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infinite media
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Abstract

This paper proposes a numerical method to model wave scattering by local
inhomogeneities in elastic open waveguides. The damaged zone of the waveg-
uide and its vicinity are described by a finite-element model. This model is
coupled on the cross-section boundaries to a modal representation of the field
propagating along the waveguide axis in the undamaged parts, yielding trans-
parent boundary conditions. However, open waveguides are unbounded in the
transverse direction, which complicates both the numerical resolution and the
physical analysis. Theoretically, the wave fields are described by a discrete sum
of trapped modes and two continuous sums on radiation modes. The latter
is sometimes approximated by a discrete sum of leaky modes, which grow at
infinity in the transverse direction. In this paper, a Perfectly Matched Layer
(PML) of finite thickness is introduced to absorb outgoing waves in the trans-
verse direction, yielding three types of discrete modes: trapped modes, leaky
modes and PML modes (PML modes oscillate mainly inside the layer and are
non-intrinsic to the physics). Two numerical test cases are considered: the scat-
tering at the junction between a closed and an open cylindrical waveguides and
the scattering by an axisymmetrical notch. Good agreement with literature re-
sults is found. In particular, the influence of PML modes on the scattered field
is highlighted through numerical tests. Due to the lack of power orthogonality
of leaky modes, it is also shown that the modal cross power can become sig-
nificant, which complicates the scattering analysis of open waveguides. Finally,
the generality of the proposed method is discussed through a three-dimensional
test case considering an embedded bar with an oblique break.
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1. Introduction

Elastic guided waves are often used for non-destructive evaluation (NDE) of
elongated structures because they can propagate over a long distance while be-
ing sensitive to small damages. However, their scattering behaviour is difficult
to interpret, because these waves are multi-modal and dispersive. Furthermore,
when the structure is embedded into an infinite elastic medium (open waveg-
uide), most of the waves are attenuated by radiation losses (leakage) into the
surrounding medium, thus limiting the inspection range of NDE techniques.

In open waveguides, wave scattering by inhomogeneities has been studied ex-
perimentally for various structures such as steel bars [1] or seven-wires strands [2]
embedded in cement grout, embedded rock bolts [3], reinforced bars [4] or
pipes [5] in concrete. Yet, only a few numerical models have been developed, and
they remain restricted to circular geometries (see Refs. [6–8]). Thus, this paper
aims to propose a numerical model suitable for open waveguides of arbitrary
cross-section with local inhomogeneities.

The idea is to describe the inhomogeneous (damaged) zone of the waveg-
uide and its vicinity with a finite-element model. The latter is then coupled
to a modal representation of the field propagating in the undamaged parts of
the waveguide, yielding transparent boundary conditions. This principle has
been widely applied in closed waveguides (i.e. in vacuum), see Refs. [9–15] for
instance. In this paper, it will be referred to as hybrid method. Hybrid meth-
ods yield directly the reflection, transmission and conversion properties of the
modes while remaining computationally fast. Furthermore, they are not badly
affected by backward modes (with group and phase velocities of opposite signs),
contrary to methods based on Perfectly Matched Layers (PML) truncating the
undamaged parts along the waveguide axis [16].

Hybrid methods cannot be applied directly to open waveguides because the
problem is unbounded in the transverse direction. The latter must be bounded
for numerical purpose. Furthermore, the modal representation of waves strongly
differs from closed waveguides.

In open waveguides, three types of modes can be distinguished: trapped
modes, radiation modes and leaky modes. Trapped modes propagate without
leakage attenuation along the waveguide axis. They are confined in the core
of the waveguide or at the interface with the surrounding medium. Out of
the core, these modes decay exponentially along the transverse direction. The
existence of trapped modes depends on the contrast of materials between the
core and the surrounding medium [17]. Radiation modes are standing waves
along the transverse direction, which are propagative or evanescent in the axis
direction [18–20]. Leaky modes propagate with leakage attenuation along the
waveguide axis. However, these modes grow exponentially in the transverse
direction [6, 18, 20].

From a mathematical point of view, trapped modes are a discrete set of
poles. Radiation modes are two continuous sets of modes (reduced to one in
scalar waveguide), originating from branch cuts integration. Together, trapped
modes and radiation modes form the modal basis of open waveguides: their
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superposition describes any wave field propagating in the waveguide [19, 21].
However, the continua of radiation modes are difficult to manipulate. They
can be conveniently approximated by a discrete set of leaky modes in a zone
restricted near the core [20, 22]. In that case, leaky modes can provide key
information such as the axial attenuation or the travelling velocity of wave
packets [1].

From a numerical point of view, modes can be efficiently computed by dis-
cretizing only the cross-section of the waveguide while describing analytically
the direction of wave propagation. To model open waveguides, a solution con-
sists in using a PML of finite thickness in the transverse direction [23–26].
In this paper, this method will be called PML waveguide formulation. Other
techniques have been proposed (in Refs. [27–31] for instance) and will not be dis-
cussed here. The PML waveguide formulation avoids most spurious reflections
from the absorbing layer, which allows reducing its thickness. Furthermore, the
modes are the solution of a linear eigenvalue problem.

As shown in Ref. [32] for scalar waveguides, it is noteworthy that the compu-
tation of leaky modes with a PML is mathematically relevant. Besides, radiation
modes turn out to lie on two branch cuts rotated by the argument of the PML
complex thickness [24] and discretized by the PML truncation to a finite thick-
ness. These modes are often called PML modes (or Berenger modes). Although
PML modes are non-intrinsic to the physics (they resonate mainly in the PML
region), their modal superposition enables to accurately reconstruct the forced
response of an elastic open waveguide [33]. Nevertheless, their contribution
remains unclear as far as scattering problems are considered.

This paper proposes to use a PML in the transverse direction to truncate the
surrounding medium in the finite element model of the inhomogeneous waveg-
uide. This model is coupled to a modal representation based on the PML
waveguide formulation, thus providing a hybrid method for open waveguides.
Section 2 details the numerical method for three-dimensional waveguides of ar-
bitrary cross-section and discusses the modal orthogonality properties specific
to the PML formulation. In Sec. 3, numerical results are presented for three
cases. First, the reflection at the junction between a closed and an open cylin-
drical waveguide is considered as a validation test case (Sec. 3.1). Results are
also given for transmission. Then, the scattering of leaky modes by an axisym-
metric notch is studied in low-frequency and high-frequency regimes (Sec. 3.2).
The latter is of particular interest for NDE applications. The contribution of
each type of modes to the scattered field is discussed. A particular attention is
given to the PML mode contribution. Finally, the reflection of leaky modes by
an oblique break is considered as an example of three-dimensional modelling.

2. Numerical method

2.1. Weak form with a transverse PML
Let us consider an elastic open waveguide made of a core of arbitrary cross-

section embedded into an infinite elastic medium. z is the propagation axis of
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Figure 1: General description of a damaged open waveguide connected to semi-infinite un-
damaged open waveguides.

the waveguide. The waveguide contains a local inhomogeneity, such as a notch
or a cross-section change for example. The domain Ṽ is thus defined as a small
part of the waveguide enclosing this inhomogeneity — see Fig. 1.

