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Abstract

Since the recent advance in microprocessor design, the optimization of com-
puting software becomes more and more technical. One of the difficulties is to
transform sequential algorithms into parallel ones. A possible solution is the
task-based design. In this approach, it is possible to describe the parallelization
possibilities of the algorithm automatically. The task-based design is also a
good strategy to optimize software in an incremental way. The objective of this
paper is to describe a practical experience of a task-based parallelization of a
Discontinuous Galerkin method in the context of electromagnetic simulations.
The task-based description is managed by the StarPU runtime. Additional
acceleration is obtained by OpenCL.
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1 Introduction

The development of engineering simulation software faces two major antagonist issues. On
the one hand, the user is interested in handling more and more complex physical phenomena,
in devices with arbitrary geometries. These constraints require to adopt a generic and
abstract software engineering approach in order to ensure the generality of the code. On
the other hand, the user also wants to harness the full computational power of his hybrid
computer. This requirement generally imposes to use low-level hardware optimization hacks
that are not always compatible with a generic and universal approach. In addition, as the
hardware evolves, optimizations of yesterday are not necessarily relevant for the devices of
tomorrow.
The Discontinuous Galerkin algorithm is a general method for approximating system of
conservation laws coming from physics. For a recent review of this method, we refer to [11].
This method is well adapted to parallel computing, GPU computing and various software
optimization. See for instance [14, 10]. However these optimizations are complicated to
program with low-level librairies. The task is even more complex when the software is run
on a hybrid computer made of different computing accelerators. The aim of this work is to
describe a practical optimization of the Discontinuous Galerkin method that tries to keep
the software design as simple as possible.
Several software environments have been developed recently for addressing massively mul-
ticore accelerators, such as Graphic Processing Units (GPUs). CUDA is one of these tools,
it is devoted to NVIDIA GPUs. OpenCL (Open Computing Language) is another tool.
Its main advantage over CUDA is that it can be used with hardware of different brands
(NVIDIA, AMD, Intel, ARM, etc.). OpenCL is a nice software environment for optimiza-
tion purposes. OpenCL specifies programming languages (based on C99 and C++11) for
programming these devices and application programming interfaces (APIs) to control the
platform and execute programs on the compute devices. OpenCL provides a standard
interface for parallel computing OpenCL has been used successfully in several works for ac-
celerating Finite Volume (FV) or Discontinuous Galerkin (DG) programs. See for instance
[4, 14, 9, 17, 10, 5]. It presents the good balance between an abstract view of the comput-
ing devices and some important hardware aspects, such as local memory for accelerating
data transfers or subgroups for minimizing synchronization barriers. However depending
on architecture, optimizations written for one accelerator may be completely irrelevant for
another one. A CPU (Central Processing Unit), a discrete GPU (Graphic Processing Unit)
or an IGP (Integrated Graphic Processor) have completely different behavior concerning
local cache memory optimizations. For instance, cache prefetching is generally efficient for
discrete GPUs while inefficient for IGPs.
In this paper, we present our practical approach to this issue, with the help of the StarPU

