
HAL Id: hal-01942863
https://hal.science/hal-01942863v1

Preprint submitted on 3 Dec 2018 (v1), last revised 23 Jan 2020 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimization of a discontinuous finite element solver
with OpenCL and StarPU

Philippe Helluy, Laura Mendoza, Bruno Weber

To cite this version:
Philippe Helluy, Laura Mendoza, Bruno Weber. Optimization of a discontinuous finite element solver
with OpenCL and StarPU. 2018. �hal-01942863v1�

https://hal.science/hal-01942863v1
https://hal.archives-ouvertes.fr


OPTIMIZATION OF A DISCONTINUOUS FINITE ELEMENT SOLVER WITH
OPENCL AND STARPU

PHILIPPE HELLUY, LAURA MENDOZA, BRUNO WEBER

Abstract. schnaps is a finite element solver designed to simulate various physical phenomena.
It is designed to run on hybrid computers made of several CPUs and GPUs. In order to address
the hybrid architectures we rely on the StarPU runtime. StarPU allows to optimize in an incre-
mental way a sequential algorithm in order to migrate to multicore parallelism and then to hybrid
computing with OpenCL accelerators. StarPU proposes several task scheduling strategies in or-
der to efficiently exploit the available computing power. We present the design of schnaps and
the performance gain that we have obtained in electromagnetic simulations thanks to OpenCL
codelets.

1. Introduction

The development of engineering simulation software is difficult. On the one hand, the user is inter-
ested in handling more and more complex physical phenomena, in devices with arbitrary geometries.
These constraints require to adopt a generic and abstract software engineering approach in order
to ensure the generality of the code. On the other hand, the user also wants to harness the full
computational power of his hybrid computer. This requirement generally imposes to use low level
hardware optimization hacks that are not always compatible with a generic and elegant approach.
In addition, as the hardware evolves, optimizations of yesterday are not necessarily relevant for the
devices of tomorrow...
OpenCL is a nice software environment for optimization purposes. It presents the good balance
between an abstract view of the computing devices and some important hardware aspects, such as
local memory for accelerating data transfers or subgroups for minimizing synchronization barriers.
However depending on architecture, optimizations written for one accelerator may be completely
irrelevant for another one. This is especially true with local memory optimizations. For instance,
cache prefetching is generally efficient for discrete GPUs while inefficient for IGPs.
In this paper, we present our practical approach to this issue, with the help of the StarPU runtime
system. StarPU is developed at Inria Bordeaux since 20061. StarPU is a runtime C library based
on the dataflow paradigm. The programmer has to split the computation workload into abstract
computational tasks. Each task processes data buffers that can be in read (R), write (W) or
read/write (RW) mode.
The tasks are then conveniently implemented into C codelets. It is possible (and recommended) to
write several implementations of the same task into several codelets. For instance, one can imagine
to write an unoptimized codelet for validation purposes and one or several optimized OpenCL
codelets. The user then submits his tasks in a sequential way to StarPU. At runtime, StarPU is able

This work has obtained support from the ANR EXAMAG project and the BPI France HOROCH project.
1We are not involved in the creation and development of StarPU, but only users.

1



OPTIMIZATION OF A DISCONTINUOUS FINITE ELEMENT SOLVER WITH OPENCL AND STARPU 2

to construct a task graph based on buffer dependencies. The tasks are submitted to the available
accelerators, in parallel if the dependencies allow it. In addition, StarPU automatically handles
data transfers between the accelerators. It is also able to measure the efficiency of the different
codelets’ implementations in order to choose the best, according to the scheduling strategy.
With StarPU, implementing a complex dataflow of OpenCL kernels becomes easier. Indeed, the
programmer does not have to handle the kernel dependencies with OpenCL events. In addition, it
is possible to first write a well validated pure C version of the software, with only C codelets. Then,
one can enrich the tasks with OpenCL codelets, which allows an incremental optimization of the
code. At each stage, StarPU should be able to use the available codelets in an efficient way.
In this paper, we describe how we applied the StarPU philosophy in order to optimize a discontin-
uous finite element solver for conservation laws. The outlines are as follows: first we will present
in its main lines the Discontinuous Galerkin (DG) scheme that is used in the solver. Then, after a
short presentation of StarPU, we will explain how we have integrated the OpenCL optimizations
into the DG solver. Finally, we will present some numerical experiments.

