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Optimization problems arising in signal and image processing involve an increasingly large number of variables. In addition to the curse of dimensionality, another difficulty to overcome is that the cost function usually reads as the sum of several loss/regularization terms, non-necessarily smooth and possibly composed with large-size linear operators. Proximal splitting approaches are fundamental tools to address such problems, with demonstrated efficiency in many applicative fields. In this paper, we present a new distributed algorithm for computing the proximity operator of a sum of non-necessarily smooth convex functions composed with arbitrary linear operators. Our algorithm relies on a primal-dual splitting strategy, and benefits from established convergence guaranties. Each involved function is associated with a node of a hypergraph, with the ability to communicate with neighboring nodes sharing the same hyperedge. Thanks to this structure, our method can be efficiently implemented on modern parallel computing architectures, allowing to distribute computations on different nodes or machines while limiting the need for synchronization steps. Its good numerical performance and scalability properties are illustrated on a problem of video sequence denoising.

Introduction

Numerous problems in data science such as video restoration require the processing of huge datasets. Optimal processing are often obtained by solving nonsmooth optimization problems, for which proximity operators appear as fundamental tools. In this context, it is necessary to propose parallel/distributed methods to compute proximity operators involved in the solution of high-dimensional problems, especially when the objective function is the sum of several convex non-necessarily smooth functions [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF][START_REF] Parikh | Proximal algorithms[END_REF]. In the general case, a closed form expression of the proximity operator of such composite term does not exist, and developing iterative strategies becomes necessary.

Primal-dual splitting methods are prominently used when dealing with convex optimization problems where large-size linear operators are involved [START_REF] Komodakis | Playing with duality : An overview of recent primal-dual approaches for solving large-scale optimization problems[END_REF][START_REF] Combettes | Dualization of signal recovery problems[END_REF][START_REF] Condat | A primal-dual splitting method for convex optimization involving lipschitzian, proximable and linear composite terms[END_REF][START_REF] Becker | An algorithm for splitting parallel sums of linearly composed monotone operators, with applications to signal recovery[END_REF]. The main advantage of many of these algorithms is that none of the linear operators needs to be inverted which makes this class of algorithms well suited for large-scale problems encountered in various application fields [START_REF] Couprie | Dual constrained tv-based regularization on graphs[END_REF][START_REF] Jezierska | A primal-dual proximal splitting approach for restoring data corrupted with poisson-gaussian noise[END_REF][START_REF] Onose | Scalable splitting algorithms for big-data interferometric imaging in the SKA era[END_REF].

Primal-dual techniques are based on several well-known strategies such as the Forward-Backward iteration [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF][START_REF] Combettes | A forward-backward view of some primal-dual optimization methods in image recovery[END_REF], the Forward-Backward-Forward iteration [START_REF] Bot | Convergence analysis for a primal-dual monotone + skew splitting algorithm with applications to total variation minimization[END_REF][START_REF] Combettes | Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators[END_REF], the Douglas-Rachford algorithm [START_REF] Bot | A Douglas-Rachford type primal-dual method for solving inclusions with mixtures of composite and parallel-sum type monotone operators[END_REF][START_REF] Combettes | Stochastic quasi-Fejér block-coordinate fixed point iterations with random sweeping[END_REF], or the Alternating Direction Method of Multipliers [START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF][START_REF] Briceño Arias | A monotone+skew splitting model for composite monotone inclusions in duality[END_REF][START_REF] Iutzeler | Explicit convergence rate of a distributed alternating direction method of multipliers[END_REF][START_REF] Davis | Convergence rate analysis of primal-dual splitting schemes[END_REF][START_REF] Rosasco | A first-order stochastic primal-dual algorithm with correction step[END_REF]. Moreover, primal-dual algorithms can be combined with a block-coordinate approach, where at each iteration only a few blocks are activated following a specific selection rule [START_REF] Shalev-Shwartz | Stochastic dual coordinate ascent methods for regularized loss minimization[END_REF][START_REF] Bianchi | A coordinate descent primal-dual algorithm and application to distributed asynchronous optimization[END_REF]. These algorithms can achieve fast convergence speed with reasonable memory requirement.

Both stochastic [START_REF] Qu | Randomized dual coordinate ascent with arbitrary sampling[END_REF][START_REF] Jaggi | Communication-efficient distributed dual coordinate ascent[END_REF] and deterministic [START_REF] Abboud | Dual block coordinate forward-backward algorithm with application to deconvolution and deinterlacing of video sequences[END_REF][START_REF] Chambolle | A remark on accelerated block coordinate descent for computing the proximity operators of a sum of convex functions[END_REF] versions of these have been used in image processing and machine learning applications. In the latter context, algorithms based on a dual Forward-Backward approach are often refereed to as dual ascent methods.

The aforementioned algorithms were originally proposed with single-node implementations, which may be suboptimal or even unsuitable, when dealing with massive datasets. Therefore, various asynchronous or distributed extensions have been proposed [START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF][START_REF] Pesquet | A class of randomized primal-dual algorithms for distributed optimization[END_REF][START_REF] Iutzeler | Explicit convergence rate of a distributed alternating direction method of multipliers[END_REF][START_REF] Richtárik | Distributed coordinate descent method for learning with big data[END_REF][START_REF] Xu | A unified contraction analysis of a class of distributed algorithms for composite optimization[END_REF], where each term is handled independently by a processing unit and the convergence toward an aggregate solution to the optimization problem is ensured via a suitable communication strategy between those processing units. However, the convergence analysis of primaldual distributed algorithms is usually based on fixed-point theory tools, that require specific probabilistic assumptions on the block update rule. Moreover, the integration of accelerations, such as preconditioning, into those, is difficult.

