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Abstract—In this paper, we propose simple one-shot
power control functions and assess their performance both
through analytical and numerical results. The proposed
functions only assume individual channel state information
(CSI) at each transmitter and are based on channel
inversion and more importantly on thresholding; a trans-
mitter uses zero power if the channel gain is below a
threshold. Although the idea of thresholding has been
used for maximizing spectral efficiency, it has not been
used for maximizing (the total network) energy-efficiency
(EE), which is measured here in terms of sum-EE. More
specifically, we prove the optimality of the proposed
policy in asymptotic regimes such as the low and high
interference scenarios. We also prove that the expected
sum-energy is individually quasi-concave with respect to
each of the thresholds; this allows us to provide a low-
complexity algorithm which can be run offline to find good
thresholds. Through numerical simulations, we show that
the simple idea of thresholding provides very appreciable
gains.

I. INTRODUCTION

The design of energy-efficient communications is
an issue that has gained a lot of attention in the
past years. This issue is naturally relevant in mobile
devices with limited battery capacity, but it has also
become an important issue for radio base stations and
tele-communication operators due to the operational
costs [1]. In [2], an extensive survey is provided on
techniques that improve energy efficiency in wireless
systems, defined as the ratio between the number of
bits successfully transmitted and the power consumed.
Amongst the various scenarios that can be considered,
the focus of this paper, is on transmission power con-
trol. Ideally, to optimize power control in distributed
interference networks, a transmitter requires knowledge
about global channel state information (CSI). However,
in a distributed setting, global CSI is typically not
available. The existing techniques to acquire global
CSI, typically rely on the existence of inter-transmitter
signaling channels (see [3]), which may be unavailable
in practice. Some recent works have proposed tech-
niques with which global CSI can be estimated using
implicit signalling through the interference channel via
power modulation [4]. However, these works assume
a sufficiently long channel coherence time as global
channel acquisition may take a long time. Additionally,

the technique proposed does not scale well with a
large number of interfering devices. In the present
work, we only look at fully distributed power control
policies that: provide the transmit power level in one
shot that is, without generating extra delay induced
by memory reading or exchanges with the backhauling
infrastructure; only exploit individual CSI as available
information; may be used even in the presence of many
(interfering) users.

Energy-efficient distributed power control in the
sense adopted in the present paper has been first
studied in [5], in which the problem of power con-
trol is treated as a non-cooperative game with each
transmitting device attempts to maximize its individual
energy-efficiency. Various extensions, see [6]–[10] have
been proposed to [5], in which additional features like
multi-band channels, OFDMA, MIMO, packet layer,
relays, etc., was considered. However, the resulting
operating point is at the Nash equilibrium which can
be seen to be very inefficient in terms of sum-EE. This
work was later improved in [11] in which a pricing
function is artificially added to the individual utility in
order to incite cooperative behavior in multiple access
channels (MAC). While the resulting operating point
Pareto dominates the equilibrium from [5], it is still
not designed to be optimal and more importantly, the
operating point can not be determined as an explicit
function of the channel gain. However, not many works
propose a technique that optimizes or improves upon
the sum-EE considered in [11], in the context of an
interference channel, which is the primary motivation of
this work. To our knowledge, the closest work is given
by [12] in which a thresholding policy was shown to
be near-optimal for sum-rate maximization.

The main advantages and features of the proposed
technique over the state of the art can be summarized
as follows.

1) It is designed for interference channels and not
only multiple access channels (as done in [11]
and is therefore more general.

2) Once the thresholds are determined offline, the
power control at each time instant can be de-
termined in a shot manner and by an explicit



function. This means without an iterative online
procedure which might not converge and neces-
sitate several and possibly many SINR samples
(as in [11] and papers using the best-response
dynamics), especially when the number of users
increases.

3) It is optimal when the CSI is individual and in
extreme regimes of interference level.

This paper is structured as follows. In Section II
we provide the system model and problem statement,
followed by an analysis of the proposed thresholding
policy in . We then show some properties of this policy
in IV which facilitates in tuning the threshold. In Sec-
tion V we compare the energy efficiency obtained with
the proposed technique with state of the art techniques
and provide some concluding remarks in VI.