2. Discontinuous Galerkin method

The Discontinuous Galerkin (DG) method is a general finite element method for approximating
systems of conservation laws of the form

∂tw +

D∑
k=1

∂kf
k(w) = 0.

The unknown is the vector of conservative variables w(x, t) ∈ Rm depending on the space variable
x = (x1, . . . , xD) ∈ RD and on time t. In this paper, the space dimension is D = 3. We adopt
the notations ∂t for the partial derivative with respect to t and ∂k for the partial derivative with
respect to xk. Let n = (n1, . . . , nD) ∈ RD be a spatial direction, the flux in direction n is defined
by

f(w,n) =

D∑
k=1

nkf
k(w).

For instance, in this work we consider the numerical simulation of an electromagnetic wave. In this
particular case, the conservative variables are

w = (ET,HT, λ, µ)T ∈ Rm, m = 8.

where E ∈ R3 is the electric field, H ∈ R3 is the magnetic field and λ, µ are divergence cleaning
potentials (Munz et al. [2000]). The flux is given by

f(w,n) =


−n×H + λn
n×E + µn
cn ·E
cn ·H


and c > 1 is the divergence cleaning parameter.
We consider a mesh M of Ω made of open sets, called cells, M = {Li, i = 1 . . . Nc}. In the most
general setting, the cells satisfy

(1) Li ∩ Lj = ∅, if i 6= j;
(2) ∪iLi = Ω.



OPTIMIZATION OF A DISCONTINUOUS FINITE ELEMENT SOLVER WITH OPENCL AND STARPU 3

nLR

∂L ∩ ∂R

L

R

Figure 2.1. Convention for the L and R cells orientation.

In each cell L ∈ M, we consider a basis of functions (ϕL,i(x))i=0...Nd−1 constructed from polyno-
mials of order d. We denote by h the maximal diameter of the cells. With an abuse of notation we
still denote by w the approximation of w, defined by

w(x, t) =

Nd−1∑
j=0

wL,j(t)ϕL,j(x), x ∈ L.

The DG formulation then reads: find wL,j such that for all cell L and all test function ϕL,i

(2.1)
∫
L

∂twLϕL,i −
∫
L

f(wL,∇ϕL,i) +

∫
∂L

f(wL,wR,n)ϕL,i = 0.

In this formula (see Figure 2.1):

• R denotes the neighboring cell to L along its boundary ∂L ∩ ∂R, or the exterior of Ω on
∂L ∩ ∂Ω.

• n = nLR is the unit normal vector on ∂L oriented from L to R.
• wR denotes the value of w in the neighboring cell R on ∂L ∩ ∂R.
• If L is a boundary cell, one may have to use the boundary values instead: wR = wb on
∂L ∩ ∂Ω.

• f(wL,wR,n) is the standard upwind numerical flux encountered in many finite volume or
DG methods.

In our application, we consider hexahedral cells. We have a reference cell

L̂ =]− 1, 1[D

and a smooth transformation x = τL(x̂), x̂ ∈ L̂, that maps L̂ on L

τL(L̂) = L.

We assume that τL is invertible and we denote by τ ′L its (invertible) Jacobian matrix. We also
assume that τL is a direct transformation

det τ ′L > 0.

In our implementation, τL is a quadratic map based on hexahedral curved “H20” finite elements
with 20 nodes. The mesh of H20 finite elements is generated by gmsh (Geuzaine and Remacle
[2009]).
On the reference cell, we consider the Gauss-Lobatto points (x̂i)i=0...Nd−1, Nd = (d+1)D and asso-
ciated weights (ωi)i=0...Nd−1. They are obtained by tensor products of the (d+ 1) one-dimensional



OPTIMIZATION OF A DISCONTINUOUS FINITE ELEMENT SOLVER WITH OPENCL AND STARPU 4

Gauss-Lobatto (GL) points on ]− 1, 1[. The reference GL points and weights are then mapped to
the physical GL points of cell L by

(2.2) xL,i = τL(x̂i), ωL,i = ωi det τ ′L(x̂i) > 0.

