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Jean Chenevier1,2, David González1, J. Vicente Aguado2, Francisco Chinesta3,

Elı́as Cueto1*

1 Aragon Institute of Engineering Research, Universidad de Zaragoza, Zaragoza, Spain, 2 ESI Group chair at

Ecole Centrale Nantes and the High Performance Computing Institute, Nantes, France, 3 PIMM, ENSAM

ParisTech. Paris, France

Abstract

We present a general strategy for the modeling and simulation-based control of soft robots.

Although the presented methodology is completely general, we restrict ourselves to the

analysis of a model robot made of hyperelastic materials and actuated by cables or tendons.

To comply with the stringent real-time constraints imposed by control algorithms, a reduced-

order modeling strategy is proposed that allows to minimize the amount of online CPU cost.

Instead, an offline training procedure is proposed that allows to determine a sort of response

surface that characterizes the response of the robot. Contrarily to existing strategies, the

proposed methodology allows for a fully non-linear modeling of the soft material in a hypere-

lastic setting as well as a fully non-linear kinematic description of the movement without any

restriction nor simplifying assumption. Examples of different configurations of the robot were

analyzed that show the appeal of the method.

Introduction

Originally, soft robots are born from a biological inspiration, to reproduce some living being’s

compliance, see [1] [2] [3]. There exists a wide spectrum of application fields of soft robotics as

well as the crowd of engineering issues they raise, in terms of design, fabrication and control.

Examples exist of pneumatically actuated soft robots, such as [4], and thus without any type of

“skeleton”, as well as hydraulic ones [5]. Maybe the biggest family of soft robots is the one actu-

ated by cables or tendons, [1]. But the main concern with the design, modeling and control of

this type of robots is clearly motivated by the passage from a discrete to infinite number of

degrees of freedom. In other words, the difference with classical, rigid robots is the same that

exists between rigid solids and deformable, continuum solids. Therefore, one major difficulty

arises when one tries to model the relationship between the actuators and the effectors, since

this response is often highly non-linear, on one side, and is required under severe feedback

restrictions (real time), on the other.

Contact with other objects during motion also poses major difficulties to the problem at

hand. This is so since contact is a highly non-linear problem, governed by Kuhn-Tucker con-

ditions [6]. It was not until very recently that an inverse method of control based on simulation
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and considering contact has been presented in [7]. In this paper we propose a methodology

that abandons completely existing strategies based on real time (usually, finite element-based)

simulation nor employs any kinematical assumption that eventually allows to simplify the

problem.

Indeed, the presented methodology is based upon the offline construction of a response

function for the robot. This response function or computational vademecum is stored in mem-

ory as a finite sum of products vectors with a minimum amount of memory and re-con-

structed online with negligible computational cost [8]. Therefore, our proposal is based in

evaluating the response of the robot rather than simulating the response of the robot.

In fact, our proposed methodology is aimed at describing the control problem as an inverse

problem arising from a parameterized partial differential equation (PDE), and thus is amena-

ble to generalization to virtually any type of soft robot. As will be noticed throughout the

paper, our strategy allows for an efficient inverse determination of the necessary parameters

(here, the forces in the actuators) given stress or pressure limitations at the effectors after con-

tact. Simple Levenberg-Marquardt algorithms provide results compliant with the desired

interactive rates (from some 30 to 130 Hz in our experiments with code prototypes).

Related work

As mentioned before, the passage from discrete to continuum makes modeling and simulation

of soft robots an intricate procedure that strongly depends on the considered type of robot. In

order to overcome the infinite-dimensional configuration space of continuum mechanics,

recent approaches try to follow the tradition of the fathers of strength of materials disciplines,

i.e., to establish some kinematic assumptions that help to alleviate the complexity of the prob-

lem. Thus, for instance, in [9], a procedure is established in which piecewise constant curva-

ture is assumed for each of the segments of a pneumatic actuator. Similarly, in [10], a pressure-

volume relationship is constructed for a soft, hydraulically-actuated robot able to transverse a

cannula. This is also the approach followed in [11], where the Cosserat rod theory was applied

to modeling a soft robot arm driven by cables, similar to the one considered here. However, in

sharp contrast with the approach followed herein, in that work a linear visco-elastic (Kirch-

hoff-Saint Venant) model is considered, which can lead to severe inconsistencies (particularly,

crushing under compression) [12].

