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Summary

In some flute-like instruments, the musician places their mouth near an open-end of the pipe, which
modifies the radiation of the pipe and its acoustic resonances. To improve the prediction of this modification,
this work presents a study on the effect of an inclined plane at the end of a radiating pipe. The radiation
impedance is first measured for different positions of the plane. After verifying that the plane mainly adds
an inertance to the radiation, a new simpler and more convenient measurement method is proposed. The
behavior observed in these measurements is generalized with the use of finite element simulations. Finally, a
global low-frequency model of the effect of an inclined plane on both the imaginary and the real part of the
radiation impedance is proposed. This model is consistent with the well-established radiation impedances
for unflanged and flanged pipes.

1 Introduction

1.1 The flutist: a bore profile element

Flute-like instruments are musical instruments in which the sound is created by a jet-edge interaction coupled
with an acoustic resonator [1]. The jet is formed by applying a supply pressure upstream from a channel, the
outlet of which is directed towards the edge.
The channel is formed either between the lips of the musician (as in transverse and notch flutes), or by the

instrument maker (as in recorders and organ pipes). All these instruments share the feature of having a specific
opening at the end of the resonator where the sound is generated. This opening is called the window and is
located between the outlet of the channel and the edge or labium. The jet-edge interaction induces a fluctuating
pressure difference acting as a sound source.
The frequency of the sound generated by these instruments depends on the balance between the phase induced

by the resonator and the delay produced by the convection of a perturbation along the jet [2]. The frequency
response of the instrument depends on the window impedance [1, 3]. In recorder-like instruments, this impedance
is fixed by the instrument maker. It can be estimated from the window geometry [4].
However, in transverse and notch flutes, the player’s face is placed near this opening to blow on the edge. While

playing, the player adjusts the position of his/her face to control the pitch of the note played [5, 6, 7, 8, 9, 10].
The window impedance is therefore continuously modified by the player.
The acoustic resonances of the instrument in the absence of a musician are different from the expected sounding

frequencies, and this detuning is different for each fingering. This results in a passive tuning profile different for
every flute depending on the model, the instrument maker, the historical period, etc. [11, 7, 12, 13, 14]. This
profile influences the quality and the playability of the instrument.
The lack of information regarding the acoustic effect of the presence of the player’s face limits the possibility

of applying traditional resonant frequency calculations based on 1D acoustic theory to this kind of instrument.
For example, the calculation of Wolfe [11] uses a fixed length correction to take into account the player’s lips and
face, which does not allow interpreting the tuning profile of an existing instrument. It is therefore impossible
to predict the sounding frequency of a flute from its geometry alone. The study of pitch accuracy, the quality,
and the playability of an instrument can therefore only be studied in comparison to a reference instrument [12].
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Furthermore, instrument makers can not even use acoustic tools such as optimization algorithms to create new
instruments. Indeed, a reference tuning profile is necessary and this profile can not be based on acoustic criteria.
The work presented here gives some tools to better understand the musician gesture and how the resulting

geometry relates to the acoustic behavior of the musician and instrument ensemble. The overall objective is to
describe how the musician’s face modifies the resonances of the instrument as function of its position.
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Figure 1: Sketch of a musician’s lips in front of the mouth opening

The geometrical modification of the window by the musician’s face can be divided into two principal elements:
a reduction of the outside area So of the opening and the presence of an inclined plane in front of the opening
formed by the lips and the musician’s face (Fig. 1). The former has an effect on the radiation that is already
well known. The imaginary part of the radiation impedance is generally modeled by an inertance mr, similar
to a length correction lr at low frequency, which in turn is proportional to the equivalent radius of the opening

section ro =
√

So

π [15, 16, 17, 18, 19, 20]:

mr = lr
ρ

So
= δ

ρ

So
ro, (1)

with ρ the density of the air and 0.613 < δ < 0.824 a dimensionless coefficient which depends on the wall
thickness (δ = 0.824 for an infinite flanged pipe and δ = 0.613 for an unflanged pipe with infinite thin wall).
Thus, a reduction of the cross-sectional area decreases this length correction.
The presence of an inclined plane induces a modification of the radiation impedance that, to our knowledge,

remains undocumented. The main goal of this work is to study and to model how an inclined plane modifies
the radiation impedance of an opening.
After revisiting previous studies on radiation impedance, the effect of the plane is studied experimentally

by two complementary methods. The first method involves measuring the impedance of a pipe with a plane
placed in front of an opening at varying angles. In the second method, this pipe is used as the resonator of
a self-sustained sound source and the modification of the impedance by the presence of the inclined plane is
inferred from the variation of the sounding frequency. These two sets of measurements lead to the proposition of
an empirical model with coefficients that are related to the geometry of the opening. Finite element simulations
are then used to simulate different openings. Finally, a comprehensive empirical model of the effect on the
radiation impedance of a wide inclined plane in front of a radiating aperture is proposed.

1.2 Simplification and Generalization

The radiation impedance of openings with different geometries has already been studied; e.g. the open ending
of pipe with different flanges [15, 18, 20] or the radiation of side hole [16, 17, 19]. All the radiation impedances,
defined here as the ratio of the complex amplitudes of acoustic pressure (Pac(k)) and mean acoustic velocity
(Vac(k)) at the end of the pipe, can be written using the same global formulation:

Zr =
Pac(k)

Vac(k)
= jmrck + ζ

ρc

2π
k2, (2)

with c the sound velocity, ρ the air density, k the wavenumber, and mr and ζ two real frequency-dependent
coefficients related to the opening geometry. The inertance, mr, influences the resonant frequencies of the pipe,
and has therefore been studied more than the dimensionless coefficient ζ which influences the quality factors
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and the amplitudes of the resonances. These two coefficients are approximately constant at low frequencies.
The two most analyzed geometries are the radiation of an unflanged pipe with thin wall for which [15]:







m
(unflg)
r =

ρ

πro
0.613

ζ(unflg) =
1

2

(3)

and the infinite flanged pipe for which [18, 20]:

{

m
(flg)
r =

ρ

πro
0.824

ζ(flg) = 1
(4)

where ro =
√

So/π is the equivalent radius of the opening.
Radiation impedance for configurations closer to the one studied here, can be found in the literature. The

effect of a parallel plane in front of an opening has been studied by Dalmont et al. [18] for the purpose of
modeling the effect of the key suspended above a tone hole. In this case the plane is not inclined (Fig. 2,a)).
The effect of the plane is interpreted by Dalmont as a correction ∆mr of the radiation inertance without plane
mr0 (unflanged pipe). If the plane distance hp is short in comparison with the radius opening ro (hp ≪ ro), the
inertance correction is approximately proportional to the inverse of this distance:

∆mr = mr −mr0 ≈
hp/ro→0

ρ

π

1

3.5hp
. (5)

a)

ro
hp
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θ
ro

Figure 2: a): Sketch of the parallel plane in front of the opening studied by Dalmont et al. [18]. b):Sketch of
the junction of a cylinder and truncated cone studied by Kergomard et al. [21].

The junction of a cylinder and a truncated cone, studied by Kergomard et al. [21], is also comparable to
the problem studied here. Indeed, the case where the truncated cone is semi-infinite is equivalent to a cylinder
surrounded by an inclined wall (Fig. 2,b)). In this case, for low frequencies, the output impedance of the cylinder

radiating into the cone Z
(cone)
r is approximately:

Z(cone)
r ≈ jkc

M + ξV

1 + jkcM/ξ
(6)

The inertance M and the two coefficients V and ξ are dependent on the half-angle of the truncated cone θ and
the radius of the cylinder ro:











M = ρ
2πro

cot(θ/2)

ξ = ρ
cπr2o

cos2(θ/2)

V = cro sin(θ)
2+cos(θ)

3(1+cos(θ))2 .

(7)

This expression ensures the transition between plane waves into the cylinder and spherical waves into the cone.
It is only valid for acute cones (θ ≤ π).If the angle of the cone is sufficiently wide, this expression can be

approximated for low frequencies by the expression of Eq.(2), leading to an inertance m
(cone)
r and a coefficient

ζ(cone) [21]:
{

m
(cone)
r = M + ξV

ζ(cone) = 2π
ρc

M2

ξ = 1
1−cos(θ) .

(8)

However, for small angles (θ ≪ 1), the truncated cone starts to resemble a cylinder. The inertance m
(cone)
r

diverges and the development of Eq.(6) gives Z
(cone)
r ≈ ξ, which corresponds to the characteristic impedance
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of the cylinder. The output impedance is thus independent of the frequency (m
(cone)
r = 0 and ζ(cone) = 0).

Therefore, it is impossible to use this model to generate general expressions of the inertance and coefficient ζ
that are valid for all angles of the truncated cone. The impossibility of generalization is due to the truncation
of the cone. Indeed, for small angles, the volume truncated tends towards infinity.
The similarity with our geometry suggests that the radiation impedance of an opening with an inclined plane

could be correctly described by Eq.(2) with an inertancemr and a coefficient ζ that are independent of frequency
in the low-frequency approximation. Furthermore, the effect of the inclined plane on the inertance could be
expressed as a modification mβ of the inertance of an unflanged pipe mr0:

mr = mβ +mr0. (9)

Finally, under these assumptions, the aim of this study is to propose expressions for the inertance mβ and for
coefficient ζ, accounting for the position of the inclined plane and the geometry of the opening. For this first
study, only circular planes of much greater area than the opening section (Splane ≫ So) are considered. Two
methods are proposed to measure these parameters.

2 Passive resonance measurement

2.1 Measurement principles

The protocol used here is similar to the one used in a previous study of the radiation impedance of the window of
recorder-like instruments [4]. The input impedance Zin of a finite open pipe is measured by an impedance sensor
(Fig. 3). The radiation impedance of the opening is then estimated through the transfer matrix propagation
of the sound inside the pipe. This measurement is made with and without an inclined plane in front of the
opening for different plane radii and different tilt angles.

β

Impedance

Sensor

R

Notche Flute

Inclined

Plane

w

Figure 3: Sketch of the set-up used for passive measurements.

The pipe used for these measurements is the cylindrical upper part of a 3D printed plastic notch flute (Quena)
of internal radius rp = 9.5 mm and length Lp = 128 mm. The notch is the hole where the player places his/her
face. This hole is at one boundary of the resonator, which enables the placement of the inclined plane (Fig. 3),
in contrast to a transverse flute where this hole is located in the middle of the mouthpiece.

Measure F.E.

Si Si
So

Figure 4: a) Sketch of the window used for the measurements. b) Equivalent model of the window used in the
finite element simulations (Sec. 4).

The notch used here is a parabolic hole. Due to the presence of the edge (Fig. 3), the external opening
area So = 1.32 cm2 of the hole is larger than the inside opening area Si = 0.93 cm2 (Fig. 4, a). The planes
used to simulate the player’s face are circular planes made of plastic (4mm thickness) with different radii
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(R = 4 cm, 8 cm, 12 cm), ensuring that Splane ≫ So. The plane is centered at the extremity of the notch and
inclined to the notch plane with different values of the tilt angle β ranging from π/36 to π/2 (Fig. 3).
The impedance sensor used was developed by Le Roux [22]. For each measurement, responses from five

sweeps in the range 100 Hz to 3000 Hz of five seconds each are averaged. This procedure, including the
placement of the inclined plane, is repeated three times for each value of the pair of parameters (R, β), giving
three measurements of Zin per configuration.
In the low frequency assumption of plane waves (krp ≪ 1.8), the radiation impedance Zr can be obtained

from the input impedance Zin, using the transfer matrix of a cylinder, with the formula [23, 24]:

Zr =
Zc tanh(ΓLp)− Zin

Zin

Zc
tanh(ΓLp)− 1

, (10)

where Γ is the complex propagation coefficient and Zc the characteristic impedance of the cylinder. Both
account for the visco-thermal losses related to the cross-sectional area of the tube and the wavenumber [25]:

{

Γ = jkφΓ

Zc = ρc
Sp

φZc
,

(11)

with φΓ and φZc
two dimensionless functions [25] introducing corrections due to viscous and thermal effects

on the propagation. The two dimensionless functions depend on the Stokes number similar to a dimensionless
radius: rv = rp

√

ωρ/η, where η is the shear viscosity coefficient. The values of the density ρ, the speed of sound
c, and the shear viscosity η are estimated from the temperature [25]. For large values of the Stokes number, a
second order development in 1/rv gives [24]:

{

φΓ = 1 + α1

√
−2j

rv
− j α2

r2v

φZc
= 1 + A1

rv
+ A2

r2v
,

(12)

where α1, α2, A1, A2 are coefficients that depend on the Prandtl number Pr and on the heat capacity ratio γ.
For air, these two parameters are assumed to be constant (Pr = 0.71 and γ = 1.402) which gives: α1 = 1.044;
α2 = 1.080; A1 = 0.370, and A2 = 1.147 [24].
This calculation is first applied to measurements of the input impedance of the flute mouthpiece with the notch

blocked (closed pipe) to determine precisely the length of the pipe. Then it is used to extract the radiation
impedance Zr for each pair of inclined plane parameters (R, β). Assuming that this impedance follows the
expression of Eq.(2), the real part of the radiation impedance is normalized by ρck2/(2π) and the imaginary
part by ρck (the normalization by ρ reduces the temperature effect on the measurement).

2.2 Influence of the plane inclination

The imaginary and real parts of the radiation impedance obtained with one given plane (R = 8 cm) and different
tilt angles are compared in the frequency domain to examine the effect of the plane (Fig. 5). As the plane is
increasingly inclined (smaller β), there is a greater modification to the real and imaginary components of the
impedance (Fig. 5).
Due to the normalization of the imaginary and real components by k and k2, respectively, the curves are

expected to be constant at low frequency. But inaccuracies in the measurements induce frequency dependent
variations which cause the data to deviate from this expected behavior (Fig. 5). The three repetitions of the
measurements (Sec. 2.1) superposed in Figure 5, demonstrate a good repeatability of the measurements for
both the imaginary and the real components. This repeatability includes the frequency dependent variations.
The deviation between the measurements with the same tilt angle are within 1% for the imaginary component
and within 5% for the real component. The frequency dependent variations have a similar pattern in all
the measurements and exist both in the presence and in the absence of the plane. It seems inherent to the
measurements method. As presented in Section 2.1, the radiation impedances Zr are not measured directly.
They are estimated from the input impedance of the notch flute Zin through a model of the acoustic propagation
into the pipe (Eq. 10). The observed impedance Zr is small compared to the measured impedance Zin. The
inaccuracies in the measurements (mainly due to low signal-to-noise ratio at the anti-resonances and to sensor
artifacts) and in the model of the propagation into the pipe (the geometric parameters of the tube and the
visco-thermal losses used in Eq. 10) have a non-negligible effect on the estimated impedance. Together, these
inaccuracies induce the frequency dependent variations.
The normalized imaginary component shows limited dependence on frequency, especially for low frequencies

(krp < 0.25) (Fig. 5, a). In spite of the frequency dependent variations discussed previously, the normalized
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a) b)

Figure 5: Radiation impedance (a: imaginary part; b: real part), with an inclined plane (R = 8 cm) and
different values of the tilt angle (π/36 < β < π/2) indicated by the grey scale. The wavenumber k is normalized
relatively to the pipe radius rp (i.e. krp) (f ∈ [300 Hz, 2500 Hz]). Passive measurements (solid lines); FE
simulations from Sec. 4 (dashed lines); the theoretical real parts of flanged and unflanged pipe (dotted and
dashed-dotted lines).

impedances are constant at low frequencies (krp < 0.25) within 5% percents of their mean values for each angle
β. These measurements are consistent with the assumption that, at low frequencies, the plane adds a constant
inertance mβ to the radiation impedance. The smaller the angle β, the bigger this inertance. It is possible
to quantify this inertance mβ for each plane configuration by considering the average value of the normalized
imaginary component at low frequencies (krp < 0.25) (Fig. 5, a). These values are discussed in Section 2.4.
It is more difficult to validate the assumptions as they apply to the real component, because the real part of

the radiation impedance is small compared to the imaginary part for low frequencies (Eq.(2)). Therefore, the
small inaccuracies discussed previously have a bigger effect (Fig. 5, b). Even assuming that the coefficient ζ is
constant in the low frequency range and that the frequency dependent variations observed are measurements
artifacts, it is difficult to estimate the value of this coefficient. Only a qualitative observation can be made: the
smaller the tilt angle β, the larger the coefficient ζ.