This work has obtained support from the ANR EXAMAG project and the BPI France HOROCH
project.
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runtime system. StarPU is developed at Inria Bordeaux since 2006. StarPU is a runtime
C library based on the dataflow paradigm. The programmer has to split the computation
workload into abstract computational tasks. Each task processes data buffers that can be
in read (R), write (W) or read/write (RW) mode.
The tasks are then conveniently implemented into codelets. It is possible (and recom-
mended) to write several implementations of the same task into several codelets. For in-
stance, one can imagine writing a standard codelet in C for validation purposes and one or
several optimized OpenCL codelets. The user then submits the tasks in a sequential way to
StarPU. At runtime, StarPU is able to construct a task graph based on buffer dependencies.
The tasks are submitted to the available accelerators, in parallel if the dependencies allow
it. StarPU decides at runtime which version of the codelet (C or OpenCL) is executed.
The scheduler is in charge of the distribution of the tasks over the processing units. Dozens
of schedulers are provided by StarPU and it is possible to create a custom scheduler to
plug it inside StarPU. Some schedulers take into account data locality or use performance
models by measuring the efficiency of the different codelets’ implementations in order to
choose the best one. In addition, StarPU automatically handles data transfers between the
accelerators: when a task is assigned to a processing unit, StarPU moves the data that are
not already on the processing unit’s memory and it can also evict old data if the available
space is not enough.
With StarPU, implementing a complex dataflow of OpenCL kernels becomes easier. Indeed,
the programmer does not have to handle the kernel dependencies with OpenCL events. In
addition, it is possible to first write a well validated pure C version of the software, with
only C codelets. Then, one can enrich the tasks with OpenCL codelets, which allows an
incremental optimization of the code. At each stage, StarPU should be able to use the
available codelets in an efficient way.
In this paper, we describe how we applied the StarPU philosophy in order to optimize
a discontinuous finite element solver for conservation laws. A similar experience is also
presented for instance in [5]. The outlines are as follows: first we will present in its main
lines the Discontinuous Galerkin (DG) scheme that is used in the solver. Then, after a short
presentation of StarPU, we will explain how we have integrated the OpenCL optimizations
into the DG solver. Finally, we will present some numerical experiments.

2 Discontinuous Galerkin method

The Discontinuous Galerkin (DG) method is a general finite element method for approxi-
mating systems of conservation laws of the form

∂tw +

D∑
k=1

∂kf
k(w) = 0.
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The unknown is the vector of conservative variables w(x, t) ∈ Rm depending on the space
variable x = (x1, . . . , xD) ∈ RD and on time t. In this paper, the space dimension is D = 3.
The flux components fk, k = 1 . . . D, are smooth functions from Rm to Rm.We adopt the
notations ∂t for the partial derivative with respect to t and ∂k for the partial derivative with
respect to xk. Let n = (n1, . . . , nD) ∈ RD be a spatial direction. The flux f is a smooth
function from Rm × RD to Rm,defined by

f(w,n) =
D∑
k=1

nkf
k(w).

For instance, in this work we consider the numerical simulation of an electromagnetic wave.
In this particular case, the conservative variables are

w = (ET,HT, λ, µ)T ∈ Rm, m = 8,

where E ∈ R3 is the electric field, H ∈ R3 is the magnetic field and λ, µ are divergence
cleaning potentials ([16]). The flux is given by

f(w,n) =


−n×H + λn
n×E + µn
cn ·E
cn ·H


and c > 1 is the divergence cleaning parameter.
The computational domain Ω is an open set of RD.We consider a meshM of Ω made of Nc

open sets, called cells,M = {Li, i = 1 . . . Nc}. In the most general setting, the cells satisfy

1. Li ∩ Lj = ∅, if i 6= j;

2. ∪iLi = Ω.

In each cell L ∈ M, we consider a basis of Nd functions (ϕL,i(x))i=0...Nd−1. The basis
functions are constructed by tensor products of polynomials of order d. Therefore Nd =
(d + 1)D. We denote by h the maximal diameter of the cells. We assume that the local
approximation wL of w in cell L is given by

wL(x, t) =

Nd−1∑
j=0

wL,j(t)ϕL,j(x), x ∈ L.

The DG formulation then reads: find wL,j such that for all cell L and all test function ϕL,i∫
L
∂twLϕL,i −

∫
L
f(wL,∇ϕL,i) +

∫
∂L

f(wL,wR,n)ϕL,i = 0. (2.1)

In this formula (see Figure 2.1):
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nLR

∂L ∩ ∂R

L

R

Figure 2.1: Convention for the L and R cells orientation.

• R denotes the neighboring cell to L along its boundary ∂L∩ ∂R, or the exterior of Ω
on ∂L ∩ ∂Ω.

• n = nLR is the unit normal vector on ∂L oriented from L to R.

• wR denotes the value of w in the neighboring cell R on ∂L ∩ ∂R.

• If L is a boundary cell, one may have to use the boundary values instead: wR = wb

on ∂L ∩ ∂Ω.

