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Abstract Airframe maintenance is traditionally performed at scheduled maintenance stops. The

decision to repair a fuselage panel is based on a fixed crack size threshold, which allows to ensure

the aircraft safety until the next scheduled maintenance stop. With progress in sensor technology

and data processing techniques, structural health monitoring (SHM) systems are increasingly being

considered in the aviation industry. SHM systems track the aircraft health state continuously, lead-

ing to the possibility of planning maintenance based on an actual state of aircraft rather than on a

fixed schedule. This paper builds upon a model-based prognostics framework that the authors

developed in their previous work, which couples the Extended Kalman filter (EKF) with a first-

order perturbation (FOP) method. By using the information given by this prognostics method, a

novel cost driven predictive maintenance (CDPM) policy is proposed, which ensures the aircraft

safety while minimizing the maintenance cost. The proposed policy is formally derived based on

the trade-off between probabilities of occurrence of scheduled and unscheduled maintenance. A

numerical case study simulating the maintenance process of an entire fleet of aircrafts is imple-

mented. Under the condition of assuring the same safety level, the CDPM is compared in terms

of cost with two other maintenance policies: scheduled maintenance and threshold based SHM

maintenance. The comparison results show CDPM could lead to significant cost savings.
� 2017 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Fatigue damage is one of the major failure modes of airframe
structures. Repeated pressurization/depressurization during

take-off and landing cause many loading and unloading cycles
which could lead to fatigue damage in the fuselage panels. The
fuselage structure is designed to withstand small cracks, but if
left unattended, the cracks will grow progressively and finally

cause panel failure. It is important to inspect the aircraft reg-
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ularly so that all cracks that have the risk of leading to panel
fatigue failure should be repaired before the failure occurs.

Traditionally, the maintenance of aircraft is highly regu-

lated through prescribing a fixed schedule. At the time of
scheduled maintenance, the aircraft is sent to the maintenance
hangar to undergo a series of maintenance activities including

both engine and airframe maintenance. Structural airframe
maintenance is a subset of airframe maintenance that focuses
on detecting the cracks that can possibly threaten the safety

of the aircraft. In this paper, maintenance refers to structural
airframe maintenance while engine and non-structural air-
frame maintenance are not considered here. Structural air-
frame maintenance is often implemented by techniques such

as non-destructive inspection (NDI), general visual inspection,
detailed visual inspection (DVI), etc. Since the frequency of
scheduled maintenance for commercial aircraft is designed

for a low probability of failure, it is very likely that no safety
threatening cracks exist during earlier life of majority of the
aircraft. Even so, the intrusive inspection by NDI or DVI

for all panels of all aircraft needs to be performed to guarantee
the absence of critical cracks that could cause fatigue failure.
Therefore, the inspection process itself is the major driver of

maintenance cost.
Structural health monitoring (SHM) systems are increas-

ingly being considered in aviation industry.1–4 SHM employs
a sensor network sealed inside the aircraft structures like fuse-

lage, landing gears, bulkheads, etc., for monitoring the damage
state of these structures. Once the health state of the structures
can be monitored continuously or as frequently as needed, it is

possible to plan the maintenance based on the actual or pre-
dicted information of damage state rather than on a fixed
schedule. This spurs the research to predictive maintenance.

Prognostic is the prerequisite of the predictive maintenance.
Prognostics methods can be generally grouped into two cate-
gories: data-driven and model-based. Data-driven approaches

use information from previously collected data from the same
or similar systems to identify the characteristics of the damage
process and predict the future state of the current system.
Data-driven prognosis is typically used in the cases where

the system dynamic model is unknown or too complicated to
derive. Readers can refer to5,6 that give an overview of data-
driven approaches. Model-based prognostics methods assume

that a dynamic model describing the behavior of the degrada-
tion process is available. For the problem discussed at hand, a
model-based prognostics method is adopted since the fatigue

damage models for metals have been well researched and are
routinely used in the aviation industry for planning the struc-
tural maintenance.7–9

Predictive maintenance policies that aim to plan the main-

tenance activities taking into account the predicted informa-
tion, or the ‘‘prognostics index” were proposed recently and
attracted researcher’s attention in different domains.10–14 The

most common prognostics index is remaining useful life
(RUL).15–18 A large amount of methods on RUL estimation
have been proposed such as filter methods (e.g., Bayesian fil-

ter,19 particle filter,20,21 stochastic filter,22,23 Kalman filter24,25),
and machine learning methods (e.g., classification meth-
ods,26,27 support vector regression28). In addition to the

numerical solutions for RUL prediction, Si et al.29,30 derived
the analytical form of RUL probability density function. Some
of the predictive maintenance policies adopting the RUL as a
prognostics index to dynamically update the maintenance time
can be found in Refs.12, 14, 31.

In some situations, especially when a fault or failure is

catastrophic, inspection and maintenance are implemented
regularly to avoid such failures by replacing or repairing the
components that are in danger. In these cases, it would be

more desirable to predict the probability that a component
operates normally before some future time (e.g. next mainte-
nance interval).32 Take the structural airframe maintenance

as an example, the maintenance schedule is recommended by
the manufacture in concertation with safety authorities. Arbi-
trarily triggering maintenance purely based on RUL prediction
without considering the maintenance schedule might be dis-

ruptive to the traditional scheduled maintenance procedures
due to less notification in advance. In addition, planning the
structural airframe maintenance as much as possible at the

scheduled maintenance stop when the engine and non-
structural airframe maintenance are performed could lead to
cost saving. To this end, instead of predicting the remaining

useful life of fuselage panels, we consider the evolution of dam-
age size distribution for a given time interval, before some
future time (e.g. next maintenance interval). In other words,

we adopt the ‘‘future system reliability” as the prognostics
index to support the maintenance decision making. This distin-
guishes our paper from the majority existing work related to
predictive maintenance.

The motivation developing advance maintenance strategies
is to reduce the maintenance costs while maintaining safety.
Researchers proposed many cost models to facilitate the com-

parison of maintenance strategies.10,12,13,33 All these cost anal-
ysis and comparison share one thing in common. The
maintenance strategy is independent from unit cost (e.g., the

set up cost, the corrective maintenance cost, the predictive
maintenance cost, etc.) and the interaction between strategy
and unit cost has not been considered, which in fact might

affect the maintenance strategy in some situations. For exam-
ple, in aircraft maintenance, it is beneficial to plan the struc-
tural airframe maintenance as much as possible at the same
time of scheduled maintenance and only trigger unscheduled

maintenance when needed. If the cost of unscheduled mainte-
nance is much higher than the scheduled maintenance, the
decision maker might prefer to repair as many panels as possi-

ble at scheduled maintenance to avoid unscheduled mainte-
nance. That is to say the cost ratio of different maintenance
modes could be a factor that affects the maintenance

decision-making. In this paper, we take a step further from
the existing work to take into account the effect of cost of dif-
ferent maintenance modes on the maintenance strategy, i.e.,
the cost ratio is taken as an input of maintenance the strategy

and partially affects the decision-making. This is our motiva-
tion of developing the cost driven predictive maintenance
(CDPM) policy for aircraft fuselage panel. By incorporating

the information of predicted damage size distribution and
the cost ratio between maintenance modes, an optimal panel
repair policy is proposed, which selects at each scheduled

maintenance stop a group of aircraft panels that should be
repaired while fulfilling the mandatory safety requirement.

As for the process of prognosis, we consider four uncer-

tainty sources. The item-to-item uncertainty accounts for the
variability among the population, which is considered by using
one degradation model to capture the common degradation
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characteristics in the population, with several model parame-
ters following initial distributions across the population to
cover the item-to-item uncertainty. The epistemic uncertainty

refers to the fact that for an individual degradation process
the degradation model parameters are unknown due to lack
of knowledge. This uncertainty can be reduced by measure-

ments, i.e., the uncertainty of parameters can be narrow down
with more measurements are available. The measurement
uncertainty means that SHM data could be noisy due to harsh

working conditions. The process uncertainty refers to the noise
during the degradation process. This is considered through
modeling the loading condition that affect the degradation rate
as uncertain. To our best knowledge, these four uncertainties

cover the most common uncertainties sources that are encoun-
tered during the prognostics procedure for fuselage panels.