Small strains and displacements are assumed. A time-harmonic dependence
e−jωt is chosen. In Ṽ , the weak formulation of elastodynamics is given by:∫

Ṽ

δε̃Tσ̃dṼ − ω2
∫
Ṽ

ρ̃δũTũdṼ =
∫
Ṽ

δũTf̃dṼ +
∫
∂Ṽ

δũTt̃d∂Ṽ , (1)

where ε̃ and σ̃ are the strain and stress vectors, ũ is the displacement vector,
f̃ is the vector of volumic forces inside Ṽ and t̃ is the traction vector applied
on the surface ∂Ṽ . The subscript T denotes the matrix transpose. The stress-
strain relation is given by σ̃ = C̃ε̃, where C̃ is the matrix of material properties
(complex-valued for viscoelastic materials).

For numerical purpose, the infinite surrounding medium is truncated by a
finite PML of thickness h. A radial PML is considered in this paper (a Cartesian
PML could be used instead, see e.g. Ref. [25]). It is introduced by the analytic
continuation [34] of the weak form (1) into the complex transverse coordinate
r̃:

r̃(r) =
∫ r

0
γ(ξ)dξ. (2)

γ(r) is a user-defined complex-valued function for attenuating outgoing waves
in the surrounding medium, such that:

• γ(r) = 1 outside the PML region (r < d),

• Im
(
γ(r)

)
> 0 inside the PML region (d < r < d+ h).

d is the position of the PML interface. An arbitrary boundary condition is
applied at the end of the PML. In this paper, a Dirichlet condition is chosen.

Finally, Eq. (1) must be transformed to go back to the real radial direction
r. The change of variable r̃ 7→ r for any function g̃(r̃) yields:

g̃(r̃) = g(r), dr̃ = γ(r)dr, ∂g̃
∂r̃

= ∂g

∂r

1
γ(r) , dṼ = r̃(r)γ(r)

r
dV. (3)
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2.2. Hybrid FE-modal approach
A hybrid method is now proposed for the analysis of mode scattering by

local inhomogeneities in elastic open waveguides.
The hybrid approach starts from the weak formulation (1) after applying

the change of variable (3). The strain-displacement relation can be written
as ε = Lu, where L is the operator including all spatial derivatives. A FE
discretization can then be applied on the volume V . The displacement on each
element is given by ue(x, y, z, ω) = Ne

V (x, y, z)Ue(ω) where Ne
V (x, y, z) is the

matrix of three-dimensional interpolation functions and Ue(ω) is the vector of
nodal displacements. Finally, the FE discretization leads to:

δUT(K− ω2M)U = δUTF, (4)

where U is the vector of displacements for all degrees of freedom (dofs) of V , F
is the vector of forces, and K and M are the stiffness and mass matrices. The
element matrices are given by:

Ke =
∫

Ne
V

TLTCLNe
V

r̃γ

r
dV, Me =

∫
ρNe

V
TNe

V

r̃γ

r
dV. (5)

These matrices are complex-valued owing to the introduction of the PML.
U and F can be partitioned into the dofs belonging to the cross-section

boundaries Σ =
⋃
i

Σi (orthogonal to the waveguide axis z, see Fig. 1) and the

remaining (i.e. internal) dofs, such that:

U =
[
UΣ
UI

]
, F =

[
FΣ
FI

]
, (6)

where I = V \ Σ.
The main idea of the hybrid approach is to connect V to semi-infinite homo-

geneous (i.e. inhomogeneity-free) waveguides through the boundaries Σ, thanks
to transparent boundary conditions. This enables to greatly reduce the compu-
tational cost of the method. To do so, UΣ and FΣ are expanded on the wave
modes of the homogeneous open waveguides as follows:

UΣ =
N∑
n=1

α−nU−n +
N∑
n=1

αnUn, (7)

FΣ =
N∑
n=1

α−nF−n +
N∑
n=1

αnFn. (8)

U±n and F±n are the vectors of modal displacements and modal forces for
a given mode n. These eigenvectors are computed with the PML waveguide
formulation (briefly recalled in Sec. 2.3). The α±n are the modal coefficients.
The subscript − denotes ingoing (incident) modes. The ingoing modal coeffi-
cients can be chosen to study the particular scattering behaviour of an incident
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mode or can represent a real source emitting somewhere in the undamaged
waveguide (see Fig. 1). In the latter case, the ingoing modal coefficients are
obtained from the modal decomposition of the forced response (see Ref. [33]),
further propagated analytically and enforced to the appropriate cross-section
boundary. The subscript + denotes outgoing (scattered) modes. N denotes the
number of modes retained in the modal expansions. Let us point out that the
modal expansions (7) and (8) can be written for any arbitrary normalization of
the mode shapes. Mode shapes can be conveniently normalized later during the
post-processing steps — see Sec. 2.4.3.

It is convenient to gather known and unknown quantities into two different
vectors U− and U+ respectively defined as follows:

U− =
[
α−
FI

]
, U+ =

[
α+
UI

]
. (9)

α± are the column vectors of modal coefficients, i.e. α± = [α±1 α±2 . . . α±N ]T.
Combining Eq. (9) with Eqs. (7) and (8) gives:

U = Gu−U− + Gu+U+, F = Gf−U− + Gf+U+, (10)

with the following matrices:

Gu− =
[
Bu− 0

0 0

]
, Gu+ =

[
Bu+ 0

0 I

]
, Gf− =

[
Bf− 0
0 I

]
, Gf+ =

[
Bf+ 0
0 0

]
,

(11)
where Bu± = [U±1 U±2 . . . U±N ] and Bf± = [F±1 F±2 . . . F±N ] are the
basis of modal displacements and modal forces.

Using Eqs. (4) and (10) for any arbitrary field δUT =
[
δαT

+ δUT
I

]T, one
finally gets the following linear matrix system:

GT
u+

(DGu+ −Gf+)U+ = GT
u+

(Gf− −DGu−)U−, (12)

where D = K − ω2M is the dynamic stiffness matrix. The system (12) is
solved for each angular frequency ω, and yields the internal displacements of
the FE domain as well as the scattered modal coefficients. From Eqs. (7) and
(8), the total displacements and the forces can be obtained on the cross-section
boundaries. They can be further propagated analytically to get the wave fields
at any point of the undamaged waveguides connected to the FE domain (see
Fig. 1).

2.3. PML waveguide formulation for mode computation
Eigenvectors used in the modal expansions (7) and (8) can be obtained

with the so-called PML waveguide formulation. The derivation of the PML
waveguide formulation starts from the weak form (1) after the change of variable
(3), written on each cross-section Σi, dropping the source-term, and assuming
an ejkz dependence for u (e−jkz for δu). k is the axial wavenumber. Hence, the
strain-displacement relation can be written as:

ε = (LS + jkLz)u, (13)
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where LS is the operator including all terms but derivatives with respect to the
z-axis, and Lz is the operator of z-derivatives.