A second group of techniques employs finite element modeling under real-time constraints.

To fulfill these constraints, usually some simplifying assumptions are made. In [13], for

instance, FEM is employed to characterize an octopus-like soft robot guided by cables and

springs. This concept is further generalized in [14] to coin the concept of eRobotics, i.e., a

virtual testbed for the design, modeling and simulation-based control of soft robots.

The work of C. Duriez and coworkers is maybe the most relevant concerning real-time

finite element simulation for control of soft robots, see [15] [7] [16]. In his work, although

non-linear, explicit finite element methods are used, some severe simplifications are taken into

account. For instance, given the impossibility of performing inverse analysis in the displace-

ment space, due to the high number of degrees of freedom, they opt by doing it in the actu-

ation and contact variables. Linear elasticity under the corotational FE framework is employed

at a first step. In sharp contrast with these assumptions, in our method general hyperelastic

laws can be employed at no extra cost.

As a result of this first step, the model in [15] could eventually violate the contact restric-

tions. In parallel, a second problem is solved in which a linear relationship between the actua-

tions and the contact forces is solved. The deformed configuration of the robot would thus be

the sum (linear superposition) of the unconstrained motion of the robot and the constraints
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motivated by contact. Forces in the actuators are thus obtained by juxtaposition of both prob-

lems, despite the (theoretical) non-linearity of both and the lack of fulfillment of the superposi-

tion principle.

Despite these limitations, the work by Duriez and coworkers, see the original one in [15]

and a very recent update in [7], is perhaps the most sophisticated method based on the finite

element method. This proves the inherent difficulty of the problem at hand.

Method

The method we present here is aimed at overcoming the mentioned simplifications motivated

by the complexity (and the high number of degrees of freedom) of standard finite element

approaches to modeling and control of soft robots. The goal is to consider a model of the robot

as general as possible, and to that end we chose a tendon-driven finger, which under similar

forms appears in different references, see [11] [13] [15], among others. No particular assump-

tion is made on the linearity of the constitutive equation of the matrix, and the control strategy

is also extensible to any robot whose control can be set as an optimization problem arising

from a parametrized partial differential equation (PDE).

Abstract setting

We formulate the problem of control of the soft robot as the fast evaluation of the response of

the system, whose output of interest is expressed as some linear functional of a field variable

(typically, the displacement field), that is the solution of a parametrized partial differential

equation (PDE). This evaluation must be also bounded in terms of error for the strategy being

of practical interest, of course.

To better describe our approach, consider without loss of generality, a model robot inspired

by the Clemson manipulator (essentially, a tendon driven continuum manipulator) [17]. A

similar robot has been considered recently in [7], for instance. The robot can be composed by

one or more segments, each of them actuated by four tendons (steel cables), see Fig 1. The ten-

dons are attached to a rigid plate (represented in grey in Fig 1) placed at the end of the actua-

tor, so as to transmit their tension and provoke bending.

The response of the robot, still without considering contact, will then typically take the

form of a function

u ¼ uðx; μÞ; ð1Þ

where u represents the vector-valued field of displacements at any point x of the volume

Ot = O(t) occupied by the robot. Here, μ 2 Rnpar represents a vector of npar parameters gov-

erning the behavior of the robot. For the tendon-driven manipulator in Fig 1, these parame-

ters will be the forces in both tendons, i.e., μ = [F1, F2]. For other types of soft robots such as

pneumatic ones, these parameters could be pressures at different points of the robot O, for

instance.