To account for the uncertainties mentioned above, a state-

space mode is constructed and the Extended Kalman filter
(EKF) is used to incorporate the noisy measurements into
the degradation model to give the estimates of damage size

and model parameters as well as the estimate uncertainty
(i.e., the covariance matrix between damage size and model
parameters). After obtaining the estimates and its uncertainty

from EKF, the straightforward way to predict the future dam-
age size distribution is Monte Carlo method, which is time-
consuming and gives only numerical approximation. Instead,
we propose the first-order perturbation method to allow ana-

lytical quantification of the future damage size distribution.
As such, the main contributions of this paper are the fol-

lowing four aspects.

� Incorporating the ‘‘future system reliability” as a prognos-
tics index to support the maintenance-decision making.

� Considering the cost ratio of different maintenance modes
as the input the maintenance strategy.

� Taking into account four uncertainty sources: item-to-item

uncertainty, epistemic uncertainty on the degradation
model, measurement uncertainty and process uncertainty.

� Utilizing a first-order perturbation method to quantify the
future damage distribution analytically.

The paper is organized as follows. Section 2 introduces the
crack growth model used for modeling the degradation of the

fuselage panels, degradation which induces the requirements
for maintenance. This degradation process is affected by vari-
ous sources of uncertainty, which are also described in Sec-

tion 2. In order to be able to set-up the proposed predictive
maintenance strategy we need to be able to predict the crack
growth in future time while accounting for the sources of
uncertainty present. To achieve this we first identify the

parameters governing the crack growth based on crack growth
measurements on the fuselage panels up to the present time.
To carry out this identification we use the EKF, which is sum-

marized in Section 3. Note that due to the various sources of
uncertainty we do not identify a deterministic value but a
probability distribution. Once this probability distribution of

the parameters governing the crack growth determined, we
need to predict the possible evolution of the crack size in future
flights, which is achieved by a first-order perturbation (FOP)

method also described in Section 3. The FOP method allows
to determine the distribution of the crack size at an arbitrary
future flight time. Based on this information we propose a
new maintenance policy, described in Section 5, which mini-
mizes the maintenance cost. Section 5 implements a numerical
study to evaluate the performance of the proposed mainte-

nance policy. Conclusions and suggestions for future work
are presented in Section 6.

2. State-space method for modeling the degradation process

2.1. State-space model

State-space modeling assumes that a stochastic dynamic sys-
tem evolves with time. The states of the stochastic system are

hidden and cannot be observed. A set of measurable quantities
that are related with the hidden system states are measured at
successive time instants. Then we have the following state-

space model:

xk ¼ fðxk�1; hk�1;wk�1Þ ð1Þ

zk ¼ hðxk; vkÞ ð2Þ
where fð�Þ and hð�Þ are the state transition function and the
measurement function respectively. xk is the unobserved state

at time k. h is the parameter of the state equation f. zk is the
corresponding measurements that generally contains noise.
wk and vk are the process noise and measurement noise, respec-
tively. Although the parameter h is stationary, subscript k � 1

is used because its information is updated with time. In the fol-
lowing Sections 2.2 and 2.3, we model the equation f and h for
the specific application of fatigue crack growth.

2.2. Fatigue crack growth model

The fatigue damage in this paper refers to cracks in fuselage

panels. The Paris model7 is used to describe the crack growth
behavior, as given

da

dk
¼ CðDKÞm ð3Þ

where a is the crack size in meters. k is the time step, here the
number of flight cycles. da/dk is the crack growth rate in
meter/cycle. m and C are the Paris model parameters associ-

ated with material properties. DK is the range of stress inten-
sity factor, which is given in Eq. (4) as a function of the
pressure differential p, fuselage radius r and panel thickness
t. The coefficient A in the expression of DK is a correction fac-

tor compensating for modeling the fuselage as a hollow cylin-
der without stringers and stiffeners.33

DK ¼ A
pr

t

ffiffiffiffiffiffi
pa

p ð4Þ

By using Euler method, Eq. (3) can be rewritten in a dis-
crete form and the discretization precision depends on the dis-
crete step. Here the step is set to be one, which is the minimal

possible value from the practical point of view, to reduce the
discretization error. Then the discrete Paris model in a recur-
sive form is given in Eq. (5)

ak ¼ ak�1 þ C A
pk�1r

t

ffiffiffiffiffiffiffiffiffiffiffi
pak�1

p� �m
¼ gðak�1; pk�1Þ ð5Þ
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The pressure differential p can vary at every flight cycle
around its nominal value �p and is expressed as

pk ¼ �pþ Dpk ð6Þ
in which Dpk is the disturbance around �p and is modeled as a

normal distribution random with zero mean and variance r2
p.

Since uncertainty in pressure is generally small, the first-
order Taylor series expansion is used in this paper.34 This

gives:

ak ¼ gðak�1; �pÞ þ @gðak�1; �pÞ
@p

Dpk�1 ð7Þ

where @gðak�1; �pÞ=@p is the first-order partial derivative of g

with respect to p. Taking ð@gðak�1; �pÞ=@pÞDpk�1 as the additive
process noise and considering that �p is a given constant, Eq. (7)
can be written as

ak ¼ fðak�1Þ þ wk�1 ð8Þ
in which fðak�1Þ ¼ gðak�1; �pÞ and
wk�1 ¼ ð@fðak�1Þ=@pÞDpk�1 ð9Þ

According to Eq. (7) the additive process noise wk follows a
normal distribution with mean zero and variance Qk, given in

Eq. (10). Note that Qk can be calculated analytically.

Qk ¼ ðð@fðak; �pÞ=@pÞrpÞ2

¼ ðCmðAr=tÞmð�pÞm�1ðpakÞm=2rpÞ
2 ð10Þ
2.3. Measurement model

Due to harsh working conditions and sensor limitations, the
monitoring is imperfect and generally contains noise. The mea-
surement data is modeled as

zk ¼ ak þ vk ð11Þ
Note that Eq. (11) is used to simulate the actual measure-

ment data. Eqs. (8) and (11) are respectively the state transition
function and the measurement function in the state-space

model.

3. Prognostics method for individual panel

Prognostic is the prerequisite of the predictive maintenance. In
this paper, the model-based prognostics method is applied,
which is tackled with two sequential phases: (1) estimation of
Fig. 1 Illustration of model-based prognostics.
fatigue crack size as well as the unknown model parameters,
and (2) prediction of future crack size distribution. As illus-
trated in Fig. 1, the true system state is hidden and evolves over

time. The measurements related to the state are obtained at a
successive time step k. By using the measurements data up to
the current time, the state and parameters of the state equation

can be estimated. This process is also known as a filtering
problem. Based on the estimated states and parameters, the
state distribution in future time can be predicted. In this paper,

the filtering problem is addressed by the EKF, and a proposed
first-order perturbation method is used to predict the state dis-
tribution evolution in future times. In this section, the
approaches for dealing with the two phases of model-based

prognostics are presented respectively in Sections 3.1 and 3.2
briefly, since the main focus of this paper is the maintenance
policy. The interested reader could refer to Ref.5 for more

details on this approach.

3.1. State-parameter estimation using EKF

EKF is used to filter measurement noise based on a given state-
space model. EKF thus allows to estimate a smooth variation
of the state variable (crack size in our case) as well as the state-

parameters (m and C in our case) governing these variations.
When performing state-parameter estimation using the

EKF, the parameter vector of interest is appended onto the
true state to form a single augmented state vector. The state

and the parameters are estimated simultaneously. In Paris’
model, m and C are the unknown parameters that need to be
estimated. Therefore, a two-dimensional parameter vector is

defined as

h ¼ ½m;C�T ð12Þ
Appending h to the state variable, that is crack size a, the

augmented state vector is defined in Eq. (13), where the sub-
script ‘‘au” denotes the augmented variables.

xau ¼ ½a;m;C�T ð13Þ
Then the state transition function and the measurement

function in Eqs. (8) and (11) can be extended in a state-space
model form as illustrated in Eq. (14). In this way, the estima-
tion for Paris’ model parameters and crack size is formalized as
a nonlinear filtering problem. EKF is applied on the extended

system in Eq. (14) to estimate the augmented state vector at

time k, i.e., xau;k ¼ ½ak;mk;Ck�T. The EKF is used as a black

box in the present work and the detail of the algorithm will

not be presented here. Interested readers are referred to
Ref.35 for a general introduction to EKF and to Ref.24 for
its implementation to state-parameter estimation in Paris’

model. By applying EKF, at each flight cycle, the posterior
estimation of the augmented state vector, i.e.,

x̂au;k ¼ ½âk; m̂k; Ĉk�T, and the corresponding covariance matrix

Pk, characterizing the uncertainty in the estimated parameters,
are obtained.