In this paper, we focus instead on another approach, namely the dual block preconditioned forward-backward algorithm that we recently proposed in [START_REF] Abboud | Dual block coordinate forward-backward algorithm with application to deconvolution and deinterlacing of video sequences[END_REF], which can be viewed as a block-coordinate implementation of the dual ascent method. We propose here a distributed asynchronous version for the latter, by considering each involved function as locally related to a node of a connected hypergraph, where communications are allowed between neighboring nodes that share the same hyperedge. This leads to a novel scheme for computing the proximity operator of any sum of convex functions involving linear operators, that is well-suited to implementation in architectures involving multiple computing units. As its centralized counterpart [START_REF] Abboud | Dual block coordinate forward-backward algorithm with application to deconvolution and deinterlacing of video sequences[END_REF], our method takes advantage of variable metric techniques that have been shown to be efficient for accelerating the convergence speed of proximal approaches [START_REF] Chouzenoux | Variable metric forwardbackward algorithm for minimizing the sum of a differentiable function and a convex function[END_REF][START_REF] Chouzenoux | A block coordinate variable metric forward-backward algorithm[END_REF][START_REF] Becker | A quasi-Newton proximal splitting method[END_REF]. It also benefits from the classical key advantage of proximal splitting strategies, namely its ability to handle a finite sum of convex functions without inverting any of the involved linear operators. Furthermore, its convergence is guaranteed under mild assumptions on the node activation and synchronization rules.

The remainder of this paper is organized as follows: in Section 2 we recall some fundamental background and present the centralized dual block-coordinate forward-backward algorithm from [START_REF] Abboud | Dual block coordinate forward-backward algorithm with application to deconvolution and deinterlacing of video sequences[END_REF] for computing proximity operators. In Section 3, we introduce our novel asynchronous version for this algorithm, its convergence properties and a dimension reduction strategy for limiting communication cost within nodes. In Section 4, we discuss a useful special case of our algorithm for an important class of hypergraph structure and we describe its practical implementation on a distributed architecture. Section 5 shows the 60 good performance of the proposed algorithm in the context of video denoising.

Finally, some conclusions are drawn in Section 6.

Problem formulation

Optimization background

Let Γ 0 pR N q denote the class of proper lower-semicontinuous convex functions from R N to s ´8, `8s and let B P R N ˆN be a symmetric positive definite matrix. The proximity operator of ψ P Γ 0 pR N q at r x P R N relative to the metric induced by B is denoted by prox B,ψ pr xq and defined as the unique solution to the following minimization problem [START_REF] Moreau | Proximité et dualité dans un espace hilbertien[END_REF][START_REF] Combettes | Proximal splitting methods in signal processing[END_REF]:

minimize xPR N ψpxq `1 2 }x ´r x} 2 B , (1) 
where the weighted norm } ¨}B is defined as x ¨| B ¨y1{2 with x ¨| ¨y the usual scalar product of R N . When B is set to I N , the identity matrix of R N , the standard proximity operator prox ψ is recovered.

Let us now define the conjugate of a function ψ P Γ 0 pR N q as

ψ ˚: R N Ñ s´8, `8s : x Þ Ñ sup vPR N pxv | xy ´ψpvqq . (2) 
Following Moreau's decomposition theorem [START_REF] Combettes | Variable metric forward-backward splitting with applications to monotone inclusions in duality[END_REF],

prox B,ψ ˚" I N ´B´1 prox B ´1,ψ pB ¨q. (3) 

Minimization problem

This paper addresses the problem of computing the proximity operator of the following sum of functions at some given point r x of R N :

`@x P R N ˘Gpxq " J ÿ j"1 g j pA j xq, (4) 
where, for every j P t1, . . . , Ju, g j : R Mj Ñs ´8, `8s is a proper lowersemicontinuous convex possibly nonsmooth function and A j is a linear operator in R Mj ˆN . In addition, it is assumed that X J j"1 dom pg j ˝Aj q ‰ ∅. Computing the proximity operator of G amounts to finding the solution to the following minimization problem:

Find p x " prox G pr xq " argmin xPR N J ÿ j"1 g j pA j xq `1 2 }x ´r x} 2 . ( 5 
)
As we will see in Section 5, the latter problem also arises in the computation of the maximum a posteriori solution for the denoising problem which consists of recovering p x from a noisy observation r x in the presence of an additive zero-mean white Gaussian noise and of a prior density expp´Gq [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF].

Primal-dual algorithms [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF][START_REF] Bot | A Douglas-Rachford type primal-dual method for solving inclusions with mixtures of composite and parallel-sum type monotone operators[END_REF][START_REF] Combettes | Stochastic quasi-Fejér block-coordinate fixed point iterations with random sweeping[END_REF][START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF] amounts to solve Problem (5) by making use of its dual formulation given by: Find p y " argmin

y"py j q1ďjďJ PR M 1 2 › › ›r x ´J ÿ j"1 A J j y j › › › 2 `J ÿ j"1 g j py j q, (6) 
where M " ř J j"1 M j and pg j q 1ďjďJ are the Fenchel-Legendre conjugate functions of pg j q 1ďjďJ . Particularly efficient primal-dual approaches take advantage of the strongly convex term involved in the cost function in (5) [START_REF] Combettes | Proximity for sums of composite functions[END_REF][START_REF] Chambolle | Accelerated alternating descent methods for dykstra-like problems[END_REF][START_REF] Abboud | Dual block coordinate forward-backward algorithm with application to deconvolution and deinterlacing of video sequences[END_REF]. In this work, we will focus on the Dual Block Preconditioned Forward-Backward algorithm, recently proposed in [START_REF] Abboud | Dual block coordinate forward-backward algorithm with application to deconvolution and deinterlacing of video sequences[END_REF] (see Algorithm 1).