A FE discretization is then be applied on the cross-section. The displacement
on each element can be written ue(x, y, ω) = Ne

Σ(x, y)Φe(ω), where Ne
Σ(x, y) is

the matrix of two-dimensional interpolation functions and Φe(ω) is the vector
of nodal displacements. The following quadratic eigenvalue problem is finally
obtained [25, 33]:(

K1 − ω2MS + jk(K2 −KT
2 ) + k2K3

)
Φ = 0, (14)

where the element matrices are given by:

Ke
1 =

∫
Ne

Σ
TLT

SCLSNe
Σ
r̃γ

r
dS, Ke

2 =
∫

Ne
Σ

TLT
SCLzNe

Σ
r̃γ

r
dS,

Ke
3 =

∫
Ne

Σ
TLT

z CLzNe
Σ
r̃γ

r
dS, Me

S =
∫
ρNe

Σ
TNe

Σ
r̃γ

r
dS. (15)

Φ is the vector of nodal displacements on the cross-section. More details can
be found e.g. in Refs. [24, 25], as well as in Appendix A in the specific case
of an axisymmetric circular open waveguide, which will be used to obtain the
numerical results presented in Sec. 3.1 and 3.2.

The eigenproblem (14) must be linearized to make its resolution easier with
standard eigensolvers [35]. The following linearized form is adopted:

(A− kB)x = 0, (16)

with

A =
[

0 I
K1 − ω2MS j(K2 −KT

2 )

]
,B =

[
I 0
0 −K3

]
,x =

[
Φ
kΦ

]
. (17)

Equation (16) is solved for each angular frequency ω. Due to the symmetry of
matrices K1, K3 and MS , the eigenspectrum is composed of pairs of eigensolu-
tions, denoted {kn,Un} and {k−n,U−n} with k−n = −kn for (n = 1, . . . , N),
representing N outgoing modes and N ingoing modes respectively [24, 25].

The modal forces Fn used in the modal expansion (8) are defined from [11,
36]: ∫

Σi

δuTtn = δΦTFn, (18)

where for the mode n, tn is the vector of the traction applied on the cross-
section Σi with an outward unit normal. It can be checked that tn = LT

z σn =
LT
z C(LS + jkLz)un, so that the modal forces are explicitly given by [11, 36]:

F±n = (KT
2 + jk±nK3)U±n. (19)
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2.4. Mode properties
2.4.1. Modal characteristics

Modal characteristics can be readily computed from the eigensolutions of
Eq. (14) and the finite element matrices (15) [25]. For a given mode n, its phase
velocity is:

vpn
= ω

Re(kn) . (20)

Its attenuation in dB ·m−1is:

ηn = 8.686Im(kn). (21)

The group velocity vgn
= ∂ω/∂kn is computed as follows [25]:

vgn
= Re

[(
2ωUT

−nMUn

UT
−n(j(K2 −KT

2 ) + 2knK3)Un

)−1]
. (22)

In open waveguides, the energy velocity can be defined by [37]:

ven
= Re(Pn)

Re(Tn) + Re(V n)
. (23)

where for each mode n, Pn is the normal component of the Poynting vector inte-
grated on the core cross-section, Tn is the core cross-section and time-averaged
kinetic energy, and V n is the core cross-section and time-averaged potential
energy. These quantities can be post-processed from [25]:

Pn = −jω
2 U∗

n(KT
2 + jknK3)Un , (24)

Tn = ω2

4 U∗
nMUn , (25)

V n = 1
4U∗

n(K1 + jknK2 − jk∗
nKT

2 + k∗
nknK3)Un . (26)

where the ∗ superscript denotes conjugate transpose and the overbar stands for
the restriction to the dofs of the core of the cross-section. Note that the integra-
tion is usually restricted to the core cross-section in open waveguides because
of the growth of leaky modes in the transverse directions. This restriction is
quite arbitrary, but gives a reasonable approximation of the travelling velocities
of wave packets [1, 37]. In this paper, the calculation of Pn and ven

will only
be used for post-processing steps (i.e. for dispersion curves and normalization
of the scattering coefficients).

2.4.2. Determination of the travelling direction
The hybrid method presented in Sec. 2.2 requires determining the travelling

direction of the modes. In elastic waveguides, the sign of the phase velocity
(i.e. the sign of the real part of the wavenumber) does not necessarily give
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the travelling direction because of the existence of backward modes, which have
phase and group velocities of opposite signs [38, 39]. The travelling direction of
the modes is determined according to the following criterion [33]:

• the sign of Im(kn) if Im(kn) , 0, such that if Im(kn) > 0, the mode is
a positive-going mode (towards z > 0), and if Im(kn) < 0 the mode is
negative-going (towards z < 0).

• the sign of vgn
if kn ∈ R.

The criterion is valid both for closed and open elastic waveguides. In closed
waveguides, the case kn ∈ R corresponds to propagating modes. In open waveg-
uides, modes with real wavenumbers are somehow particular because they cor-
respond to trapped modes. Trapped modes exist only when the shear velocity
is greater in the embedding medium than in the core (except if longitudinal
and shear waves couple into Stoneley waves [17]). Besides in viscoelastic me-
dia, modes with real wavenumbers never occur, because the wavenumbers are
then always complex-valued. In that case, the sign of the imaginary part of the
wavenumber naturally gives the direction of energy decay along the axis of the
waveguide, which corresponds to the travelling direction of the waves (according
to the ejkz convention chosen in this paper).

2.4.3. Post-processing of scattering coefficients
In this paper, reflection and transmission coefficients are defined by con-

sidering an incident mode −n through the section Σ1. The scattered modal
coefficients α+n are directly obtained by solving (12). Owing to leakage losses,
their values depend on the positions zi of the cross-sections Σi. With the hybrid
method, these positions are user-defined parameters and are hence arbitrary.
To circumvent this problem, a reference position is chosen to post-process the
scattering coefficients. In this paper, this reference position is set to the in-
homogeneity position, i.e. z = zref — see Figs. 2a and 7a for instance. As
done for viscoelastic problems in closed waveguides [40, 41], this amounts to
retropropagate the modal coefficients to the inhomogeneity position. Besides,
the value of the coefficients α+n depends on the arbitrary normalization of the
mode shapes. For the physical analysis of results, it is convenient to normalize
the mode shapes with their modal power as given by Eq. (24).

