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Chapter 1

Introduction

In cryptography, Curve25519 is an elliptic curve offering 128 bits of security
and designed for use with the elliptic curve Diffie–Hellman (ECDH) key agree-
ment scheme and elliptic curve digital signature (ECDSA) scheme. It is one of
the fastest ECC curves and is not covered by any known patents. It was first
released by Daniel J. Bernstein in 2005 [1], but interest increased considerably
after 2013 when it was discovered that the NSA had implemented a backdoor
into Dual_EC_DRBG [6]. While not directly related, suspicious aspects of the
NIST’s P- curve constants led to concerns that the NSA had chosen values that
gave them an advantage in factoring public keys.
Since then, Curve25519 has become the de facto alternative to P-256, and is
used in a wide variety of applications. Starting in 2014, OpenSSH defaults
to Curve25519-based ECDH. In 2017, NIST announced that Curve25519 and
Curve448 (Ed448-Goldilocks) [8] would be added to Special Publication 800-186,
which specifies approved elliptic curves for use by the US Federal Government.
Both are described in RFC 7748 [10].

This document is organized as follows. The theory of Edwards elliptic curves
is covered in section 2, the Curve25519 is then presented in section 3 and cryp-
tographic protocols that use this curve are discussed in section 4.
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Chapter 2

Edwards Curves

The normal form (Edwards form) for elliptic curves simplifies formulas in the
theory of elliptic curves and functions. Its principal advantage is that it allows
the addition law, the group law on the elliptic curve, to be stated explicitly. In
this section we will look at the theory behind this from.

2.1 How it all began

In the bulletin of the american mathematical society 2007 [7], Harold Edwards
introduced what he called at that time "A normal form for elliptic curves". He
went back to the definition of an elliptic function (curve) given by Abel, Euler
and Gauss to propose a new-not-new form with interesting group law formulas.
In fact, Today an elliptic curve is realized as a cubic curve and when a point of
the curve is chosen to serve as the identity of the group operation, the group
structure can be described in terms of the sets of three points in which lines
intersect the curve, a description that is now well known and widely taught. The
connection between this now-familiar group structure and Euler’s work is far
from obvious, but in fact the two are aspects of the same phenomenon. Another
approach to that phenomenon was developed by Abel, where he sketched a
broad generalization of the group construction. Instead of intersecting a cubic
curve with lines, he intersected an arbitrary curve with an arbitrary family of
auxiliary curves. As the parameters in the defining equation of the auxiliary
curve vary, the intersection points vary along the given curve. Abel discovered
that, under suitable conditions, N intersection points move in this way with
N−g degrees of freedom, where g depends only on the given curve, not onN or
on the family of auxiliary curves that is used, provided the family is sufficiently
general. This g is the genus of the given curve. When that curve is a nonsingular
cubic and the auxiliary curves are lines, there are N = 3 intersection points that
move with N − g = 2 degrees of freedom because two of the intersection points
can be chosen arbitrarily. Therefore, g is 1 in this case.
Harold Edwards presented in this bulletin a fourth view to this phenomenon
that incorporates the the three that have been mentioned. He started from the
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particular curve example x2+y2+x2y2 = 1 for which Euler suggested an explicit
"addition formula" that had been stated by Gauss decades later, putting them in
the form

S =
s1c2 + s2c1
1− s1s2c1c2

, C =
c1c2 − s1s2
1 + s1s2c1c2

(2.1.1)

(Gauss’s choice of the letters s and c brings out the analogy with the addition laws for
sines and cosines. (The numerators are the addition laws for sines and cosines))

These remarkable Euler-Gauss formulas apply only to the specific curve s2 +
c2 + s2c2 = 1, but they are a special case of a formula that describes the group
law of an arbitrary elliptic curve, as it was shown by Edwards in this bulletin,
of the form

y2 + x2 = a2(1 + x2y2) (2.1.2)

if a is a non-zero constant for which a5 6= a, with the following addition law

X =
x1y2 + x2y1

a(1 + x1x2y1y2)
, Y =

y1y2 − x1x2
a(1− x1x2y1y2)

(2.1.3)

(formula 2.1.1 is the case a =
√
i, x = s

√
i and y = c

√
i)

In fact a must be different from a5 so that Eq.2.1.2 is an elliptic curve. In view of
Abel’s work, an elliptic curve is of the form z2 = f(x) where f is a polynomial
of degree 3 or 4 (of degree 2g − 1 or 2g − 2 where the genus g is 1) with distinct
roots. Setting z = (1 − a2x2) puts Eq.2.1.2 in the form z2 = (a2 − x2)(1 − a2x2).
The polynomial in the right has degree 4, so the equation describes an elliptic
curve provided this polynomial (a2 − x2)(1− a2x2) = a2x4 − (a4 + 1)x2 + a2 has
distinct roots, which is true if and only if its discriminant is non-zero

∆ = (a4 + 1)2 − 4a4 = (a4 − 1)2 (2.1.4)

thus, (a4 − 1)2 must be non-zero or equivalently stated a5 6= a.

What is more important to prove is how did Harold Edwards find these for-
mulas (naughty Harold!).