Algorithm 1 benefits from the acceleration provided by variable metric methods through the introduction of preconditioning matrices pB j q 1ďjďJ . Note that a non-preconditioned version is obtained by setting p@j P t1, . . . , Juq B j " }A j } 2 I Mj where }A j } denotes the spectral norm of A j . Moreover, when at iteration n P N, all the dual variables y jn n with j n P t1, . . . , Ju are updated in a parallel manner followed by an update of the primal variable x n , one recovers the Parallel Dual Forward-Backward proposed in [START_REF] Combettes | Proximity for sums of composite functions[END_REF]. Convergence guaranties Algorithm 1: Dual Block Preconditioned Forward-Backward 1 Initialization: 2 B j P R Mj ˆMj with B j ľ A j A J j , @j P t1, . . . , Ju

3 ǫ Ps0, 1s, py j 0 q 1ďjďJ P R M , x 0 " r x ´J ÿ j"1
A J j y j 0 .

4 Main loop: ´yjn n q. 12 end on both generated primal sequence px n q nPN and dual sequences py j n q nPN ˚with j P t1, . . . , Ju have been established in [START_REF] Abboud | Dual block coordinate forward-backward algorithm with application to deconvolution and deinterlacing of video sequences[END_REF] under a quasi-cyclic rule on the block selection (i.e., each block must be updated at least once every K iterations, with 85 K ě J). Furthermore, results in terms of practical convergence speed have revealed the effectiveness of the above algorithm compared to existing algorithms in the literature.

Proposed distributed algorithm

Let us ground on the previous algorithm in order to design a novel distributed (i.e., multi-node) solution to Problem [START_REF] Condat | A primal-dual splitting method for convex optimization involving lipschitzian, proximable and linear composite terms[END_REF]. This can be achieved by resorting to a global consensus technique [START_REF] Pustelnik | Parallel proximal algorithm for image restoration using hybrid regularization[END_REF][START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF][START_REF] Pesquet | A class of randomized primal-dual algorithms for distributed optimization[END_REF][START_REF] Komodakis | Playing with duality : An overview of recent primal-dual approaches for solving large-scale optimization problems[END_REF] and rewriting the problem in the following form: Find p

x " argmin

x"px j q1ďjďJ PΛ J ÿ j"1 g j pA j x j q `1 2

J ÿ j"1 }x j ´r x} 2 Ωj , (7) 
where pΩ j q 1ďjďJ are diagonal N ˆN matrices with positive diagonal elements and Λ is the vector subspace of R N J defined so as to introduce suitable coupling constraints on the vectors px j q 1ďjďJ . The most standard choice for such constraint set is

Λ " $ ' ' ' & ' ' ' % » - - - - x 1 . . . x J fi ffi ffi ffi fl P R N J | x 1 " . . . " x J , / / / . / / / - . (8) 
Provided that

J ÿ j"1 Ω j " I N , (9) 
we notice that the solution to Problem (7) yields a vector in R N J whose components px j q 1ďjďJ are all equal, and equals the solution p x to Problem (5).

Local form of consensus

Let us now split the constraint set Λ into L local linear constraints pΛ ℓ q 1ďℓďL .

For every ℓ P t1, . . . , Lu, each constraint set Λ ℓ handles a nonempty subset V ℓ of t1, . . . , Ju with cardinality κ ℓ such that, for every x " rpx 1 q J , . . . , px J q J s J P R N J ,

x P Λ ô p@ℓ P t1, . . . , Luq px j q jPV ℓ P Λ ℓ .

Examples of vector subspaces pΛ ℓ q 1ďℓďL allowing this condition to be satisfied will be discussed in Section 3.3. Each node j P t1, . . . , Ju is associated with function g j , which is considered local and processes its own private data. Moreover, each node j is allowed to communicate with nodes that belong to the same set V ℓ . The sets pV ℓ q 1ďℓďL can thus be viewed as the hyperedges of a hypergraph with J nodes. It is worth noticing that the case of a graph topology is encompassed by this formulation when setting the cardinality of the set V ℓ to κ ℓ " 2 for every ℓ P t1, . . . , Lu.

Figure 1 shows an illustrative example, where the hypergraph is composed of J " 7 nodes associated with functions pg j q 1ďjď7 and L " 4 hyperedges represented by the sets pV ℓ q 1ďℓď4 with cardinalities κ 1 " 3, κ 2 " 2, κ 3 " 2, and κ 4 " 3, respectively. Node 4 belonging to the set V 2 can communicate with node 5. Besides, node 3 belongs to V 1 and V 4 , hence it is allowed to communicate with nodes t1, 2, 5, 7u. Let us define, for every ℓ P t1, . . . , Lu, the matrix S ℓ P R N κ ℓ ˆN J associated with constraint set Λ ℓ , which extracts the vector px j q jPV ℓ from the concatenated vector x " rpx 1 q J , . . . , px J q J s J P R N J : px j q jPV ℓ " rpx ipℓ,1q q J , . . . , px ipℓ,κ ℓ q q J s J " S ℓ x,

1 2 4 3 5 6 7 V 1 V 2 V 3 V 4
where ipℓ, 1q, . . . , ipℓ, κ ℓ q denote the elements of V ℓ ordered in an increasing manner. The transpose matrix of pS ℓ q 1ďℓďL is such that, for every v ℓ " pv ℓ,k q 1ďkďκ ℓ P R N κ ℓ ,

x " rpx 1 q J , . . . , px J q J s "

S J ℓ v ℓ , (12) 
where

x j " $ ' & ' % v ℓ,k if j " ipℓ, kq with k P t1, . . . , κ ℓ u 0 otherwise. ( 13 
)
From a signal processing standpoint, the matrix S ℓ can be viewed as a decimation operator while its transpose is the associated interpolator.

The above definitions allow us to propose the following equivalent formulation of Problem (7):

Find p x " argmin

x"px j q1ďjďJ PR N J J ÿ j"1

g j pA j x j q `L ÿ ℓ"1 ι Λ ℓ pS ℓ xq `1 2 J ÿ j"1 }x j ´r x} 2 Ωj . (14) 
The main difference between formulations ( 7) and ( 14) is the introduction of the term ř L ℓ"1 ι Λ ℓ pS ℓ xq, where ι Λ ℓ denotes the indicator function of the set Λ ℓ , which is equal to 0 for every z P Λ ℓ , and `8 elsewhere.