The just mentioned displacement field given in Eq (1) will be the solution of the equilib-

rium equations for the robot, i.e.,

rP þ B ¼ 0 in O0

where B represents the volumetric forces applied to the body and P the first Piola-Kirchhoff

stress tensor. O0 = O(t = 0) represents the undeformed configuration of the robot. The solution

https://doi.org/10.1371/journal.pone.0192052


is subjected to the following boundary conditions

uðXÞ ¼ �u on Gu;

PN ¼ �t on Gt

Γu and Γt represent the essential (Dirichlet) and natural (Neumann) portions of the boundary

Γ = @O of the robot. N is the unit vector normal to Γ = @O0 and �t is an applied traction. To

complete the problem, some relationship between kinematic variables (displacements, strain)

and dynamic variables (stresses) must be assumed. Here, it is assumed that the material is com-

posed by a neo-Hookean, and thus hyperelastic, material, see [12], although any other hypere-

lastic constitutive law could be considered without any difficulty. Its strain energy density

function is defined as

W ¼ C1ðI1 � 2Þ þ D1ðJ � 1Þ
2
:

Here, we take C1 and D1 are constants, characteristic of the particular material employed. I1

represents the first invariant of the isochoric part of the right Cauchy-Green deformation ten-

sor and J is the determinant of the gradient of deformation tensor.

Therefore, as can readily be noticed, the problem greatly simplifies if we are able to com-

pute offline the response of the system, Eq (1), and to evaluate it online, rather than simulate

it by standard finite elements, for instance. Under this rationale, we call direct problem the

straightforward obtention of the displacement field —or any related quantity of interest

(QoI) given by a linear functional ℓo(u) such as the displacement at the end effector, for

instance—, given the values of the parameters, μ. Generally, however, control strategies will

involve inverse problems, i.e., given the desired QoI, find the right values of the parameters μ
that provide it.

Solving in real time the inverse problem will pose, unless artificial linearity assumptions are

made, very stringent requirements to the control strategy. In general, despite the nowadays

Fig 1. Schematic description of the tendon-driven manipulator considered in this work, along with its dimensions. Left, cross section of the

segment with the position of the tendons. Right, dimensions of the segment. Due to symmetry, and to avoid degenerate solutions, we consider

that only two tendons can be actuated at a time. These are represented in red. Other possible configurations can be obtained by just rotating

around the x-axis the solution obtained for this particular one. Actuating the four tendons at the same time could produce, for instance, a pure

compressive stress state that would produce a shortening of the finger, something useless, in general.

https://doi.org/10.1371/journal.pone.0192052.g001
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capabilities of modern computers or even deployed systems that could be installed, this is still

out of reach for realistic models of soft robots.

Reduced order modeling of the soft robot

Although many different model order reduction (MOR) techniques exist (see, for instance,

some recent reviews in [18], [19], [20], [21], [22], to name but a few), their main characteristic

is to provide a model with a minimal number of degrees of freedom with also minimal loss in

accuracy. This accuracy is often compared to what is called full-order models, i.e., detailed finite

element models of the system of interest, in our case.

To achieve this, MOR techniques employ different methods for generating an affine or sep-
arated representation of the unknowns, viz. the displacement filed in our model problem:

uðx;μÞ �
XnDOF

i¼1

FiðxÞ � G
1

i ðm1Þ � G
2

i ðm2Þ � . . . � Gnpar
i ðmnpar

Þ; ð2Þ

where “�” appears here as the Hadamard entry-wise product of vectors (Matlab “�.” product),

given the vectorial character of the displacement field. Functions Fi and Gi are actually

expressed in a finite element mesh and must be determined so as to provide the model with a

minimal number of degrees of freedom nDOF. Many MOR methods employ a learning phase in

which snapshots of the full-order model for different parameter values are computed. Then, an

a posteriori analysis of these snapshots provides the optimal functions Fi and Gi. Since they are

expressed in a finite element mesh of low dimension, their storage in memory and subsequent

reconstruction of the solution (2) for a given value of the parameters μ is straightforward.

Among these methods one can cite the plethora of techniques based on Proper Orthogonal

Decomposition (POD) [23] [24] [18] or the Reduced Basis technique [20] [25].

Proper Generalized Decompositions (PGD), however, compute these functions a priori,
and thus without the need of any learning campaign [26] [27]. To that end, PGD methods

employ a greedy algorithm to compute each term in the sum (2). Within each loop i in this

greedy algorithm, the usual procedure to obtain the (nodal values of) the functions Fi and Gi,

given the non-linear character of the product, is to employ Newton iterations or, more com-

monly, simple fixed-point alternating directions algorithms.