2.2 Algebraic proof of the addition formula

Given two points (x1, y1) and (x2, y2) on the curve x2 + y2 = a2(1 + x2y2), we
want to prove that (x1, y1) + (x2, y2) = (x3, y3) where

x3 =
x1y2 + x2y1

a(1 + x1x2y1y2)
, y3 =

y1y2 − x1x2
a(1− x1x2y1y2)
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This point has to be on the curve, hence x23 + y23 = a2(1 + x23y
2
3). Let us use the

letter T to abbreviate x1x2y1y1 and multiply this equation by a2(1− T 2)

(x23 + y23 = a2(1 + x23y
2
3))× a2(1− T 2)2

(
(x1y2 + x2y1)

2

a2(1− T )2
+

(y1y2 − x1x2)2

a2(1 + T )2
= a2(1 +

(x1y2 + x2y1)
2(y1y2 − x1x2)2

a4(1− T )2(1 + T )2
))× a2(1− T 2)2

(x1y2 + x2y1)
2(1− T )2 + (y1y2 − x1x2)2(1 + T )2 = a4(1− T )4 + (x1y2 + x2y1)

2(y1y2 − x1x2)2

This is the consequence of the assumption that x21+y21 = a2(1+x21y
2
1) and x22+y22 =

a2(1 + x22y
2
2) yield x23 + y23 = a2(1 + x23y

2
3). In other words, it is to prove that

(x1y2+x2y1)
2(1−T )2+(y1y2−x1x2)2(1+T )2 = a4(1−T )4+(x1y2+x2y1)

2(y1y2+x1x2)
2+R3

where R3 is a linear combination of R1 = x21 + y21 − a2(1 + x21y
2
1) and R2 =

x22 + y22 − a2(1 + x22y
2
2). Let’s take a look at Eq.2.2

(x21y
2
2 + x22y

2
1 + 2T )2(1 + T 2 − 2T )2 + (y21y

2
2 + x21x

2
2 − 2T )2(1 + T 2 + 2T )2 =

(x21y
2
1 + y21x

2
2 + 2T )(y21y

2
2 + x21x

2
2 − 2T ) + a4(1− T 2)2 +R3

(x21y
2
2 + 2T + y21x

2
2 + y21y

2
2 − 2T + x21x

2
2)(1 + T 2) + (−x21y22 − 2T − y21x22 + y21y

2
2 − 2T + x21x

2
2)(2T ) =

(x21y
2
1 + y21x

2
2)(y

2
1y

2
2 + x21x

2
2) + 2T (y21y

2
2 + x21x

2
2 − x21y21 − y21x22)− 4T 2 + a4(1− T 2)2 +R3

(x21 + y21)(x22 + y22)(1 + T 2) + ((x21 − y21)(x22 − y22)− 4T )(2T ) =

x21y
2
1y

4
2 + x41x

2
2y

2
2 + y41x

2
2y

2
2 + x21y

2
1x

4
2 + 2T (x21 − y21)(x22 − y22)− 4T 2 + a4(1− T 2)2 +R3

(x21 + y21)(x22 + y22)(1 + T 2) + 2T (x21 − y21)(x22 − y22)− 8T 2 =

x21y
2
1y

4
2 + x41x

2
2y

2
2 + y41x

2
2y

2
2 + x21y

2
1x

4
2 + 2T (x21 − y21)(x22 − y22)− 4T 2 + a4(1− T 2)2 +R3

substracting 2T (x21 − y21)(x22 − y22)− 8T 2 from both sides

(x21 + y21)(x22 + y22)(1 + T 2) = x21y
2
1y

4
2 + x41x

2
2y

2
2 + y41x

2
2y

2
2 + x21y

2
1x

4
2 + 4T 2 + a4(1− T 2)2 +R3

= x21y
2
1(y42 + 2x22y

2
2 + x42) + x22y

2
2(y41 + 2x21y

2
1 + x41) + a4(1− T 2)2 +R3

= x21y
2
1(y22 + x22)

2 + x22y
2
2(y21 + x21)

2 + a4(1− T 2)2 +R3

and writing (1− T 2)2 as

(1− T 2)2 = (1 + T 2)2 − 4T 2

= (1 + T 2)(1 + x21y
2
1 + x22y

2
2 + T 2)− (1 + T 2)(x21y

2
1 + x22y

2
2)− 4T 2

= (1 + T 2)(1 + x21y
2
1)(1 + x22y

2
2)− x21y21 − x22y22 − 2T 2 − 2T 2 − x21y21T 2 − x22y22T 2

= (1 + T 2)(1 + x21y
2
1)(1 + x22y

2
2)− x21y21(1 + 2x22y

2
2 + x42y

4
2)− x22y22(1 + 2x21y

2
1 + x41y

4
1)

= (1 + T 2)(1 + x21y
2
1)(1 + x22y

2
2)− x21y21(1 + x22y

2
2)2 − x22y22(1 + x21y

2
1)2
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yields

R3 = (1 + T 2)[(x21 + y21)(x22 + y22)− a2(1 + x21y
2
1)a2(1 + x22y

2
2)]+

x21y
2
1[a4(1 + x22y

2
2)2 − (x22 + y22)2] + x22y

2
2[a4(1 + x21y

2
1)2 − (x21 + y21)2]

= (1 + T 2)[R1(x
2
2 + y22) +R2(x

2
1 + y21)]− x21y21[R2(2x

2
2 + 2y22 −R2)]− x22y22[R1(2x

2
1 + 2y21 −R1)]

Which is a combination of R1 and R2. So if R1 = R2 = 0, then R3 = 0 and thus
the algebraic addition formula is correct.