2.3 Influence of the plane radius

Figure 6: Radiation impedance with planes at similar inclination (β = π/7) but different radii (R = 4 cm,
R = 8 cm and R = 14 cm) compared to a reference (Rref = 8 cm) (a): imaginary part, b): real part). The
wave length λ is normalized by the reference radius.
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The influence of the radius of the circular plane is now investigated. Three planes with different radii are
tested (R = 4 cm;R = 8 cm;R = 12 cm). The data measured for β = π/7 with these three planes are
superposed in Figure 6. The radius of the plane has a smaller effect than its inclination both on the imaginary
and the real components (Fig.5).
The imaginary components are similar (Fig. 6,a). The deviation at a given frequency is within 1% at low

frequencies (krp < 0.25) and stays within 6% at higher frequencies. To a first approximation, the imaginary
component of the radiation impedance, and therefore the inertance mβ , are assumed independent of the plane
size. It is important to note that the wavelengths studied stay greater than the radii of the planes (λ ∈
[11.5cm, 115cm]).
It is less obvious how to interpret the observations on the real components (Fig. 6, b). The real component

obtained with R = 4cm is below the others over the entire frequency range. It induces a mean deviation of
30%. The same type of variation is also observed at low frequencies between the two largest planes (Fig. 6, b ,
for krp < 0.2). However, this effect is small compared with the frequency dependent variations caused by the
measurement artifacts discussed previously (Sec. 2.2). The size of the plane seems to have an effect on the real
component of the radiation impedance, but the measurements presented here can not be used to quantify it.
For the wide planes (R = 8cm and R = 12cm) the influence of size is small compared to the one of the tilt
angle (Fig.5).
As a first approximation, the radius of the inclined plane is assumed to have negligible influence on the

radiation impedance. Only planes of greater surface area than the opening area are used here (Splane > So).
Under this condition, the planes are large enough to be considered infinite.

2.4 Angle dependence of the inertance

For each value of the tilt angle, nine radiation impedance measurements are performed (3 for each of the 3
planes). For each measurement, a value of the total radiation inertance mr is estimated by taking the average
value of the normalized imaginary part in low frequency (f ∈ [300 Hz, 1500 Hz] or krp ∈ [0.05, 0.25]). The part
mβ of this inertance due to the inclined plane is estimated by taking the difference between the inertance mr

and the inertance mr0 measured in the absence of a plane (Eq.(9)). The inertances mβ obtained are normalized
by the air density ρ to compensate variations due to the temperature. The mean of these values give an
estimation of the inertance mβ for each value of the tilt angle β (Fig. 7). Due to the good repeatability of the
measurements (Sec. 2.2, Fig. 6), the inaccuracy of the inertance mβ is dominated by the frequency dependent
variations discussed in Sec. 2.2 (around 5% ) and not by the variation between measurements (¡1%). The
standard deviation of the imaginary component over the low frequency range is used to quantify the accuracy
of the estimation of the inertance mβ (error-bars in Fig. 7).

Figure 7: Inertance mβ normalized by the air density ρ as function of the angle β. The error bars correspond
to the standard deviation of the normalized imaginary component over the frequency range (krp < 0.25) for
each angle. Passive measurements (black x markers) and fitted model (black line); FE simulations (dark gray +
markers) and fitted model (dark gray line); active measurements (pale gray x markers) and fitted model (pale
gray line); Model of Eq.(32) (dashed black line).

Two asymptotic behaviors are observed. For small angles the inertance tends towards infinity which corre-
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sponds to the impedance of a closed end:
lim
β→0

mβ = +∞. (13)

For large angles, the extra inertance mβ tends to zero:

lim
β→β0

mβ = 0, (14)

where β0 is the limit angle for which the effect of the plane is null. This angle β0 can be interpreted as the
angle for which the radiation is no longer affected by the presence of the plane. The function cot(β/B) follows
the asymptotic behavior in the data. The coefficient B is a dimensionless coefficient. Following Eq.(14), it is
linked to the limit angle by β0 = Bπ/2.
The behavior of this function is sensitive to the coefficient B only for large angles (β close to β0), and it is

difficult to estimate the numerical value of B from the measurements. However, the value of the limit angle
is limited by the range π < β0 ≤ 2π. Indeed, when β = π, the configuration is similar to a flanged pipe for
which the presence of the plane (or the flange) affects the radiation. The value B = 4 (β0 = 4π/2) allows good
modeling of both the inertance and the real part of the impedance (Fig. 7 and Sec. 4.3). At this value, the
angle β0 for which the plane has no effect equals 2π. For this angle, the plane is placed along the pipe wall and
the hole radiates like an unflanged pipe (Fig. 3).
The inertance mβ behaves like the function:

mβ = C cot(β/4), (15)

where C is a coefficient with the dimension of an inertance. The total radiation inertance is therefore:

mr = C cot(β/4) +mr0. (16)

The value of the constant C is obtained by minimizing the function:

g(C) =
∑

β

|C cot(β/4) + ǫ0 −mβ|

std(mβ)
, (17)

where mβ and std(mβ) are the mean value and the inaccuracy of the measured inertance for each value of β,
respectively. Including the coefficient ǫ0 in the optimization process accounts for a possible systematic error in
the estimation of the inertance mr0 in the absence of a plane. The value 1 of this coefficient (ǫ0 ≈ −10kg.m−4)
is subtracted from the data presented (Fig. 7).

Figure 8: Comparison between the standard deviations (SD) of the measurements and the difference between
the values ofmβ predicted by the fitted models and the ones estimated from the measurements or the simulation.

1The value of ǫ0 is the same order of magnitude as the standard deviation of mr0. Here, |ǫ0|/mr0 ≈ 6%, and std(mr0)/mr0 ≈
4.5%. This bias may be due to the frequency dependent variations on the measurements (Fig. 5,a). It could be also due to the
width w of the boundary wall on which the plane is placed (w ≈ 3mm, Fig. 3). Even in the absence of a plane, this wall slightly
limits the acoustic field, similar to a small plane inclined of β = π.
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After optimization of the coefficient C, the fitted model passes through all the error-bars (Fig. 7). For each
angle β, the difference between the value of mβ predicted by the fitted model and the one estimated from the
measurement is lower than the uncertainty of measurement, which, in the current work, is defined as two times
the standard deviation (Fig. 8). It validates the choice of the coefficient B = 4 in the model.
Before examining how the coefficient C depends on the geometry of the aperture, a second method is proposed

to verify the behaviour of the modified inertance.

