Eq. (19)] of SH-waves

M ¼ 7 for fL1 ¼ 7:460 MHz mm and kð0ÞxM
L1 ¼ 8:297 (lower dot on Figure 3).
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discussed, conveying interpretations of the physical phenom-

ena; these maps represent either the non-dimensional ratio

½Ûq ðIÞ ðx; zqÞ � Û
ð0Þ
q I
ðx; zqÞ�=C

ð0Þ
2 ; (20)

for the displacement perturbation fields or the normalized

perturbation stress fields defined as

lq

l1

@ nq
Ûq Ið Þ x; zqð Þ � Û

0ð Þ
q I

x; zqð Þ
h i.

C 0ð Þ
2

� �
in mm�1: (21)

Two-dimensional spatial Fourier transforms of the maps in

the ðx; zÞ plane (in mm2), leading to ðkx; k zÞ diagrams, give

the SH-modes which mainly contribute to the diffused field

perturbations. They indicate the manner whereby the dif-

fracted field behaves and they provide suitable basis for inter-

preting the maps. The conclusions which are subsequently

drawn result from both the mappings in the ðx; zÞ plane (pre-

sented in Sections V B 1 and V B 2) and the 2-D Fourier

Transforms. It appears that in the examples considered in

Section V B 1, different situations occur when the roughness

profile is periodic, depending on whether one or two SH

modes contribute preferentially to the diffused field in each

plate: in the first case, it is not necessarily the same mode in

both plates, and in the second case, the incident mode inter-

feres with the mode related to it through a phonon relation-

ship. When the roughness profile is a pseudo-random one, the

perturbed field can involve more than two SH modes. For

brevity, and because it suffices to illustrate the results

obtained from the ðkx; k zÞ diagrams, only two examples are

given in terms of Fourier transform in Sections V B 1 and

V B 2. The results obtained are also illustrated through the

mapping of the fields and other examples are presented.

1. Mapping of scattered waves perturbations, periodic
profile, phase-matching effects

The roughness considered in this subsection is a periodi-

cally sawtooth profile (isosceles triangles shown in Figure 8)

of spatial period K=L1 ¼ 0:314, finite extent ‘ ¼ 10 K,

and depth h=L1 ¼ 0:05 (namely, here K ¼ 0:627 mm,

‘ ¼ 6:273 mm, and h ¼ 0:05 mm), set symmetrically at the

interfaces between the plates and the layer of glue at the en-

trance of the glued plates.

The so called “phonon curves,” namely, here parameters

ð2 pL1=K� k ð0Þx M
L1Þ expressed as function of the variable

ðfL1Þ, are depicted in Figure 9 with K=L1 ¼ 0:314. The inter-

sections of the dispersion curves (SH-waves numbered “I,”
incident) with the phonon ones (here, SH-waves numbered

“M”) provide the phonon relationships

k ð0Þx I
þ k ð0Þx M

¼ 2 p=K; (22)

which represent the phase-matching between these SH

waves. The dots mark the phase-matching between I ¼ 6

and M ¼ 7, I ¼ 7 and M ¼ 6, for a driving frequency

fL1 ¼ 7:460 MHz mm, with k ð0Þx M
L1 ¼ 11:737 and k x M L1

¼ 8:297, respectively, and between I ¼ 4 and M ¼ 1 for a

FIG. 8. Periodically sawtooth profile of finite extent ‘ ¼ 10 K, depth

h=L1 ¼ 0:025, and spatial period K=L1 ¼ 0:314.

FIG. 7. Mapping of the real part of (a) the non-dimensional displacement field

[Eq. (18)] and (b) the normalized stress field [Eq. (19)] of SH-waves M ¼ 5

for fL1 ¼ 7:460 MHz mm and kð0ÞxM
L1 ¼ 13:672 (upper dot on Figure 9).

FIG. 6. Mapping of the real part of (a) the non-dimensional displacement

field [Eq. (18)] and (b) the normalized stress field [Eq. (19)] of SH-waves

M ¼ 0 (evanescent in the aluminium plate) for fL1 ¼ 7:460 MHz mm and

kð0ÞxM
L1 ¼ 32:471 (upper dot on Figure 3).
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driving frequency fL1 ¼ 4:560 MHz mm, with kx M
L1 ¼ 6:639

(see random profile in Section V B 2).