I know that this proof is cumbersome; the algebra is straightforward but te-
dious however. So here is a way to "understand" this addition law for those who
have Math anxiety (I see you):

Let x2 + y2 = 1 be the unit circle equation and P1(x1, y1) and P2(x2, y2) be
points on this circle. We have (see Fig.2.1):

(x1, y1) = (sin(α1), cos(α1)), (x2, y2) = (sin(α2), cos(α2))

and thus this addition is given by

x3 = sin(α1 + α2)

= sin(α1)cos(α2) + cos(α1)sin(α2)

= x1y2 + y1x2

y3 = cos(α1 + α2)

= cos(α1)cos(α2)− sin(α1)sin(α2)

= y1y2 − x1x2

Figure 2.1: Addition law on a unit circle

Now take the Edwards curve x2 + y2 = 1 + x2y2 (a = 1) and the points
P1(x1, y1), P2(x2, y2) on this curve (see Fig.2.2). The addition is given by

x3 =
x1y2 + x2y1
1 + x1x2y1y2

y3 =
y1y2 − x1x2
1− x1x2y1y2

6



Figure 2.2: Addition law on a unit edwards curve

Furthermore, given the formulas of Eq.2.1.3, the neutral element (the zero on
the curve) is (0, a) and the inverse of (x1, y1) is (−x1, y1).

Proof. Let P (x1, y1) be a point on the curve x2 + y2 = a2(1 + x2y2), we have:

x1a+ 0.y1
a(1 + x1.0.y1a)

= x1,
y1a− x1.0

a(1− x1.0.y1a)
= y1

and

x1y1 − x1.y1
a(1 + x21.y

2
1)

= 0

y21 + x21
a(1− x21y21)

= a

Given the uniqueness of the neutral element and inverse element the proof is
complete.

Claim 1. The addition law is strongly unified, i.e., it can be also used for doubling
operation.

2(x1, y2) =

(
2x1y1

a(1 + x21y
2
1)
,

y21 − x21
a(1− x21y21)

)

2.3 A larger class of Edwards curves

First, Edwards curves (E) : x2 + y2 = a2(1 + x2y2) are defined over non-binary
fields (char 6= 2) as to be non singular. In fact, the partial derivatives are:

∂E

∂x
= 2x(1− a2y2), ∂E

∂y
= 2x(1− a2x2)

Thus, for binary fields, ∂E
∂x

= ∂E
∂y

= 0 in all points. Hence, the curve is singular.
From now on, the field over which an Edwards curve is defined is a non-binary
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field (char 6= 2).

Harold Edwards in [7] showed that all elliptic curves over non-binary fields
can be transformed to Edwards form. Some elliptic curves require a field ex-
tension for the transformation, but some have transformations defined over the
original finite field. To capture a larger class of elliptic curves over the original
field, Bernstein and Lange in [5] expanded the notion of Edwards form to in-
clude curves x2 + y2 = a2(1 + dx2y2) where cd(1− dc4) 6= 0 (the proof is the same
as in 2.1.4). Thus, the addition law becomes:

(x1, y1) + (x2, y2) 7→ (
x1y2 + x2y1

a(1 + dx1x2y1y2)
,

y1y2 − x1x2
a(1− dx1x2y1y2)

) (2.3.1)

Claim 2. If d is a non-square the addition law is complete, i.e., it works for all input
pairs with no exceptions.

Proof. Let (x1, y1) and (x2, y2) be on the curve and ε = dx1x2y1y2. The addition
would be complete if the denominator can’t be 0. Let d be a non-square and
suppose that ε ∈ {−1, 1}. Then x1, x2, y1, y2 6= 0 and

dx21y
2
1(x22 + y22) = dx21y

2
1(1 + dx22y

2
2)

= dx21y
2
1 + ε2

= dx21y
2
1 + 1

= x21 + y21

it follows that

(x1 + εy1)
2 = x21 + y21 + 2εx1y1

= dx21y
2
1(x22 + y22) + 2dx21y

2
1x2y2

= dx21y
2
1(x22 + 2x2y2 + y22)

= dx21y
2
1(x2 + y2)

2

So if

• x2 + y2 6= 0 =⇒ d = ( x1+εy1
x1y1(x2+y2)

)2 =⇒ d is a square (contradiction)

• x2 − y2 6= 0 =⇒ d = ( x1−εy1
x1y1(x2−y2))

2 =⇒ d is a square (contradiction)

• x2 + y2 = 0 and x2 − y2 = 0 =⇒ x2 = y2 = 0 (contradiction)

Every Edwards curve can be easily transformed to an isomorphic Edwards
curve over the same field having a = 1 and thus, in the subsequent, we will note
an Edwards curve one of the form:

(E) : x2 + y2 = 1 + dx2y2 (2.3.2)
8



Proof. Let x2+y2 = c2(1+dx2y2) be an Edwards curve. Define x = cx and y = cy,
then

x2 + y2 = c2(1 + dx2y2) =⇒ x2 + y2 = 1 + dc4x2y

with d = dc4.

Next, we will show that Edwards curves of equation 2.3.2 defined over non-
binary fields that has an element of order 4 are bi-rationally equivalent to elliptic
curves of Weierstrass form. Note that every Edwards curve has a point of order
4 (the points (±1, 0)), so it is natural to consider elliptic curves of order 4. For the
other way round, that is to map a Weierstrass curve that hasn’t a an element of
order 4 to an Edwards curve, we construct an extension field such as the group
of point defined over the extension has an element of order 4. Therefore, some
twisted curve will be bi-rationally equivalent to Edwards curve over the exten-
sion field.

• Emmanuel Macron: Wait, what is a bi-rational equivalence?