3 Active behavior measurements

3.1 Measurement principles

Assuming that the inclined plane modifies the imaginary part of the radiation impedance by adding an inertance
without frequency dependence at low frequencies, it is not necessary to measure this effect over a large range of
frequencies. The inertance can be estimated from a measurement at only one frequency, making the measurement
faster and simpler.
For a self-sustained instrument supplied by a steady source of energy, the sounding frequency is shifted when

the resonator is modified. Assuming that the type of modification is known (here an added inertance), it is
possible to quantify this modification from the measurement of the sounding frequency [26].

β

Stabilized

Pressure

R

Steady SourcePart Studied

Sp Ss

Inclined

Plane

Notch Flute

Figure 9: Sketch of the setup used for passive measurements.

For this measurement, the impedance sensor is replaced by a mouthpiece of a tenor recorder: a cylindrical
pipe with an internal cross-sectional area Ss = 3.9 cm2 and a length Ls = 127.7mm. This sound source is
supplied with a steady flow ensured by a flow controller (smart mass flow BROOKS, model 5851S) from a
high pressure air supply (Fig. 9). A pressure sensor (Endevco 8507 C) is placed into the pressure reservoir to
control the stability of the supply, and a microphone (B&K 4938) is placed through the wall of the recorder to
measure the internal acoustic pressure. All these elements constitute the self-sustained sound source, and the
notch flute studied previously with or without the inclined plane is part of the resonator. For each position of
the plane, the internal acoustic pressure is recorded for 5 s with a sampling frequency fe = 51.2 kHz and the
fundamental frequency is estimated. The sounding frequency varies between fwo = 473.6 Hz without a plane
and f = 418.8 Hz for a tilt angle β = π/36.
At low frequencies, the inertance mβ = mr − mr0 added by the inclined plane has a similar effect on the

sounding frequency as a modification lβ of the resonator length, with lβ = mβSs/ρ for klβ < 1. It is therefore
possible to estimate the inertance added by the plane by comparing the sounding frequency without plane f0
and the sounding frequency with the plane f :

mβ = lβ
ρ

Ss
= (1−A2)

ρ

Ss

(

c

2f
−

c

2f0

)

. (18)

The coefficient A appears if the internal section Ss of the recorder mouth piece is different from the one of the
notch flute head Sp (App. A):

A ≈ j

(

Sp

Ss

)

tan(kLp), (19)

with Lp the length of the notch flute head (Sec. 2.1). This coefficient allows the same sound source to be used
with pipes of different internal radius. This method measures changes of the radiation inertance,mβ = mr−mr0,
but it can not provide an absolute value of the radiation inertance mr. For this method, the measurement is
again performed three times for each plane radius and tilt angle β.
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3.2 Results

As with the first method presented, the size of the plane does not strongly influence the inertance measured.
For each inclination of the plane, the nine measurements of the inertance difference mβ = mr −mr0 (3 for each
size) are grouped allowing the estimation of a mean value and the repeatability of the measurements (Fig. 7).
While the impedance measurements described in the previous section (Sec. 2.1) correspond to the low acoustic
level linear regime, the second method can be used to validate the results of the imaginary part of the radiation
impedance at standard playing level.
A model similar to the one proposed for the first method (Eq.(16)) is fitted to this data. The values of

coefficients C and ǫ0 are obtained by optimization (Eq.(17)): C/ρ ≈ 7.6 m−1 and ǫ0 ≈ −11 kg.m−4. The value
of ǫ0 is close to that obtained using the first method (Sec. 2.4).
The values of the inertance mβ and the coefficient C of the fitted model are similar to the ones obtained with

the first method (Fig. 7), which validates the method proposed here. The difference between the model and
measurements are, again, lower than the standard deviation of the measurements (Fig. 8).
The coefficient C depends on the opening geometry. Instead of manufacturing several mouthpieces to inves-

tigate this dependence, a numerical simulation approach is chosen.

4 Simulation of the radiation

To study the dependence of the coefficient C on the geometry of the opening, several geometries are simulated
using Finite Element methods (F.E.) in which the 3D Helmholtz equation is solved. In this simulation, the
geometry and the wave propagation are well controlled. It is therefore possible to study both the imaginary and
the real part of the radiation impedance. The numerical simulation is validated by comparing the simulated
radiation impedance with the measurements for each position of the inclined plane.

4.1 Simulation settings

β

Homogeneous

Pressure

Free Boundary

+ PML

Rigid

Boundary

Rigid Boundary Helmholtz 3D

Sp

Lp

Figure 10: Sketch of the transverse section of the simulated geometry.

The mesh and the analysis of the simulations used in this study are adapted from a previous study [4] (Fig. 10).
The mesh includes a rectangular tube with cross-sectional area Sp and length Lp, a radiation domain limited
by the inclined plane, and the opening. The geometry of the opening is characterized by two areas due to the
shape of the edge: an internal area Si and an external area So (Fig. 4). The relation between these two areas
is determined by the sharpness of the edge and the height of the wall. Assuming that for low frequencies (λ
larger than the cross-sectional dimensions), the sound propagation is influenced only by the magnitude of the
cross-sectional areas (Sp, So, Si), but not their shape, so all areas are modeled as rectangular which simplifies
the generation and the configuration of the mesh.
For each given geometry, the Helmholtz equation (Eq.(20)), assuming a frictionless adiabatic flow, is solved

for different values of the wave-number k:

∆Pac(k) + k2Pac(k) = 0, (20)

where Pac(k) is the amplitude of the acoustic pressure for a given wavenumber. A homogeneous pressure
Pac = p0ac is applied across the end of the tube (Fig. 10). Rigid boundary conditions are imposed on the wall
and on the inclined plane, i.e. a zero normal acoustic velocity: ∂Pac