The perturbations (due to scattering on the rough surfaces)

of the SH-waves considered (I ¼ 0, I ¼ 5, I ¼ 6, and I ¼ 7)

are shown in Figures 10–18. These figures present the map-

ping of the real parts of the displacement fields perturbations

(Equation (17)) and the corresponding stress fields perturba-

tions of SH-waves as functions of the coordinates x and z.

Figures 10(a) and 10(b) present, respectively, the mapping

of the real part of the displacement field perturbations (a) and

the associated stress fields perturbations (b) of the incident

SH6-wave (I ¼ 6) created by scattering on the corrugated

surfaces, for fL1 ¼ 7:460 MHz mm and kð0Þx6
L 1 ¼ 11:737 (dot

I ¼ 6 on Figure 9). For a better visibility in Figure 10(b), the

color contrast in the plexiglas plate (plate 2) was enhanced by

multiplying the amplitude by five (see the left scale for the alu-

minium plate and the right scale for the plexiglas plate). A

phase-matching occurs between the incident mode SH6 and the

mode SH7, for the period of the roughness considered [see

Eq. (22)]. The spatial structure of this mode SH7 (Figure 5)

appears clearly in the aluminium plate (plate 1) along the

x-axis, while the spatial structure of the incident mode SH6

(Figure 4) appears clearly in the same plate along the z-axis

and the plexiglas plate along the x-axis (both modes present the

same structure in the plexiglas plate along the z-axis). These

observations are confirmed by the Fourier Transform diagrams

on Figures 11(a) and 11(b), which show that the perturbation of

the SH7 mode propagates forward [ðkx; k zÞ ¼ ð4:148; 6:320Þ
numbered (1) in Figure 11(a)] and that the SH6 mode propa-

gates backward [ðkx; k zÞ ¼ ð�5:868; 15:310Þ numbered (1) in

FIG. 10. Mapping of the real parts of (a) the non-dimensional displacement

field [Eq. (20)] and (b) the normalized stress field [Eq. (21)] of the incident

SH-wave I ¼ 6 for fL1 ¼ 7:460 MHz mm and kð0ÞxM
L1 ¼ 11:737 (dot I ¼ 6

and M ¼ 7 on Figure 9).

FIG. 11. Modulus of the two dimensional Fourier Transform of the map pre-

sented in Figure 10(a). (a) Aluminium plate “q ¼ 1,” mode M ¼ 7 numbered

(1). (b) Plexiglas plate “q ¼ 2,” mode I ¼ 6 numbered (1).

FIG. 12. Mapping of the real part of (a) the non-dimensional displacement

field [Eq. (20)] and (b) the normalized stress field [Eq. (21)] of the incident

SH-waves I ¼ 7 for fL1 ¼ 7:460 MHz mm and kð0ÞxM
L1 ¼ 8:297 (dot I ¼ 7

and M ¼ 6 on Figure 9).

FIG. 9. Dispersion curves (red thin solid lines) and “phonon curves” (blue

thick solid lines) with K=L1 ¼ 0:314; dots mark the phase matching between

SH-waves.
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Figure 11(b)], see Table II for the exact values of the couples

ðkx; k zÞ. These results emphasized the role played by the

phase-matching between these two modes I ¼ 6 and M ¼ 7,

the amplitude of the perturbation of the other modes being

clearly negligible. These results show that, despite the com-

plexity of the coupling effects through the roughened layer of

glue, the structures of the perturbations depend strongly on the

nature of the incident SH-wave and on the phase-matching

which involve both another SH-wave and the spatial period of

the roughness. Note that the amplitude of the perturbed waves

is at least five times lower than those of the corresponding

incoming wave and that, as expected, the field perturbation

does not propagate significantly beyond the roughness x > ‘
[backward propagating wave perturbation, Eq. (22)]. Results

presented below confirm the statements mentioned here (other

results not presented herein show the same behaviors).

Figures 12(a) and 12(b) show, respectively, the mapping

of the real parts of the displacement fields and stress fields

perturbations of the incoming SH-wave I ¼ 7, due to the

scattering on the roughness, for fL1 ¼ 7:460 MHz mm and

kð0Þx7
L1 ¼ 8:297 (dot I ¼ 7 and M ¼ 6 on Figure 9). For a bet-

ter visibility in Figure 12(b), the color contrast in the alumin-

ium plate (plate 1) was enhanced by multiplying the

amplitude by four (see the left scale for the aluminium plate

and the right scale for the plexiglas plate). These results

FIG. 13. Mapping of the real part of (a) the non-dimensional displacement

field [Eq. (20)] and (b) the normalized stress field [Eq. (21)] of the incident

SH-waves I ¼ 0 for fL1 ¼ 7:460 MHz mm and kð0ÞxM
L1 ¼ 32:471.