• Youssef: First of all, bi-rational equivalence is a geometric notion. Given two
geometric objects, elliptic curves for instance, we want to define what it means
to be "the same". The usual terminology is that given two curves E1 and E2,
they are "the same" when they are isomorphic. There is another way to equate
objects, and that is by saying that they are "almost the same". This is what a
bi-rational equivalence does: two curves E1 and E2 are bi-rationally equivalent
when there is a map φ : E1 → E2 between them which is defined at every point
of E1 except a small set of exceptions and there is an inverse map φ−1 : E2 → E1

which is defined at every point of E2 except a small set of exceptions. This defini-
tion is very close to that of an isomorphism, except for the fact that we allow some
exceptions.
To make this more concrete, on one hand, you could think of an isomorphism as
a tuple of polynomials Φ : E1 → E2, (x, y) 7→ (f(x, y), g(x, y)) where f, g are
polynomials in x, y. The inverse is also defined in terms of polynomials. On the
other hand, a bi-rational map can be thought of as a tuple of fractions of polyno-
mials φ : E1 → E2, (x, y) 7→ (f1(x,y)

f2(x,y)
, g1(x,y)
g2(x,y)

). This map is defined at all points
x, y except for the ones where f2(x, y) = 0 or g2(x, y) = 0. The inverse map is
also a fraction of polynomials, and thus can be undefined at some points.

Theorem 1. Let K be a field where char(K) 6= 2. Let E be an elliptic curve of Weier-
strass form such that the group E(K) has an element of order 4. Then

1. There exists d ∈ K−{0, 1} such that the curve x2+y2 = 1+dx2y2 is bi-rationally
equivalent over K to a quadratic twist of E ,

2. if E(K) has a unique element of order 2, then there is a non-square d ∈ K such
that the curve x2+y2 = 1+dx2y2 is bi-rationally equivalent over K to a quadratic
twist of E and

9



3. if K is a finite field and E(K) has a unique element of order 2 then there is a non-
quare d ∈ K such that the curve x2 + y2 = 1 + dx2y2 is bi-rationally equivalent
over K to E

Proof. Refer to ([5], Theorem 2.1). However, here is a sketch of the proof: Define
E in long Weierstrass form then reduce it without loss of generality to the Mont-
gomery form y2 = x3+a2x

2+a4x and then show, under the presumed conditions,
that x2+y2 = 1+dx2y2 is bi-rationally equivalent to 1

1−dv
2 = u3+21+d

1−du
2+u. The

rational map (u, v) 7→ (x, y) is defined by x = 2u
v

and y = u−1
u+1

; there are only few
exceptional points with v(u + 1) = 0 (see Christophe’s definition). The inverse
rational map (x, y) 7→ (u, v) is defined by u = 1+y

1−y and v = 2(1+y)
x(1−y) ; there are only

few exceptional points with x(1− y) = 0.

Now we have (almost) all the necessary background to define the Curve25519
in its Edwards form.
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Chapter 3

Curve25519

Curve25519 was introduced in 2006 [1] as an elliptic-curve-Diffie-Hellman func-
tion but it is known today as the underlying elliptic curve designed for use with
ECDH key agreement scheme (X25519) or with ECDSA signature (Ed25519). It
was first introduced in its Montgomery form

E1 : v2 = u3 + 486662u2 + u (3.0.1)

over the prime field defined by the the pseudo-Mersenne prime number p =
2255 − 19. This curve is, as we have shown in Sec. 2.3, bi-rationally equivalent to
the Edwards curve

E2 : x2 + y2 = 1 +
121665

121666
x2y2 (3.0.2)

The bi-rational equivalence is given by the map

φ : E1 → E2

(u, v) 7→

(√
486664u

v
,
u− 1

u+ 1

)
Notice that it is undefined for v = 0 or u = −1, and therefore it is not an iso-
morphism; it is a bi-rational equivalence (Christophe’s answer to Emmanuel
Macron). The inverse map is defined by

φ−1 : E2 → E1

(x, y) 7→

(
1 + y

1− y
,

√
486664u

x

)
It is undefined for y = 1 or x = 0.
Note that 486664 is a square modulo p and that d = 121665

121666
is not a square modulo

p.
To avoid exceptional points, consider the twisted Edwards curve

E3 : −x2 + y2 = 1− 121665

121666
x2y2 (3.0.3)

There is a map χ : E2 → E3 defined by χ(x, y) = (ix, y), assuming that i is a
square root of −1. This is clearly defined everywhere, and is an isomorphism

11



• The choice of the field:
The field is a prime finite field with p = 2255 − 19 elements to assure
a 128-bit security level as the fastest known attack on the discrete loga-
rithm problem (Pollard’s ρ combined with Pohlig-Hellman) has complex-
ity O(

√
`) where ` is the cyclic subgroup order. Since ` is related to the

order of the elliptic curve group N by Lagrange’s theorem h = N/` where
h the cofactor is taken small to avoid Pohlig-Hellman attack, it is natural to
consider that the complexity is≈ O(

√
N) and since the gap betweenN and

p is at most 2
√
p according to Hasse’s theorem, the complexity is≈ O(

√
p).

Thus, since p has 256 bits the curve offers a 128-bit security level. Bern-
stein chose a pseudo-Mersenne prime number pf the form p = 2m − α to
perform modular arithmetic efficiently; a product to be reduced modulo p
is split into a lower and higher part, with the lower part of length m bits.
The top part is multiplied by c and added to the lower part. Finally the
small excess beyond m bits is extracted, multiplied by c and added to the
total.