ak

mk

Ck

2
64

3
75 ¼

fðak�1Þ
mk�1

Ck�1

2
64

3
75þ

wk�1

0

0

2
64

3
75

zk ¼ ak þ vk

8>>><
>>>:

ð14Þ



Fig. 2 Schematic diagram of model-based prognostics.
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3.2. First-order perturbation (FOP) method for predicting the
state distribution evolution

We propose the FOP method to address the second phase of

model-based prognostics, i.e., the predicting problem, as
shown in Fig. 1. For the context of crack growth, it allows
to calculate analytically the crack size distribution at any
future cycle. Fig. 2 illustrates the schematic diagram of the

two phases of the discussed model-based prognostics method.
The noisy measurements are collected up to the current cycle
k= S. The EKF is used to filter the noise to give estimates

for the crack size and the model parameters. At time S, the fol-
lowing information is given by the EKF and will be used as ini-
tial conditions of the second phase:

� expected value of the augmented state vector,

x̂au;S ¼ ½âS ; m̂S ; ĈS �T
� covariance matrix of the augmented state vector PS.

According to the EKF, the state vector xau;S follows a mul-

tivariate normal distributed with mean x̂au;S and covariance

PS, presented as

xau;S � Nðx̂au;S;PSÞ ð15Þ
Based on this information, in the second phase, the FOP is

used to calculate analytically the mean and standard deviation,
denoted by lk and rk, of the crack size distribution at any
future cycle k starting from S+ 1. The derivation of the

FOP method is detailed in Appendix A. The dashed curve in
the second phase represents the mean trajectory of the crack
size estimated by the first-order perturbation method, i.e.,
flkjk ¼ Sþ 1;Sþ 2; . . .g. For illustrative purpose, the crack

size distribution at two arbitrary flight cycles k1 (based on
lk1 and rk1) and k2 (based on lk2 and rk2) are given as
examples.

It should be noted that the cost-driven predictive mainte-
nance (CDPM) strategy to be presented in the following sec-
tion considers an aircraft being composed of Na panels. For

each panel, the model-based prognostics process implemented
by EKF-FOP method is applied. i.e., for each panel, we use
EKF to estimate the Paris’ model parameters and crack size
from noisy measurements of the crack size at different flight

cycles. Then we use the FOP method to predict the crack size
distribution at a future time based on the information given by
EKF (refer to Fig. 2). Once the crack size distribution at a

future time is available for each panel, this prediction informa-
tion is incorporated into the CDPM to help maintenance
decision-making. The details of CDPM strategy are presented
next in Section 4.

4. Cost-driven predictive maintenance (CDPM) policy

Currently, aircraft maintenance is performed on a fixed sched-
ule. Suppose that the aircraft undergoes the routine mainte-

nance according to a schedule Tn = T1 + (n � 1)dT, where
n= 1, 2, . . . , is the number of scheduled maintenance stop,
Tn denotes the cumulative flight cycles at the nth stop, T1 is

the number of flight cycles from the beginning of the aircraft
lifetime to the first scheduled maintenance stop. dT is the inter-
val between two consecutive scheduled maintenance stops after

T1. Note that T1 > dT because fatigue cracks propagate
slowly during the earlier stage of the aircraft lifetime. With
usage and ageing, the aircraft needs maintenance more fre-

quently. The schedule {Tn} is determined by aircraft manufac-
turers in concertation with certification authorities and aims at
guaranteeing the safety using a conservative scenario. For a
given safety requirement this schedule may not be optimal,

in terms of minimizing maintenance cost. Indeed a specific air-
craft may differ from the fleet’s conservative properties used in
calculating the maintenance schedule and possibly require

fewer maintenance stops.
By employing the SHM system, the damage state can be

traced as frequently as needed (e.g. every 100 cycles) and the

maintenance can be asked at any time according to the air-
craft’s health state rather than a fixed schedule. This causes
an unscheduled maintenance that could happen anytime
throughout the aircraft lifetime and generally occurs outside

of the scheduled maintenances. Triggering a maintenance stop
arbitrarily is significantly disturbing to the current scheduled
maintenance practice due to no advance notification (e.g., less

preparation of the maintenance team), unavailable tools, lack
of spare parts, etc. These factors lead unscheduled mainte-
nances to be more expensive. Therefore, we attempt as much

as possible to plan the structural airframe maintenance at
the time of the scheduled maintenance and avoid the unsched-
uled maintenance in order to reduce the cost.

On the other hand, it makes sense to skip some scheduled
maintenance stops. Since the frequency of scheduled mainte-
nance for commercial aircrafts is designed for a low probabil-
ity of failure (10�7)33, it is very likely that no large crack exists

during earlier life of the majority of the aircraft in service.
Thanks to the on-board SHM system, the damage assessment
could be done in real time on site instead of in a hangar, lead-

ing to the possibility of skipping unnecessary scheduled main-
tenance if there are no life-threatening cracks on the aircraft. If
a crack missed at schedule maintenance grows large enough to

threaten the safety between two consecutive scheduled mainte-
nances, an unscheduled maintenance is triggered at once. The
frequent monitoring of the damage status would ensure the
same level of reliability as scheduled maintenance. Recall that

our objective is to re-plan the structural airframe maintenance
while the engine and non-structural airframe maintenance are
always performed at the time of scheduled maintenance.

In summary, it might be beneficial that in civil aviation
industry to have the traditional scheduled maintenance work
in tandem with the unscheduled maintenance. With this moti-

vation, the CDPM policy is proposed whose overall idea is
described below:
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� The damage states of the fuselage panels are monitored

continuously by the on-board SHM system and a damage
assessment is performed every 100 flights (which approxi-
mately coincides with A-checks of the aircraft).

� At each assessment, as new arrived sensor data is available,
the EKF is used to filter the measurement noise to provide
the estimated crack size and parameters of crack growth
model for each panel at current flight cycle.

� At the nth scheduled maintenance stop, before the aircraft
goes into the maintenance hangar, for each panel, the crack
propagation trajectory from maintenance stop n to n+ 1 is

predicted and the crack size distribution at next scheduled
maintenance is obtained by using the first-order perturba-
tion method. Taking into account this predicted informa-

tion of each panel, the cost optimal policy decides to skip
or trigger the current nth stop. If it is triggered, a group
of specific panels is selected to be repaired based on the pre-
dicted information to minimize the expected maintenance

cost. The algorithm of selecting a group of specific fuselage
panels is called cost optimal policy and will be described in
Section 4.5.

� During the interval of two consecutive scheduled mainte-
nance stop, if there is a crack exceeding a safety threshold
amaint at damage assessment, an unscheduled maintenance

is triggered immediately. The aircraft is sent to the hangar
and this panel is repaired. The meaning and calculation of
amaint is discussed in Section 4.2.

4.1. Different behavior among individual panels of the population

Our objective is an aircraft with Na fuselage panels. If all the

manufactured panels are exactly the same and these panels
work under exactly the same conditions and environment, then
the panels will degrade identically. However, in practice, due

to manufacturing and operation variability there is panel-to-
panel variability.

In this study, the generic degradation model (Paris model)

is used to capture the common degradation characteristics
for a population of panels while the initial crack size a0 and
the degradation parameters m and C of each panel follows pre-

defined prior distributions across the population to cover the
panel-to-panel variability. When modeling one individual
panel, a0, m and C are treated as ‘‘true unknown draws” from
their prior distributions. By incorporating the sequentially

arrived measurement data, the EKF is used for each panel to
estimate the crack size and the material parameters and their
distribution at time k. Here the superscript is the panel index

and the subscript denotes the time instant.
In this paper, a0 is assumed log normally distributed while

m and log10C are assumed to follow a multivariate normal dis-

tribution with a negative correlation coefficient.36–38

4.2. Reliability of system level

The critical crack size that causes panel failure can be calcu-

lated by the empirical formula in Eq. (16), in which KIC is a
conservative estimate of the fracture toughness in loading
Mode I and pcr is also a conservative estimate of the pressure

p given its distribution.
acr ¼ KIC

A pcrr

t

ffiffiffi
p

p
� �2

ð16Þ

Since the damage assessment is done every 100 cycles, if a
crack size equals to acr is present in a panel in between two
damage assessments, it will cause the panel failure at once.
Therefore, another safety threshold amaint, which is smaller

than acr is determined to ensure safety between two damage
assessments.

amaint is calculated to maintain a 10�7 probability of failure

of the aircraft between two damage assessments (100 cycles),
i.e., when a crack size equals to amaint is present on the fuselage
panel, its probability of exceeding the critical crack size acr in

next 100 cycles is less than 10�7, hence ensure the safety of
the aircraft until next damage assessment. At the time of dam-
age assessment, once the maximal crack size among the panel
population exceeds amaint, the unscheduled maintenance is trig-

gered immediately and the aircraft is sent to the hangar. Since
this maintenance stop is unscheduled with very little advance
notice only the panel having triggered the stop is replaced in

order to minimize operational interruption.