FIG. 14. Mapping of the real part of (a) the non-dimensional displacement field

[Eq. (20)] and (b) the normalized stress field [Eq. (21)] of the incident SH-waves

I ¼ 5 for fL1 ¼ 7:460 MHz mm and kð0Þx5
L1 ¼ 13:672 (no phase-matching).

FIG. 15. Example of experimental pseudo-random profile (shot-blasting12)

(a) and PSD of the profile (b).

FIG. 16. Mapping of the real part of (a) the non-dimensional displacement field

[Eq. (20)] and (b) the normalized stress field [Eq. (21)] of the incident SH-waves

I ¼ 6 for fL1 ¼ 7:460 MHz mm and kð0ÞxM
L1 ¼ 11:737 (dot I ¼ 6 on Figure 9).
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show that the behaviours are here analogue to those pre-

sented in Figure 10 (see Figures 4 and 5 for the results with-

out roughness), More particularly, the perturbation present

the spatial structure of both the incident SH-wave I ¼ 7 and

the coupled mode M ¼ 6, which emphasize once more the

role played by the phase-matching between these two modes

SH7 and SH6 [see Eq. (22)]. The Fourier Transform dia-

grams (non presented here for brevity) confirm clearly these

results but it shows also the minor contribution of other

modes (SH5, SH6, and SH7) in the neighbouring of the main

modes. This can explain the complex structure which

appears on the maps.

Figures 13(a) and 13(b) present the mapping of the real

parts of the displacement fields perturbations (a) and the

stress fields perturbations (b) of the incident SH-wave I ¼ 0,

created by the scattering on the corrugated surfaces, for

fL1 ¼ 7:460 MHz mm and kð0Þx 0
L1 ¼ 32:471 (dot M ¼ 0 on

Figure 3). For a better visibility in Figure 13(a), the color

contrast in the aluminum plate (plate 1) was enhanced by

multiplying the amplitude by ten (see the left scale for the al-

uminium plate and the right scale for the plexiglas plate). As

expected, the spatial periodicity along the x-axis of the

incoming wave I ¼ 0 (Figure 6) appears in the plexiglas

plate (this mode is evanescent in the aluminium plate). A

very small counter-propagating wave perturbation occurs in

the aluminium plate (its amplitude increases towards the

input), while a very small perturbation created along the

roughness in the plexiglas plate propagates forwardly. This

last perturbation results mainly from the contribution of SH6

mode (propagating backward) and the SH1 mode (propaga-

tion forward) which interfere with the SH0 mode propagat-

ing backward (these results are given by the Fourier

Transform diagrams (non presented here)).

Figure 14 present the mapping of the real parts of the dis-

placement fields perturbations (a) and the stress fields perturba-

tions (b) of the incident SH-wave I ¼ 5, created by the

scattering on the corrugated surfaces, for fL1 ¼ 7:460 MHz mm

and kð0Þx5
L1 ¼ 13:672. For a better visibility in Figure 14(b), the

color contrast in the plexiglas plate (plate 2) was enhance by

multiplying the amplitude by two (see the left scale for the alu-

minium plate and the right scale for the plexiglas plate). As

expected, the spatial periodicities of this incoming wave I ¼ 5

appear clearly in the plexiglas plate, while the perturbation field

involves an important effect of several modes or all the modes

(at this frequency, the incident SH-wave I ¼ 5 has not any

phase-marching with any other SH-waves). These results are

confirmed by the Fourier Transform diagram (not presented

here).

2. Pseudo-random profile

In the next example, the roughness (in fact herein

ridges) is assumed to have the pseudo-random profile

shown in Figure 15(a), which represents a shot-blasting pro-

file, with a depth hðxÞ < 1:1 mm and a length ‘ ¼ 5 mm. Its

power spectral density (PSD) exhibits two spatial periods

K1 ffi 0:372 mm and K2 ffi 0:621 mm (usually, in practice,

rough surfaces exhibit a limited number of dominant spatial

periodicities) (Figure 15(b)).