Hence, the reflection coefficient of a mode m is defined on Σ1 by:

Rm,n =

∣∣α+me+jk+m(zref−z1)
∣∣√|Re(P+m)|∣∣α−ne+jk−n(zref−z1)
∣∣√|Re(P−n)|

. (27)

Similarly, the transmission coefficient of a mode m is defined on Σ2 by:

Tm,n =

∣∣α+me+jk+m(zref−z2)
∣∣√|Re(P+m)|∣∣α−ne+jk−n(zref−z1)
∣∣√|Re(P−n)|

. (28)
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Such definitions enables to have scattering coefficients which are independent
on the position of the cross-section Σi. Note that the square of Eqs. (27) and
(28) yields readily the ratio of reflected and transmitted modal powers over the
incident modal power respectively.

2.5. Modal orthogonality in open waveguides
In a waveguide, any arbitrary field can be expanded on a unique set of modes

if they are orthogonal [38]. In open waveguides, orthogonality theoretically holds
between trapped modes and radiation modes when integrated on the infinite
cross-section [19, 21]. If the integration is restricted to the core cross-section,
trapped and radiation modes are no longer orthogonal. On the other hand,
leaky modes may approximate the contribution of radiation modes [20, 22], but
they cannot satisfy the orthogonality relationship since they grow to infinity in
the transverse direction.

When the transverse problem is bounded by a finite PML, the authors have
recently shown [33] that the following orthogonality relationship holds:

Qm,−n = jω
4 (UT

mF−n −UT
−nFm) = Qm,−mδmn, (29)

This orthogonality relationship involves the whole cross-section of the waveguide
(i.e. including the finite PML) and is applicable to any kind of modes without
distinction (trapped, leaky and PML modes). It also remains valid for fully
anisotropic or viscoelastic materials. Equation (29) guarantees the uniqueness
of modal expansions (7) and (8). Actually, it is a discrete form of the so-
called Auld’s real orthogonality relationship [38], as already shown for closed
viscoelastic waveguides [36].

It has to be emphasized that Eq. (29) is generally not a power orthogonality
relationship. To prove this, let us start with the total time-averaged power flow
across the whole cross-section, given by [11]:

ΠT = Re(− jω
2 U∗

ΣFΣ). (30)

Expanding the fields UΣ and FΣ on the modes yields (details are given in
Appendix B):

ΠT =
N∑

m=−N
|αm|2Re(Pm) +

N∑
m=−N

∑
n,m

α∗
nαmPm,n, (31)

where Pm,n = jω
4 (F∗

nUm −U∗
nFm) is the modal cross-power of modes m and

n. For m = n, one has Pm,m = Re(Pm), where Re(Pm) = ω
2 Im(U∗

mFm) is
the modal power of the mode m. Note that Pm is computed from the same
equation as Eq. (24) but by removing the overbar in order to consider the whole
cross-section.

There is so-called power orthogonality if the total power in the waveguide
is the sum of the power propagated by each mode, that is if Pm,n = 0 ∀m ,
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Material ρ (kg ·m−3) cl (m · s−1) cs (m · s−1) ηl (Np ·wavelength−1) ηs (Np ·wavelength−1)
Steel 7932 5960 3260 0.003 0.008

Epoxy 1170 2610 1000 0 0
Cement grout 1600 2810 1700 0.043 0.1

Table 1: Material properties

n [38, 42]. However, the modal cross power Pm,n is in general non-zero, except if
the so-called Auld’s complex biorthogonality relationship [38] is satisfied, that is
to say, for real wavenumber modes only: in that case, UT

−n = U∗
n and FT

−n = F∗
n

such that Eq. (29) becomes Qm,−n = Pm,n = Re(Pm)δmn [36].
As a consequence, there is no power orthogonality (Qm,−n , Pm,n) in open

waveguides involving leaky modes or in lossy closed waveguides (wavenumbers
are complex). The modal cross power should thus be considered. This has been
studied in electromagnetic open waveguides, see e.g. Ref [18, 20, 43–45]. As for
scattering analysis, this phenomenon is likely to complicate the interpretation
of results in terms of modes. This will be illustrated in Sec. 3.2.3.

3. Results

3.1. The junction test case
As a first test case, the reflection of the fundamental longitudinal guided

mode L(0,1) at the junction between a closed and an open cylindrical waveguide
is computed with the hybrid method and compared to literature results. Results
are also presented for the transmission coefficient and the role of PML modes
in the solution of the scattering problem is investigated.

3.1.1. Description
One considers a cylindrical steel waveguide of radius a = 1mm partly em-

bedded in an infinite epoxy medium. Material properties are given in Table 1
(in the following, pure elastic materials are considered, i.e. the longitudinal and
shear bulk wave attenuations ηl and ηs are equal to 0 Np ·wavelength−1).

In Ref. [6], the reflection of the L(0,1) guided mode at the junction has
been studied both with a mode-matching method and with a transient finite-
element model. The geometry of the problem is axisymmetric and the ingoing
mode is longitudinal, such that there is no modal conversion towards flexural
or torsional modes. The problem can then be solved with the axisymmetrical
formulation of the hybrid method (see Appendix A), thus reducing the modal
basis to longitudinal modes only. The computational domain V is depicted in
Fig. 2a. The inlet and outlet cross-sections boundaries Σ1 and Σ2 are set at
equal distances |zi − zref| = 0.25a from the junction. A free surface condition
is applied on the outer surface of the closed waveguide region (z < zref, r = a)
and on the inlet of the epoxy layer (z = zref, a < r < a+ h). The epoxy layer is
bounded by a transverse PML. Following Ref. [25], the attenuation of the PML
is chosen as parabolic and is given by:
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Figure 2: (Colour online) Junction test case. (a) Sketch of the computational domain V ; (b)
finite element mesh (black: physical domain, grey: PML domain with PML parameters d = a,
h = 2a).

γ(r) =


1 if r ≤ d

1 + 3(γ̂ − 1)
(
r − d
h

)2
if r > d, (32)

where γ̂ = 1
h

∫ d+h
d

γ(ξ)dξ is the average value of γ(r) inside the PML region.
γ̂ and h are user-defined parameters. To avoid spurious eigenvalues and to
enhance the attenuation of leaky modes, it is preferable to set the PML close
to the core [32]. In the following, the distance is set to d = a and the PML
thickness is set to h = 2a. Note that in order to accurately compute leaky modes
at the lowest frequencies (large wavelengths), the PML must have a relatively
large complex thickness d + γ̂h. After numerical tests, the value of γ̂ has been
set to γ̂ = 8 + 16j. Despite this large complex thickness, the computational
cost remains low because a coarse mesh is sufficient to obtain acceptable results
in the frequency range of interest. The dispersion curves of the fundamental
L(0,1) mode computed at both the inlet ant outlet cross-sections are given in
Fig. 3 (PML modes have been filtered out from the visualization following the
criterion of Appendix C).