4.3. Reliability of an individual panel

At the nth scheduled maintenance stop (the cumulative cycles
is Tn) the crack size distribution of each individual panel before
the next scheduled stop is predicted. For the i-th panel, the

probability of triggering an unscheduled maintenance before
next scheduled maintenance stops is denoted by P(us|ai). It is
approximated by Eq. (17), i.e., the probability that the crack

size of the ith panel at next scheduled maintenance aiTnþ1
is

greater than amaint, given the information provided by EKF
at current scheduled maintenance stop, more specifically, the

estimated crack size and material property parameters,

âiTn
; m̂i

Tn
; Ĉi

Tn

� �
, and the covariance matrix Pi

Tn
.

PðusjaiÞ ¼ PrðaiTnþ1
> amaintj½âiTn

; m̂i
Tn
; Ĉi

Tn
�;Pi

Tn
Þ ð17Þ

The evolution of the crack size distribution from Tn to Tn+1

is predicted by the FOP method presented in Section 3.2.

According to the FOP method, aiTnþ1
is normally distributed

with parameters li
Tnþ1

and ri
Tnþ1

, which are calculated analyti-

cally. Thus PðusjaiÞ is computed as

PðusjaiÞ ¼
Z 1

amaint

UðaiTnþ1
jli

Tnþ1
; ri

Tnþ1
ÞdaiTnþ1

ð18Þ

where U is the probability density function of the normal dis-

tribution with mean li
Tnþ1

and standard deviation ri
Tnþ1

.

Note that the probability of triggering an unscheduled

maintenance of a panel is not proportional with its current
crack size, i.e., it is not necessarily true that panel with larger
crack size is more likely to trigger an unscheduled mainte-

nance. Due to the variability of crack growth rate among pan-
els as well as the uncertainty presented in the crack
propagation process, a larger crack size at nth stop may have
a lower probability of exceeding amaint before next scheduled

stop, compared with a smaller crack size.
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4.4. Cost model

Some concepts as well as their notations are given firstly before
the cost structure is introduced.

� d j
n The repair decision for the j-th panel at the nth scheduled

maintenance stop. It is a binary value defined as. Here the
index j is based on the resorted rule that will be introduced
Section 4.5.

d j
n ¼

1 if panel j is repaired

0 if panel j is not repaired

	
ð19Þ
� dn the decision vector such that dn = [d1
n; d

2
n; . . . ; d

Na

n ]. Na is

the total number of fuselage panels in an aircraft.
� c0 the set up cost of SHM-based scheduled maintenance,
which is a fixed cost that occurs every time the scheduled

maintenance is triggered. The set up cost is assigned only
once even if more than one panel is replaced.

� cun0 the unscheduled set up cost, which is a fixed cost that

occurs when unscheduled maintenance is triggered. Due
to less advance notification, cun0 > c0.

� s � a variable used to indicate the binary nature of
scheduled maintenance. s = 1 means that the scheduled

maintenance is triggered and the set up cost is incurred
while s = 0 means this scheduled maintenance is skipped
thus no set up cost.

� cs the fixed cost of repairing one panel.
� cus the repair cost at unscheduled maintenance, also called
unscheduled repair cost, which is composed of two items,

the unscheduled set up cost cun0 plus the per panel repair

cost cs.

The expected maintenance cost at the n-th scheduled main-
tenance stop, denoted by C(dn), is modeled as the function of

the repair decision of each panel, as given in Eq. (20). The first
two terms in Eq. (20) represent the scheduled repair cost while
the last term represents the unscheduled repair cost. Here we
assume that the probability for a panel to have more than

one unscheduled repair is negligible.

CðdnÞ ¼ c0sþ cs
XNa

j¼1

d j
n

 !
þ cus

XNa

j¼1

ð1� d j
nÞPðusja jÞ

 !
ð20Þ
4.5. Cost optimal policy

The objective is to find the optimal grouping of several panels
to be repaired to minimize the cost when the aircraft is at n-th

scheduled maintenance stop. The algorithm is under the fol-
lowing assumptions:

� The probability for a panel to have more than one
unscheduled repair during the aircraft lifetime is
negligible.

� The probability to have more than one unscheduled repair

at the same cycle is negligible. This means that having more
than one panel repaired during unscheduled maintenance
do not reduce the average cost of each panel.
At the n-th scheduled maintenance, for each panel, the
probability of triggering an unscheduled maintenance between
stop n and n + 1 is calculated according to section 4.3. Sort

and arrange them in descending order such that

Pðusja1Þ > Pðusja2Þ > . . .Pðusjaj�1Þ > Pðusja jÞ
> Pðusjajþ1Þ . . . > PðusjaNaÞ ð21Þ

Eq. (21) implies that the panel that is more likely to trigger an
unscheduled maintenance is arranged in more front places.
The motivation is that we are more concerned about the panels

with higher probability of having unscheduled repair since
unscheduled maintenance is more costly. In the following
parts, the panel index refers to the order in Eq. (21).

Two sets I and J are defined.

I ¼ f1 6 j 6 Njcs 6 cusPðusja jÞg ð22Þ

J ¼ f1 6 l 6 Njc0 þ lcs 6 cus
Xl

j¼1

ðPðusja jÞÞg ð23Þ

For zero set up cost (i.e., c0 = 0), the set I contains the ele-

ments j such that repairing the j-th panel at current scheduled
maintenance cost less than repairing it at an unscheduled
maintenance stop. For any value of the set up cost, set J

includes the elements j such that repairing all these j panels
at scheduled maintenance cost less than at unscheduled main-
tenance. BI and bJ are defined as the maximal value and the

minimal value of set I and J, respectively. Note that BI and
bJ are scalars.

BI ¼ maxf1 6 j 6 Njcs 6 cusPðusja jÞg ð24Þ

bJ ¼ minf1 6 l 6 Njc0 þ lcs 6 cus
Xl

j¼1

Pðusja jÞg ð25Þ

A simple example is given below to explain the set I and J
as well as to illustrate the meaning of BI and bJ intuitively.
Suppose there are Na fuselage panels in an aircraft and this air-

craft is now at the n-th scheduled maintenance stop. The objec-
tive is to decide whether this aircraft should undergo
maintenance or should skip the current maintenance by evalu-

ating the health state for each fuselage panel. Firstly, for each
panel, its probability of triggering an unscheduled mainte-
nance before next scheduled maintenance is calculated accord-
ing to the process described in Section 4.3. Then these Na

probabilities are sorted in descending order according to Eq.
(21). Afterward, each probability is multiplied by cus and is
compared with cs. Suppose that we found the following

relations:

cs 6 cusPðusja1Þ
cs 6 cusPðusja2Þ
cs 6 cusPðusja3Þ
cs 6 cusPðusja4Þ
cs > cusPðusja5Þ
cs > cusPðusja6Þ
..
.

cs > cusPðusjaNaÞ



A cost driven predictive maintenance policy 1249
The above case means that for the first 4 panels, the cost of
repairing any of them at current scheduled maintenance is less
than the cost of repairing it at unscheduled maintenance. From

the 5th panel to the last panel, it is not economic to repair any
of them at current n-th scheduled maintenance since their
probability of triggering unscheduled maintenance is very

low. In this case, the set I = {1, 2, 3, 4} and BI = 4.
The above example considers the situation of repairing one

single panel. Now we consider the situation of repairing a

group of panels. Suppose we group the first l panels and then
compare the following two costs: (1) the cost of repairing these
l panels at current scheduled maintenance, i.e., c0 þ lcs, and (2)
the expected cost of repairing the l panels at unscheduled

maintenance, i.e., cus
Pl

j¼1Pðusja jÞ. Suppose we found the fol-

lowing relations:

c0 þ cs > cusðPðusja1ÞÞ
c0 þ 2cs > cusðPðusja1Þ þ Pðusja2ÞÞ
c0 þ 3cs 6 cusðPðusja1Þ þ Pðusja2Þ þ Pðusja3ÞÞ
..
.

c0 þNacs 6 cus
XNa

j¼1

Pðusja jÞ

In the above case, J = {3, 4, . . . , Na} and bJ = 3.