• The choice of the constant:
Let us note the constant A. Montgomery suggested to take (A − 2)/4 as a
small integer to speed up the multiplication by (A−2)/4; this has no effect
on the conjectured security level. Furthermore, to protect against various
attacks discussed in ([1], Section 3), Bernstein rejected choices of A whose
curve and twist orders were not {4.prime, 8.prime}. The smallest positive
choices for A are 358990, 464586 and 486662. He rejected A = 358990 be-
cause one of its primes is slightly smaller than 2252, raising the question of
how standards and implementations should handle the theoretical possi-
bility of a user’s secret key matching the prime; discussing this question
is more difficult than switching to another A. He rejected 464586 for the
same reason. So he ended up with A = 486662.
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Chapter 4

X25519 and Ed25519 protocols

The Curve25519 can be used in an Elliptic Curve Diffie-Hellman (ECDH) proto-
col or an Elliptic Curve Digital Signature Algorithm (ECDSA). These protocols
are named respectively X25519 and Ed25519.

4.1 X25519

The X25519 function [1] can be used in an Elliptic Curve Diffie-Hellman (ECDH)
protocol using the Curve25519 with the base point x = 9. This base point has or-
der 2252 + 27742317777372353535851937790883648493. The protocol is as follows:

Alice generates 32 random bytes in a[0] to a[31] and transmitsKA = X25519(a, 9)
to Bob, where 9 is the x-coordinate of the base point and is encoded as a byte
with value 9, followed by 31 zero bytes.
Bob similarly generates 32 random bytes in b[0] to b[31], computesKB = X25519(b, 9),
and transmits it to Alice.
Using their generated values and the received input, Alice computes X25519(a,KB)
and Bob computes X25519(b,KA). Both now shareK = X25519(a,X25519(b, 9)) =
X25519(b,X25519(a, 9)) as a shared secret.

4.2 Ed25519

Ed25519 is the Edwards-curve Digital Signature Algorithm (EdDSA)[2] using
SHA-512/256 and the twisted Curve25519 of equation 3.0.3. EdDSA is a digital
signature scheme using a variant of Schnorr signature based on Twisted Ed-
wards curves. It is designed to be faster than existing digital signature schemes
without sacrificing security. It was developed by a team including Bernstein,
Duif, Lange, Schwabe, Yang. In fact Elliptic Curve Digiral Signature Algortihm
(ECDSA) is notably known because of the PlayStation 3 hack (Sony’s mistake)
in which private key would be retrieved because ECDSA wasn’t properly ran-
domized. Researchers then have asked themselves how could data be signed
without relying on a random generator, hence avoiding randomness-failure of
this sort. A few answers came out, with -most notably- RFC6979 [11], which

13



Figure 4.1: X25519 protocol

introduced a deterministic version of ECDSA to avoid those problems. EdDSA
is another deterministic elliptic curve signature scheme, described in RFC8032
[9] and originally introduced in [3] and generalized for more curves in [4].
An EdDSA signature scheme is a choice

• of finite field Fq over odd prime power q,

• of elliptic curve E Fq whose group E(Fq) of Fq-rational points has order
#E(Fq) = 2c`, where ` is a large prime and 2c the cofactor,

• of base point B ∈ E(Fq) with order ` and

• of target-collision-resistant hash function H with 2b-bit outputs, where
2b−1 > q so that elements of Fq and curve points in E(Fq) can be repre-
sented by strings of b bits.

Within an EdDSA signature scheme,
Public key

An EdDSA public key is a curve point A ∈ E(Fq), encoded in b bits.

Signature An EdDSA signature on a message M by public key A is the pair
(R, S), encoded in 2b bits, of a curve point R ∈ E(Fq) and an integer 0 < S < `
satisfying the verification equation2cSB = 2cR + 2cH(R,A,M)A.

Private key An EdDSA private key is a b-bit string k which should be cho-
sen uniformly at random. The corresponding public key is A = sB, where
s = H0,...,b−1(k) is the least significant b bits of H(k) interpreted as an integer
in little-endian. The signature on a message M is (R, S) where R = rB for
r = H(Hb,...,2b−1(k),M), and S ≡ r +H(R,A,M)s (mod `).

14



This clearly satisfies the verification equation:

2cSB = 2c(r +H(R,A,M)s)B

= 2crB + 2cH(R,A,M)sB

= 2cR + 2cH(R,A,M)A.

For Ed25519 the parameters are:

• q = 2255 − 19,

• E/Fq is the twisted Edwards curve −x2 + y2 = 1− 121665
121666

x2y2,

• B is the unique point in E(Fq) whose y coordinate is 4/5 and whose x
Coordinate is positive, and

• H is SHA-512, with b = 256.

Arithmetic modulo q = 2255 − 19 can be implemented efficiently and securely.
For instance, inversion modulo q can be carried using the identity x−1 ≡ xq−2

(mod q) (because xq ≡ x (mod q) in GF (q)). For point decoding or "decom-
pression", square roots modulo q are needed. They can be computed using the
Tonelli-Shanks algorithm or the special case for q ≡ 5 (mod 8). To find a square
root of a, first compute the candidate root x ≡ a

q+3
8 (mod q). Then there are

three cases:

• x2 ≡ a (mod q). Then x is a square root.

• x2 ≡ −a (mod q). Then 2
q−1
4 × x is a square root.

• a is not a square modulo q.

Proof. see appendix D
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Appendix A

Explicit-Formulas database

A.1 Montgomery Curves

Given the elliptic curve in Montgomery form (Em): by2 = x3 + ax2 + x, we give
the affine formulas for the addition law, then we establish projective formulas.