In addition, the six faces of the reference hexahedral cell are denoted by Fε, ε = 1 . . . 6 and the
corresponding outward normal vectors are denoted by n̂ε. One advantage of choosing the GL points
is that the cells and the faces share the same quadrature points. We use the following notations to
define the face quadrature weights:

• if a GL point x̂i ∈ Fε, we denote by µεi the corresponding quadrature weight on face wε;
• we also use the convention that µεi = 0 if x̂i does not belong to face Fε.

Let us remark that a given GL point x̂i can belong to several faces when it is on an edge or in a
corner of L̂. Because of symmetry, we observe that if µεi 6= 0, then the weight µεi does not depend
on ε.
We then consider basis functions ϕ̂i on the reference cell: they are the Lagrange polynomials
associated to the Gauss-Lobatto points and thus satisfy the interpolation property

ϕ̂i(x̂j) = δij .

The basis functions on cell L are then defined according to the formula

ϕL,i(x) = ϕ̂i(τ
−1
L (x)).

In this way, they also satisfy the interpolation property

(2.3) ϕL,i(xL,j) = δij .

In this paper, we only consider conformal meshes: the GL points on cell L are supposed to match
the GL points of cell R on their common face. Dealing with non-matching cells is the object of a
forthcoming work. Let L and R be two neighboring cells. Let xL,j be a GL point in cell L that is
also on the common face between L and R. In the case of conformal meshes, it is possible to define
the index j′ such that

xL,j = xR,j′ .

Applying a numerical integration to (2.1), using (2.2) and the interpolation property (2.3), we
finally obtain

(2.4) ∂twL,iωL,i −
Nd−1∑
j=0

f(wL,j ,∇ϕL,i(xL,j))ωL,j +

6∑
ε=1

µεif(wL,i,wR,i′ ,nε(xL,i)) = 0.

We have to detail how the gradients and normal vectors are computed in the above formula. Let
A be a square matrix. We recall that the cofactor matrix of A is defined by

(2.5) co(A) = det(A)
(
A−1

)T
.

The gradient of the basis function is computed from the gradients on the reference cell using (2.5)

∇ϕL,i(xL,j) =
1

det τ ′L(x̂j)
co(τ ′L(x̂j))∇̂ϕ̂i(x̂j).

In the same way, the scaled normal vectors nε on the faces are computed by the formula

nε(xL,i) = co(τ ′L(x̂i))n̂ε.



OPTIMIZATION OF A DISCONTINUOUS FINITE ELEMENT SOLVER WITH OPENCL AND STARPU 5

We introduce the following notation for the cofactor matrix

cL,i = co(τ ′L(x̂i)).

The DG scheme then reads

(2.6) ∂twL,i −
1

ωL,i

Nd−1∑
j=0

f(wL,j , cL,j∇̂ϕ̂i(x̂j))ωj +
1

ωL,i

6∑
ε=1

µεif (wL,i,wR,i′ , cL,in̂ε) = 0.

In formula (2.6) we identify volume terms that are associated to Gauss-Lobatto points in the volume

(2.7) Vi,j = f(wL,j , cL,j∇̂ϕ̂i(x̂j))ωj
and surface terms that are associated to cell boundaries

(2.8) Si,i′ = µεif (wL,i,wR,i′ , cL,in̂ε) .

Then, once these terms have been accumulated, one has to apply the inverse of the mass matrix.
Here, this matrix is diagonal and it corresponds to a simple multiplication of ∂twL,i by

(2.9)
1

ωL,i
.

Generally, i and i′ are associated to unknowns of internal cells, i.e. cells that do not touch the
boundaries. On boundary GL points, the value of wR,i′ is given by the boundary condition

wR,i′ = wb(xL,i, t), xL,i = xR,i′ .