Standard finite element approximations to the displacement field u(x, μ) are usually out of

reach, due to the high dimensional space in which it lives. Indeed, the phase space of the prob-

lem, given that x 2 R3 and that, in general, μ 2 Rnparam , will be defined inR3nparam . The number

of degrees of freedom of a finite element mesh in a high-dimensional space is known to grow

exponentially with the number of dimensions, and therefore will render the method useless for

a moderate number of parameters nparam. However, reduced-order models keep the number of

degrees of freedom moderate. From Eq (2) we observe that the total complexity of the problem

scales linearly (and not exponentially) with the dimension of the phase space.

Finally, the number of terms in the separate representation of the solution, nDOF, can be

chosen as a function of the desired level of accuracy. A vast literature exists about error estima-

tion in this context, see for instance, [20], [28], [29], [30], [31], [32].

Control strategy

Once the response of the robot has been adequately characterized by means of the precise

form of Eq (2), a robotic hand or gripper formed by three of these “fingers” is envisaged. Dif-

ferent control strategies can be set up. Here, our aim is to be able to handle delicate, fragile

objects without breaking them nor letting them fall.

https://doi.org/10.1371/journal.pone.0192052


Control prior to contact

Of course, the first part of the control strategy, in the absence of contact, is to position the end

effectors of each of the three fingers at a desired location. This is a simple example of an inverse

Fig 2. Finite element model of the finger segment. Top: discretization of the rubber envelope. Bottom: steel tendons

and end plate.

https://doi.org/10.1371/journal.pone.0192052.g002
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problem mentioned before, that can be expressed as the minimization of a functional

μ ¼ ½F1; F2� ¼ arg min
μ�¼½F�

1
;F�

2
�

J ðF1; F2Þ;

with J ðF1; F2Þ ¼kuðx0; mÞ � u0k; and u0 the desired position at the end effector, located at x0

in the reference configuration. In this case we choose μ� 2 [0, 100]2 N.

Control after contact

We assume that some tactile device has been embedded in the finger such as, for instance, a

TakkTile one [33]. This type of devices provide with the contact pressure once it has occurred.

The pressure at the tactile device should have been expressed in separated form as well:

pðF1; F2; dÞ �
Xmmod

i¼1

P1

i ðF1Þ � P
2

i ðF2Þ � HiðdÞ; ð3Þ

with d the distance from the finger at rest to the contact plane, tangent to the solid at the con-

tact point. Since the robot has actually no information on the relative position of the object to

Fig 3. Different configurations of the finger segment. (a) F1 = 100N, F2 = 100N; (b) F1 = 50N, F2 = 100N; (c) F1 = 100N, F2 = 0N; (d) F1 = 10N,

F2 = 100N. The legend corresponds to S11, the first component of the second Piola-Kirchhoff stress tensor. Symmetric configurations can be

obtained by actuating the tendons situated at opposite positions.

https://doi.org/10.1371/journal.pone.0192052.g003

https://doi.org/10.1371/journal.pone.0192052.g003
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handle, this value is obtained as the position of the finger, recorded once the tactile device has

informed about a non-null contact pressure. With Eq (3) the pressure contact is therefore fully

characterized in a reduced-order fashion. The object to handle is assumed to have an admissi-

ble stress value σ, not to be reached.

Fig 4. Different configurations of the finger segment after contact. (a) F1 = 100N, F2 = 0N, d = 5mm; (b) F1 = 100N, F2 =

100N, d = 5mm; (c) F1 = 100N, F2 = 0N, d = 1mm; (d) F1 = 100N, F2 = 100N, d = 31mm (no contact is observed in this

particular configuration). The legend corresponds to S11, the first component of the second Piola-Kirchhoff stress tensor.

Symmetric configurations can be obtained by actuating the tendons situated at opposite positions.

https://doi.org/10.1371/journal.pone.0192052.g004

https://doi.org/10.1371/journal.pone.0192052.g004
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The control strategy will be composed, therefore, by the following steps:

1. We approach the fingers in normal direction —by applying, say, force F1— until the tactile

sensor detects contact. At this moment we determine d = d� by employing Eq (3).