The domain V is meshed with 6-nodes triangle elements, yielding a total of
338 dofs (see Fig. 2b) with 18 dofs on the cross-section Σ1 and 52 dofs on the
cross-section Σ2. The latter values must be multiplied by two for the linearized
eigenvalue problem (see Sec. 2.3). The eigenproblem (16) is solved with the
ARPACK library [46]. Based on an implicit restarted Arnoldi method, this
library enables to obtain a user-defined number of eigenvalues (denoted as 2N),
corresponding to the closest in absolute value to a user-defined shift (set to 0

12
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Figure 3: (Colour online) Dispersion curves obtained with the PML waveguide formulation.
The PML parameters are d = a, h = 2a, γ̂ = 8 + 16j and the filtering criterion is ηmin = 0.5.
Blue dots: the L(0,1) guided mode in an elastic steel closed waveguide ; red dots: the L(0,1)
leaky mode in a steel waveguide embedded into epoxy. Results for: (a) the energy velocity;
(b) the attenuation.

in this paper). For this test case, N = 20 modes are initially computed on each
cross-section. The number of modes finally retained in the modal expansions is
denoted NΣi(i = 1, 2).

3.1.2. Numerical results
Figure 4 shows the wavenumber spectrum computed on the cross-section

Σ2 (open waveguide), in the complex plane (Re(ka) > 0, Im(ka) > 0) and
at f = 300 kHz. The spectrum includes the L(0,1) leaky mode and 19 PML
modes. As expected, PML modes close to the real axis (Im(ka) = 0) lie along
two hyperbolas corresponding to branch cuts rotated with an angle−arg(d+hγ̂),
and starting at branch points ωa/cl,s (cl,s being the bulk velocities in the epoxy
layer). A deviation from the hyperbolas can be observed far from the real axis.
This deviation can be reduced by using a finer FE mesh [24]. Further details on
the behaviour of PML modes can be found in Refs. [25, 33]. As far as the cross-
section Σ1 is concerned (closed waveguide), the wavenumber spectrum includes
the L(0,1) guided mode (real wavenumber) and 19 complex inhomogeneous or
evanescent modes (spectrum not shown for conciseness).

First, all the modes computed on Σ2 are retained in the modal expansion
(NΣ2 = N = 20). On Σ1, it has been checked that the inclusion of evanescent
or inhomogeneous modes has a negligible influence on the results (in agreement
with Ref. [6]). Hence, only the L(0,1) guided mode is retained in the modal
expansions (NΣ1 = 1). The reflection coefficient is shown in Fig. 5. A very good
agreement is obtained with Ref. [6]. Comparisons have been also made with
other results of Ref. [6] for various radii and material properties and have shown
a similar accuracy of results (not shown). The transmission coefficient of the
L(0,1) mode has also been computed with the hybrid method (Fig. 6). As can
be observed, the transmission curve exhibits an opposite behaviour compared
to the reflection curve and quickly tends to one as the frequency increases.

Second, only the leaky mode is retained in the modal expansion on Σ2
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Figure 4: (Colour online) Wavenumber spectrum (N = 20) of an elastic steel waveguide
embedded into epoxy computed with the PML waveguide formulation (cross-section Σ2), at
f = 300 kHz. Black circle: leaky mode, blue triangles: PML modes, dashed black lines:
theoretical branch cuts with a finite PML rotated by −arg(d + hγ̂). PML parameters: d =
a, h = 2a, γ̂ = 8 + 16j.
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Figure 5: (Colour online) Reflection coefficient of the L(0,1) mode by the junction. Red
curve: results of Ref. [6]. Blue dashed curve: hybrid approach with NΣ1 = 1, NΣ2 = 20.
Black dotted curve: hybrid approach with NΣ1 = 1, NΣ2 = 1. PML parameters: d = a,
h = 2a, γ̂ = 8 + 16j.
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Figure 6: (Colour online) Transmission coefficient of the L(0,1) leaky mode by the junction.
Blue dashed curve: hybrid approach with NΣ1 = 1, NΣ2 = 20. Black dotted curve: hybrid
approach with NΣ1 = 1, NΣ2 = 1. PML parameters: d = a, h = 2a, γ̂ = 8 + 16j.

(NΣ2 = 1). As shown in Fig. 4, some PML modes close to the branch points
have a quite low attenuation (given by Im(ka)), smaller than the attenuation
of the L(0,1) leaky mode. Hence, their contribution to the solution could a
priori be significant. Yet, the contribution of PML modes turns out to be weak
and a good approximation of the scattering by the junction is still obtained
with the leaky mode only (see Figs. 5 and 6). Actually, PML modes oscillate
mainly inside the PML layer, which significantly reduces their contribution to
the solution inside the core.

It is noteworthy that, in the very far-field, the contribution of PML modes
can become predominant over leaky modes due to long-term diffraction (long-
term diffraction decays geometrically, as opposed to leaky modes which decay
exponentially). This has been demonstrated for the forced response of waveg-
uides in Refs. [33, 47]. In our scattering problem, this could be also observed
if an artificially large distance from the junction were chosen. Nevertheless, the
goal of hybrid methods is to reduce the FE mesh close to the vicinity of the
inhomogeneity. Therefore, in practice, the distance |zi − zref| is expected to
remain low enough to prevent the influence of long-term diffraction.

As will be shown for the next test case, including PML modes can yet be
necessary to accurately reconstruct the scattered solution in the very near field,
i.e. when the cross-section boundaries are set very close to the inhomogeneity.

3.2. Scattering by an axisymmetric notch
A cylindrical open waveguide damaged by a notch in the core is now consid-

ered. The scattering analysis is performed both in a low and a high-frequency
regime. The contribution of PML modes to the solution is discussed in the near
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Figure 7: (Colour online) Notch test case. (a) Scheme of the computational domain V ; (b)
finite element mesh for |zi − zref| = 0.25a (black: physical domain for a notch of width
en/a = 0.025 and depth hn/a = 0.3; grey: PML domain with PML parameters d = h = a).

field. This test case also enables to consider a configuration with large modal
cross-powers, highlighting their influence on the modal scattering coefficients.

3.2.1. Description
Let us consider a cylindrical waveguide made of viscoelastic steel and em-

bedded into an infinite cement grout medium. Material properties are given in
Table 1. The core of the waveguide has a radius a = 10 mm and is damaged
by a notch described by a semi ellipse centred at (r = a, z = zref), of depth hn
along r and width en along z (see Fig. 7a). The width of the notch is set to
en/a = 0.025 and the depth hn/a is a varying parameter.

For simplicity, one assumes an axisymmetric notch (the notch is hence of
annular type), so that the problem remains fully axisymmetric. Besides, the
study is limited to the scattering of longitudinal modes only (torsional and flex-
ural modes are not considered). As in Sec. 3.1, the problem can then be solved
with an axisymmetrical formulation of the hybrid method. The computational
domain is depicted in Fig. 7a. The embedding medium is truncated with a PML
of same attenuation profile than in Eq. (32).