∂n = 0, with n the normal direction of the wall.
To limit the influence of the boundary of the calculated radiation domain, artificial damping is added at the



Ernoult et al., p. 11

limit of the radiation domain, which obeys the Perfect Matched Layer condition (PML, ∂Pac

∂n = −ik(1+ iν)Pac,
with ν = 1 controlling the damping) [27, 28].
The tube and the radiation domain are taken to be great enough for it to be assumed that the conditions

at the boundaries of the simulated domain don’t influence the response of the window. With these boundary
conditions and the size of the mesh, the inclined plane behaves as an infinite plane. The length of the tube is
chosen such that the wave propagation can be assumed to be planar at its end (Lp = 0.3λ with λ the wave
length, Fig. 10). The length is therefore modified for each value of k. The mesh has to be detailed enough
to describe correctly the propagation through the opening. These two conditions limit the frequency domain
which can be studied using a reasonable number of elements and computational cost. The lowest frequency
is fixed to f = 100 Hz, the same used for the measurements. The highest frequency is selected to match the
cutoff frequency of the tube: f < 2c

hp
, with hp the longest dimension of the tube cross-section.

As with the measurements, the radiation impedance can not be obtained directly from the simulation, but
has to be evaluated from the input impedance at the end of the tube. This input impedance is calculated from
the pressure field predicted by the solution of the Helmholtz equation (20). It is defined as the ratio of the
homogeneous pressure p0ac over the mean normal velocity at the entrance of the pipe:

Zin =
p0acSp

∫

S0
p

VacdS
= ikρc

p0acSp
∫

S0
p

dPac

dx dS
, (21)

where the superscript 0 specifies that the integration is calculated at the entrance of the pipe. The acoustic
velocity Vac is obtained from the spatial derivative of the acoustic pressure Pac. The radiation impedance is
obtained from this input impedance using a formula similar to Eq.(10). Following the frictionless and adiabatic
assumption of Eq. (20), the visco-thermal losses are not taken into account in the simulation, so Γ = ik and
Zc = ρc/Sp (fΓ = fZc

= 1). The radiation impedance Zr is written as:

Zr =
Zc tanh(ikLp)− Zin)
Zin

Zc
tanh(ikLp)− 1

. (22)

The boundary condition assumptions and the method to obtain the radiation impedance are first tested on a well
documented simple geometry: an unflanged open cylinder. After validation by comparison with the analytical
solution, this method is tested on a geometry equivalent to the one measured. To ensure this equivalence, the
mesh is generated using the dimensions of the experimental setup: the cross section of the pipe Sp, the internal
cross section of the opening Si and the outside cross section So. The tilt angle of the plane is varied in the
range π/36 < β < π. In the simulation, the propagation into the pipe is modeled under ideal circumstances:
there are no visco-thermal losses and the dimensions of the pipe are precisely known (Lp and Sp). The radiation
impedance Zr is then estimated by Eq. (22) with much better accuracy than when using the measurements. It
provides smoother imaginary and real parts (Fig. 5, dashed lines).
The simulated imaginary components correspond well with the measured ones, especially at low frequencies,

except for the smallest angle β = π/36 (Fig. 5). For this configuration, the simulated radiation domain is small
due to the inclined plane. The intensity of the acoustic pressure at the PML boundary condition is therefore
high, which adversely affects the resulting simulation. For this angle, the simulations are not valid and are
excluded from the analysis. For the other angles, the normalized imaginary part is constant at low frequencies.
Inertances are therefore estimated from these simulations by taking the average of the normalized imaginary
part in the same frequency range as before (krp ∈ [0.05, 0.25]).
The radiation in the absence of a plane mr0 is simulated with a geometry similar that of a plane with β = π

(Fig. 10) and by changing the boundary condition on the ”plane” to a radiating condition (PML). The obtained
values for mr0 are consistent with the prediction of the model used in a previous study [4] accounting for the
opening geometry.
After removing the inertance mr0, a model similar to the one proposed for the measurements is fitted to the

values of the plane inertances mβ (Eq.(16)). Both the inertances and the coefficient C obtained by simulation
match those derived from measurements (Fig. 7)2.The relative difference between the estimation of the fitted
model and the simulated data remains under 5% which again validates the choice of the model (Fig. 8).
These observations indicate that the effect of the inclined plane on the imaginary part of the radiation

impedance is similar for the numerical simulations and the measurements. It validates numerical simulation as
an efficient tool to study how the effect of the plane is influenced by the geometry of the aperture.

2For the F.E., the bias ǫ0 is of the order of magnitude as the standard deviation of the normalized imaginary component around
its mean value (4% of mr0).



Ernoult et al., p. 12

4.2 Imaginary component

Simulations are run for 31 different geometries of the opening for which the inside cross sectional area varies
over the range 0.2 cm2 < Si < 1.6 cm2 and the outside cross sectional area varies independently over the range
0.2 cm2 < So < 2.5 cm2, with Si ≤ So (Fig. 4). The cross sectional area of the pipe is kept constant Sp =
1.2 cm2. For each of these opening geometries the radiation is simulated for different positions of the inclined
plane (π/18 ≤ β ≤ π). For each opening geometry, the model proposed by Eq. (16) is fitted resulting in one
value of the coefficient C per opening geometry.
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Figure 11: Evolution of the fitted parameter C with the geometry of the opening, with the radius ro corre-
sponding to the external section of the opening.