• f(wL,wR,n) is the standard upwind numerical flux encountered in many finite volume
or DG methods.

In our application, we consider hexahedral cells. We have a reference cell

L̂ =]− 1, 1[D

and a smooth transformation x = τL(x̂), x̂ ∈ L̂, that maps L̂ on L

τL(L̂) = L.

We assume that τL is invertible and we denote by τ ′L its (invertible) Jacobian matrix. We
also assume that τL is a direct transformation

det τ ′L > 0.

In our implementation, τL is a quadratic map based on hexahedral curved “H20” finite
elements with 20 nodes. The mesh of H20 finite elements is generated by gmsh ([6]).
On the reference cell, we consider the Gauss-Lobatto points (x̂i)i=0...Nd−1, Nd = (d + 1)D

and associated weights (ω̂i)i=0...Nd−1. They are obtained by tensor products of the (d+ 1)
one-dimensional Gauss-Lobatto (GL) points on ] − 1, 1[. The reference GL points and
weights are then mapped to the physical GL points of cell L by

xL,i = τL(x̂i), ωL,i = ω̂i det τ ′L(x̂i) > 0. (2.2)

International Journal on Finite Volumes 5
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In addition, the six faces of the reference hexahedral cell are denoted by Fε, ε = 1 . . . 6 and
the corresponding outward normal vectors are denoted by n̂ε. One advantage of choosing
the GL points is that the cells and the faces share the same quadrature points. We use the
following notations to define the face quadrature weights:

• if a GL point x̂i ∈ Fε, we denote by µεi the corresponding quadrature weight on face
Fε;

• we also use the convention that µεi = 0 if x̂i does not belong to face Fε.

Let us remark that a given GL point x̂i can belong to several faces when it is on an edge
or in a corner of L̂. Because of symmetry, we observe that if µεi 6= 0, then the weight µεi
does not depend on ε.
We then consider basis functions ϕ̂i on the reference cell: they are the Lagrange polynomials
associated to the Gauss-Lobatto points and thus satisfy the interpolation property

ϕ̂i(x̂j) = δij .

The basis functions on cell L are then defined according to the formula

ϕL,i(x) = ϕ̂i(τ
−1
L (x)).

In this way, they also satisfy the interpolation property

ϕL,i(xL,j) = δij . (2.3)

In this paper, we only consider conformal meshes: the GL points on cell L are supposed to
match the GL points of cell R on their common face. Dealing with non-matching cells is
the object of a forthcoming work. Let L and R be two neighboring cells. Let xL,j be a GL
point in cell L that is also on the common face between L and R. In the case of conformal
meshes, it is possible to define the index j′ such that

xL,j = xR,j′ .

Applying a numerical integration to (2.1), using (2.2) and the interpolation property (2.3),
we finally obtain

∂twL,iωL,i −
Nd−1∑
j=0

f(wL,j ,∇ϕL,i(xL,j))ωL,j +
6∑
ε=1

µεif(wL,i,wR,i′ ,nε(xL,i)) = 0. (2.4)

We have to detail how the gradients and normal vectors are computed in the above formula.
Let A be a square matrix. We recall that the cofactor matrix of A is defined by

co(A) = det(A)
(
A−1

)T
. (2.5)
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The gradient of the basis function is computed from the gradients on the reference cell using
(2.5)

∇ϕL,i(xL,j) =
1

det τ ′L(x̂j)
co(τ ′L(x̂j))∇̂ϕ̂i(x̂j).

In the same way, the scaled normal vectors nε on the faces are computed by the formula

nε(xL,i) = co(τ ′L(x̂i))n̂ε.

We introduce the following notation for the cofactor matrix

cL,i = co(τ ′L(x̂i)).