Dispersion curves of the waveguide are shown in Fig. 8 for 12 modes corre-
sponding to leaky longitudinal modes, conventionally labelled as L(0,n). PML
modes have been filtered out from the visualization following the criterion of
Appendix C. Because of material properties, no trapped modes can propagate.
The results of Ref. [1] calculated by a global matrix approach are also shown,
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Figure 8: (Colour online) Dispersion curves of a viscoelastic steel cylinder embedded into
viscoelastic cement grout obtained with the PML waveguide formulation (black dots). The
PML parameters are h = a, d = a, γ̂ = 1 + 2j and the filtering criterion for PML modes is
ηmin = 0.6. Red lines: results of Ref. [1]. Point A indicates f = 0.6 MHz ·mmand Point B
indicates f = 22.89 MHz ·mm. Results for: (a) the energy velocity ve; (b) the attenuation.

which confirms the accuracy of leaky mode computation with the PML waveg-
uide formulation. The following PML parameters have been used: h = a, d = a,
γ̂ = 1 + 2j.

In open waveguides at high frequencies, the energy can be concentrated into
the core, thus reducing the leakage attenuation [1]. Herein, the minimal atten-
uation is equal to 159 dB ·mm ·m−1and is reached for the 12th mode (L(0,12))
at point B (f = 22.89 MHz ·mm) — see Fig. 8b. The attenuation of higher order
modes is greater because of the predominance of viscoelasticity over leakage for
higher frequencies. Since the 12th mode propagates over greater distances than
the others, it is quite attractive for NDE applications. Hence, it is interesting
to get a better understanding of its interaction with inhomogeneities.

In the following, the scattering of the 12th leaky mode by a notch of varying
depth hn is studied. The problem is solved over the second lobe (between 21.64
MHz ·mmand 24.12 MHz ·mm) and particularly at point B. For the sake of
comparison, the reflection and transmission of the 1st leaky mode (L(0,1)) at
f = 0.6 MHz ·mm(point A in Fig. 8) is also computed. Both reflection and
transmission coefficients are post-processed at the position zref according to
Eqs. (27) and (28).

The inlet and outlet cross-sections boundaries, Σ1 and Σ2, are set at dis-
tances |zi−zref| = a for the low-frequency regime (point A) and |zi−zref| = 0.25a
for the high-frequency regime. The domain is meshed with 6-nodes triangle ele-
ments, yielding about 53000 dofs and 18000 dofs respectively, with 324 dofs on
both cross-sections — see Fig. 7b. It has been checked that the contribution of
PML modes was negligible. Therefore, only leaky modes are retained yielding
NΣ1 = NΣ2 = 13 at point A and NΣ1 = NΣ2 = 40 at point B. Results are
presented in Sec. 3.2.2 and 3.2.3.
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Figure 9: (Colour online) Scattering by a notch of varying depth. Dashed cross lines: |R1,1|
(blue) and |T1,1| (black) at point A (f = 0.6 MHz ·mm), with |zi − zref| = a and NΣ1 =
NΣ2 = 13. Solid lines: |R12,12| (blue) and |T12,12| (black) at point B (f = 22.89 MHz ·mm)
with |zi − zref| = 0.25a and NΣ1 = NΣ2 = 40. PML parameters: d = h = a, γ̂ = 1 + 2j.

To highlight the contribution of PML modes in the very near-field of the
notch, another configuration is considered at point A by reducing the cross-
section distance to |zi − zref| = 0.25a. Results are presented in Sec. 3.2.4.

3.2.2. Results
Reflection and transmission coefficients are displayed in Fig. 9 for various

notch depths, at point A for the 1st leaky mode and at point B for the 12th leaky
mode. The coefficients exhibit the same general trend at both frequencies. The
reflection coefficient increases when the notch depth increases, and conversely
for the transmission coefficient. Note that the reflection coefficient at point
A for a notch of depth hn/a > 0.9a is greater than one (this phenomenon
is discussed further). It is noteworthy our results are very close to those of
Ref. [48], obtained with the L(0,1) mode in the low-frequency regime with a
transient finite-element model for an elastic steel core embedded into grout and
damaged by a rectangular notch. This similarity confirms the reliability of the
proposed hybrid method for the scattering analysis of open waveguides.

The differences in the scattering behaviour between low and high frequencies,
as observed in Fig. 9, can be related to the distribution of the mode energy over
the cross-section. For small depth notches, the reflection of the 12th leaky mode
is lower than for the 1st one because its energy is more concentrated at the centre
of the core of the waveguide. On the other hand, it can be observed that some
energy of the 1st leaky mode is still transmitted for a full-depth notch (|T1,1| =
0.18), indicating an energy transfer between both sides of the notch through the
embedding medium (also in agreement with Ref. [48]). This is not the case for
the 12th leaky mode, which transmission coefficient is negligible. The scattered
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Figure 10: (Colour online) Scattered field Re(Uz/a) by a notch of depth hn/a = 0.3, with
the same model parameters as in Fig. 9: (a) at point A (f = 0.6 MHz ·mm); (b) at point B
(f = 22.89 MHz ·mm).
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Figure 11: (Colour online) Scattering coefficients of the 12th, 13th and 14th leaky modes
around point B. PML parameters: d = h = a, γ̂ = 1 + 2j; notch depth hn/a = 0.3. (a)
Reflection coefficients |R12,12| (blue line), |R13,12| (red dashed line), |R14,12| (yellow dashed
dotted line); (b) transmission coefficients |T12,12| (blue line), |T13,12| (red dashed line), |T14,12|
(yellow dashed dotted line).

fields computed at both frequencies are shown in Fig. 10. Differences of energy
distribution over the cross-section can be clearly observed.

Figure 11 displays the reflection and transmission coefficients of several leaky
modes at high frequencies around point B. Despite a high number of propagating
modes, mode conversion is negligible except for a limited number of modes,
namely the L(0,13) and mostly the L(0,14) leaky mode. Yet, it must be kept
in mind that the scattering coefficients shown have been retropropagated at
the inhomogeneity position. The propagation far from the inhomogeneity will
favour the less attenuated mode, i.e. the 12th leaky mode here. In addition,
the 12th leaky mode benefits from a high reflection coefficient, particularly for
deep notches (see Fig. 9), which confirms the high reflection capability of high
order low-leakage modes sometimes mentioned in the literature [49].

In Fig. 11, it should be noted that the reflection and transmission coeffi-
cients vary in a counterintuitive way. Indeed, instead of having opposite be-
haviour as normally expected, both coefficients curves sharply peak around 22
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Figure 12: (Colour online) Transmitted cross power P12,13(red dashed line) and P12,14 (yellow
dashed dotted line). PML parameters: d = h = a, γ̂ = 1 + 2j. Notch: en/a = 0.025,hn/a =
0.3.

MHz ·mmand 24 MHz ·mm. Furthermore, the transmission coefficient of the
12th mode takes values greater than one (as already observed in Fig. 9 for the
reflection of the 1st leaky mode at point A). Actually, these results cannot be
analysed without further considerations on the modal cross power, as discussed
in the next section.