By following the relation between the radiation inertance and the equivalent radius of the opening area
established for the unflanged and the flanged pipes (Eq.(3) and Eq.(4)), the evolution of the coefficient C with
the inverse of this radius ro =

√

So/π is observed (Fig. 11). These two parameters appear to be approximately
proportional:

C ≈
ρ

4πro
. (23)

This relation appears to be slightly dependent on the exact geometry of the opening (internal area Si, sharpness
of the edge, etc.) which explains the variation of C for similar values of the radius ro (Fig. 11). Finally, the
radiation inertance mr is predicted by the following expression:

mr = mβ +mr0 =
ρ

4πro
cot(

β

4
) +mr0. (24)

This formulation is consistent with the radiation inertances of the well established analytical solutions for the
unflanged and flanged pipe. Indeed, taking into account that the radiation domain is delimited by the pipe and
the inclined plane, the radiation should be similar to that of a flanged pipe if β = π and similar to that of an
unflanged pipe if β = 2π. The proposed model (Eq.(24)) gives for the unflanged pipe:

m(unflg)
r = mr(β = 2π) = mr0, (25)

and for the flanged pipe:

m(flg)
r = mr(β = π) =

ρ

4πro
cot(

π

4
) +mr0

=
ρ

πro
0.25 +mr0. (26)

The difference between these two inertances is:
(

m(flg)
r −m(unflg)

r

)

=
ρ

πro
0.25 ≈

ρ

πro
(0.824− 0.613), (27)

which is consistent with the established value (Eq.(3),(4)). Conversely, consistency with the established value

can be imposed by fixing C = (m
(flg)
r − m

(unflg)
r )ρ/(πro). This expression is a good approximation of the

simulated data (Fig. 11).
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This model can be applied to the case of the notch flute used in this study. The prediction is compared to
the measurement in Figure 7. For this geometry of opening, the model proposed here overestimates the value
of the coefficient C (measured: C ≈ 7 , predicted C ≈ 10). Indeed, the results of the fit are slightly lower than
the linear regression (Fig. 11).
Furthermore, the obtained expression (Eq.(24)) differs only by a factor of 1/2 from the main term of the

inertance of a truncated cone of angle β (Eq.(7) and Eq.(8) , with θ = β/2). In particular, the two models have
the same dependence with the angle in cot(β/4) (Eq.(7) and Eq.(24)).
The inertance correction mβ induced by the plane is inversely proportional to ro tan(β/4) (see Eq.(24)). It

can be interpreted as an equivalent distance between the inclined plane and the opening. This observation is
therefore consistent with the effect of a parallel plane hanging above a hole [18] (Sec. 1.2).

4.3 Real component

The simulated real parts are smoother than the measured real components (Fig. 5,b) due to the absence of
unknowns in the model of the propagation into the pipe used in Eq. (22) (Sec. 4.1). They can therefore be used
to estimate the coefficient ζ which links the real part to the square of the wavenumber k (Eq.2). The value of
the coefficient ζ is estimated for each tilt angle β and for each opening geometry by taking the average of the
normalized real part of the radiation impedance in the frequency range krp ∈ [0.05, 0.5]..
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Figure 12: Evolution of the coefficient ζ characterizing the real part of the radiation impedance with the angle
β of the plane (a). Its multiplication by β/π enhances the asymptotic behavior of ζ for small angle (b).

The coefficient ζ appears to be much more sensitive to the angle of the plane β than to the opening geometry
(Fig. 12,a). This observation is consistent with the formulation existing for the unflanged and flanged pipe in
which the real part is independent of the opening size (Eq.(3),Eq.(4)). To a first approximation, the coefficient
ζ can considered independent of the opening geometry.
The real part of the radiation impedance can be exactly calculated by ensuring the conservation of both the

acoustic power and the flow rate between the output of the hole and a wavefront far away from the hole [24]
(chap.12.6.1,p.681-683). If the wavefront is a portion of sphere of radius R then the real part of the radiation
impedance is [24] (chap.12.6.1,p.681-683):

ℜe(Zr) =
ρc

Srad

k2R2

1 + k2R2
(28)

where Srad is the surface area of the wavefront.

a)

β
Srad

b)

β

Srad

Figure 13: Sketch of radiating domain: cone (a) and slice of sphere (b).
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For the geometry studied here, the radiation domain can be assumed to be limited by the inclined plane
and the pipe. The geometry of the resulting radiation domain is not obvious. If this domain is a cone of
angle β, the area of the wavefront is Scone

rad = 2πR2(1 − cos(β/2)) (Fig. 13, a). At low frequencies, it is shown
that [21, 24](chap.12.6.1,p.681-683):

ℜe(Zcone
r ) =

ρck2

2π(1− cos(β/2))
(29)

The coefficient ζ(cone) = 1/(1 − cos(β/2)) is similar to that of a wide truncated cone Eq.(8) (Sec. 1.2). If the
radiation domain is a slice of sphere of angle β (Fig. 13, b), the radiation surface is: Sslice

rad = 2R2β. For low
frequencies, this leads to:

ℜe(Zslice
r ) =

ρck2

2β
. (30)

The coefficient characterizing the frequency dependence of the real part is therefore:

ζ =
π

β
. (31)

These expressions are compared to the coefficient estimated from the FE simulations (Fig. 12, b). The
coefficient ζ multiplied by the angle β does not diverge for small angles, which supports the suggestion that the
radiation domain should be described as a slice of a sphere rather than as a cone.
For β = π, the radiation domain is a hemisphere, which is similar to that of a flanged pipe and ζ(β = π) =

ζ(flgd) = 1. For β = 2π, the radiation domain is a full sphere, which corresponds to an unflanged pipe and
ζ(β = 2π) = ζ(unflgd) = 1/2 (Fig. 13, b). The proposed equation (31) is therefore consistent with these two
well established cases.