The DG scheme then reads

∂twL,i −
1

ωL,i

Nd−1∑
j=0

f(wL,j , cL,j∇̂ϕ̂i(x̂j))ω̂j +
1

ωL,i

6∑
ε=1

µεif
(
wL,i,wR,i′ , cL,in̂ε

)
= 0. (2.6)

Remark 1 We observe that in our presentation, we have not used at any time the linear-
ity of the Maxwell flux. This means that the same method could be used for non-linear
conservation laws. However, for non-linear equations it is necessary to supplement (2.6)
with a limiting strategy in order to avoid nonphysical oscillations (see for instance [7] and
included references).

Remark 2 Formulation (2.6) is an approximation of (2.1) because of numerical integration
by the Gauss-Lobato method. Gauss-Lobato integration can generate inaccuracies, known
in the literature as “aliasing” effects [11, 18]. It is possible to improve precision with a
slight modification of the DG method [18]. In this paper we have not yet implemented this
modification, because we mainly address performance issues. But it is an objective for us
in the future.

In formula (2.6) we identify volume terms that are associated to Gauss-Lobatto points in
the volume

Vi,j = f(wL,j , cL,j∇̂ϕ̂i(x̂j))ω̂j (2.7)

and surface terms that are associated to cell boundaries

Sεi,i′ = µεif
(
wL,i,wR,i′ , cL,in̂ε

)
. (2.8)

Then, once these terms have been accumulated, one has to apply the inverse of the mass
matrix. Here, this matrix is diagonal and it corresponds to a simple multiplication of∑

ε S
ε
i,i′ +

∑
j Vi,j by

1

ωL,i
. (2.9)
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Generally, i and i′ are associated to unknowns of internal cells, i.e. cells that do not touch
the boundaries. On boundary GL points, the value of wR,i′ is given by the boundary
condition

wR,i′ = wb(xL,i, t), xL,i = xR,i′ .

For practical reasons, it can be interesting to also consider wR,i′ as an artificial unknown
in a fictitious cell. The fictitious unknown is then a solution of the differential equation

∂twR,i′ = ∂twb(xL,i, ·). (2.10)

In the end, if we put all the unknowns in a large vector W(t), (2.6) and (2.10) read as a
large system of coupled differential equations

∂tW = F(W). (2.11)

This set of differential equations is then numerically solved by a Runge-Kutta numerical
method. In practice, we use a second order Runge-Kutta method (RK2).

3 Data-based parallelism and StarPU

3.1 StarPU philosophy

StarPU is a runtime system library developed at Inria Bordeaux ([2, 1]). It relies on
the data-based parallelism paradigm. The user has first to split its whole problem into
elementary computational tasks. The elementary tasks are then implemented into codelets,
which are simple C functions. The same task can be implemented differently into several
codelets. This allows the user to harness special accelerators, such as vectorial CPU cores or
OpenCL devices, for example. In the StarPU terminology these devices are called workers.
If a codelet contains OpenCL kernel submissions, special utilities are available in order to
map the StarPU buffers to OpenCL buffers.
For each task, the user also has to describe precisely what are the input data, in read
mode, and the output data, in write or read/write mode. The user then submits the task
in a sequential way to the StarPU system. StarPU is able to construct at runtime a task
graph from the data dependencies. The task graph is analyzed and the tasks are scheduled
automatically to the available workers (a worker could be a single CPU core, a GPUs, etc.).
If possible, they are executed in parallel into concurrent threads. The data transfer tasks
between the threads are automatically generated and managed by StarPU. OpenCL data
transfers are also managed by StarPU.
When a StarPU program is executed, it is possible to choose among several schedulers. The
simplest eager scheduler adopts a very simple strategy: the tasks are executed in the order
of submission by the free workers, without optimization. More sophisticated schedulers,
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such as the dmda or dmdar scheduler, are able to measure the efficiency of the different
codelets and the data transfer times, in order to apply a more efficient allocation of tasks.
Recently a new data access mode has been added to StarPU: the commutemode. In a task, a
buffer of data can now be accessed in commutemode, in addition to the write or read/write
modes. A commute access tells to StarPU that the execution of the corresponding task may
be executed before or after other tasks containing commutative access. This can drastically
increase the degree of parallelism as StarPU is able to change the order of the tasks that
access the same data in commute mode.
There also exists a MPI version of StarPU, which allows to address clusters of hybrid nodes.
The MPI version of StarPU is not used in this work.