This latter formulation makes the link with Problem (5) more explicit.

More precisely, in order to solve Problem ( 14) using Algorithm 1, it is necessary to set:

• J 1 " J `L, • p@ℓ P t1, . . . , Luq M J`ℓ " N κ ℓ , • M 1 " ř J 1 j"1 M j ,
• p@j P t1, . . . , Juq A j " r 0 . . . 0 lo omo on

N pj´1qˆA j Ω ´1{2 j 0 . . . 0 lo omo on N pJ´jqˆs , • D " Diag pΩ ´1{2 1 , . . . , Ω ´1{2 J q,
• p@ℓ P t1, . . . , Luq g J`ℓ " ι Λ ℓ and A J`ℓ " S ℓ D.

Then, Problem ( 14) is recast in the following way:

Find p x " Dp x 1 such that p x 1 " argmin x 1 PR N J J 1 ÿ j"1 g j pA j x 1 q `1 2 }x 1 ´r x 1 } 2 , ( 15 
)
where r

x 1 " rΩ 1{2 1 r x J , . . . , Ω 1{2 J r x J s J P R N J .

Derivation of the proposed algorithm

The application of Algorithm 1 for the resolution of Problem ( 15) yields:

- - - - - - - - - - - B j P R Mj ˆMj with B j ľ A j A J j , j P t1, . . . , J 1 u ǫ Ps0, 1s 
py j 0 q 1ďjďJ 1 P R M 1 x 1 0 " r x 1 ´řJ 1 j"1 A J j y j 0 . For n " 0, 1, . . . - - - - - - - - - - - - - - - - - γ n P rǫ, 2 ´ǫs j n P t1, . . . , J 1 u r y jn n " y jn n `γn pB jn q ´1A jn x 1 n y jn n`1 " r y jn n ´γn pB jn q ´1prox γnpBj n q ´1 ,gj n `γ´1 n B jn r y jn n yj n`1 " y j n , j P t1, . . . , J 1 uztj n u x 1 n`1 " x 1 n ´AJ jn py jn n`1 ´yjn n q. ( 16 
)
The following convergence properties of the above algorithm can be deduced from [25, Prop. 1-2]:

Theorem 3.1. Assume that (i) pg j q 1ďjďJ are semi-algebraic functions, and for every j P t1, ..., Ju, the restriction of g j on its domain is continuous ;

(ii) the sequence pj n q nPN follows a quasi-cyclic rule, i.e., there exists K ě J 1 such that, for every n P N, t1, . . . , J 1 u Ă tj n , . . . , j n`K´1 u.

Let px 1 n q nPN , py n " py j n q 1ďjďJ 1 q nPN be sequences generated by Algorithm (16), and px n q nPN " pDx 1 n q nPN . Then, if py n q nPN is bounded, then px 1 n q nPN converges to the solution p

x 1 to Problem (15), and px n q nPN converges to the solution p x to Problem [START_REF] Couprie | Dual constrained tv-based regularization on graphs[END_REF]. Moreover, there exists α Ps0, `8r such that

lim nÑ`8 n α }x n ´p x} P R. (17) 
Let us now show how the above algorithm can be simplified.

First, note that p@j P t1, . . . , Juq A j A J j " A j Ω ´1 j A J j and p@ℓ P t1, . . . , Luq }S ℓ D} " max jPV ℓ }Ω ´1{2 j }. It can also be observed that p@ℓ P t1, . . . , Luq p@γ P s0, `8rq,

prox γ ´1 g J`ℓ pγ ´1¨q " γ ´1Π Λ ℓ , (18) 
where Π Λ ℓ is the linear projector onto the vector space Λ ℓ .

Hence, by setting

p@ℓ P t1, . . . , Luq B J`ℓ " ϑ ´1 ℓ I N κ ℓ (19) 
with ϑ ℓ " min jPV ℓ }Ω j }, and p@j P t1, . . . , Juq V j " pℓ, kq ˇˇℓ P t1, . . . , Lu, k P t1, . . . , κ ℓ u and ipℓ, kq

" j ( , (20) 
Algorithm ( 16) can be re-expressed as

- - - - - - - - - - - - - - - - - - B j P R Mj ˆMj with B j ľ A j Ω ´1 j A J j , j P t1, . . . , Ju ϑ ℓ " min jPV ℓ }Ω j }, ℓ P t1, . . . , Lu ǫ Ps0, 1s z ℓ 0 P R N κ ℓ , ℓ P t1, . . . , Lu y j 0 P R Mj , j P t1, . . . , Ju x j 0 " r x ´Ω´1 j ´AJ j y j 0 `řpℓ,kqPV j z ℓ,k 0 ¯, j P t1, . . . , Ju. For n " 0, 1, . . . - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
γ n P rǫ, 2 ´ǫs

j n P t1, . . . , J `Lu If j n ď J - - - - - - - - - - - - - - - - - r y jn n " y jn n `γn pB jn q ´1A jn x jn n y jn n`1 " r y jn n ´γn pB jn q ´1prox γnpBj n q ´1 ,gj n `γ´1 n B jn r y jn n yj n`1 " y j n , j P t1, . . . , Juztj n u z ℓ n`1 " z ℓ n , ℓ P t1, . . . , Lu x jn n`1 " x jn n ´Ω´1 jn A J jn py jn n`1 ´yjn n q x j n`1 " x j n , j P t1, . . . , Juztj n u else - - - - - - - - - - - - - - - - - - - - - - - - ℓ n " j n ´J r z ℓn n " z ℓn n `γn ϑ ℓn px j n q jPV ℓn z ℓn n`1 " r z ℓn n ´ΠΛ ℓn pr z ℓn n q z ℓ n`1 " z ℓ n , ℓ P t1, . . . , Luztℓ n u y j n`1 " y j n , j P t1, . . . , Ju For k " 1, . . . , κ ℓn Y x ipℓn,kq n`1 " x ipℓn,kq n ´Ω´1 ipℓn,kq pz ℓn,k n`1 ´zℓn,k n q x j n`1 " x j n , j R V ℓn . (21) 
In this algorithm, for increased readibility, we have set, for every n P N,

x n " rpx 1 n q J , . . . , px J n q J s J " Dx 1 n , (22) 
z ℓ n " y J`ℓ n P R N κ ℓ , r z ℓ n " r y J`ℓ n P R N κ ℓ . (23) 
Furthermore, it can be noticed that, for every n P N such that j n " J `ℓn ą J,