For practical reasons, it can be interesting to also consider wR,i′ as an artificial unknown in a
fictitious cell. The fictitious unknown is then a solution of the differential equation

(2.10) ∂twR,i′ = ∂twb(xL,i, ·).
In the end, if we put all the unknowns in a large vector W(t), (2.6) and (2.10) read as a large
system of coupled differential equations

(2.11) ∂tW = F(W).

This set of differential equations is then numerically solved by a Runge-Kutta numerical method.
In practice, we use a second order Runge-Kutta method (RK2).

3. Data-based parallelism and StarPU

StarPU is a runtime system library developed at Inria Bordeaux (Augonnet et al. [2011, 2012]). It
relies on the data-based parallelism paradigm. The user has first to split its whole problem into
elementary computational tasks. The elementary tasks are then implemented into codelets, which
are simple C functions. The same task can be implemented differently into several codelets. This
allows the user to harness special accelerators, such as vectorial CPU cores or OpenCL devices, for
example. In the StarPU terminology these devices are called workers. If a codelet contains OpenCL
kernel submissions, special utilities are available in order to map the StarPU buffers to OpenCL
buffers.
For each task, the user also has to describe precisely what are the input data, in read mode, and
the output data, in write or read/write mode. The user then submits the task in a sequential
way to the StarPU system. StarPU is able to construct at runtime a task graph from the data
dependencies. The task graph is analyzed and the tasks are scheduled automatically to the available
workers (CPU cores, GPUs, etc.). If possible, they are executed in parallel into concurrent threads.



OPTIMIZATION OF A DISCONTINUOUS FINITE ELEMENT SOLVER WITH OPENCL AND STARPU 6

The data transfer tasks between the threads are automatically generated and managed by StarPU.
OpenCL data transfers are also managed by StarPU.
When a StarPU program is executed, it is possible to choose among several schedulers. The simplest
eager scheduler adopts a very simple strategy: the tasks are executed in the order of submission by
the free workers, without optimization. More sophisticated schedulers, such as the dmda or dmdar
scheduler, are able to measure the efficiency of the different codelets and the data transfer times,
in order to apply a more efficient allocation of tasks.
Recently a new data access mode has been added to StarPU: the commute mode. In a task, a
buffer of data can now be accessed in commute mode, in addition to the write or read/write
modes. A commute access tells to StarPU that the execution of the corresponding task may be
executed before or after other tasks containing commutative access. This allows StarPU to perform
additional optimizations.
There also exists a MPI version of StarPU. In the MPI version, the user has to decide an initial
distribution of data among the MPI nodes. Then the tasks are submitted as usual (using the
function starpu_mpi_insert_task instead of starpu_insert_task). Required MPI communications
are automatically generated by StarPU. For the moment, this approach does not guarantee a good
load balancing. It is the responsibility of the user to migrate data from one MPI node to another
to improve the load balancing, if necessary. The MPI version of StarPU is not tested in this work.

3.1. Macrocell approach. StarPU is quite efficient, but there is an unavoidable overhead due to
the task submissions and to the on-the-fly construction and analysis of the task graph. Therefore it
is important to ensure that the computational tasks are not too small, in which case the overhead
would not be amortized, or not too big, in which case some workers would be idle. To achieve the
right balance, we decided not to apply the DG algorithm at the cell level but to groups of cells
instead.
The implementation of the DG scheme has been made into the schnaps software2 which is a C99
software dedicated to the numerical simulation of conservation laws. In schnaps, we first construct
a macromesh of the computational domain. Then each macrocell of the macromesh is split into
subcells. See Figure 3.1. We also arrange the subcells into a regular sub-mesh of the macrocells.
In this way, it is possible to apply additional optimizations. For instance, the subcells L of a same
macrocell L share the same geometrical transformation τL, which saves memory access.
In schnaps we also defined an interface structure in order to manage data communications between
the macrocells. An interface contains a copy of the data at the Gauss-Lobatto points that are
common to the two neighboring macrocells.
To solve one time step of the DG method, here are the most important tasks:

(1) Interface extraction: this task simply extracts the values of w coming from the neighboring
macrocells to the interface. In this task, the macrocell buffers are accessed in read mode
and the interface data in write mode.