Figures 16(a) and 16(b) show, respectively, the mapping

of the real part of the displacement and the stress fields per-

turbations, for the value K2 ¼ 0:62 mm of spatial pseudo-

period mentioned above, which has the same value as the

spatial period of the sawtooth profile mentioned previously,

the working point being the one marked I ¼ 6 (incident

wave) in Figure 9. Then, the dispersion curves and the pho-

non ones considered here are those depicted in this figure,

FIG. 17. Modulus of the two dimensional Fourier Transform of the map pre-

sented in Figure 16(a). (a) Aluminium plate “q ¼ 1,” modes

M ¼ 5; 7; 4; and 3, respectively, numbered (1), (2), (3), and (4). (b)

Plexiglas plate “q ¼ 2,” mode I ¼ 6 numbered (1).

FIG. 18. Mapping of the real parts of (a) the non-dimensional displacement

field [Eq. (20)] and (b) the normalized stress field [Eq. (21)] of the incident

SH-wave I ¼ 4 for fL1 ¼ 4:560 MHz mm and kð0Þx4
L1 ¼ 6:639 (dot I ¼ 4 and

M ¼ 1 on Figure 9).
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and the phase-matching between the incident mode SH6 and

the mode SH7 which occurs in the configuration presented in

Figure 16 (pseudo-random profile) is the same as in the con-

figuration presented in Figure 10 (periodic profile). For a bet-

ter visibility in Figure 16(b), the color contrast in the

plexiglas plate (plate 2) was enhanced by multiplying the

amplitude by four (see the left scale for the aluminium plate

and the right scale for the plexiglas plate). As expected, the

structure of the perturbation field in Figures 16(a) and 16(b)

shows the same spatial periodicities (SH6 and SH7), in both

directions x and z, as the structure of the perturbation field in

Figures 10(a) and 10(b). This is confirmed by the Fourier

Transform diagrams (Figures 17(a) and 17(b)), with SH6

numbered (1) in Figure 17(b) and SH7 numbered (2) in

Figure 17(a). But the global structure appears slightly differ-

ent because several SH modes are involved: mainly SH5

(numbered (1) in Figure 17(a), SH4 (numbered 3), and SH3

(numbered 4) propagating forwardly. As a result, the struc-

ture of the diffracted field would permit to control the values

of the pseudo-period.

Figures 18(a) and 18(b) present the mapping of the real

parts of the displacement fields perturbations (a) and the stress

fields perturbations (b) of the incident SH-wave I ¼ 4, created

by the scattering on the pseudo-random profile for fL1 ¼
4:560 MHz mm and kð0Þx4

L1 ¼ 6:639 (dot I ¼ 4 and M ¼ 1 on

Figure 9). A phase-matching occurs between this incident

mode SH4 and the mode SH1. As expected, the spatial struc-

ture of the incident mode SH4 appears in both plates, the

mode SH1 being superposed to the mode SH4 in the plexiglas

plate only, because it is evanescent in the aluminium plate.

These results are confirmed by the Fourier Transform diagram

(not presented here). Once more, this result emphasized the

importance of the phase-matching when it occurs with a peri-

odic or a pseudo-periodic roughness.

VI. SUMMARY, CONCLUSION, AND PROSPECT

An analytical model for describing the scattering effects

of roughness on the behavior of SH-waves propagating inside

two plates stick together with a layer of glue has been worked

out, which account for the shape and the depth of the rough-

ness (among other parameters). While this analytical model-

ling could appears somewhat cumbersome, the numerical

calculations are in fact simple and rapid to handle. The results

demonstrate that the extracted parameters show the expected

sensitivity to the characteristics of the roughness profiles.

Thus, the predictions of this model should be useful to describe

phenomena in a variety of plates and roughness profiles.