Affine coordinates

Given the points (x1, y1), (x2, y2) ∈ Em, let the point (x1, y1) + (x2, y2) 7→ (x3, y3)
be the result addition point.

x3 = b

(
y2 − y1
x2 − x1

)2

− a− x1 − x2 (A.1.1)

y3 = (2x1 + x2 + a)

(
y2 − y1
x2 − x1

)
− b
(
y2 − y1
x2 − x1

)3

− y1 (A.1.2)

Proof. Let (L) : y = mx+n be the line passing through (x1, y1) and (x2, y2) where
m = y2−y1

x2−x1 and n = y1 −mx1 = y2 −mx2. The point (x3, y3) is x-axis symmetric
point defined by the intersection between (Em) anad (L). That is to say,

b(mx+ n)2 = x3 + ax2 + x

x3 + (a− bm2)x2 + (1− bmn)x− bn2 = 0

This equation has 3 roots, namely x1, x2 and x3. According to Vieta’s formulas
the sum of the roots verify x1 + x2 + x3 = bm2 − a. Hence

x3 = bm2 − a− x1 − x2

and

−y3 = mx3 + n

−y3 = m(bm2 − a− x1 − x2) + y1 −mx1
y3 = (2x1 + x2 + a)m− bm3 − y1
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For doubling, the result the point 2(x1y1) 7→ (x3y3) is

x3 = b

(
3x21 + 2ax1 + 1

2by1

)2

− a− x1 − x2 (A.1.3)

y3 = (2x1 + x2 + a)

(
3x21 + 2ax1 + 1

2by1

)
− b
(

3x21 + 2ax1 + 1

2by1

)3

− y1 (A.1.4)

Proof. The line (L) is the tangent of equation f ′(x1)(x−x1)+f(x1) where f(x) =

±
√

(x3 + ax2 + x)/b. Given that

f ′(x) =
3x2 + 2ax+ 1

2by

we have f ′(x1) =
3x21+2ax1+1

2by1
and f(x1) = y1. Thus we can write (L) as mx + n

where

m = f ′(x1) =
3x21 + 2ax1 + 1

2by1
n = f(x1)− x1f ′(x1) = y1 −mx1

Then the formulas can be obtained following the same proof as for the addition
law, with the apropriate m.

Projective coordinates

Montgomery proposed an efficient method to compute the x-coordinate of k ×
(x1, y1) given only the x-coordinate of (x1, y1). For this, we use the projective
representation (X : Z) with x = X/Z. Let a24 = (a + 2)/4 (For Curve25519
a24 = 121666 = 0x1DB42 ), we have

A = (X1 + Z1)
2; B = (X1 − Z1)

2; C = A−B
X3 = A×B
Z3 = C × (B + a24 × C)

A.2 Edwards Curves

Given the elliptic curve (Ee): x2 + y2 = 1 + dx2y2, we start by recalling the affine
formulas for the addition law, then we establish projective and inverted formu-
las. A comparison, in terms of operations counts, is carried afterwards.

18



Affine coordinates

Given the points (x1, y1), (x2, y2) ∈ Ee, let the point (x1, y1) + (x2, y2) 7→ (x3, y3)
be the result addition point.

x3 =
x1y2 + x2y1

1 + dx1x2y1y2
(A.2.1)

y3 =
y1y2 − x1x2

1− dx1x2y1y2
(A.2.2)

Remark: This formula are unified for doubling and adding operation (see.
Claim 1). If d is not a square, then the formula are complete (see. Claim 2).

Projective coordinates

Given the set of projective points (X : Y : Z) where Z 6= 0 corresponds to the
set of affine points (X/Z, Y/Z), the equation of (E) becomes

(EZ) : Z2(X2 + Y 2) = Z4 + dX2Y 2

The neutral element is (0 : 1 : 1) and the inverse of (X : Y : Z) is (−X : Y : Z).
Given the points (X1 : Y1 : Z1) and (X2 : Y2 : Z2) on the curve (EZ) let the point
(X1 : Y1 : Z1) + (X2 : Y2 : Z2) 7→ (X3 : Y3 : Z3) be the result addition point. Thus,

A = Z1Z2; B = A2; C = X1X2

D = Y1Y2; E = dCD; F = B − E; G = B + E

X3 = AF ((X1 + Y1)(X2 + Y2)− C −D) (A.2.3)
Y3 = AG(D − C) (A.2.4)
Z3 = GF (A.2.5)

Proof. According to A.2.1 and A.2.2 we have

X3

Z3

=
X1

Z1

Y2
Z2

+ X2

Z2

Y1
Z1

1 + dX1X2Y1Y2
Z2
1Z

2
2

,
Y3
Z3

=
Y1
Z1

Y2
Z2
− X1

Z1

X2

Z2

1− dX1X2Y1Y2
Z2
1Z

2
2

X3

Z3

=
Z1Z2(X1Y2 +X2Y1)

Z2
1Z

2
2 + dX1X2Y1Y2

,
Y3
Z3

=
Z1Z2(Y1Y2 −X1X2)

Z2
1Z

2
2 − dX1X2Y1Y2

We take

Z3 = (Z2
1Z

2
2 + dX1X2Y1Y2)(Z

2
1Z

2
2 − dX1X2Y1Y2)

= Z4
1Z

4
2 − d2X2

1X
2
2Y

2
1 Y

2
2

= GF

and then we have

X3 = Z1Z2(X1Y2 +X2Y1)(Z
2
1Z

2
2 − dX1X2Y1Y2)

= AF ((X1 + Y1)(X2 + Y2)− C −D)
19



and

Y3 = Z1Z2(Y1Y2 −X1X2)(Z
2
1Z

2
2 + dX1X2Y1Y2)

= AG(D − C)

Remark: This formula are unified for doubling and adding operation (see.
Claim 1). If d is not a square, then the formula are complete (see. Claim 2).