(2) Interface fluxes: this task only computes the numerical fluxes (2.8) that are located at
the Gauss-Lobatto points on the interface. The fluxes are then applied to the neighboring
macrocells. In this task, the interface data are accessed in read mode and the macrocell
data in read/write mode. For a better efficiency, we also assume a commute access to the

2http://schnaps.gforge.inria.fr/



OPTIMIZATION OF A DISCONTINUOUS FINITE ELEMENT SOLVER WITH OPENCL AND STARPU 7

Figure 3.1. Macrocell approach: an example of a mesh made of five macrocells.
Each macrocell is then split into several subcells. Only the subcells of the top
macrocell are represented here (in green).

Algorithm 1 DG algorithm
for all interface:

Extract interface (copy the data from the neighboring macrocells to the interface)
If the interface is a boundary interface, compute the boundary fluxes (2.8) and apply them to the

neighboring macrocell
Else the interface is an internal one. Compute the numerical fluxes (2.8) and apply them to the

two neighboring macrocells
End for

Then, for each macrocell:
Compute and apply the numerical fluxes (2.8) between the subcells

Compute the volume terms (2.7) inside the subcells
Apply the inverse of the mass matrix (2.9) inside the subcells

End for

macrocell data. In this way the interface fluxes can be assembled in any order, which can
help the StarPU scheduling.

(3) Interface boundary fluxes: this task computes the boundary data and only numerical fluxes
(2.8) that are located at the boundary interface. The fluxes are applied to the neighboring
macrocell. In this task, the interface data are accessed in read mode and the macrocell
data in read/write and commute mode.

(4) Volume terms: this task applies the volumic terms (2.7) in a given macrocell. The macrocell
data are accessed in read/write/commute mode.

(5) Subcell fluxes: this task applies the numerical subcell fluxes (2.8) that are internal to a
given macrocell. The macrocell data are accessed in read/write/commute mode.

Additional simple tasks are needed to apply the Runge-Kutta algorithm. We do not describe them.



OPTIMIZATION OF A DISCONTINUOUS FINITE ELEMENT SOLVER WITH OPENCL AND STARPU 8

The general sequential DG algorithm is then given in Algorithm 1. Thanks to StarPU, this algorithm
can be submitted in a sequential way. StarPU then uses the data dependency in order to distribute
the tasks in parallel on the available workers.
In the next section we give more details about the implementation of the OpenCL codelets.

4. Hybrid C/OpenCL codelets

In order to attain better performance, we programmed an OpenCL version of the previously de-
scribed codelets. As it is often the case, special care has to be given in order to improve the
coalescence of memory access. The values of w at the Gauss-Lobatto points are stored into what
we call a field structure. A field is attached to a macrocell. A given component of w in a field
is located thanks to its subcell index ic, a Gauss-Lobatto index ig in the cell, and a component
index iw. If the macrocell is cut into nr subcells in each direction, if the polynomial order is d and
for a system of m conservation laws, these indices have the following bounds

0 ≤ ic < n3r, 0 ≤ ig < (d+ 1)3, 0 ≤ iw < m.

The values of w in a given field are stored into a memory buffer wbuf. In order to test several
memory arrangements, the index in the buffer is computed by a function varindex(ic,ig,iw)
that we can easily change. For instance, we can consider the following formula, in which the
electromagnetic components at a given Gauss-Lobatto point are grouped in memory

(4.1) varindex(ic, ig, iw) = iw+m∗(ig+(d+ 1)3∗ic),

or this formula

(4.2) varindex(ic, ig, iw) = ig+(d+ 1)3∗(iw+m∗ic),

in which the electromagnetic components are separated in memory. We have programmed an
OpenCL codelet for each task described in Section 3.1. The most time consuming kernels are: (i)
the kernel associated to the computations of the volume terms (2.7) inside the macrocells, volume
kernel, and (ii) the kernel that computes the subcell fluxes, the surface kernel. Boundary and
interface terms generally involve less computations.
A natural distribution of the workload is to associate one subcell to each OpenCL work-group and
the computations at a Gauss point to a work-item. With this natural distribution, formula (4.2)
ensures optimal coalescent memory access in the volume kernel, but the access is no more optimal
in the surface kernel, because neighboring Gauss points on the subcell interfaces are not necessarily
close in memory. Therefore, we prefer considering formula (4.1).