So far, in our knowledge, no previous analytical results

could be used as a preliminary test of the effectiveness of the

model. As well, no experimental and numerical attempt was

carried out to validate its prediction capability. Therefore,

such experimental and numerical work is likely to be the

subject of investigation in a near future.
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APPENDIX A: TWO PLATES WITH SMOOTH
SURFACES AND WITH A LAYER OF GLUE (ZERO
ORDER APPROXIMATION): CONTINUITY CONDITIONS
AT THE INTERFACES BETWEEN THE PLATES AND
THE LAYER OF GLUE

The behaviour of the glue is expressed by the classical

spring-like model with a spring stiffness ðlg=LgÞ (7b), which

takes the following form when the interfaces are not rough-

ened (q¼ 1, 2):

lq @zq
Û

0ð Þ
q ¼ �l s 6¼q @zs 6¼q

Û
0ð Þ

s 6¼q

¼
lg

Lg
Û

0ð Þ
s6¼q x0; Ls=2
� �

� Û
0ð Þ

q x0; Lq=2
� �h i

: (A1)

Accounting for the expression of the displacement field (8a),

these equations lead to the continuity conditions which can

be written as

a 11 a 12

a 21 a 22

	 

C
ð0Þ
1

C
ð0Þ
2

 !
¼

0

0

� �
; (A2)

where

a 11 ¼ eik 0ð Þ
z1

L1=2 cos k 0ð Þ
z1

L1

� �
þ

l1k 0ð Þ
z1

lg 2=Lg

� � sin k 0ð Þ
z1

L1

� �" #
;

(A3a)

a 12 ¼ �eik 0ð Þ
z2

L2=2 cos k 0ð Þ
z2

L2

� �
þ

l2k 0ð Þ
z2

lg 2=Lg

� � sin k 0ð Þ
z2

L2

� �" #
;

(A3b)

a 21 ¼ l1kð0Þz1
eik
ð0Þ
z1

L1=2 sin ðkð0Þz1
L1Þ; (A3c)

a 22 ¼ l2kð0Þz2
eik
ð0Þ
z2

L2=2 sin ðkð0Þz2
L2Þ: (A3d)

The determinant of Equation (A2) must vanish, which gives

the dispersion equation (9).

APPENDIX B: GRAM-SCHMIDT METHOD FOR
ORTHONORMALISING THE SET OF SH MODES

The method for orthonormalising the set of SH-modes

takes the following form:

wqm
ðzqÞ ¼ w?q m

ðzqÞ=hw?q m
jw?q m
i1=2; (B1)

where

w?q m
ðzqÞ ¼ uq m

ðzqÞ �
Xm�1

j¼0

huqm
jwqj
iwqj
ðzqÞ; (B2)
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and

uqm
ðzqÞ¼U ð0ÞqM

ðxq;zqÞ= ½2Cð0Þq expðik ð0Þzq MLq=2Þ expð�ik ð0ÞxM
xÞ �

¼ cos ½kð0Þzq M
ðzqþLq=2Þ�;

(B3)

with

w q0
ðzqÞ ¼ u qI

ðzqÞ=huqI
juqI
i1=2; (B4)

the bracket hf jgi ¼
Ð Lq=2

�Lq=2
f ðzqÞ g	ðzqÞ dzq denoting the inner

product in the intervals zq 2 ð�Lq=2; Lq=2Þ.
Note that, instead of computing this process, we used

the equivalent “modified Gram-Schmidt” process, in order to

avoid unacceptable loss of orthogonality due to rounding

errors.38

APPENDIX C: INTEGRAL FORMULATION, EXPANSION
ON ORTHONORMAL FUNCTIONS, AND BORN
APPROXIMATION

Note that the integral in the right hand side of Equation

(15a) vanishes outside the roughened domain ðx > ‘Þ and

accounting for the behaviour of the glue [Equation (7b)],

namely, here

@n0q Ûq Mðx0; Z0qÞ ffi ½lg=ðlq ‘gÞ�½Ûs 6¼qM
ðx0; Z0 sÞ � ÛqM

ðx0; Z0qÞ�;

Equation (15a) can be written as follows:

ðx; zqÞ 2 ðDqÞ; ÛqðIÞ ðx; zqÞ
ðx; zqÞ 2 ðDq0

� DqÞ; 0

)

ffi Û
ð0Þ
qI
ðx; zqÞ þ fĤqI

ðx; zqÞ þ ÊqI
ðx; zqÞg; (C1)

where

Ĥq I
ðx; zqÞ ¼ �

ð‘
0

fd 2½Ûq I
ðx0; Z0qÞ@n0q Gqðx; zq; x0; Z0qÞ�g dx0;

(C2)