3.2 Macrocell approach

StarPU is quite efficient, but there is an unavoidable overhead due to the task submissions
and to the on-the-fly construction and analysis of the task graph. Therefore it is important
to ensure that the computational tasks are not too small, in which case the overhead would
not be amortized, or not too big, in which case some workers would be idle. To achieve the
right balance, we decided not to apply the DG algorithm at the cell level but to groups of
cells instead.
The implementation of the DG scheme has been made into the schnaps software, which
is a C99 software dedicated to the numerical simulation of conservation laws. In schnaps,
we first construct a macromesh of the computational domain. Then each macrocell of the
macromesh is split into subcells. See Figure 3.1. We also arrange the subcells into a regular
sub-mesh of the macrocells. In this way, it is possible to apply additional optimizations. For
instance, the subcells L of a same macrocell L share the same geometrical transformation
τL, which saves memory access.
In schnaps we also defined an interface structure in order to manage data communications
between the macrocells. An interface contains a copy of the data at the Gauss-Lobatto
points that are common to the two neighboring macrocells.
To solve one time step of the DG method, here are the most important tasks:

1. Interface_extraction: this task simply extracts the values of w coming from the
neighboring macrocells to the interface. In this task, the macrocell buffers are accessed
in read mode and the interface data in write mode. Of course, if the interface is a
boundary interface, only one side is extracted.

2. Interface_fluxes: this task only computes the numerical fluxes (2.8) that are lo-
cated at the Gauss-Lobatto points on the interface. The fluxes are then applied to

Solveur Conservatif Hyperbolique Non-linéaire Appliqué aux PlaSmas: https://gitlab.inria.fr/
bramas/schnaps
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Figure 3.1: Macrocell approach: an example of a mesh made of five macrocells. Each
macrocell is then split into several subcells. Only the subcells of the top macrocell are
represented here (in green).

the neighboring macrocells. In this task, the interface data are accessed in read
mode and the macrocell data in read/write mode. For a better efficiency, we also
assume a commute access to the macrocell data. In this way the interface fluxes can
be assembled in any order, which can help the StarPU scheduling.

3. Interface_boundary_fluxes: this task computes the boundary data and only nu-
merical fluxes (2.8) that are located at the boundary interface. The fluxes are applied
to the neighboring macrocell. In this task, the interface data are accessed in read
mode and the macrocell data in read/write and commute mode.

4. Volume_terms: this task applies the volumic terms (2.7) in a given macrocell. The
macrocell data are accessed in read/write/commute mode.

5. Subcell_fluxes: this task applies the numerical subcell fluxes (2.8) that are internal
to a given macrocell. The macrocell data are accessed in read/write/commute mode.

6. Mass_matrix: this task apply the inverse of the diagonal mass matrix. The macrocell
data are accessed in read/write mode.

Additional simple tasks are needed to apply the Runge-Kutta algorithm. We do not describe
them.
The general sequential DG algorithm is then given in Algorithm 1. Thanks to StarPU, this
algorithm can be submitted in a sequential way. StarPU then uses the data dependency
in order to distribute the tasks in parallel on the available workers. The wait for task
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completion is done at the end of the algorithm and not inside each iteration. This is not an
essential point for performance but we have observed in some cases a 15% gain compared
to an algorithm with a synchronization point at the end of each time iteration. Let us
also observe that this synchronization strategy assumes that the time step is known at
the beginning of the computations. This is not always possible especially when solving
non-linear systems.

Algorithm 1: Sequential DG algorithm. The parallelism is automatically detected by
StarPU, thanks to the data dependency.