5. Numerical results

In this section, we present some practical experiments that we realized with schnaps. The first
experiment deals with the efficiency of the StarPU C99 codelets on a multicore CPU. The second
experiment deals with the efficiency of the OpenCL codelets. Then we test the code in a CPU/GPU
configuration.
We approximate by the DG algorithm an exact plane wave solution of the Maxwell equations

E =
c

r

 −vu
0

 , H =
c

r

 0
0
1

 , λ = 0, µ = 0.



OPTIMIZATION OF A DISCONTINUOUS FINITE ELEMENT SOLVER WITH OPENCL AND STARPU 9

config. CPU # cores mem. CPU GPU mem. GPU
“PC” AMD FX-8320E 3.2 GHz 8 8 GB NVIDIA GTX 1050 Ti 4 GB
“WS” Intel Xeon E5-2609 1.7 GHz 2×8 64 GB NVIDIA QUADRO P6000 24 GB

Table 1. Configurations of the computers used for the tests.

nr ncpu Time (s) Ideal time Efficiency
4 2 704 704 1
4 4 365 352 0.96
4 7 209 201 0.96
6 7 689 679 0.99
8 4 2902 2816 0.97
8 7 1650 1609 0.98

Table 2. Efficiency of the CPU codelets for the “PC” configuration with the dmdar scheduler.

with c = − cos(π/2(ux1 + vx2 − t)) and (u, v) = (cos(π/4), sin(π/4)).

We consider the propagation of the previous electromagnetic plane wave into a torus-shaped domain
Ω represented on Figure 5.1. In the DG solver, we consider only third order polynomials: d = 3.
The domain is split into M = 400 macrocells. The macrocells are split into nr subcells in each
direction. The number of degrees of freedom is thus

nd.o.f. = Mm(d+ 1)3n3r, M = 400, m = 8, d = 3.

StarPU will have to take decisions on how to distribute efficiently the tasks on the available accel-
erators. We have performed our experiments on two different computers. The first configuration
“PC” correspond to a standard desktop personnal computer. The second configuration “WS” is
made of a more powerful two-CPU workstation The technical details are listed in Table 1.

5.1. Multicore CPU tests. In the first test, we only activate the C99 codelets, and thus the
GPU is not activated. We also vary the number of computing CPU cores from 2 to 7 for the “PC”
configuration and from 2 to 15 for the “WS” configuration. One CPU core is anyway reserved for
the main StarPU thread.

We perform a fixed number of nt iterations of the RK2 algorithm. We assume that the number
of elementary computing operations increases as O(n3r). Ideally, with infinitely fast operations at
interfaces, and with na identical CPU cores, the computations time would behave like

(5.1) T ∼ Cnt
n3r
na

where C is fixed constant, depending on the hardware. In our benchmark the efficiency is the
ratio of the measured execution time over this ideal time. Normally it should be smaller than one
(because of communications). If it is close to one, the algorithm is very efficient. In Table 2 and
3, we observe an excellent efficiency of the StarPU task distribution on the CPU cores even on a
machine with two NUMA nodes.



OPTIMIZATION OF A DISCONTINUOUS FINITE ELEMENT SOLVER WITH OPENCL AND STARPU 10

nr ncpu Time (s) Ideal time Efficiency
4 2 763 763 1
4 4 382 381 0.99
4 8 196 191 0.97
4 15 110 102 0.92
8 8 1586 1526 0.96
8 15 828 814 0.98

Table 3. Efficiency of the CPU codelets for the “WS” configuration with the dmdar scheduler.

nr config. tCPU (s) tGPU(s) tCPU/tGPU tCPU+GPU (s) tCPU/tCPU+GPU

4 PC 209 73 2.86 32 6.53
6 PC 689 86 8.01 64 10.77
8 PC 1650 171 9.65 130 12.69
4 WS 110 86 1.28 36 3.05
8 WS 828 88 9.41 77 10.75

Table 4. Efficiency of the CPU/GPU implementation.