From Eqs. (22)–(25), the following properties can be
deduced straightforward.

1 6 bJ < BI 6 Na ð26Þ

cs 6 cusPðusja jÞ; for j ¼ 1; 2; . . . ;BI ð27Þ

cs > cusPðusja jÞ; for j ¼ BI þ 1;BI þ 2; . . . ;Na ð28Þ

c0 þ lcs > cus
Xl

j¼1

Pðusja jÞ; for j ¼ 1; 2; . . . ; bJ � 1 ð29Þ

c0 þ bJcs 6 cus
XBJ

j¼1

Pðusja jÞ ð30Þ

The proof for Eq. (26) is given in Appendix B and Eqs.
(27)–(30) can be easily derived from the definitions given in

Eqs. (22)–(25). Now we discuss the cost optimal policy at the
nth scheduled maintenance stop.

If set I is empty and the set up cost is zero (i.e., c0 = 0), it

means that for any panel the expected unscheduled repair cost
is smaller than the scheduled one. In this case, the optimal
repair policy is not to repair any panel at current scheduled

maintenance stop, i.e., dj�n ða jÞ ¼ 0, for j= 1, 2, . . . , Na. Note

that dj�n denotes the optimal repair decision for the j-th panel

at the n-th scheduled maintenance stop.
If the set I is not empty and the set up cost is zero (i.e.,

c0 = 0), from Eqs. (27) and (28), it can be inferred that for

any panel j that j 6 BI the expected unscheduled repair cost
is larger than the scheduled one, while for any panel j that
j> BI, the expected unscheduled repair cost is smaller than

the scheduled one. In the case of I –£, the set J could be
either empty or non-empty. Now we discuss these two cases
that J ¼ £ and J –£, and derive the optimal repair decision
in each cases.
If J is empty, it means that no matter how many panels are
paired, the cost of repairing these panels at scheduled mainte-
nance stop costs more than at unscheduled maintenance. Then

the optimal maintenance policy is not to repair any panel at

current scheduled maintenance stop, i.e., dj�n ða jÞ ¼ 0, for

j= 1, 2, . . . , Na. Note that I ¼ £ implies J ¼ £ but we can
have J ¼ £ and I –£.

If J is not empty (i.e., J –£), from Eqs. (29) and (30), it

can be known that for any panel j that j < bJ, repairing the j
first panels at scheduled maintenance stop cost more than at
unscheduled maintenance, and for j= bJ, repairing the j first
panels at scheduled maintenance stop cost less than at

unscheduled maintenance. As for j> bJ, repairing the j first
panels at scheduled maintenance stop can be either better or
worse. For example, we can have:

c0 þ cs > cusðPðusja1ÞÞ
c0 þ 2cs 6 cusðPðusja1Þ þ Pðusja2ÞÞ
c0 þ 3cs > cusðPðusja1Þ þ Pðusja2Þ þ Pðusja3ÞÞ or

c0 þ 3cs < cusðPðusja1Þ þ Pðusja2Þ þ Pðusja3ÞÞ
From Eq. (26), it can be known that the range [1, Na] are

divided into three intervals by BI and bJ, which are [1, bJ],
[bJ + 1, BI] and [BI + 1, Na]. To determine the optimal policy,

it is clear that the bJ -first panels have to be repaired at the cur-
rent scheduled maintenance (see Eq. (30)). In addition, since
the expected unscheduled maintenance cost of panels in the

interval [bJ + 1, BI] are larger than scheduled maintenance
cost (see Eq. (27)), they should also be repaired at current
scheduled maintenance stop. Finally, the optimal repair policy

at n-th scheduled maintenance can be summarized as follows:

If J ¼ £

dj�n ¼ 0; for j ¼ 1; 2; . . . ;N

Else

dj�n ¼ 1 for j ¼ 1; 2; . . . ;BI

0 for j ¼ BI þ 1;BI þ 2; . . . ;Na

	 ð31Þ

The above decision implies that when J is empty, the opti-
mal decision is not to repair any panel at the n-th scheduled

maintenance stop. The expected cost under this situation is

Cðd�nÞ ¼ cus
XNa

j¼1

Pðusja jÞ
 !

ð32Þ

When J is not empty, the optimal decision is to repair the

first BI panels and leave unattended the remaining ones.
Accordingly, the cost in this case is

Cðd�nÞ ¼ c0 þ csBI þ cus
XNa

j¼BIþ1

Pðusja jÞ
 !

ð33Þ

Then the optimized total maintenance cost during the air-

craft lifetime, denoted as Cðd�Þ, is the sum of the cost at each
scheduled maintenance Cðd�nÞ.
Cðd�Þ ¼

X
n

Cðd�nÞ ð34Þ

The rigorous mathematical proof regarding Cðd�nÞ < CðdnÞ,
i.e., why d�n is the optimal decision is given in Appendix B. The

cost optimal policy is integrated into the predictive policy,

whose flowchart is illustrated in Fig. 3. The above repair deci-



Fig. 3 Flow chart of CDPM.

Fig. 4 Schedule of the scheduled maintenance process. Cycles

represent the number of flights.
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sion is made at each scheduled maintenance stop until the end
aircraft’s life. Then the total maintenance cost during aircraft
lifetime Cðd�Þ can be calculated.

5. Numerical experiments

A fleet ofM = 100 aircraft in an airline with each aircraft con-
taining Na = 500 fuselage panels is simulated. The potential

application objective is a short range commercial aircraft with
a typical lifetime of 60000 flight cycles. Traditionally, the
maintenance schedule for this type of aircraft is designed such

that the first maintenance is performed after 20000 flight cycles
and the subsequence maintenance is every 4000 cycles until its
end of life, adding up to 10 scheduled maintenances through-

out its lifetime, as shown in Fig. 4.
To show the benefits of the CDPM, two other maintenance

polices are compared with it. The first one is traditional sched-

uled maintenance and the second is a threshold-based SHM
maintenance.

In traditional scheduled maintenance, at each maintenance
stop, the aircraft is sent to the hangar to undergo a series of
inspections and all panels with a crack size greater than a

threshold arep are repaired. The repair threshold arep is calcu-
lated to maintain the same reliability as CDPM between two
consecutive scheduled maintenance stops over the entire fleet.

Note that since this strategy seeks to guarantee the same
reliability over the entire fleet it is more conservative than
CDPM, which only has to guarantee the reliability for a single
aircraft.

In threshold-based maintenance, the SHM is assumed to be
used and the damage assessment is performed every 100 flights.
The aim is the same as CDPM to skip some unnecessary early

scheduled maintenance while guarantee the safety by triggering
unscheduled maintenance. Specifically, at each scheduled
maintenance stop, if there is no crack size exceeding a thresh-

old ath-skip, then the current scheduled maintenance is skipped.
Between two consecutive scheduled maintenance stops, if a
crack grows beyond amaint, the unscheduled maintenance is
triggered and all panels whose crack size is greater than arep
are repaired. The flowchart of threshold-based maintenance
is given in Fig. 5. For additional details on this threshold based
maintenance strategy applied to fuselage panels, the reader

could refer to Ref.33.
Three design parameters characterize the threshold-based

maintenance. First amaint ensures the safety. It is defined and

calculated the same as in CDPM, i.e., to maintain a 10�7 prob-
ability of failure between two damage assessments (every 100
cycles) for a given aircraft. Second ath-skip is calculated such

that the probability of one crack exceeding amaint before next
scheduled maintenance is less than 5%. Finally, the repair
threshold arep is set the same value as in traditional
maintenance.



Fig. 5 Flow chart of threshold-based maintenance.

Table 1 Numerical values of geometry parameters.

Description Notation Value

Fuselage radius/m r 1.95

Panel thickness/m t 2 � 10�3

Correction factor A 1.25

Table 2 Numerical values of the uncertainties on a0, m, C and

p.