1 forall interfaces do
// task (1)

2 Extract interface (copy the data from the neighboring macrocells to the interface);
3 if the interface is a boundary interface then

// task (3)
4 compute the boundary fluxes (Equation 2.8) and apply them to the neighboring

macrocell;
5 else

// task (2)
6 the interface is an internal one. Compute the numerical fluxes (Equation 2.8)

and apply them to the two neighboring macrocells;
7 end
8 end
9 foreach macrocell do

// task (5)
10 Compute and apply the numerical fluxes (Equation 2.8) between the subcells ;

// task (4)
11 Compute the volume terms (Equation 2.7) inside the subcells;

// task(6)
12 Apply the inverse of the mass matrix (Equation 2.9) inside the subcells ;
13 end

In the next section we give more details about the implementation of the OpenCL codelets.

4 Hybrid C/OpenCL codelets

In order to attain better performance, we programmed an OpenCL version of the previously
described codelets. The CPU workers will continue to use the kernels implemented in C,
while the GPU workers will use the ones in OpenCL. When computing on GPUs, it is
generally advised to care about memory access in order to improve coalescence [8]. The

International Journal on Finite Volumes 11
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values of w at the Gauss-Lobatto points are stored into what we call a field structure. A
field is attached to a macrocell. A given component of w in a field is located thanks to its
subcell index ic, a Gauss-Lobatto index ig in the cell, and a component index iw. If the
macrocell is cut into nr subcells in each direction, if the polynomial order is d and for a
system of m conservation laws, these indices have the following bounds

0 ≤ ic < n3r , 0 ≤ ig < (d+ 1)3, 0 ≤ iw < m.

The values of w in a given field are stored into a memory buffer wbuf. In order to
test several memory arrangements, the index in the buffer is computed by a function
varindex(ic,ig,iw) that we can easily change. For instance, we can consider the fol-
lowing formula, in which the electromagnetic components at a given Gauss-Lobatto point
are grouped in memory

varindex(ic, ig, iw) = iw+m∗(ig+(d+ 1)3∗ic), (4.1)

or this formula
varindex(ic, ig, iw) = ig+(d+ 1)3∗(iw+m∗ic), (4.2)

in which the electromagnetic components are separated in memory. A few years ago, we
could observe large differences in performance between the two strategies. Here, we have
not observed significant differences, maybe because the cache memory of the GPUs used in
this work (NVIDIA GTX 1050 or NVIDIA P100) is now larger.
We have programmed an OpenCL codelet for each task described in Section 3.2. The most
time-consuming kernels are: (i) the kernel associated to the computations of the volume
terms (2.7) inside the macrocells, volume kernel, and (ii) the kernel that computes the
subcell fluxes, the surface kernel. Boundary and interface terms generally involve fewer
computations.
A natural distribution of the workload is to associate one subcell to each OpenCL work-
group and the computations at a Gauss point to a work-item. With this natural distribution,
formula (4.2) ensures optimal coalescent memory access in the volume kernel, but the access
is no more optimal in the surface kernel, because neighboring Gauss points on the subcell
interfaces are not necessarily close in memory. Therefore, we prefer considering formula
(4.1).

5 Numerical results

In this section, we present some practical experiments that we realized with schnaps. The
first experiment deals with the efficiency of the StarPU C99 codelets on a multicore CPU.
The second experiment deals with the efficiency of the OpenCL codelets. Then we test the
code in a CPU/GPU configuration.

International Journal on Finite Volumes 12
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Figure 5.1: Numerical convergence rates for the DG method with Gauss-Lobato numerical
integration. Plane wave case in a cube.

We approximate by the DG algorithm an exact plane wave solution of the Maxwell equations

E = c

 −vu
0

 , H = c

 0
0
1

 , λ = 0, µ = 0.

with c = − cos(π/2(ux1 + vx2 − t)) and (u, v) = (cos(π/4), sin(π/4)).

For validation purpose, we have first checked the numerical order of the method. For this,
we consider a cubic domain

Ω =]0, 1[3.