Figure 5.1. Computational domain Ω. Only the macrocells of the mesh are vis-
ible. The represented mesh contains 240 macrocells (poloidal refinement set to
npol = 3 and toroidal refinement set to ntor = 3. In the numerical experiments,
we take npol = 3 and ntor = 5, which leads to a mesh of 400 macrocells). Each
macrocell is then cut regularly into the three directions.

5.2. OpenCL codelets. In this section, we compare the efficiency of the CPU/C99 and
GPU/OpenCL codelets on the two configurations “PC” and “WS”. We first perform a CPU-only
computation with all the cores activated (7 for the “PC” platform and 15 for the “WS” platform)
and a GPU-only computation. The results are given in Table 4. We observe that the OpenCL
codelets are faster than the CPU codelets. The highest efficiency is achieved for the finer meshes
(nr = 8).



OPTIMIZATION OF A DISCONTINUOUS FINITE ELEMENT SOLVER WITH OPENCL AND STARPU 11

5.3. Hybrid CPU/GPU computations. Now that we are equipped with verified OpenCL
codelets we can try to run the code with StarPU in order to see if it is able to distribute the
tasks efficiently on the available accelerators.
One difficulty is to manage the data transfers efficiently between the accelerators. Several scheduling
strategies are available in StarPU. With the eager scheduler, the tasks are distributed in the order
of submission to the inactive device, without taking into account the cost of memory transfers. This
strategy is obviously not optimal.
It is better to choose another scheduler, such as the dmdar scheduler. With the dmdar scheduler, the
computational and memory transfer costs are evaluated in a preliminary benchmarking phase. Then
an optimized scheduling is activated in order to better overlap computations and communications.
We perform computations by letting StarPU decide how to distribute the computations on the
available CPU cores and GPU.
The results are given in the last two columns of Table 4. We observe that in all the situations,
StarPU is able to get an additional gain from the CPU cores, even if the GPU codelets are faster.

6. Conclusion

We have proposed an optimized implementation of the Discontinuous Galerkin method on hybrid
computer made of several GPUs and multicore CPUs. In order to manage the heterogeneous
architecture easily and efficiently, we rely on OpenCL for the GPU computations and on the StarPU
runtime for distributing the computational tasks on the available devices.
OpenCL programming becomes much easier because the task dependency is computed by StarPU.
We only had to concentrate on the optimization of the individual OpenCL kernels and not on data
distribution or memory transfers. We first tested the efficiency of our OpenCL kernels. We verified
that the macrocell approach and cache prefetching strategy, while not optiaml, give good results.
In addition, with a good choice of scheduler, and for heavy computations, we have shown that
StarPU is able to overlap computations and memory transfer in a quite efficient way. It is also able
to use the available CPU codelets to achieve even higher acceleration.

References

Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier. Starpu: a
unified platform for task scheduling on heterogeneous multicore architectures. Concurrency and
Computation: Practice and Experience, 23(2):187–198, 2011.

Cédric Augonnet, Olivier Aumage, Nathalie Furmento, Raymond Namyst, and Samuel Thibault.
Starpu-mpi: Task programming over clusters of machines enhanced with accelerators. In Euro-
pean MPI Users’ Group Meeting, pages 298–299. Springer, 2012.

Christophe Geuzaine and Jean-François Remacle. Gmsh: A 3-d finite element mesh generator
with built-in pre-and post-processing facilities. International journal for numerical methods in
engineering, 79(11):1309–1331, 2009.

C-D Munz, Pascal Omnes, Rudolf Schneider, Eric Sonnendrücker, and Ursula Voss. Divergence
correction techniques for maxwell solvers based on a hyperbolic model. Journal of Computational
Physics, 161(2):484–511, 2000.

Université de Strasbourg, Inria Tonus, AxesSim. philippe.helluy@unistra.fr