Description Notation Type Value

Initial crack size/

m

a0 Lognormal ln N(0.3 � 10�3,

0.0 � 10�3)

Paris model

parameters

m, C Multivariate N (lm, rm, lC, rC, q)

Mean of m lm 3.6

Mean of C lC lg(2 � 10�10)

C.C.a of m and C q �0.8

Standard

deviation of m

rm 3%COVb

Standard

deviation of C

rC 3%COV

Pressure/MPa p Normal N(0.06, 3%COV)

a C.C. is correlation coefficient.
b COV means coefficient of variation.
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Note the difference between threshold-based maintenance

and the CDPM. In CDPM, the decision of whether or not
to repair a panel is treated individually for each panel depend-
ing on the relation between the cost ratio (cs/cus) and the prob-

ability of triggering unscheduled maintenance. While in the
threshold-based maintenance, this decision depends on the
fixed threshold arep, which is determined for the entire fleet.

5.1. Input data

The values of the geometry parameters defining the fuselage

used in the numerical application have been chosen from
Ref.33 and are reported in Table 1. These values are time-
invariant. Recall that we define a correction factor A for stress
intensity factor, which intends to account for the fact that the
fuselage is modeled as a hollow cylinder without stringers and

stiffeners.
As discussed in Section 4.1, we use the Paris model to cap-

ture the common degradation characteristics for a population
of panels while the initial crack size a0 and the Paris model



Table 3 Numerical values of thresholds.

Notation Description Value

acr The critical crack size cause panel fail (m) 59.6 � 10�3

amaint The safety threshold for trigging

unscheduled maintenance (m)

47.4 � 10�3

arep The repair threshold (m) 4.3 � 10�3

ath-skip The skip threshold used in threshold-

based maintenance (m)

5.0 � 10�3

Fig. 6 Illustration of the population of m and C.
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parameters m and C of each panel are drawn from prior distri-
butions to model the panel-to-panel uncertainty. In addition,

for each panel, during the crack propagation process, the pres-
sure differential p varies from cycle to cycle and is modeled as a
normal random variable. See Section 2.2 for details. The
uncertainties for a0, m and C and p are given in Table 2. The

numerical values of thresholds used are given in Table 3. At
the beginning of the simulation, 500 � 100 samples of a0, m
and C are drawn and assigned to each panel while p is drawn

every cycle during the crack growth process. The 50,000 sam-
ples of m and C are illustrated in Fig. 6.

One thing needs to clarify. The uncertainties of a0, m and C

given in Table 2 are the panel-to-panel uncertainty represent-
ing the variability among panels population. These 500 � 100

samples, denoted as ½ai0;mi;Ci�T, (i= 1, 2, . . .), are assigned

to each panel to form the initial condition of the i-th panel.
Due to lack of knowledge on single panel, these samples are
Table 4 Cost-related quantities description.

Notation In which maintenance policy it involves? Description

ctr0 Traditional scheduled maintenance Set up cost/M

rshm Threshold-based maintenance and CDPM Coefficient

run Threshold-based maintenance and CDPM Coefficient

cs All three policies Per panel rep

c0 Threshold-based maintenance and CDPM Scheduled se

cun0 Threshold-based maintenance and CDPM Unscheduled

Cs
n Traditional scheduled maintenance Scheduled re

Cthr
n

Threshold-based maintenance Scheduled re

cthrus
Threshold-based maintenance Unscheduled

cus CDPM Unscheduled
regarded as ‘‘true unknown draws” that need to be estimated
by the EKF. During the EKF process, for the ith panel, the ini-

tial guess for ½ai0;mi;Ci�T are randomly given and is fed to EKF

as the start point. As the noisy measurements arrive sequen-
tially, EKF incorporates the measurements and gives the opti-

mal estimates to the crack size and model parameters at time k,

denoted as ½âik; m̂i
k; Ĉ

i
k�

T
. The estimation uncertainty reduces as

time evolves due to more measurements are available. Due to

limit space, the EKF process will not be detailed here. Readers
could refer to Ref.24.

Now we discuss the cost. The cost-related quantities are
reported in Table 4. For the traditional scheduled mainte-

nance, the set up cost is denoted as ctr0 . For CDPM and the

threshold-based maintenance, where the SHM system is used,

the scheduled set up cost c0 is only a fraction of ctr0 due to the

use of SHM system, leading to less labor intensive inspection

compared to traditional inspection through DVI and NDI.
This fraction is denoted as rshm. In contrast, the unscheduled

set up cost cun0 is higher than ctr0 due to less advance notice.

A factor run is set to denote the higher set up cost incurred
by unscheduled maintenance. Note that the per panel repair
cost cs is the same no matter in scheduled maintenance or

unscheduled maintenance. It is the difference in set up cost that
leads unscheduled maintenance to be costlier than scheduled
maintenance.

At the n-th scheduled maintenance, the repair costs of tra-
ditional scheduled maintenance Cs

n, and that of threshold-

based maintenance Cthr
n are given in the 8th and 9th rows of

Table 4. The unscheduled repair cost of threshold-based main-

tenance cthrus and that of CDPM are given in the 10th and 11th

rows. The symbol ‘‘Np” in the last column of rows 8–10

denotes the number of panels repaired at that corresponding
maintenance stop. Note that the unscheduled repair cost of
CDPM cus is composed of the unscheduled set up cost and

the cost of repairing one panel since there is only one panel
repaired once unscheduled maintenance is triggered.

Note that for traditional maintenance and the threshold-
based maintenance, all cost-related quantities have no effect

on the repair decision while in CDPM, the repair decision
depends on the cost ratio cs/cus, thus relating to run. In the

numerical experiments, ctr0 and cs are constants and are set to

be 1.44 and 0.25 (Million $) respectively. rshm does not affect
the repair decision, so it is assumed to be a constant value of

0.9 for simplicity. Different scenarios under varying run are
studied. A series of discrete value, 0.9, 3, 5, 10, are chosen
How to calculate?

$ 1.44

0.9

0.9, 3, 5, 10

air cost/M$ 0.25

t up cost/M$ c0 ¼ rshmc
tr
0

set up cost/M$ cun0 ¼ runc
tr
0

pair cost at nth scheduled maintenance/M$ Cs
n ¼ ctr0 þ csNp

pair cost at nth scheduled maintenance/M$ Cthr
n ¼ rshmc

tr
0 þ csNp

repair cost/M$ cthrus ¼ runc
tr
0 þ csNp

repair cost/M$ cus ¼ runc
tr
0 þ cs



Table 5 Comparison results of different maintenance policies.

Scenario Cost ratio

(cs/cus)

Maintenance

policy

Avg. No. of

M.S.a/aircraft

Avg. No. of

U.M.S.b/aircraft

Avg. No. of

R.P.c/aircraft

Avg.

M.C.d/aircraft

Scheduled 10 - 14.2 17.9

Threshold-based 3.6 0 14.2 8.2

run = 0.9 0.16 CDPM 2.9 0.36 7.3 5.7

run = 3 0.05 CDPM 3.0 0.02 7.4 5.8

run = 5 0.03 CDPM 3.1 0 7.5 5.9

run = 10 0.01 CDPM 3.1 0 7.5 5.9

a M.S. is Maintenance Stop.
b U.M.S. is Unscheduled Maintenance Stop.
c R.P. is Repaired Panels.
d M.C. is structural Maintenance Cost.
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for run. run = 0.9 indicates the unscheduled set up cost is as
cheap as scheduled CPDM set up cost. This is an extreme case.

5.2. Results and discussion

The comparison among the three maintenance strategies is
reported in Table 5. The 4th-6th columns give the average

number per aircraft of the total maintenance stops throughout
the lifetime, the unscheduled maintenance stops and the total
repaired panels throughout the lifetime. The cost ratio (cs/
cus) is given in the 2nd column. For traditional scheduled

maintenance and the threshold-based maintenance, the cost-
related coefficient the cost ratio does not affect the repair deci-
sion. From the practical point of view, the higher this ratio is,

the less unscheduled maintenance there should be. The number
of unscheduled maintenance in the 5th column matches well
with this anticipation. When the cost of unscheduled mainte-

nance is much higher (say 5 times higher or more) than that
of the scheduled maintenance, the unscheduled maintenance
is avoided by CDPM.