II. PROBLEM FORMULATION

Consider a wireless network where K transmitters
(or transmitter-receiver pairs depending on the model
considered) are trying to coordinate the power emitted
pi P Pi, i P K “ t1, ...,Ku. Due to the power
constraint at every transmitter, the transmit power at
any transmitter i P K should not exceed Pmax, i.e.
pi P r0, Pmaxs. Based on the transmission power profile,
the signal to interference plus noise ratio (SINR) at each
receiver i can be written as

γi “
pigii

σ2 `
řK
j“1,j‰i pjgji

(1)

where the channel gain coefficient gji P Rě0 represents
the quality of wireless link from the transmitter j to the
receiver i, and σ2 represents the noise level. We define
the global channel state G “ pg11, ..., gKKq P RK2

,
which is in general, a random state which affects
the common payoff function for the system, and is
not controlled by the coordinating transmitters. The
realizations of the channel gain coefficients G at each
time instant are assumed to be i.i.d. and follow a
probability distribution ρ. In this work, ρ is taken to be
an exponential distribution for each channel gain gij ,
i.e. we consider a Rayleigh fading channel.

The instantaneous individual utility function
uipG, p1, ..., pN q, is the energy efficiency as defined in
[5], i.e.,

uipG, p1, . . . , pKq “
ψpγiq

pi
(2)

where ψ denotes the expected number of successful bits
transmitted as a function of the SINR; ψ may represent
the packet success rate and is typically a sigmoidal
function. The sum-EE is therefore wpG, p1, . . . , pKq “
řK
i“1 uipG, p1, . . . , pKq. In this work, we are interested

in maximizing the expected sum-EE defined as

EGrwpG, p1, . . . , pKqs “
ż

G PG

wpG, p1, ..., pN qρpGqdG

(3)

Since only individual CSI, i.e. , gii is available at i,
the optimal power control must be tuned based solely on
gii. Although in general, this policy might also depend
on past values of the channel, we focus on station-
ary strategies and our objective is to find an optimal
mapping fipgiiq : Rě0 Ñ r0, Pmaxs. This induces no
performance loss as the nature state is considered to be
i.i.d. at each time. We use f :“ pf1p¨q, . . . , fKp¨qq to
denote the global power control policy and F to denote
the set of all such functions. In general, the optimization
problem to be solved can be written as

MaximizefPFEGrwpG, p1, . . . , pKqs. (4)

However, optimizing the above functional is not
trivial at all in general, and we therefore restrict our
family of functions to the following type of thresholding
policies,

fλipgiiq “

$

’

’

&

’

’

%

0 if gii ă λi

αiσ
2

gii
if gii ě λi

(5)

where λi ě 0 is the threshold for Transmitter i and
αi ě 0 is a scaling factor to be tuned. For instance,
in [5], choosing αi to be the unique positive solution
of γψ

1

pγq ´ ψpγq “ 0, i.e., αi “ γ‹, is shown to
correspond to the Nash equilibrium solution. This is
the choice we will make but other choices are possible.

III. ANALYSIS

Extensive numerical simulations for the case with
discrete alphabets for G, i.e., when |G| ă 8, revealed
the structure of the optimal solution to be of the form
(5). These simulations involved an exhaustive search
over all possible mappings fip¨q (which is finite) [13].
Conjecturing a similar continuous power control policy
from observations on the discrete case was not aberrant
as taking the limit of the alphabet size growing larger
brings the system close to the continuous case.

While we have no proof for the optimality of the
proposed power control policy (5) in the general case,
for asymptotic cases of small and large interference,
it can be shown that such a policy is optimal. This
is precisely the objective of proposition III.1, wherein
we consider the two asymptotic cases of very high
and negligible interference. To quantify these terms, we
introduce signal-to-interference ratio (SIR) as a measure
for high interference and low interference respectively:

SIRmax “ max
i,j,j‰i

ˆ

Epgiiq
Epgjiq

˙

(6)

SIRmin “ min
i,j,j‰i

ˆ

Epgiiq
Epgjiq

˙

(7)

Since the power control policy is a function of gii,
we must find the optimal power for each value of given



gii. In the following proposition, we prove that when
SIRmax Ñ 0 (high interference) or SIRmin Ñ 8 (low
interference), the optimal power control policy is of the
form (5). For ease of exposition, we assume the case
where the power limitation is always met, i.e. Pmax Ñ

8. For finite Pmax the power control can be taken as
the min of Pmax and the one provided below.

Proposition III.1. When SIRmax Ñ 0 or SIRmin Ñ8,
the optimization problem (4) has a solution of the form
(5).