3.2.3. Considerations on the modal cross power
Reflection and transmission coefficients are defined for each mode separately,

and thus do not account for the modal cross power. The transmitted cross
powers P12,13 and P12,14 are displayed in Fig. 12 at high frequencies (results
are similar in reflection). Their values are negligible (particularly at point B)
except around 22 MHz ·mmand 24 MHz ·mm, i.e. at frequencies corresponding
to the peaks previously observed in Fig. 11.

As shown in Fig. 13, one can observe that this phenomenon takes place at
frequencies where mode crossing of phase velocity curves occurs. As noticed in
Ref. [1] at high frequencies, the phase velocity curve of the 12th mode crosses
those of the 13th and 14th modes. At these crossing frequencies, the modes
have the same values of Re(ka) and similar mode shapes, which explains their
strong interaction.

Note that such a mode crossing behaviour can also be observed in viscoelastic
waveguides, as mentioned e.g. in Refs. [50, 51]. Hence, a similar phenomenon
is likely to occur in the scattering analysis of closed but lossy waveguides (as
already discussed in Sec. 2.5, the lack of power orthogonality also concerns
viscoelastic waveguides).

These results show that when there is no power orthogonality relationship
between modes, an interpretation of results based solely on the individual scat-
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Figure 13: (Colour online) Crossing of phase velocity curves. Blue line: 12th leaky mode, red
dashed line: 13th leaky mode, yellow dashed dotted line: 14th leaky mode. PML parameters:
d = h = a, γ̂ = 1 + 2j.

tering coefficients can be misleading. The post-processing of modal cross powers
enables to identify the occurrence of strong interaction between modes (with no
additional computational cost).

3.2.4. Influence of PML modes on the solution in the very near-field
Figure 14 shows the wavenumber spectrum computed at point A (f =

0.6 MHz ·mm) in the complex half-plane Re(ka) > 0. The spectrum contains 13
leaky modes, including the fundamental L(0,1) leaky mode, and 27 PML modes.
Let us reduce the distance |zi− zref| to 0.25a in order to reveal the contribution
of PML modes on the solution in the very near-field of the notch.

Reflection and transmission coefficients are displayed in Fig. 15. They have
been obtained by retaining either all the modes (NΣ1 = NΣ2 = 40), either leaky
modes only (NΣ1 = NΣ2 = 13). It can be observed that the contribution of
PML modes is necessary to accurately recover the results of Fig. 9 (particularly
for the reflection coefficient).

The colormap of Fig. 14 displays the modulus of the modal coefficients of
the transmitted modes retropropagated at z = zref, i.e. |α+me+jk+m(zref−z2)|
×
√
|Re(P+m)|, for hn/a = 0.8 (similar colormaps can be obtained for other

notch depths or in reflection). It shows that among PML modes, the modes
with the highest attenuations (Im(ka)) bear the highest modal contributions
to the solution, which is a characteristic near-field behaviour. Therefore, the
contribution of PML modes enables to improve the accuracy of results in the
very near field. Their influence decreases as the distance to the notch increases,
so that PML modes can eventually be neglected (as confirmed by Fig. 9).

Figure 14 also shows that another class of modes corresponding to high-
attenuation leaky modes can significantly contribute to the near field. Similarly
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Figure 14: (Colour online) Wavenumber spectrum (NΣ2 = 40) of a viscoelastic steel waveguide
embedded into viscoelastic cement grout computed with the PML waveguide formulation at
point A (f = 0.6 MHz ·mm). Circles: forward leaky modes, squares: backward leaky modes,
triangles: PML modes. Colormap: modal coefficients of transmitted modes retropropagated
at z = zref for hn/a = 0.8, normalized by the maximum value. PML parameters: d = h =
a, γ̂ = 1 + 2j.
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Figure 15: (Colour online) Scattering by a notch of varying depth at f = 0.6 MHz ·mm(point
A) with |zi − zref| = 0.25a. Dashed cross lines: |R1,1| (blue) and |T1,1| (black) with NΣ1 =
NΣ2 = 13 (leaky modes only). Solid lines: |R1,1| (blue) and |T1,1| (black) with NΣ1 = NΣ2 =
40. PML parameters: d = h = a, γ̂ = 1 + 2j.
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Figure 16: (Colour online) Oblique break of the core with an inclination of 45◦. PML pa-
rameters are d = a, h = 2a, γ̂ = 2 + 4j for |zi − zref| = 2a. (a) Finite element mesh (black:
physical domain, grey: PML domain); (b) scattered field |Uz/a| at f = 0.6 MHz ·mm.

to PML modes, these modes enable to reconstruct the wave fields near the
inhomogeneity and have been included in the modal expansions. The sign of
the wavenumber real part of high-attenuation leaky modes can be either posi-
tive or negative. The latter case (Re(ka) < 0) corresponds to backward leaky
modes [39, 52]. As opposed to forward leaky modes, backward leaky modes de-
crease along the transverse direction (from a mathematical point of view, these
modes are proper complex poles of the problem).

3.3. Reflection by an oblique break
The open waveguide, similar to the one considered in the previous sections,

is now damaged by an oblique complete break of the core. The width of the
break is set to en/a = 0.25 and its angle of inclination varies. Contrary to the
previous cases, the scattering problem is no longer axisymmetric and it must
now be solved with the three-dimensional formulation of the hybrid method.
The computational domain is depicted in Fig. 16a. Because of the symmetry
of the problem, only half of the waveguide can be considered. The embedding
medium is truncated with a PML of parabolic attenuation profile according to
Eq. (32).

The problem is solved around point A between 0.4 MHz ·mmand 0.8 MHz ·mm,
which includes the fundamental longitudinal leaky mode L(0,1) and the funda-
mental flexural leaky mode F(1,1). The behaviour of the F(1,1) mode is more
complex than the L(0,1) mode and the following PML parameters have been
chosen in order to obtain acceptable results: d = a, h = 2a, γ̂ = 2 + 4j. In the
following, the scattering of both modes is studied for an incident L(0,1) leaky
mode.

In order to limit the contribution of PML modes, the inlet and the outlet
cross-sections boundaries, Σ1 and Σ2, are set at distances |zi − zref| = 2a (i.e.
not too close to the break). The domain is meshed with 10-nodes tetrahedral
elements, yielding roughly 15 000 dofs with 1290 dofs on each cross-section.
The number of modes retained in the modal expansions has been set to NΣ1 =
NΣ2 = 100. Numerical tests have shown that the contribution of higher order
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Figure 17: (Colour online) Scattering by an oblique break of the core for different inclination
angles (three-dimensional problem). |RL(0,1),L(0,1)|: 0◦ (dark cross line), 15◦ (blue circle line),
30◦ (red cross line), 45◦ (yellow square line). |RF(1,1),L(0,1)|: 0◦ (dark cross dashed line), 15◦

(blue circle dashed line), 30◦ (red cross dashed line), 45◦ (yellow square dashed line).

modes on the results was negligible (as explained previously, more modes would
have been necessary with cross-section boundaries closer to the inhomogeneity).