Êq I
x; zqð Þ ¼ �

lg

lq

ð‘
0

fd 3½‘�1
g x0ð ÞðÛqI

ðx0; Z0qÞ

� Ûs 6¼qI
ðx0; Z0sÞÞGqðx; zq; x0; Z0qÞ�gdx0; (C3)

with

d 2½Ûq I
ðx0; Z0qÞ@n0q Gqðx; zq; x0; Z0qÞ�

¼ Ûq I
ðx0; Z0qÞ@n0q Gqðx; zq; x0; Z0qÞ

� Û
ð0Þ
q I
ðx0; Lq=2Þ@z0q Gqðx; zq; x0; Lq=2Þ; (C4a)

and

d 3½‘�1
g ðx0ÞðÛqI

ðx0; Z0qÞ � Ûs 6¼qI
ðx0; Z0 sÞÞGqðx; zq; x0; Z0qÞ�

¼ ‘�1
g ðx0ÞðÛqI

ðx0; Z0qÞ � Ûs 6¼qI
ðx0; Z0 sÞÞGqðx; zq; x0; Z0qÞ

�L�1
g ðx0ÞðÛ

ð0Þ
qI
ðx0; Lq=2Þ � Û

ð0Þ
s 6¼qI
ðx0; L s=2ÞÞ

� Gqðx; zq; x0; Lq=2Þ: (C4b)

Expression (C2) represents the scattering effects due, respec-

tively, to the shape profile and the depth of the roughness at the

interface between the plate q considered and the layer of glue,

and expression (C3) represents the perturbation on the coupling

between the plates through the layer of glue (both due also to

the shape profile and the depth of the roughness) which account

for the effect of the thickness of the layer of glue (depending on

the x-coordinate), the limits of integration x0 ¼ 0 and x0 ¼ ‘ in

these expressions being those of the interval where the rough-

ness does not vanish. Note that one can anticipate accurate

results in as much as the integrands can be considered as small

perturbations (the depth of the ridges is assumed to be small on

both the wavelength scale and the thickness of the plates scale).

In multiplying Equation (C1) by the orthonormal func-

tions wqm ðIÞ
ðzqÞ [see Appendix B] and integrating over the

intervals zq 2 ð�Lq=2; ZqÞ, the left hand side and the first

term in the right hand side of the equation becomeðZq

�Lq=2

½ ÛqðIÞ ðx; zqÞ � Û
ð0Þ
qI
ðx; zqÞ�wq m ðIÞ

ðzqÞ d zq

¼
�ðLq=2

�Lq=2

�
ðLq=2

Zq

�X
�

½Â q � ðIÞ
ðxÞ � Â

ð0Þ
q � ðIÞ
ðxÞ �

� wq � ðIÞ
ðzqÞwq m ðIÞ

ðzqÞd zq; (C5)

after relying on Equation (16) [i.e., the expansion of the dis-

placement field Ûq ðIÞ
and also Û

ð0Þ
q ðIÞ

(with the coefficients

Â
ð0Þ
q � ðIÞ

) on the orthonormal functions wq � ðIÞ
ðzqÞ]. Then,

Equation (C1) can be written as follows:�ðLq=2

�Lq=2

�
ðLq=2

Zq

�X
�

½Â q � ðIÞ
ðxÞ � Â

ð0Þ
q � ðIÞ
ðxÞ �

� wq � ðIÞ
ðzqÞwq m ðIÞ

ðzqÞd zq

¼
ðZq

�Lq=2

½Ĥq I
ðx; zqÞ þ Êq I

ðx; zqÞ�wq m ðIÞ
ðzqÞd zq;

(C6)

the endpoints Z0q depending on the coordinate x0.
Therefore, we assume Born approximation in the terms

of order of magnitude of the thickness hq ¼ Lq=2� Zq of the

roughness and its slope (the higher order terms being

neglected); in other words, we neglect the integral over the

very small interval ½Zq; Lq=2� of length ‘g of the small factor

½Â q � ðIÞ
ðxÞ � Â

ð0Þ
q � ðIÞ
ðxÞ � in the left hand side of Eq. (C6), and,

in the small terms in the right hand side of this equation, we

substitute Û
ð0Þ
qI

for ÛqðIÞ and we approximate

hf1 k f 2i ¼
ðZq

�Lq=2

f1ðzqÞ f 2ðzqÞ d zq

¼
�ðLq=2

�Lq=2

�
ðLq=2

Zq

�
f1ðzqÞ f 2ðzqÞ d zq; (C7a)
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by

hf1 k f 2i ffi
ðLq=2

�Lq=2

f1ðzqÞ f 2ðzqÞd zq: (C7b)

The last approximation means that the loss of orthogonality

of the Gram-Schmidt orthogonal functions over the interval

½�Lq=2; Lq=2� in the left hand side of Eq. (C6). Namely,

ðLq=2

Zq

wq � ðIÞ
ðzqÞwq m ðIÞ

ðzqÞd zq; (C8)

is negligible.