Proof:
First of all, if we denote the interference of user i as

Ii “
ÿ

j‰i

gjipj , (8)

knowing that gji follows the exponential distribution (as
assumed in Section II), we have

lim
EpgjiqÑ8

Pr

ˆ

gji ą
1

ε

˙

“ 1 (9)

for any ε P Rą0, i.e., gji Ñ8 almost surely in the low
SIR limit. Similarly,

lim
EpgjiqÑ8

Prpgji ă εq “ 1 (10)

which means that gji Ñ 0 almost surely in the high
SIR limit.

When SIRmin Ñ 8, since the interference is neg-
ligible here, each user i will choose the action which
maximizes its own utility, leading to the optimal solu-
tion f˚i pgiiq “

γ‹σ2

gii
.

When SIRmax Ñ 0, we can make some relevant
observations. First, if pj ą 0, then ψpγiq

pi
Ñ 0 for all

i ‰ j regardless of pi since gji Ñ 8 and γi Ñ 0.
Therefore, if the right transmitter j is chosen, then
p˚j ą 0, p˚i “ 0. Naturally, since j experiences no
interference, p˚j “

γ‹σ2

gjj
. This lets us conclude that in

the low SIR limit, the optimal power control policy if
done in a centralized manner would be to pick the best
transmitter (largest gjj) and switch off all the others.

For a given transmitter i, since individual CSI is
available, we must try to optimize the energy efficiency
function over all possible realizations of the other gains,
i.e. let G´i “ pg11, g12, ..., gi,i´1, gi,i`1, ..., gKKq de-
note all the other gains and ρ´ipG´i|giiq denote the
p.d.f. of the other gains. Then (3) can be rewritten as:

EGrwpG,P qs

“

ż

G PG

wpG, f1pg11q, ..., fKpgKKqqρpGqdG

“

ż

gii

ρipgiiq

ż

G´i

wpG, ..., fKpgKKqqρ´ipG´i|giiqdG

“

ż

gii

ρipgiiqθi pgii, fipgiiqqdgii

(11)

where

θi pgii, fipgiiqq

“

ż

G´i

wpG, f1pg11q, ..., fKpgKKqqρ´ipG´i|giiqdG´i

(12)

Since gij Ñ 8 almost surely for all i ‰ j, when
Ii “ 0 for some i, we have

wpG, ..., fipgiiq “ wipG, . . . q, . . . q “
ψ
´

giifipgiiq
σ2

¯

fipgiiq
(13)

and otherwise, wpG, ..., fipgiiq Ñ 0.
Hence, from (13) we can conclude that fipgiiq “

γ‹σ2

gii
dominates other positive actions almost surely.

The optimal action for user i thus belongs to the set
t0, γ

‹σ2

gii
u.

Next, we prove that there exists an unique threshold
between the two actions. Define the difference between
the utility of 2 actions as:

∆pgiiq “ θi pgii, fipgiiq “ 0q´θi

ˆ

gii, fipgiiq “
γ‹σ2

gii

˙

(14)
Then three following conditions can be easily checked:

B∆pgiiq

gii
ă 0 @gii ą 0 (15)

lim
giiÑ0

∆pgiiq ą 0 (16)

lim
giiÑ8

∆pgiiq ă 0 (17)

Note that ∆pgiiq is a continuous and monotonic func-
tion. Hence, we can conclude that there exists one
unique threshold λi such that ∆pgii “ λiq “ 0,
∆pgiiq ą 0 if gii ă λi and ∆pgiiq ă 0 if gii ą λi
using the mean value theorem. �

When the SIR is not in these limits, the threshold
policy of the form (5) can not be proven to be optimal.
However, through numerical simulations in section V,
we shall show that it outperforms the current state of
the art on distributed energy efficient power control.
While the propositions proved in this section give us
some justification for the proposed power control policy,
they do not provide a way to compute the optimal
thresholds for each transmitter in a practical scenario. In
the next section, we shall prove that the expected sum-
energy is quasi-concave w.r.t. each individual threshold
when the other thresholds are held a constant. This
helps us provide a low-complexity distributed algorithm
for finding the thresholds for each transmitter, thereby
determining their power control policy through equation
(5).