Mixed addition: This refers to the case where Z2 = 1. In this case, the mul-
tiplication A = Z1Z2 can be eliminated. Doubling: If doubling and adding
operation are different, then the formula of doubling could be

B = (X1 + Y 1)2; C = X12; D = Y 12

E = C +D; H = Z12; J = E − 2H

X3 = B − E
Y 3 = E(C −D)

Z3 = EJ

with only 3 multiplications, 4 squares, 5 additions over Fp.

Inverted coordinates

Given the set of projective points (X : Y : Z) where XY Z 6= 0 corresponds to
the set of affine points (Z/X,Z/Y ), the equation of (E) becomes

(E ′Z) : Z2(X2 + Y 2) = dZ4 +X2Y 2

The result addition point is

A = Z1Z2; B = dA2; C = X1X2; D = Y1Y2; E = CD;

F = C −D; G = (X1 + Y1)(X2 + Y2)− C −D;

X3 = (E +B)F (A.2.6)
Y3 = (E −B)G (A.2.7)
Z3 = AFG (A.2.8)

Proof. According to A.2.1 and A.2.2 we have

Z3

X3

=
Z1Z2(X2Y1 +X1Y2)

X1X2Y1Y2 + dZ2
1Z

2
2

,
Z3

Y3
=
Z1Z2(X1X2 − Y1Y2)
X1X2Y1Y2 − dZ2

1Z
2
2

X3

Z3

=
X1X2Y1Y2 + dZ2

1Z
2
2

Z1Z2(X2Y1 +X1Y2)
,

Y3
Z3

=
X1X2Y1Y2 − dZ2

1Z
2
2

Z1Z2(X1X2 − Y1Y2)

we take

Z3 = Z1Z2(X1X2 − Y1Y2)(X1Y2 +X2Y1)

= AFG
20



and then we have

X3 = (X1X2 − Y1Y2)(X1X2Y1Y2 + dZ2
1Z

2
2)

= (E +B)F

and

Y3 = (X1Y2 +X2Y1)(X1X2Y1Y2 − dZ2
1Z

2
2)

= (E −B)G

Note that the requirement XY Z 6= 0 means that we can’t represent in in-
verted coordinates points (x, y) such that xy = 0. There 4 points satisfying this
condition: The neutral element (0, 1), the point of order 2 (0,−1) and the points
of order 4 (±1, 0). Additions that involve these points must be handled sepa-
rately.
Mixed addition: This refers to the case where Z2 = 1. In this case, the multipli-
cation A = Z1Z2 can be eliminated.

Remark: In order to compute the inverted coordinates from affine coordi-
nates. The cost is 2 modular inversions for Z = 1. For a Z in Fp, the cost is 2
modular inversion and 2 modular multiplications. To reduce the 2 inversions
up to 1 inversion and 3 modular multiplications, the elegant idea from Youssef
is compute the product of X and Y , make the inversion of the product and after
multiply by X the Y and vice versa.

Count of operations

Here we denote

• M: Field multiplication.

• S: Field squaring.

• m: Multiplication by a constant d.

• A: Field addition.

• I: Field inversion.

From the explicit formulas, one can readily count

Coordinates / Operations M S m A I
Affine 5 0 1 4 2
Projective 10 1 1 7 0
Inverted 9 1 1 7 0

Table A.1: Count of operations for addition
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In mixed addition, A = Z1Z2 is eliminated and thus one 1M is saved for each
addition. The resulting count of operation for a mixed addition is

• In projective coordinates: 9M, 1S, 1m and 7A.

• In inverted coordinates: 8M, 1S, 1m and 6A.

Since the addition law is strongly unified, we use it as well for the doubling
count

Coordinates / Operations M S m A I
Affine 2 2 1 4 2
Projective 3 4 1 7 0
Inverted 3 4 1 7 0

Table A.2: Count of operations for doubling

A.3 Twisted Edwards curves

For the twisted Edwards curve ax2 + y2 = 1 + dx2y2, the formulas are:

Affine coordinates

Affine coordinates:

x3 =
x1y2 + x2y1

1 + dx1x2y1y2
, y3 =

y1y2 − ax1x2
1− dx1x2y1y2

Projective coordinates

A = Z1Z2; B = A2; C = X1X2

D = Y1Y2; E = dCD; F = B − E; G = B + E

X3 = AF ((X1 + Y1)(X2 + Y2)− C −D) (A.3.1)
Y3 = AG(D − aC) (A.3.2)
Z3 = GF (A.3.3)

Inverted coordinates:

A = Z1Z2; B = dA2; C = X1X2; D = Y1Y2; E = CD;

F = C − aD; G = (X1 + Y1)(X2 + Y2)− C −D;

X3 = (E +B)F (A.3.4)
Y3 = (E −B)G (A.3.5)
Z3 = AFG (A.3.6)
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Count of operations

Note that the formulas are almost the same as in a normal Edwards curve.
Hence, the operations count (Tables A.1 and A.2) is the same, plus a multiplica-
tion by the constant a in case of a twisted curve.
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Appendix B

The Edwards-Weierstrass race

1

Figure B.1: Silhouttes of the competitors

Figure B.2: Portraits of the competitors

1http://cr.yp.to/talks/2008.05.12/zoo.html
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Figure B.3: The Edwards-Weierstrass race
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Appendix C