Figure 17 displays the reflection coefficients of both modes for four angles
of inclination (0◦, 15◦, 30◦ and 45◦). The transmission coefficients, not shown
here for conciseness, remain rather low.

For a break perpendicular to the waveguide axis (angle of 0◦), the reflection
coefficient of the L(0,1) leaky mode favourably matches with the axisymmetric
notch test case (see Fig. 9 for hn/a = 1). Note that the value of the F(1,1)
reflection coefficient is weak but non-null. According to the geometry, modal
conversion into the flexural mode should not occur for an angle of 0◦. This
can be attributed to the moderate accuracy of flexural mode computation in
the three-dimensional model (with additional computational cost, this could be
improved either by mesh refinement or by setting a thicker PML).

When the angle increases from 0 to 30◦, the reflection coefficient of the L(0,1)
mode monotonically decreases while the reflection coefficient of the F(1,1) mode
monotonically increases. As expected, the modal conversion from the longitudi-
nal mode into the flexural mode becomes important as the angle increases. At
45◦, the behaviour of the flexural mode is no longer monotonic and varies with
the frequency. As an example, the corresponding scattered field is depicted in
Fig. 16b for f = 0.6 MHz ·mm.

4. Conclusion

A PML-based hybrid method has been proposed for the numerical modelling
of wave scattering by inhomogeneities in open waveguides. The modal represen-
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tation of the fields propagating in the undamaged part of the waveguide involves
three types of modes: trapped modes, leaky modes and PML modes.

Comparisons with literature results have shown that the numerical method
enables to obtain a good approximation of the scattering behaviour in open
waveguides.

Based on the modal biorthogonality property, it has been shown that the
modal cross power does not vanish in general in open waveguides. In particular,
the modal cross-power can be significant when mode-crossing phenomena occur.
This is likely to complicate the analysis of scattering phenomena.

A particular attention has been given to the influence of PML modes on the
solution, and particularly on the scattering behaviour of leaky modes. In the
very far-field, only the contribution of PML modes can accurately reconstruct
the long-term diffraction of the field. Yet such a configuration is of less interest
in the context of hybrid methods, the aim of which is to reduce the computation
to the near-field of the inhomogeneity.

In the very near field, it has been shown that the contribution of PML
modes can be not negligible and that leaky modes may be not sufficient to
obtain accurate results. The weight of the PML mode contribution depends
on the distance between the inhomogeneity and the transparent cross-section
boundaries of the FE model. Therefore, the accuracy of the hybrid method has
to be carefully checked by varying the distance of the boundaries and the number
of modes involved in the modal expansions. For three-dimensional problems, it
can be useful to set the transparent boundaries sufficiently far away from the
inhomogeneity in order to avoid the computation of many PML modes.

As a final remark, the near-field behaviour of PML modes may raise fea-
sibility issues for mode-matching methods when applied to open waveguides.
Mode-matching methods are based on modal expansions set at the inhomo-
geneity position (see e.g. Ref. [53] in closed waveguides), which may require the
computation of a high number of PML modes to achieve accurate results.
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Appendix A. Axisymmetrical PML waveguide formulation

Let us consider an axisymmetric waveguide. The formulation (1) is written
in the cylindrical coordinate system (r̃, θ, z). The cross-section can be reduced
to the radial direction r̃. The core of the waveguide has a radius r̃ = a, and
can be multilayered. Only axisymmetric solutions are considered, such that
∂(.)/∂θ = 0 and ũθ = 0. Hence the displacement field in Eq. (1) is expressed
as ũ = [ũr ũz]T and only depends on the variables r̃ and z. The strain field is
given by ε̃ = [ε̃rr ε̃θθ ε̃zz 2ε̃rz].
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Using Eq. (2), the change of variable (3) is applied to Eq. (1). In the strain-
displacement relation (13), the operators LS and Lz are now given by:

LS =

 1
γ


1 0
0 0
0 0
0 1

 ∂

∂r
+


0 0
1 0
0 0
0 0

 1
r̃

 , Lz =


0 0
0 0
0 1
1 0

 . (A.1)

Then, a one-dimensional FE discretization is applied along the radial direction,
yielding the following interpolation on each element:

ue(r, ω) = Ne
Σ(r)Φe. (A.2)

Ne
Σ(r) is the matrix of interpolation one-dimensional functions. Φe(ω) is the

vector of nodal displacements. The final eigenproblem is identical to Eq. (14),
where the element matrices are given by Eq.(15) with dS = 2πrdr. Under the
assumption used in this appendix, C is reduced to a four-by-four matrix. For
instance, the matrix C for an isotropic material is:

C =


λ+ 2µ λ λ 0
λ λ+ 2µ λ 0
λ λ λ+ 2µ 0
0 0 0 µ

 . (A.3)

where λ and µ are Lamé parameters.

Appendix B. Total cross-section power flow

The total-time averaged power flow across the whole cross-section is given
by:

ΠT = Re(− jω
2 U∗

ΣFΣ), (B.1)

= jω
4 (F∗

ΣUΣ −U∗
ΣFΣ). (B.2)

Considering the modal expansions of the fields UΣ and FΣ, one gets:

ΠT = jω
4

(
N∑

n=−N
α∗
nF∗

n

N∑
m=−N

αmUm −
N∑

n=−N
α∗
nU∗

n

N∑
m=−N

αmFm

)
, (B.3)

= jω
4

(
N∑

m=−N
|αm|2(F∗

mUm −U∗
mFm) +

N∑
m=−N

∑
n,m

α∗
nαm(F∗

nUm −U∗
nFm)

)
.

(B.4)

From the above equation, the modal cross-power Pm,n = jω
4 (F∗

nUm −U∗
nFm)

can be identified. For m = n, it can be checked that Pm,m = ω
2 Im(U∗

mFm) =
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Re(Pm). Finally, the total-time averaged power flow can then be written:

ΠT =
N∑

m=−N
|αm|2Re(Pm) +

N∑
m=−N

∑
n,m

α∗
nαmPm,n. (B.5)

Appendix C. Filtering of PML modes

It can be necessary to filter out PML modes, e.g. for the visualization of
dispersion curves, in which only leaky and trapped modes are of interest. In
this paper, we use the filtering criterion proposed in Ref. [33]. It is based on
the ratio of the imaginary part over the modulus of the kinetic energy, defined
from Eq. (25) but integrating the whole cross-section (i.e. including the PML,
so that the overbar has to be discarded in Eq. (25)). The modes are retained if
they fulfil the following criterion:

1− Im(Tm)
|Tm|

> ηmin, (C.1)

where 0 < ηmin < 1 is a user-defined parameter.
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[10] F. Benmeddour, F. Treyssède, L. Laguerre, Numerical modeling of guided
wave interaction with non-axisymmetric cracks in elastic cylinders, Int. J.
Solid Struct. 48 (5) (2011) 764–774. doi:10.1016/j.ijsolstr.2010.11.013.
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