2. From now on, assuming a certain pressure to hold the object without breaking, pobj < s,

the forces in the finger will be those that minimize the functional

μ ¼ ½F1; F2� ¼ arg min
μ�

LðμÞ; ð4Þ

with LðμÞ ¼ jjpðF1; F2; d�Þ � pobjjj.

This minimization procedure can be accomplished by the Levemberg-Marquardt algo-

rithm, for instance, by noting that the necessary sensitivities can be computed as

@L
@F1

¼
@

@F1

ðpðF1; F2; d
�Þ � pobjÞ

2

¼ 2
Xmmod

i¼1

P1

i ðF1Þ � P
2

i ðF2Þ � Hiðd
�Þ � pobj

!

�
Xmmod

i¼1

@P1
i ðF1Þ

@F1

� P2

i ðF2Þ � Hiðd
�Þ

!

:

Since the separated functions P1
i , P2

i , Hi are actually approximated in a finite element sense,

our method stores only vectors containing the nodal values of these functions. These vectors

are then multiplied or differentiated in a finite element sense with great speed and a minimum

consumption of CPU time. The true advantage of our method resides actually in the separated

form of the variables, displacement and pressure, at the end effector.

Fig 5. (Left) Cross sectional view of a bi-segmental finger. There are four pairs of tendons (only one is shown for clarity). The short tendons

(subscript s) run through the finger with an eccentricity es = 0.004 m and the long ones (subscript l) with el = 0.003 m. (b) Three-dimensional

representation of a bi-segmental finger. Both segments O1 and O2 are separated by the medial steel plate Γ1. The distal steel plate Γ2 is at the tip

of the finger. The long tendon is assumed to slide freely through the medial plate Γ1.

https://doi.org/10.1371/journal.pone.0192052.g005

https://doi.org/10.1371/journal.pone.0192052.g005
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Fig 6. Different configurations of the finger segment after contact, when only a pair of tendons is actuated. (a) Fs
= 100N, Fl = 100N, d = 5mm; (b) Fs = 100N, Fl = 0N, d = 16mm; (c) Fs = 0N, Fl = 100N, d = 20mm; (d) Fs = 100N, Fl =

100N, d = 31mm. The legend corresponds to S11, the first component of the second Piola-Kirchhoff stress tensor.

Symmetric configurations can be obtained by actuating the tendons situated at opposite positions.

https://doi.org/10.1371/journal.pone.0192052.g006

Table 1. Results of the experimental campaign for the one-segment robot.

Sample size Average time Std dev Min Max

10000 7.1605 ms 1.2538 ms 5.4805 ms 31.0749 ms

https://doi.org/10.1371/journal.pone.0192052.t001

https://doi.org/10.1371/journal.pone.0192052.g006
https://doi.org/10.1371/journal.pone.0192052.t001
https://doi.org/10.1371/journal.pone.0192052


Experiments and results

Model of the finger

Each finger is assumed to be composed by one or more modules (segments) like the one

depicted in Fig 1. The rubber part of the finger is assumed to be composed by a neo-Hookean

material with C1 = 1.9MPa and D1 = 2.43 � 10−7Pa−1. These values correspond to typical values

of rubber-like materials. Each segment has been meshed by employing linear hexahedral finite

elements. The mesh is shown in Fig 2. It is composed by 10 000 linear hexahedral elements

and therefore slightly more than 30 000 degrees of freedom.

Fig 3 shows different configurations of the finger composed by one single segment under

different actuator conditions. Similarly, Fig 4 represents different configuration once contact

has occurred. It is worth noting that this figure exemplifies the way of determining the h dis-

tance between the robot at rest and the object, and therefore how to particularize Eq (3) to

obtain the response surface of the pressure field for each particular configuration.

An extension of the model for a more sophisticated robot can be achieved by composing

two segments, controlled by eight tendons, see Fig 5. In Fig 6 different configurations of this

robot are shown, for different robot-to-object distance, d. As an obvious consequence, the

number of degrees of freedom in the control algorithm increase. Results below will show, how-

ever, that the proposed methodology is able to cope with them under real-time constraints.