IV. DETERMINING OPTIMAL THRESHOLDS

We shall now proceed to show that if the power
control policy is of the form proposed (5), then the
payoff is quasi-concave w.r.t. any individual threshold
λi if the other thresholds λj , j ‰ i are held a constant.
In fact, we can even get a closed form expression for
the optimal threshold for a transmitter assuming the
thresholds for other transmitters are known. For this,
we first define

θi pgii, pi;λ´iq

“

ż

G´i

wpG, fλ1pg11q, .., pi, .., fλK
pgKKqq

ˆ ρ´ipG´i|giiqdG´i

(18)

which is the expected sum energy efficiency when
transmitter i has channel gain gii and uses power pi,
with the rest of the transmitters using the policy (5) with
λ´i denoting the thresholds of all the other transmitters
j ‰ i.

Proposition IV.1. Assuming pi “ fλi
pgiiq as defined

in (5), then the expected payoff is quasi-concave w.r.t.
the individual threshold λi when the other thresholds
are held constant.

Proof. Similar to the proof of Proposition III.1, the
expected payoff (3) can be written as:

EρrwpG, f1pg11q, . . . , fKpgKKqqs

“

ż λi

0

ρipgiiqθi pgii, 0;λ´iqdgii

`

ż 8

λi

ρipgiiqθi

ˆ

gii,
γ‹σ2

gii
λ´i

˙

dgii.

(19)

Note that when pi “ 0, θi pgii, 0;λ´iq be-
comes a constant which is independent of gii, i.e.,
θi pgii, 0;λ´iq “ ci. When fipgiiq “ γ‹σ2

gii
, define

aipgiiq “ θi

ˆ

gii,
γ‹σ2

gii
;λ´i

˙

. (20)

,
We can easily verify that

Bai
Bgii

ą 0 @gii ą 0, (21)

lim
giiÑ0

aipgiiq ď ci, (22)

lim
giiÑ8

aipgiiq ą ci. (23)

Therefore, it can be concluded that under the assump-
tion of proposed threshold policy, the expected payoff
EρrwpG,P qs is increasing w.r.t. λi when λi ď a´1

i pciq
and decreasing w.r.t. λi when λi ą a´1

i pciq. The opti-
mum λi to maximize the EρrwpG,P qs can be written
as

λ‹i “ a´1
i pciq. (24)

Thus it can be seen that for every real number a,

C`λi
“ tλi P R

` : ωipλiq ě au, (25)

is a convex set, which proves our claim about quasi-
concavity.

Even though, we have obtained a closed form expres-
sion for optimal individual thresholds, this result is not
easily exploitable as finding the inverse of the function
aip.q is not easy in general.

Nonetheless, we can use the quasi-concavity property
to propose an iterative algorithm to find optimal thresh-
old for each transmitter. An efficient distributed manner
to find the individual thresholds λi, @i P t1, ...,Ku
would be to perform best response dynamics with each
transmitter updating its threshold which maximizes the
expected sum-utility given the other thresholds (func-
tions). To find the expected sum-utility for a given λi,
we evaluate equation (19) numerically through monte-
carlo simulations. It is important to note that this proce-
dure is performed offline, and the functions found are
one-shot decision functions which could be exploited
straightaway online.

Algorithm 1 Proposed algorithm for finding thresholds
λi @i P t1, ...,Ku

inputs : λp0q1 , λ
p0q
2 , . . . , λ

p0q
K , ρpGq,itermax

output: λ‹1, λ‹2, . . . , λ‹K

initialization: @i, λi “ λ
p0q
i , iter “ 0

while D i : λ
piterq
i ´ λ

piter´1q
i ě ε AND

iter ď itermax OR iter “ 0 do
iter “ iter` 1
foreach i P t1, . . . ,Ku do

Update the thresholds λpiterqi such that

θi

´

0, 0;λ
piterq
´i

¯

“ θi

˜

λ
piterq
i ,

γ‹σ2

λ
piterq
i

;λ
piterq
´i

¸

.

(26)

where

λ
piterq
´i “ pλ

piterq
1 , ..., λ

piterq
i´1 , λ

piter´1q
i`1 , ...q

(27)

end
end
@i, λ‹i “ λ

piterq
i

In the next section, we show that our approach brings
considerable benefits in terms of sum energy efficiency
when compared to state of the art solutions.



V. NUMERICAL ANALYSIS

For the simulation setup, we choose typical efficiency
function and model parameters. The efficiency function
is chosen to be [11]:

fpγiq “ p1´ e
´0.5γiqM (28)

where we also choose the total number of bits per
frame M “ 80. For this chosen utility function, we can
obtain γ‹ “ 12.4 by solving γf 1pγq “ fpγq. In all the
simulations, we choose Pmax “ 1 W and σ2 “ 1 mW
which corresponds to a moderate Signal to Noise Ratio
(SNR) of 30 dB.