We apply the exact solution at the boundary ∂Ω and in Ω at the initial time t = 0.
We perform numerical simulations for a given final time T . We vary the order d of the
polynomial in the DG method and the mesh refinement. We compare the error of the
method in the discrete L2 norm (computed with Gauss-Lobato numerical integration) at
that final time t = T. In a log scale, we obtain the curves of Figure 5.1. As other authors
(see, for instance, [12, 13]), we observe that the order of convergence is between d and d+1.
With Gauss-Legendre numerical integration we would have obtained more precise results
[15].
We consider the propagation of the previous electromagnetic plane wave into a torus-shaped
domain Ω represented on Figure 5.2. In the DG solver, we consider only third order
polynomials: d = 3. The domain is split into M = 400 macrocells. The macrocells
are split into nr subcells in each direction. The number of degrees of freedom is thus

nd.o.f. = Mm(d+ 1)3n3r , M = 400, m = 8, d = 3.

StarPU will have to take decisions on how to distribute efficiently the tasks on the available
accelerators. We have performed our experiments on two different computers. The first

International Journal on Finite Volumes 13



DG solver with StarPU

config. CPU # cores mem. CPU GPU mem. GPU
“PC” AMD FX-8320E 3.2 GHz 8 8 GB NVIDIA GTX 1050 Ti 4 GB
“WS” Intel Xeon E5-2683 v4 2.1GHz 2×16 256 GB NVIDIA P100 16 GB

Table 1: Configurations of the computers used for the tests.

nr ncpu Time (s) Ideal time Efficiency
4 2 704 704 1
4 4 365 352 0.96
4 7 209 201 0.96
6 7 689 679 0.99
8 4 2902 2816 0.97
8 7 1650 1609 0.98

Table 2: Efficiency (with two threads as reference) of the CPU codelets for the “PC”
configuration with the dmdar scheduler.

configuration “PC” correspond to a standard desktop personal computer. The second con-
figuration “WS” is made of a more powerful two-CPU workstation. The technical details
are listed in Table 1.

5.1 Multicore CPU tests

In the first test, we only activate the C99 codelets, and thus the GPU is not activated. We
also vary the number of computing CPU cores from 2 to 7 for the “PC” configuration and
from 2 to 31 for the “WS” configuration. One CPU core is anyway reserved for the main
StarPU thread.
We perform a fixed number of nt iterations of the RK2 algorithm. We assume that the
number of elementary computing operations increases as O(n3r). Ideally, with infinitely fast
operations at interfaces, and with ncpuidentical CPU cores, the computations time would
behave like

T ∼ Cnt
n3r
ncpu

(5.1)

where C is fixed constant, depending on the hardware. In our benchmark the efficiency is
the ratio of the measured execution time over this ideal time. Normally it should be smaller
than one (because of communications). If it is close to one, the algorithm is very efficient.
In Table 2 and 3, we observe an excellent efficiency of the StarPU task distribution on the
CPU cores even on a NUMA (Non Uniform Memory Access) computer with two CPUs
connected to different memory zones.
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nr ncpu Time (s) Ideal time Efficiency
4 1 646 646 1
4 2 331 323 0.97
4 4 183.4 161.5 0.88
4 8 95.1 80.7 0.85
4 16 48 40.3 0.84
4 30 26 21.5 0.82
6 1 2172.1 2172.1 1
6 2 1106.7 1086 0.98
6 4 612.2 543 0.88
6 8 317 271.5 0.85
6 16 159 135.8 0.85
6 30 85.2 72.4 0.84
8 1 5139.4 5139.4 1
8 2 2613 2569.7 0.98
8 4 1446.6 1284.9 0.88
8 8 749.1 642.4 0.85
8 16 375.2 321.2 0.85
8 30 200.6 171.3 0.85

Table 3: Efficiency of the CPU codelets for the “WS” configuration with the laheteroprio
scheduler.
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nr config. CPU GPU 2xGPU CPU/
GPU

CPU/
2xGPU

CPU+
GPU

CPU+
2xGPU

CPU/
CPU+GPU

CPU/
CPU+2xGPU

4 PC 209 s 73 s - 2.86 - 32 s - 6.53 -
6 PC 689 s 86 s - 8.01 - 64 s - 10.77 -
8 PC 1650 s 171 s - 9.65 - 130 s - 12.69 -
4 WS 26 s 23.2 s 18.1 s 1.12 1.43 10.7 s 8.9 s 2.4 2.9
6 WS 85.2 s 26.1 s 20.3 s 3.2 4.19 16.7 s 11 s 5.1 7.8
8 WS 200.6

s
29.8 s 24.3 s 6.7 8.23 29.8 s 18.1 s 6.7 11

Table 4: Efficiency of the CPU/GPU implementation. All timings are given in seconds. All
ratio are dimensionless. This table shows that StarPU is always able to harness an increase
of hybrid computing capacities.