Π Λ ℓn pz ℓn n`1 q " Π Λ ℓn `r z ℓn n ´ΠΛ ℓn pr z ℓn n q " Π Λ ℓn `r z ℓn n ˘´Π Λ ℓn `ΠΛ ℓn pr z ℓn n q " 0. ( 24 
)
Since, for every ℓ P t1, . . . , Luztℓ n u, z ℓ n`1 " z ℓ n , the latter equality can be extended by induction to p@n P Nqp@ℓ P t1, . . . , Luq Π Λ ℓ pz ℓ n q " 0, (

using an appropriate initialization of the algorithm (e.g., by choosing p@ℓ P t1, . . . , Luq z ℓ 0 " 0). Hence, for every n P N such that j n " J `ℓn ą J,

Π Λ ℓn pr z ℓ n q " γ n ϑ ℓn Π Λ ℓn `px j n q jPV ℓn ˘, (26) 
which implies that

z ℓn n`1 ´zℓn n " γ n ϑ ℓn `px j n q jPV ℓn ´ΠΛ ℓn `px j n q jPV ℓn ˘˘. ( 27 
)
The second part of iteration n of ( 21) dealing with the case when j n ą J can then be re-expressed as shown in the projection step of Algorithm 2 (lines 20 to 26). In the resulting algorithm, we were able to drop the variables pz ℓ n q 1ďℓďL , for every n P N.
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The body of our proposed Algorithm 2 is composed of two main parts: • The second part of Algorithm 2 is a projection step (lines 20 to 26) in which a set V ℓn is selected and all the variables px jn q jnPV ℓn are updated by means of a projection operating over the selected set V ℓn .

Algorithm 2: Distributed Preconditioned Dual Forward-Backward 1 Initialization: 2 V ℓ " index set of nodes in hyperedge ℓ P t1, . . . , Lu 3 B j P R Mj ˆMj with B j ľ A j Ω ´1 j A J j , j P t1, . . . , Ju 4 ϑ ℓ " min jPV ℓ }Ω j }, ℓ P t1, . . . , Lu 5 ǫ Ps0, 1s 6 y j 0 P R Mj , x j 0 " r x ´Ω´1 j A J j y j 0 , j P t1, . . . ,
In Algorithm 2, all computation steps only involve local variables, which is suitable for parallel processing. A high degree of flexibility is allowed in the quasi-cyclic rule for choosing the indices j n and ℓ n at each iteration n. The distributed Algorithm 2 inherits all the advantages of primal-dual methods, in particular it requires no inversion of the matrices pA j q 1ďjďJ , which is critical when these matrices do not have a simple structure and are of very large size.

Note that the proposed approach is quite different from the ones developed in [START_REF] Pesquet | A class of randomized primal-dual algorithms for distributed optimization[END_REF][START_REF] Richtárik | Distributed coordinate descent method for learning with big data[END_REF] since it does not assume a random sweeping rule for the block index selection, and its convergence analysis, secured by Theorem 3.1, does not rely on the nonexpansiveness property of the involved operators.

Consensus choice

Let us now discuss practical settings for the vector spaces pΛ ℓ q 1ďℓďL and the weights and the weight matrices pΩ j q 1ďjďJ , that parameterize our consensus formulation [START_REF] Bot | A Douglas-Rachford type primal-dual method for solving inclusions with mixtures of composite and parallel-sum type monotone operators[END_REF]. Such choice is of main importance to devise efficient distributed schemes with limited communication cost and good practical convergence speed.

Generic case

When the operators pA j q 1ďjďJ have no specific structure, a natural choice for the vector spaces pΛ ℓ q 1ďℓďL is to adopt a form similar to that of Λ in (8):

p@ℓ P t1, . . . , Luq Λ ℓ " $ ' ' ' & ' ' ' % » - - - - v ℓ,1 . . . v ℓ,κ ℓ fi ffi ffi ffi fl P R N κ ℓ | v ℓ,1 " . . . " v ℓ,κ ℓ , / / / . / / / - . (28) 
Note that ( 8), ( 10) and [START_REF] Richtárik | Distributed coordinate descent method for learning with big data[END_REF] imply that the hypergraph induced by the hyperedges pV ℓ q 1ďℓďL is connected (Figure 1 is an example of such a connected hypergraph). In this context, the connectivity of the hypergraph is essential in order to allow the global consensus solution to be reached.