5 Conclusions

With the goal of better understanding the influence of the musician’s face position on the acoustic response of
a flute-like instrument, this work considers a simplification of the problem: the influence of an inclined plane
on the radiation of a hole. This study proposes a model for both the imaginary and real components of the
radiation impedance based on measurements and numerical simulations. The size of the plane does not appear
to influence the imaginary part of the radiation impedance provided that the plane is larger than the opening
(Splane > So) (Sec. 2.3). The influence of the tilt angle β of the plane on the radiation impedance Zr is well
modeled by the following expression:

Zr = j

(

ρ cot(β/4)

4πro
+mr0

)

ck +
π

β

ρc

2π
k2, (32)

with ro the radius corresponding to the external area of the hole (ro =
√

So/π), mr0 the inertance of the hole
without a plane, k the wavenumber, ρ the air density and c the speed of sound 3. Substituting the characteristic
impedance Zc = ρc/So, expression Eq.(32) becomes:

Zr = Zc

[

j

(

cot(β/4)

4
ro +

So

ρ
mr0

)

k +
π

2β
(kro)

2

]

. (33)

This model is consistent with the well established radiation impedance of an unflanged and flanged pipe, by
assuming that a flanged pipe corresponds to a plane inclined with an angle β = π, and that the unflanged pipe
corresponds to the position of the plane β = 2π, for which it has no more effect on radiation (Sec. 2.4).
These formulations are established and validated only for low frequencies f < 1500 Hz, corresponding to

krp < 0.25 or kro < 0.25. For higher frequencies, the measurements diverge slightly from the low frequency
behavior (Fig. 5), which is not observed in the F.E. simulation. This phenomenon is possibly due to inaccuracies
of data processing methods, such as the value of the parameters of the sound propagation model used to estimate
the radiation impedance (eq.10 and eq.12) (Sec. 2.1). According to the numerical simulations, the frequency
range for which the proposed model is valid could be extended to krp < 0.5 (Fig. 5).
In this study, the modification of the radiation by the musician’s face is separated into two effects: the

reduction of the opening area and the presence of an inclined plane in front of the opening (Sec. 1). The

3The bias ǫ0 introduced in Eq.(17) and discussed in sections 2.4 and 3.2 is here neglected.
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proposed expression (Eq. 32) can model these two effects, observing that the inertance mr0 is also modified by
the reduction of the opening area [17, 4].
In the current work, only the radiation impedance Zr is modeled. To obtain the complete impedance of a

side hole or window, additional elements must be added to account for the geometry of the opening [16, 17, 4]:
the change in the direction of the propagation, the change of cross-sectional area, the height of the wall, the
enlargement of the hole, etc.
This study also proposes a new method of measuring the variation of an inertance. This method is limited by

some strong assumptions. For example, the independence of the inertance with the frequency can not be verified.
This method can only be used to measure a modification of the imaginary component. However, the protocol
benefits from a simple set-up and analysis, and can easily be adapted for instrument makers. Furthermore,
it provides information regarding the influence of the imaginary part of the radiation impedance at standard
playing level, where vortex shedding at the labium may appear [29].

5.1 Future work

This work is a first step in understanding the link between the positioning of the musician’s face and the
geometry of the flute-like instrument. The next step is to link this model to the actual position of a player,
including how this varies during musical performances. In previous studies, the position of the player’s face is
reduced to the distance between the player’s lips and the edge of the flute [5, 6, 8, 9, 10]. The relation between
the distance and the geometric parameters used in this study (radius of the opening section ro and tilt angle
β) is not obvious and should be investigated. In these studies, the position of the lips is extracted from videos
focused on the player’s mouth. A similar setup could be used to observe the actual position of the player’s face
during a performance.
Once this is completed, it will be possible to estimate the acoustic resonances of the instrument in the presence

of a musician. With the current knowledge of the source mechanism of this type of instrument [2, 30, 31]
it is already possible to link the acoustic resonances to the sounding frequencies through the hydrodynamic
parameters of the jet (size, velocity, etc.). Finally, with these different elements, it should be possible to
link the geometry of the instrument to the necessary control gesture of the musician including both the face
position and jet parameters. These results could be used to interpret the geometry of the instrument in terms
of playability [13], or used in optimization algorithms.
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A Appendix

Assuming that the recorder is a cylinder with a length Ls and a cross sectional area Ss associated with a
characteristic impedance Zcs, the input impedance of the resonator seen by the sound source Ztot is:

Ztot = Zcs tanh

[

ΓsLs + tanh−1

(

Zin

Zcs

)]

, (34)

with Zin the input impedance of the notch flute head. Assuming that this head is a cylinder of length Lp and
cross sectional area Sp with a characteristic impedance Zcp, Eq.(34) becomes:

Zin = Zcp tanh
[

ΓpLp + ζ(kR)2
]

+ jωmr, (35)

where mr is the radiation inertance. Assuming that this inertance is small compared with the modulus of the
input impedance Zin, it is possible expand the inverse hyperbolic tangent in a Taylor series:

tanh−1

(

Zin

Zcs

)

≈ tanh−1(A) +
jω

Zcs
mr

1

1−A2
, (36)

with

A =
Sp

Ss
tanh

[

ΓpLp + ζ(kR)2
]

. (37)



Ernoult et al., p. 16

This expression can be simplified by neglecting the visco-thermal losses (Γp ≈ jk) and the real part which is
small compare to the imaginary part in low frequency range (k ≪ Lp/R

2):

A ≈ j

(

Sp

Ss

)

tan(kLp). (38)

The Taylor expansion of Eq. 36 can be used in Eq. 34 which results in the total input impedance:

Ztot = Zcs tanh

[

ΓsLs + jk
Ss

ρ
mr

1

1−A2

+tanh−1(A)
]

. (39)

The presence of the plane modifies the radiation inertance m′
r = mr + mβ which has a similar effect on the

total impedance Ztot as a length correction ∆leq:

∆leq =
Ss

ρ
mβ

1

1−A2
. (40)

The link between the shift of the sounding frequency and the added inertance is finally:

mβ =
ρ

Ss

(

1−A2
)

(

c0
2f

−
c0
2f0

)

. (41)
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