5.2 OpenCL codelets

In this section, we compare the efficiency of the CPU/C99 and GPU/OpenCL codelets on
the two configurations “PC” and “WS”. We first perform a CPU-only computation with all
the cores activated (7 for the “PC” platform and 31 for the “WS” platform) and a GPU-only
computation. The results are given in Table 4. We observe that the OpenCL codelets are
faster than the CPU codelets. The highest efficiency is achieved for the finer meshes (nr = 8
tCPU+2xGPU).

5.3 Hybrid CPU/GPU computations

Now that we are equipped with verified OpenCL codelets we can try to run the code
with StarPU in order to see if it is able to distribute the tasks efficiently on the available
accelerators.
One difficulty is to manage the data transfers efficiently between the accelerators. Several
scheduling strategies are available in StarPU. With the eager scheduler, the tasks are
distributed in the order of submission to the inactive device, without taking into account
the cost of memory transfers. This strategy is obviously not optimal.
It is better to choose another scheduler. For the “PC” configuration, we use the dmda
scheduler provided by StarPU and we use the LAHeteroprio scheduler ([3]) for the “WS”
configuration. With the LAHeteroprio scheduler, the different types of tasks are grouped
into buckets and the processing unit pick tasks following an order based on their type,
which is CPU or GPU in our case, and the location of the data. The idea is to reduce
the memory transfer and to promote the consumption of the tasks by the processing units
that are more efficient. Therefore, we configure LAHeteroprio by sorting the different
operations by arithmetic cost and we specify that the CPU workers should follow this
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Figure 5.2: Computational domain Ω. Only the macrocells of the mesh are visible. The
represented mesh contains 240 macrocells (poloidal refinement set to npol = 3 and toroidal
refinement set to ntor = 3. In the numerical experiments, we take npol = 3 and ntor = 5,
which leads to a mesh of 400 macrocells). Each macrocell is then cut regularly into the
three directions.

order, while the GPU workers do the opposite: the GPU workers first try to pick tasks with
high workloads. Additionally, we ensure that GPU workers privilegiate data locality over
priorities. Therefore, the distribution of the tasks on the available CPU cores and GPU is
done dynamically by the scheduler.
The results are given in the last two columns of Table 4. We observe that in most situations,
StarPU is able to get an additional gain from the CPU cores, even if the GPU codelets
are faster. The fact that for nr = 8 we have the same execution time with one CPU and
one GPU(tCPU+GPU), or with only one GPU (tGPU) is an illustration of the cost of moving
data. More precisely, consider an execution where all the tasks are on the GPU. Using the
CPU would mean moving data on it, way and back, and thus can imply an overhead, even
if the CPU could be faster for some tasks.

6 Conclusion

We have proposed an optimized implementation of the Discontinuous Galerkin method
on hybrid computer made of several GPUs and multicore CPUs. In order to manage the
heterogeneous architecture easily and efficiently, we rely on OpenCL for the GPU computa-
tions and on the StarPU runtime for distributing the computational tasks on the available
devices.
OpenCL programming becomes much easier because the task dependency is computed by
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StarPU. We only had to concentrate on the optimization of the individual OpenCL kernels
and not on data distribution or memory transfers. We first tested the efficiency of our
OpenCL kernels. We verified that the macrocell approach and cache prefetching strategy,
while not optimal, give good results.
In addition, with a good choice of scheduler, and for heavy computations, we have shown
that StarPU is able to overlap computations and memory transfer in a quite efficient way.
It is also able to use the available CPU codelets to achieve even higher acceleration.
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