The 7th column gives the average structural maintenance
costs per aircraft of different maintenance policies. According
to the simulation results, no unscheduled maintenance is found
in threshold-based maintenance. This does not mean that there

will never be any but it is a very rare event which we do not
capture with our fleet size. Therefore, the varying run has no
effect to the cost of threshold-based maintenance. It can be

seen that the CDPM leads to a significant cost savings com-
pared with both traditional maintenance and threshold-based
maintenance. The savings could be attributed to two aspects.

Firstly, compared with the traditional scheduled maintenance,
the CDPM skipped some unnecessary maintenance stops, thus
reduced the set up cost. Secondly, CDPM significantly reduces

the conservativeness compared to scheduled maintenance and
threshold-based maintenance. In an aircraft fleet, there are two
contributions to conservativeness level, the inter-aircraft vari-
ability and the intra-aircraft variability. The first one refers

to that the worst aircraft in the fleet may have a larger crack
size much sooner than the average, and the second means that
in one aircraft, the fuselage panels may have different crack

size and crack propagation rate. It is obvious that the sched-
uled maintenance is the most conservative one since it needs
a very conservative repair threshold to cover both variabilities.

Due to the conservative repair threshold, all panels with a
crack size greater than arep are repaired even if some of them
have a very low growth rate and are not likely to fail until
the aircraft’s end of life. The threshold-based maintenance
addresses part of the conservativeness which stems from the

inter-aircraft variability and the intra-aircraft variability
related to different crack size, but it is not able to handle the
intra-aircraft variability related to different crack growth rates.

In contrast, CDPM addressed both the variabilities by doing
prognosis for each panel individually. Combined with an esti-
mation of the crack size and the material property parameters
of each panel at current time, CDPM predicts its crack growth

trajectory in a future period of time and makes the decision of
whether or not replacing this panel based on this predicted
behavior. A simple example can illustrate this. Suppose there

are two panels, A1, A2, with the same crack size that are
greater than the repair threshold at the moment. According
to the threshold-based strategies, both of them are repaired.

While by using prognosis-based strategies, such as the pro-
posed CDPM, we may find that the crack in A1 grows slowly
and can be safe in a future period of time. A1 will then not be

repaired. Based on the predicted information of each panel, the
number of repaired panels is optimized. This reduces the num-
ber of repaired panels at each maintenance stop.

Note that the difference in structural maintenance cost for

different cost ratios is about 5%. This means that the optimal
maintenance policy allows to squeeze out these last few percent
in terms of cost gains based on the objective measure of the

cost ratio, without having to tune any additional parameters.
It is also important to note how the optimal cost driven policy
is affected by the level of uncertainties. We found that the cost

optimal policy is most sensitive to the parameters of the main-
tenance decision (cost ratio) when the panel-to-panel variabil-
ity is low compared to the prediction uncertainty. This can be
explained as following: there are two items when predicting the

crack size distribution at each scheduled maintenance, the first
is predicting the mean and the second one is predicting the
standard deviation after some additional cycles. If the panel-

to-panel variability is large compared to the prediction uncer-
tainty, then it is mainly the predicted mean value of crack size
that matters and if the panel-to-panel variability is small com-

pared to the prediction uncertainty then both the mean and
standard deviation matter. The cost optimal policy is thus less
sensitive in a large panel-to-panel variability case than in a low

one even though the potential cost gains over traditional or
threshold based maintenance would be larger with large panel
to panel variability. On the other hand in a low panel-to-panel
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variability case, while the potential cost gains become smaller,
the maintenance policy becomes much more sensitive to main-
tenance decision parameters (cost ratio) and using the cost

optimal policy makes an increasingly significant difference.
The cost optimal policy would be even more sensitive to the
cost ratios in applications where the distribution of unsched-

uled events between two scheduled maintenances is more grad-
ual. This would be for example the case when the variability in
material properties would be smaller and the prediction uncer-

tainty due to measurement noise would be larger. The optimal-
ity of the maintenance strategy also guarantees that the
structural maintenance cost is minimal without having to tune
any additional parameters in the maintenance strategy. In

addition, it allows avoiding having to choose a quantile (for
example 95%) of the predicted distribution after some addi-
tional cycles when determining which panels to replace.

The cost difference between the CDPM and the traditional
scheduled maintenance helps make the decision concerning the
implementation of an SHM system on aircraft. More specifi-

cally, if the cost incurred by installing and operating an
SHM system is less than cost saved by using SHM, then it is
worth to install it on aircraft.

6. Conclusions

A cost driven predictive maintenance policy (CDPM) that

ensures safety is proposed for structural airframe maintenance.
The SHM system is assumed to be employed to track the fati-
gue crack in the fuselage panel continuously and to trigger
unscheduled maintenance according to the fuselage health

state. The CDPM leverages the benefit from both the sched-
uled and unscheduled maintenance. On one hand, it skips
some unnecessary scheduled maintenance stops. On the other

hand, it guarantees the aircraft safety by querying the health
state of the fuselage frequently and triggering unscheduled
maintenance whenever needed. For each aircraft panel, a

model-based prognostics method is developed to estimate the
current crack size and to forecast the future reliability of the
panel. The proposed maintenance policy is developed at air-

craft level. Based on the predicted reliability of all panels, it
selects a group of panels which are to be repaired at a sched-
uled maintenance stop so as to minimize the cost. The CDPM
is applied to the example of a short range commercial aircraft.

The simulation results are compared with the traditional
scheduled maintenance and the threshold-based maintenance
in terms of the average number of maintenance stops, the aver-

age number of repaired panels and the average cost per aircraft
under same operational conditions. The results show a signif-
icant cost reduction achieved by employing the CDPM. By

comparing the cost difference between the CDPM and the
scheduled maintenance, one can make the decision concerning
the implementation of the SHM system on aircraft. More
specifically, if the cost incurred by installing and operating

an SHM system is lower than the cost saved by employing
SHM, then it is worth to install the SHM system on the air-
craft. Furthermore the proposed approach allows to assure

the cost optimality of the maintenance policy without having
to tune any additional parameters. The cost optimality then
allows to squeeze out the last few percent of cost savings from

prediction based maintenance.
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Appendix A. Derivation of the FOP method

At the end of first phase S, the following information is consid-
ered available from EKF and will be used as initial conditions
for the second phase.

� expected value of the augmented state vector,

x̂au;S ¼ ½âS ; m̂S ; ĈS �T.
� covariance matrix of augmented state vector PS.

According to the EKF, the state vector xau,S is multivariate

normally distributed with mean x̂au;S and covariance PS, pre-

sented as

xau;S � Nðx̂au;S;PSÞ ðA1Þ
Let us define:

fLða;m;C; pÞ ¼ C A
pr

t

ffiffiffiffiffiffi
pa

p� �m
ðA2Þ

The Paris model then becomes

ak ¼ ak�1 þ fLðak�1;m;C; pk�1Þ ðA3Þ
Note that here the index k starts from S+ 1 and increases

until S+ H, i.e., k = S + 1, S+ 2, . . . , S+ H. HereH is the
time span in future horizon. For the problem discussed at
hand, the ‘‘expected trajectory” (trajectory that is obtained
when the random variables assume their expected values) of

the crack size is the sequence
f�akjk ¼ Sþ 1;Sþ 2; . . . ;SþHg obtained as a solution of
the following equation with zero process noise and with the

expected value �aS, �m, �C and �p as the initial conditions. Note
that we use the hat symbol ‘‘–” to denote the expected value

of a random variable.

�ak ¼ �ak�1 þ fLð�ak�1; �m; �C; �pÞ ðA4Þ
Due to the presence of random noise and uncertainties, ak,

m, C and pk are considered random. Let the symbol ‘‘D”
denotes the perturbation from the expected values, then the
real ak, m, C and pk can be modeled as

ak ¼ �ak þ Dak ðA5Þ

m ¼ �mþ Dm ðA6Þ

C ¼ �Cþ DC ðA7Þ

pk ¼ �pþ Dpk ðA8Þ
Dpk is an uncertainty related to the cabin pressure differen-

tial, which varies from one flight cycle to another. On the other
hand, Dm and DC are uncertainties related to the material of

each panel and thus do not vary with time evolves. Recall
the known information available at k= S, which will be the
initial condition in the following derivation.