We compare the proposed threshold policy to two
important works for team power control problem:
‚ The solution in [14]: Their algorithm is the closest

to the proposed policy in terms of information
structure assumed to choose the power level.

‚ Pricing NE from [11]: Their algorithm requires
is more demanding in terms of information as
they assume transmitters receiving SINR feedback
(possible to recover global CSI G [4]), and that
for multiple time slots. The proposed equilibrium
can only be achieved by an online best-response
dynamics (exploration phase) in addition to an
offline optimization of the pricing parameter, while
our policy has a closed form expression and can
be implemented in one shot. Despite these differ-
ences, their algorithm is still distributed in terms
of information and decision and is considered a
reference in cooperative team power control.

In Fig. 1, we consider two user case with different
power control policies. From Fig. 1 we see that the
proposed policy, unsurprisingly, outperforms [14] by a
big margin. Thresholding indeed helps reduce interfer-
ence as when individual channels are bad, transmitters
do not emit at all. In the case of [14], at lower channel
gains, transmitters emit at higher powers thus generating
interference.

The Pricing NE performs well by reducing the in-
terference through penalties on higher power emitted.
As seen from our simulations, this can be an effective
way of containing interference. As mentioned before,
their solution however requires time to converge which
creates a missed opportunity cost. If one considers the
block fading model, i.e. the channel gains remaining
constant for a block of T time-slots, if T is small, the
average payoff over all time-slots for pricing solution
would be considerably smaller than the results indicated
in Fig. 1.

We illustrate the extent of this loss through Fig. 2
where we consider blocks of different sizes t P

t1, ..., T u. We run the pricing NE algorithm and plot
the average payoff for t slots where the channel remains
constant. Taking this into account, we see that for blocks

of small sizes our algorithm performs much better since
it chooses the ’correct’ power levels right from the
beginning as opposed to pricing NE which takes time
to converge.

To demonstrate the scalability of the threshold policy,
in Fig. 3 we plot the average EE against the number of
Transmitter-Receiver pairs. We see similar performance
results and trends as in Fig. 1 for the same afore-
mentioned reasons. It can be also seen that threshold
policy has relatively higher gains than [14] for large
systems since the higher interference can be effectively
mitigated by using threshold. However, fig. 3 shows
that the gap between our policy and pricing NE be-
comes more significant when we have more transmitter-
receiver pairs. Indeed, in that case information about
the realization of others’ channels become important
for coordination. SINR feedback helps transmitters to
share some information about the channel realizations.
For threshold policy however, the individual channel
realizations cannot be exchanged, and therefore its
performance suffers slightly when compared to [11] .

0 10 20 30 40

SIR (dB)

0

50

100

150
 S

u
m

-E
E

 (
b

it
s
/J

)

Exhaustive search knowing G

Pricing-based power control policy [11]

Proposed power control policy

Cooperative power control policy of [14]

Fig. 1: Comparison of our proposed power control
policy with state of the art policies in terms of the
resulting sum energy efficiency. Note that the proposed
policy outperforms [14] significantly, and is in fact
close to [11], despite requiring no online procedure for
converging to the equilibrium.

VI. CONCLUSION

The key takeaway point of our investigations is that
thresholding is a powerful tool to naturally incorporate
almost-optimal coordination with only individual CSI
feedback required to operate. For such simple informa-
tion structure, our proposed solution gives considerably
higher payoff. The fact that it performs almost as well
as Pricing NE which requires much more information
and preferably stable channel gains is indeed surprising
and promising. More analytical results regarding the
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Fig. 2: In this figure, we compare the average energy
efficiency as a function of the channel coherence time
(in units of time-slots). As this time increases, the online
best response algorithm in [11] is able to converge to
the equilibrium resulting in a higher average efficiency.
However, when the coherence window is small (as in
many mobile applications), our proposed policy has a
better performance as the power control is determined
in one shot.
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Fig. 3: While other one-shot algorithms like [5] or [14]
scale poorly with the number of transmitting devices,
the proposed algorithm scales well. The performance is
similar to [11] which requires some time online before
converging to its equilibrium.

optimality of threshold policies are needed to provide a
firmer grounding for our conjecture.

A natural extension of our work would be to con-
jecture similar strategies for more general problems
like power allocation and MIMO. If the results for
Power Control are anything to go by, it is well worth
investigating.
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