Results

One-segment robot. We first performed a battery of tests on the robot constructed with

one segment (and therefore four tendons). Starting at 10 000 randomly spaced initial positions,

Fig 7. Verification of the control strategy for the one-segment robot. We took pobj ¼ 1 N and obtained the necessary forces in the tendons

by solving Eq (4). With these force values, we then ran a direct numerical simulation whose results are shown. Errors in pressure for each of the

three shown cases are 5% for (a) and 2% for (b) and (c).

https://doi.org/10.1371/journal.pone.0192052.g007

https://doi.org/10.1371/journal.pone.0192052.g007
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we computed the time to obtain the necessary forces at the two active tendons to reach the

contact surface of the object and apply the necessary pressure, i.e., to solve the problem defined

by Eq (4). These results were obtained by employing Matlab 2017a, running on a Mac Pro

computer with four Intel Xeon E5 processors running at 3.5 GHz and are reported in Table 1.

To verify the accuracy of the reduced-order strategy, we compared the results obtained by

the control strategy with those obtained with a direct numerical simulation in which we intro-

duce the forces in the tendons provided by the control algorithm. Errors in L2-norm for the

displacement field and in L1-norm for pressure were obtained. For the displacement field,

the error found was on the order of eL2� 0.01%. For the pressure, this error raised to some-

thing between 3 and 5%, see Fig 7.

Two-segment robot. A similar experimental campaign was accomplished for the two-

segment robot. In this case, the only difference with the previous section is the size of the

parametric space. In this case, tests were performed again on a Mac Pro 6,1 computer

equipped with Quad-core Intel Xeon E5 at 3.5, running Matlab R2017a on a single thread.

In this framework, the proposed strategy was able to provide results at mean values of some

30 ms. Errors in the predicted pressure values, however, were slightly higher for one case,

which can be solved nevertheless by augmenting the number of terms in Eq (2). See Fig 8

for more details on the results. The 13% error reported for one particular configuration sug-

gests maybe the need for subsequent refinements in the meshing of the parametric space,

particularly around this region. The rest of the tested values showed very limited errors,

below 5%.

Fig 8. Verification of the control strategy for the two-segment robot. We took pobj ¼ 1 N and obtained the necessary forces in the tendons

by solving Eq (4). With these force values, we then ran a direct numerical simulation whose results are shown. Errors in pressure for each of the

three shown cases are 4% for (a) and 13% for (b) and 0.3% for (c).

https://doi.org/10.1371/journal.pone.0192052.g008

https://doi.org/10.1371/journal.pone.0192052.g008
https://doi.org/10.1371/journal.pone.0192052


Discussion

The just presented results have been obtained with a model that employed 10000 elements to

discretize the rubber matrix of each segment of the robot. The parametric space was discretized

by employing only four elements along each dimension, which is obviously a rough discretiza-

tion that can be much improved. To further improve a reduce model, two alternative routes

exist. These are summarized in Fig 9, where h refers here to finite element size and n to the

number of terms in the MOR approximation, see Eq (2). It can be noticed how the sources of

error in the solution of the model are two-fold. On one side, the size of the finite element

mesh. Of course, the finer the mesh, the better the results, and hence the error coined as eFEM.

On the other, the truncation of the sum in Eq (2), adds a new source of error, here coined as

eMOR. Both sources of error could ideally be separated if we take a reference solution with

either a zero-sized mesh, or an infinite number of terms in the MOR solution. Both contribute

to the total error of the reduced model, e.
Therefore, in order to improve the results, if needed, or, equivalently, minimize the error,

two strategies arise: to reduce the mesh or to add more terms to the MOR approximation. In

the literature, several methods exist to estimate the error and give a precise indication on how

to proceed, see, for instance, [28], [32], [20]. But it is important to notice that, for a sufficiently

high number of terms in the MOR approach, the model reproduces the finite element solution.

Therefore, sometimes it is simply nonsense to continue augmenting the number of terms in the

MOR approximation, Eq (2), since the error could be governed by a rough finite element mesh.
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