For every ℓ P t1, . . . , Lu, the projection onto Λ ℓ is then simply expressed as

`@pv ℓ,k q 1ďkďκ ℓ P R N κ ℓ ˘ΠΛ ℓ `pv ℓ,k q 1ďkďκ ℓ ˘" rpv ℓ q J , . . . , pv ℓ q J s J , (29) 
where v ℓ " mean `pv ℓ,k q 1ďkďκ ℓ ˘ [START_REF] Chouzenoux | Variable metric forwardbackward algorithm for minimizing the sum of a differentiable function and a convex function[END_REF] and meanp¨q designates the arithmetic mean operation (i.e. mean `pv ℓ,k q 1ďkďκ ℓ ˘"

κ ´1 ℓ ř κ ℓ k"1 v ℓ,k
). In addition, Condition ( 9) is met by simply choosing p@j P t1, . . . , Juq Ω j " ω j I N , where pω j q 1ďjďJ Ps0, 1s J are such that ř J j"1 ω j " 1. These simplifications lead to the following modifications of lines 22-25 in Algorithm 2:

x ℓn n " mean `px j n q jPV ℓn For

k " 1, . . . , κ ℓn Y x ipℓn,kq n`1 " x ipℓn,kq n `γn ϑ ℓn ω ´1 ipℓn,kq px ℓn n ´xipℓn,kq n q.
(31)

Dimension reduction

Under its previous form, Algorithm 2 requires each node of the hypergraph to handle a local copy of several variables. In particular, for the j-th node, a vector x j n of dimension N needs to be stored, which may be prohibitive for highly dimensional problems. Hopefully, very often in signal and image processing applications, the operators pA j q 1ďjďJ have a sparse block structure, which makes it possible to ameliorate this problem. More specifically, it will be assumed subsequently that p@j P t1, . . . , Juq `@x j " prx j s t q 1ďtďT P R N ˘Aj x j " ÿ tPTj A j,t rx j s t [START_REF] Becker | A quasi-Newton proximal splitting method[END_REF] where, for every j P t1, . . . , Ju, rx j s t is a vector corresponding to a block of data of dimension L, T is the overall number of blocks (i.e., N " T L), and T j Ă t1, . . . , T u defines the reduced index subset of the components of vector x j acting on the operator A j . In the above equation, pA j,t q tPTj are the associated reduced-size matrices of dimensions M j ˆL. Similarly to the way x j has been block-decomposed, we split the diagonal matrix Ω j as Ω j " Diag pΩ j,1 , . . . , Ω j,T q where, for every t P t1, . . . , T u, Ω j,t is a diagonal matrix of size L ˆL. It then obviously holds that A j Ω ´1 j A J j " ř tPTj A j,t Ω ´1 j,t A J j,t . To avoid degenerate cases, we will subsequently assume that p@j P t1, . . . , Juq T j ‰ ∅ and J ď j"1

T j " t1, . . . , T u.

In our distributed formulation, the specific form of the operators pA j q 1ďjďJ suggests to set the vector subspaces pΛ ℓ q 1ďℓďL so as to reach the consensus only for the components prx j s t q 1ďjďJ,tPTj of vectors px j q 1ďjďJ . This means that the space Λ (resp. Λ ℓ with ℓ P t1, . . . , Lu) is defined as px j q 1ďjďJ P Λ ô p@pj, j 1 q P t1, . . . , Ju 2 qp@t P T j X T j 1 q rx j s t " rx j 1 s t

(resp. px j q jPV ℓ P Λ ℓ ô p@pj, j 1 q P V 2 ℓ qp@t P T j X T j 1 q rx j s t " rx j 1 s t q.

It can be noticed that, although the hypergraph must still be built so that [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF] holds, Λ is no longer given by ( 8), since the components prx j s t q 1ďjďJ,tRTj are unconstrained. The main advantage of this choice is that Problem (7) then decouples into two optimization problems:

• the minimization of the function

prx j s t q 1ďjďJ,tPTj Þ Ñ J ÿ j"1 g j ´ÿ tPTj A j,t rx j s t ¯`1 2 J ÿ j"1 ÿ tPTj }rx j s t ´rr xs t } 2 Ωj,t (34) 
subject to Constraint (33);

• the unconstrained minimization of the function

prx j s t q 1ďjďJ,tRTj Þ Ñ J ÿ j"1 ÿ tRTj }rx j s t ´rr xs t } 2 Ωj,t . (35) 
Since the second problem is trivial, the variables prx j n s t q 1ďjďJ,tRTj generated at 185 each iteration n P N of Algorithm 2 are useless and, consequently, they can be discarded. By doing so, only the |T j | vectors1 prx j n s t q tPTj of dimension L need to be stored at the j-th node (instead of T vectors of this size) and the number of computations to be performed during the projection step is also sharply diminished. This yields Algorithm 3 where, in the synchronization step, averaging operations corresponding to the projection onto Λ ℓn have been substituted for lines 22-25 in Algorithm 2. The notation p@t P t1, . . . , T uq T t " j P t1, . . . , Ju ˇˇt P T j ( ,

has been introduced for the computation of the averages. In particular, in line 29 of Algorithm 3, if V ℓ XT t is a singleton, which means that the t-th block component of the vector x appears only once in the expression of g j pA j xq for indices j in the ℓ n -th hyperedge, then the averaging reduces to setting rx j n`1 s t " rx j n s t . It is also worthwhile to note that, when p@j P t1, . . . , Juq T j " t1, . . . , T u, the consensus solution described in Section 3.3.1 is recovered. It must be however pointed out that, in general, to have the equivalence between the minimization of (34) subject to Constraint [START_REF] Moreau | Proximité et dualité dans un espace hilbertien[END_REF] and the resolution of Problem (5), the following condition has to be substituted for (9): p@t P t1, . . . , T uq ÿ

jPT t Ω j,t " I L . (37) 
In Algorithm 3, this has been simply achieved by setting p@j P t1, . . . , Juq p@t P T j q Ω j,t " ω j,t I L , where pω j,t q 1ďjďJ,tPTj are positive real such that p@t P t1, . . . , T uq ř jPT t ω j,t " 1. In turn, the notation pΩ j,t q 1ďjďJ,tRTj is no longer used in this algorithm.

Algorithm 3 can give rise to a variety of distributed implementations. In the remainder of the paper, we will focus on a simple particular instance of this algorithm.

A useful special case

Let us consider the case when C ď J processing units are available. To simplify our presentation, we will restrict our attention to a case of practical interest, that arises for example in the video denoising application described in Section 5, by making the following assumptions. (i) The hyperedges pV ℓ q 1ďℓďC form a partition of t1, . . . , Ju.