Then taking into account the orthogonality properties of

the functions wq m ðIÞ
ðzqÞ over the interval ½�Lq=2; Lq=2� yield

the following relationship between the incident field [coeffi-

cients Â
ð0Þ
q m I
ðxÞ] and the unknown coefficients Âqm ðIÞ

ðxÞ:

Âqm ðIÞ
ðxÞ � Â

ð0Þ
q m I
ðxÞ ffi ~̂H qm ðIÞ

ðxÞ þ ~̂Eqm ðIÞ
ðxÞ; (C9a)

where

Â
ð0Þ
qmI
ðxÞ ffi hÛ ð0ÞqI

ðx; zqÞ kwqm
ðzqÞi

¼ hÛ ð0ÞqI
ðx; zqÞ kwqm¼0

ðzqÞi; (C9b)

~̂H qmðIÞ
ðxÞ ffi �

ð‘
0

fd 2½Û
ð0Þ
qI
ðx0; Z0qÞ

� h@n0q Gqðx; zq; x0; Z0qÞ kwqm
ðzqÞi�g dx0; (C9c)

~̂Eqm Ið Þ
xð Þ ffi �

lg

lq

ð‘
0

�
d 3

	
‘�1

g Û
0ð Þ

qI
x0; Z0q

� �
� Û

0ð Þ
s 6¼qI

x0; Z0s
� �� �

� hGq x; zq; x0; Z0q

� �
kwqm

zqð Þi

�

dx0: (C9d)

Finally, in each plate labelled “q,” the displacement field

perturbation due to the scattering of the incident SH-wave

(labelled “I”) on the roughened surfaces is given by

Equation (17a).

It is worthwhile commenting that the Green function in

the integrals in expressions (17b) and (17c) has integrand sin-

gularities, but the limits of integrations are finite. In expres-

sion (17c), the integrand tends logarithmically to infinity as

the argument u of the Green function tends to zero, but the in-

tegral converges. In expression (17b), the Green function is

differentiated with respect to x and z (first order derivatives)

and then the integrand behaves as ð1=uÞ as u! 0. Therefore,

in order to ensure efficiency of the numerical calculations,

which are handled in using MATLAB
VR

software, the deriva-

tives of the Green function in the integrands are removed on

using first the reciprocity property @x0q Gq ¼ �@xq
Gq and sec-

ond the first order Taylor expansions around the points Zq and

Lq=2 [avoiding integration by part then the derivatives of the

orthogonal functions wqm ðIÞ
ðzqÞ]. Therefore, the expressions

for ~̂H qm ðIÞ
ðxÞ and ~̂Eqm ðIÞ

ðxÞ used in the computational process,

which involves only the Green function not its derivatives,

take the following form:

~̂H q m Ið Þ
xð Þ ¼ @x

ð‘
0

Û
0ð Þ

q I
x0; Z0q

� �
N�1

q x0ð Þ dx0 hq x0ð Þ
� �

� hGq x; zq; x0; Z0q

� �
jjwq m

zqð Þidx0

þ
ð‘
0

Û
0ð Þ

qI
x0; Lq=2
� �

�
Û

0ð Þ
qI

x0; Z0q
� �

Nq x0ð Þ

2
4

3
5

� 1

hq x0ð Þ
h½Gqðx; zq; x0; z0q ¼ Lq=2Þ

� Gqðx; zq; x0; z0q ¼ Z0qÞ�jjwqm
ðzqÞi dx0; (C10a)

~̂Eqm ðIÞ
ðxÞ ¼ �

ð‘
0

fd 2½@n0q Û
ð0Þ
q I ðx0; z0q ¼ Z0qÞ

� hGqðx; zq; x0; z0q ¼ Z0qÞjjwq m
ðzqÞi�gdx0;

(C10b)

after relying on Equation (17e).
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