Curves parameters

For Curve25519 in Montgomery form is E : v2 = u3 + Au2 + u (see. [10]):
The elliptic curve domain parameters are:

• p = 2255 − 19

• A = 48662

• n = 2252 + 27742317777372353535851937790883648493

• h = 8

• uG = 9

• vG = 14781619447589544791020593568409986887264606134
616475288964881837755586237401

In hexadecimal format, the parameters are :

• p =0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFED

• A =0x76D06

• n = 0x1000000000000000000000000000000014DEF9DEA2F79CD65812631A5CF5D3ED

• h =0x8

• uG = 0x9

• vG = 0x20AE19A1B8A086B4E01EDD2C7748D14C923D4D7E6D7C61B229E9C5A27ECED3D9

For the bi-rational mapping:

(u, v) = (
1 + y

1− y
,

√
−486664u

x
)

(x, y) = (

√
−486664u

v
,
u− 1

u+ 1
)
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For the bi-rational mapping φ the s =
√

48664 is :

For Curve25519 in Edwards form : E : x2 + y2 = 1 + dx2y2

The elliptic curve domain parameters are:

• p = 2255 − 19

• d = 3709570593466943934313808350875456518954211387984
3219016388785533085940283555

• n = 2252 + 27742317777372353535851937790883648493

• h = 8

• xG = 15112221349535400772501151409588531511454012693
041857206046113283949847762202

• yG = 46316835694926478169428394003475163141307993866
256225615783033603165251855960

In hexadecimal format, the parameters are :

• p =0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFED

• d =0x2DFC9311D490018C7338BF8688861767FF8FF5B2BEBE27548A14B235ECA6874A

• n = 0x1000000000000000000000000000000014DEF9DEA2F79CD65812631A5CF5D3ED

• h =0x8

• xG = 0x9

• yG = 0x20AE19A1B8A086B4E01EDD2C7748D14C923D4D7E6D7C61B229E9C5A27ECED3D9

For twisted Curve25519 in twisted Edwards form : E : ax2 + y2 = 1 + dx2y2

• p =0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFED

• a = 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEC

• d = 0x52036CEE2B6FFE738CC740797779E89800700A4D4141D8AB75EB4DCA135978A3
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Appendix D

Tonelli-Shanks algorithm

Theorem 2 (Euler’s criterion). Let q be an odd prime and a an integer coprime to q.
Then

a
q−1
2 ≡

{
1 (mod q) =⇒ a is a square root

− 1 (mod q) =⇒ a is not a square root

Proof. Since a is coprime to q, Fermat’s little theorem implies that

aq−1 ≡ 1 (mod q)

(a
q−1
2 − 1)(a

q−1
2 + 1) ≡ 0 (mod q)

hence, q divides a
q−1
2 − 1 or q divides a

q−1
2 + 1 (not both, otherwise q divides 2).

If a is a square root, ∃x/ a ≡ x2 (mod q) , and then

a
q−1
2 ≡ xq−1 (mod q)

a
q−1
2 ≡ 1 (mod q) (Fermat’s little theorem)

and thus q divides a
q−1
2 − 1.

The Tonelli–Shanks algorithm is used within modular arithmetic to solve for
a congruence x of the form x2 ≡ a (mod q), where q is an odd prime. Since q id
odd we can write q − 1 = 2sQ where Q is odd.
Let R ≡ x

Q+1
2 (mod q), we have then

R2 ≡ x× xQ︸︷︷︸
t

(mod q)

if t ≡ 1 (mod q) then we found R such that x ≡ R2 (mod q), otherwise:{
R2 ≡ xt (mod q) and
t is the 2s−1-th root of 1
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because t2s−1 ≡ xQ2s−1 ≡ x
q−1
2 ≡ 1 (mod q) according to Euler’s criterion.

So taking successively the sqaure roots of t implies t ≡ 1 (mod q) or otherwise
∃k/ t2s−k ≡ −1 (mod q). In the former case, we do not need to do anything as the
same choice of R and t works. In latter case, we need to find a new pair (R, t);
we can multiply R by a factor b, to be determined and t must be then multiplied
by b2 to keep R2 ≡ xt (mod q). Let for instance t2s−2 ≡ −1 (mod q), we need
to find a factor b2 so that tb2 is a 2s−2-th root of 1, i.e. (tb2)2

s−2 ≡ 1 (mod q) or
equivalently (b2)2

s−2 ≡ −1 (mod q) since we said t2
s−2 ≡ −1 (mod q). The trick

here is to choose a known z which is not a square modulo q (e.g. z = 2) and
apply Euler’s criterion. Thus, z

q−1
2 ≡ (z

Q
2 )2

s−2 ≡ −1 (mod q) and hence b ≡ zQ

(mod q).
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Appendix E

Protocols and software using X25519
and Ed25519

• A list of protocols and software that use or support the superfast, super se-
cure Curve25519 ECDH function from Dan Bernstein can be found in this
page: https://ianix.com/pub/curve25519-deployment.html. Note that
Curve25519 ECDH should be referred to as X25519.

• A list of protocols and software that use or support the Ed25519 public-key
signature system from Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter
Schwabe, and Bo-Yin Yang can be found in this page: https://ianix.com/
pub/ed25519-deployment.html.

These pages are divided by Protocols, Networks, Operating Systems, Hardware,
Software, TLS Libraries, NaCl Crypto Libraries, Libraries, Miscellaneous, Time-
line notes, and Support coming soon.
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