(ii) For every ℓ P t1, . . . , Cu, let T V ℓ " Ť jPV ℓ T j . (a) For every pℓ, ℓ 1 q P t1, . . . , Cu 2 , T

V ℓ X T V ℓ 1 " ∅ if |ℓ ´ℓ1 | ą 1. (b) For every ℓ P t2, . . . , C ´1u, T V ℓ´1 X T V ℓ X T V ℓ`1 " ∅.
An example of hypergraph satisfying Assumption 4.1(i) is displayed in Figure 2.

For every ℓ P t1, . . . , Cu, T V ℓ is the set of the block indices t of the components y j n`1 " y j n , j P t1, . . . , Juztj n u for t P T jn do 20 rx jn n`1 s t " rx jn n s t ´ω´1 jn,t A J jn,t py jn n`1 ´yjn n q end prx j n`1 s t q tPTj " prx j n s t q tPTj , j P t1, . . . , Juztj n u else Projection:

ℓ n " j n ´J y j n`1 " y j n , j P t1, . . . , Ju for j P V ℓn do 28 for t P T j do 29 rx j n`1 s t " rx j n s t `γn ϑ ℓn ω ´1 j,t `mean `prx j 1 n s t q j 1 PV ℓn XT t ˘´rx j n s t 30 end end prx j n`1 s t q tPTj " prx j n s t q tPTj , j R V ℓn . 

Form of the algorithm

An interesting instance of Algorithm 3 is then obtained by setting L " C `1

and by assuming that each hyperedge V ℓ with ℓ P t1, . . . , Cu corresponds to a given computing unit where the computations are locally synchronized. In addition, hyperedge V L is set to t1, . . . , Ju in order to model global synchronization steps consisting of an averaging over all the available nodes. At each iteration n, only a subset J n,ℓ of dual variable indices is activated within the ℓ-th hyperedge.

Their update is followed by either a possible local synchronization or a global one.

Algorithm 4 summarizes the proposed approach. For simplicity, the index L has been dropped in variable ϑ L . Note that, if the local synchronization step is omitted (by setting rx j n`1 s t " rx j n`1{2 s t in line 29), the algorithm still makes sense since it can be easily shown that it actually corresponds to a rewriting of Algorithm 3 in the case when L " 1 and V 1 " t1, . . . , Ju. Unlikely, the global synchronization is mandatory although it has not to be performed at each iteration but only in a quasi-cyclic manner.

It should be emphasized that even in the case when all the dual variables are updated iteratively (i.e., p@ℓ P t1, . . . , Luq p@n P Nq J n,ℓ " V ℓ ), Algorithm 4 exhibits a different structure from the one of the parallel dual forward-backward algorithm in [START_REF] Combettes | Proximity for sums of composite functions[END_REF].

Distributed implementation

We now look more precisely at the implementation of Algorithm 4 on a distributed architecture with C P N ˚computing units, each computing unit being V 1 indexed by an integer c P t1, . . . , Cu. As we have seen, each computing unit c P t1, . . . , Cu handles κ c terms corresponding to the nodes in V c of the hypergraph, and processes the functions pg j q jPVc associated with these nodes. Furthermore, a global synchronization step needs to be performed. This task could be assigned to one of the computing unit, say the first one, as modelled in Figure 3 (bottom) by adding a fictitious term corresponding to hyperedge V C`1 . This would however lead to a centralized scheme where the computing load between the different units would end-up unbalanced.

y j n`1 "
V 2 V 3 V 4 V 5
A better strategy would consist of distributing the operations performed on line 35 of Algorithm 4 over the different computing units. For this purpose, let us first note that at iteration n, the c-th computing unit only needs the block components prx n s t q tPT Vc . In addition, because of Assumption 4.1-(ii)(a), some of these variables may be shared with the computing units c ´1 (if c ‰ 1) and c `1 (if c ‰ C), where part of the variables rx j n`1{2 s t necessary to compute the averages are locally available. As a consequence of Assumption 4.1-(ii)(b), no other variables than those available in either T Vc´1 X T Vc or T Vc X T Vc`1 are necessary . For example, if c ‰ 1 and t P T Vc´1 X T Vc , the averaging operation reads

rx n s t " 1 |T t | ÿ jPT t rx j n`1{2 s t " 1 |T t | `rs n,c´1 s t `rs n,c s t ˘, (38) 
where

rs n,c´1 s t " ÿ jPVc´1XT t rx j n`1{2 s t , (39) 
and rs n,c s t is similarly defined. Since the variables prx j n`1{2 s t q jPVc´1XT t are not available at unit c, the latter summation must be performed by unit c ´1 and the result must be transmitted to unit c. This one will then be able to compute rx n s t , so as to update variables prx j n`1 s t q jPVcXT t . Besides, rx n s t will be sent to unit c ´1, which in turn will update its variables prx j n`1 s t q jPVc´1XT t . A similar synchronization process can be followed for blocks with indices t P T Vc X T Vc`1 with c ‰ C. Finally, for the block indices t in T Vc which do not belong to T Vc´1 or T Vc`1 ,

rx n s t " mean `prx j n`1{2 s t q jPVcXT t ˘" rs n,c s t |T t | , (40) 
as we have then |V c X T t | " |T t |. This means that local averaging is only required for these blocks. In Figure 4, the synchronization workflow is summarized, while, in Algorithm 5, a more detailed account of the whole process is given. Remark