�aS; �m; �C½ �T ¼ âS; m̂S; ĈS

� �T ðA9Þ
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DaS;Dm;DC½ �T � Nð03�1;PSÞ ðA10Þ
Subtracting Eq. (A4) from Eq. (A3), the perturbation of ak

is represented as

Dak ¼ Dak�1 þ fLðak�1;m;C; pk�1Þ � fLð�ak�1; �m; �C; �pÞ ðA11Þ
Given that fL is differentiable, the first order approximation

is used. Let kk�1 ¼ ½�ak�1; �m; �C; �p�, which is a known vector,
then Eq. (A11) becomes

Dak ¼ Dak�1 þ @fLðkk�1Þ
@a

Dak�1 þ @fLðkk�1Þ
@m

Dm

þ @fLðkk�1Þ
@C

DCþ @fLðkk�1Þ
@p

Dpk�1

ðA12Þ

To make Eq. (A12) simpler we make the following
substitution:

Lk�1 ¼ 1þ @fLðkk�1Þ
@a

ðA13Þ

Mk�1 ¼ @fLðkk�1Þ
@m

ðA14Þ

Nk�1 ¼ @fLðkk�1Þ
@C

ðA15Þ

wL
k�1 ¼

@fLðkk�1Þ
@p

Dpk�1 ðA16Þ

in which wL
k�1 is the process noise, a normal variable with mean

zeros and standard deviation rk�1, calculated by Eq. (A17). wL
i

and wL
j (i– j) are considered independent.

rk�1 ¼ @fðkk�1Þ
@p

rp ðA17Þ

Then Eq. (A12) becomes

Dak ¼ Lk�1Dak�1 þMk�1DmþNk�1DCþ wL
k�1 ðA18Þ

Eq. (A18) enables to calculate the perturbation of crack size
at any cycle. Recalling Eq. (A10), the distribution of Dak can

be analytically calculated as the function of the distribution
of [DaS, Dm, DC]. After k times iteration the analytical formula
of calculating Dak is given in Eq. (A19). For simplicity, we use

Ak, Bk and Dk represent the coefficient of DaS, Dm and DC
respectively while Ek denotes the noise term.

Dak ¼ AkDaS þ BkDmþDkDCþ Ek ðA19Þ
Note that in Eq. (A19), DaS, Dm and DC are stationary

variables whose statistical distributions are time invariant.

Ak, Bk and Dk are deterministic and evolve with time, which
are calculated recursively with their initial values LS, MS,
NS, as shown in Eqs. (A20)–(A22). Ek is the only random vari-

able whose distribution varies from cycle to cycle and is
derived recursively by Eq. (A23). Ek is a linear combination
of independent and identically distributed variables, it is a nor-

mal variable such that Ek � N(0, Fk), in which Fk represents
the variance of Ek. Using the recurrence of Eq. (A24), Fk

can be obtained recursively with its initial value rs, given by

Eq. (A17) Note that wL
k and rk in Eqs. (A23) and (A24) refer

to Eqs. (A16) and (A17), respectively.

Ak ¼ LkAk�1 ðA20Þ

Bk ¼ LkBk�1 þMk ðA21Þ
Dk ¼ LkDk�1 þNk ðA22Þ

Ek ¼ LkEk�1 þ wL
k ðA23Þ

Fk ¼ L2
kFk�1 þ r2

k ðA24Þ
Given that Ak Bk Dk are deterministic, and DaS, Dm, DC

and Ek are random variables, Eq. (A19) can be rewritten as
matrix form as Dak ¼ Bkbk, in which Bk = [Ak, Bk, Dk, 1]

and bk ¼ ½DaS;Dm;DC;Ek�T.
Given ½DaS;Dm;DC�T � Nð03�1;PSÞ and Ek � Nð0;FkÞ, bk

is a multivariate normal vector such that bk � Nðl;RÞ, in

which l ¼ ½04�1� and R ¼ diagðPS;FkÞ. Therefore, Dak is nor-

mally distributed with mean Bkl and variance BkRB
T
k , which

are calculated analytically.

Bkl ¼ 0 ðA25Þ

BkRB
T
k ¼ ½Ak; Bk; Dk�PS½Ak; Bk; Dk�T þ Fk ðA26Þ

Given that ak ¼ �ak þ Dak and �ak is constant, ak is a normal

variable that ak � Nðlak; rakÞ, in which

lak ¼ �ak ðA27Þ

rak ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BkRB

T
k

q
ðA28Þ

The above formulas enable to compute analytically the evo-

lution of the crack size distribution from cycle S+ 1 to cycle
S+ H.

Appendix B. Proof of the cost optimal policy

In this Appendix, we give a mathematical proof of the cost
optimal policy presented in Section 4.5. Eq. (26) in Section 4.5

is firstly proved as the prerequisites for the proof. Recall that
in Eq. (26), it gives 1 6 bJ < BI 6 Na. Suppose the contrary

1 6 BI < bJ 6 Na ðB1Þ
Then we have

cus
XbJ
j¼1

Pðusja jÞ ¼ cus
XBI

j¼1

Pðusja jÞ þ
XbJ

j¼BIþ1

Pðusja jÞ
 !

ðB2Þ

Since BI < bJ, according to Eq. (29) in Section 4.5, we have

cus
XBI

j¼1

Pðusja jÞ
 !

< c0 þ BIcs ðB3Þ

And according to Eq. (27), we have

cus
XbJ

j¼BIþ1

Pðusja jÞ
 !

< csðbJ � BIÞ ðB4Þ

Sum the inequalities Eqs. (B3) and (B4), we have

c0 þ BJcs > cus
XBJ

j¼1

Pðusja jÞ ðB5Þ

which is impossible since Eq. (30) in Section 4.5 is not satisfied.
So 1 < bJ < BI < Na.

Now, we prove the cost optimal repair policy. Reminder
that the optimal policy d�n is
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If J ¼ £

dj�n ¼ 0; for j ¼ 1; 2; . . . ;N

Else

dj�n ¼ 1 for j ¼ 1; 2; . . . ;BI

0 for j ¼ BI þ 1;BI þ 2; . . . ;Na

	

The maintenance cost is a function of decision. Our objec-
tive is to prove C(dn) > C(d�n) for any maintenance policy dn.

Let us define the following set:

A ¼ f1 6 j 6 BIjd j
n ¼ 1g ðB6Þ

�A ¼ f1 6 j 6 BIjd j
n ¼ 0g ðB7Þ

B ¼ fBI þ 1 6 j 6 Njd j
n ¼ 1g ðB8Þ

�B ¼ fBI þ 1 < j 6 Njd j
n ¼ 0g ðB9Þ

jAj, j �Aj, jBj and j �Bj are the cardinality of the set A, �A, B and
�B, respectively. Obviously, we have the following:

jAj þ j �Aj ¼ BI and jBj þ j �Bj ¼ Na � BI. The maintenance cost
C(dn) is then computed as

CðdnÞ ¼ c0 þ csjAj þ cus
X
j2 �A

Pðusja jÞ
 !

þcsjBj þ cus
X
j2 �B

Pðusja jÞ
ðB10Þ

Since cusPðusja jÞ P cs, for j = 1, 2, . . . , BI (refer to Eq. (27)

in Section 4.5). Then we have
P

j2 �AcusPðusja jÞ P csj �Aj, hence

c0 þ csjAj þ cus
X
j2 �A

Pðusja jÞ
 !

P c0 þ csjAj þ csj �Aj
¼ c0 þ BIcs

ðB11Þ

Since cusPðusja jÞ < cs, for j = BI + 1, BI + 2, . . . , Na (see

Eq. (27)). Then we have

csjBj þ cus
X
j2 �B

Pðusja jÞ

> cus
X
j2B

Pðusja jÞ þ cus
X
j2 �B

Pðusja jÞ

¼
XNa

j¼BIþ1

cusPðusja jÞ

ðB12Þ

Sum the inequalities Eqs. (B11) and (B12), then we have

c0 þ csjAj þ cus
X
j2 �A

Pðusja jÞ
 !

þ csjBj þ cus
X
j2 �B

Pðusja jÞ

P c0 þ BIcs þ
XNa

j¼BIþ1

cusPðusja jÞ

ðB13Þ
The left term of the inequality is the maintenance cost C(dn)

while the right term of the inequality if the optimal cost C(d�n),
so we have C(dn) > C(d�n). Up to now, the cost under any other

decision dn is greater than the cost under the optimal decision

d�n has been proved.
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