Vc´1 Vc Vc`1 ipc ´1, 1q ipc ´1, κc´1q ipc, 1q ipc, κcq ipc `1, 1q ipc `1, κc`1q . . . . . . . . . rx ipc´1,1q st rx ipc´1,κ c´1 q st rx ipc,1q st rx ipc,κcq st rx ipc`1,1q st rx ipc`1,κ c`1 q st Transmit prsn,c´1stq tPT V c´1 XT Vc Transmit prsn,cstq tPT Vc XT V c`1 Vc´1 Vc Vc`1 ipc ´1, 1q ipc ´1, κc´1q ipc, 1q ipc, κcq ipc `1, 1q ipc `1, κc`1q . . . . . . . . . rx ipc´1,1q st rx ipc´1,κ c´1 q st rx ip1,cq st rx ipc,κcq st rx ipc`1,1q st rx ipc`1,κ c`1 q st Transmit prxnstq tPT V c´1 XT Vc Transmit prxnstq tPT Vc XT V c`1
(i) It must be emphasized that, in order to facilitate the derivation of our algorithm, a common iteration variable n has been used for each computing unit. However, units have the ability to process data at their own speed. In particular, each unit may perform a different number of local synchronizations before a global one is made. In this sense, our algorithm is asynchronous. To understand why such behavior is allowed, it suffices to note that if no global synchronization arises and J n,c " ∅, then px j n`1 q jPVc " px j n q jPVc . This means that such a null iteration can be used to model a time when the c-th computing unit is idle while others are locally updating their variables.

(ii) When the c-th computing unit operates a global synchronization, it will suspend its activities until it receives data from units c ´1 (line 35) and/or c `1 (line 39), which happens only when these units also are globally synchronizing their variables. To ensure low latencies, global synchronization steps however have to be scheduled (quasi-)periodically for each computing unit based on their processing speeds (faster ones should schedule less frequent synchronizations than slower ones). Alternatively, when one unit decides to perform a global synchronization, it can broadcast a message to the others to warn them to do the same.

(iii) Other forms of local consensus could be devised. For example, another choice would consist in setting L " 2C ´1 and p@c P t1, . . . , C ´1uq V C`c " V c YV c`1 . Then, each node c P t1, . . . , C ´1u could be responsible for driving the synchronization with its neighbor of index c `1. However, it appears more difficult, in this context, to devise an efficient procedure to avoid deadlocks, contrary to our previous example.

Application to video denoising

Observation model

In this section, we illustrate the performance of the proposed distributed algorithm for denoising video sequences. The original sequence x " prxs t q 1ďtďT P R T L is naturally decomposed in T blocks of data, each corresponding to one image composed of L pixels. The degradation model relating the observed noisy sequence y " prys t q 1ďtďT P R T L to the sought sequence x with T L " N is given by p@t P t1, . . . , T uq rys t " rxs t `rws t ,

where prws t q 1ďtďT P R T L represents an additive zero-mean white Gaussian

noise. An estimate of the unknown video can be inferred by solving Problem [START_REF] Condat | A primal-dual splitting method for convex optimization involving lipschitzian, proximable and linear composite terms[END_REF] where J " T and r

x " y. The last quadratic term in ( 5) is a least squares data fidelity term ensuring compliance with model ( 41), and functions pg j q 1ďjďT stand for regularization functions that incorporate both temporal and spatial prior knowledge on each video frame. The temporal regularization is fulfilled by taking into account motion compensation between the previous and next neighbouring frames. More precisely, at each time t P t2, . . . , T ´1u, the linear operator A t extracts the current frame x t and its neighbors px t´1 , x t`1 q as for t P Tj do rx j n`1{2 st " rx j n st ´ω´1 j,t A J j,t py j n`1 ´yj n q ; end for j P VczJn,c do 

y j n`1 " y j n prx j n`1{2
The linear operators pA t q 1ďtďT thus have the block sparse structure expressed by [START_REF] Becker | A quasi-Newton proximal splitting method[END_REF] with p@t P t1, . . . , T uq T t " maxtt ´1, 1u, t, mintt `1, T u (

and

A 1,1 " " I L 0 ı J , A 1,2 " " 0 I L ı J , (44) 
p@t P t2, . . . , T ´1uq A t,t´1 " "

I L 0 0 ı J (45) A t,t " " 0 I L 0 ı J (46) A t,t`1 " " 0 0 I L ı J (47) 
A T,T ´1 " "

I L 0 ı J , A T,T " " 0 I L ı J . ( 48 
)
For every t P t1, . . . T u, each regularization function g t : R Mt Ñ r0, `8r is convex, proper, lower semi-continuous and such that

M t " $ ' & ' % 3L if t ‰ 1 and t ‰ T 2L otherwise, (49) 
and, for every x " prxs t q 1ďtďT , g t pprxs t 1 q t 1 PTt q " η tgvprxs t q `ιrxmin,xmaxs L prxs t q `ht pprxs t 1 q t 1 PTt q , (50)

where "tgv" denotes the Total Generalized Variation regularization from [START_REF] Bredies | Total generalized variation[END_REF], defined as p@z P R L q tgvpzq " min

dPR 2L α 0 χ 2 pDz ´dq `α1 χ 3 pGdq , (51) 
with pα 0 , α 1 q Ps0, `8r 2 , D P R 2LˆL is the concatenation of the horizontal and vertical spatial gradient operators:

D " » - ∇ H ∇ V fi fl , with ∇ H P R LˆL , ∇ V P R LˆL , (52) 
and G P R 3Lˆ2L is the Jacobian operator given by

G " » - - - ∇ H ∇ V 0 0 ∇ H ∇ V fi ffi ffi fl J , (53) 
while, for every q P N ˚, χ q : R qL Ñ R is given by `@pz 1 , . . . , z q q P pR L q q ˘χq pz 1 , . . . , z q q " L ÿ k"1 b pz 1,k q 2 `¨¨¨`pz q,k q 2 . (54)

The indicator function ι rxmin,xmaxs L in (50) imposes a range rx min , x max s on the pixel values in each frame. In addition, h t is a function introducing a temporal were set optimized by grid-search so as to achieve the best denoising performance.

Proposed method

We employ our proposed asynchronous distributed framework to address the previous denoising problem. More precisely, we use the practical implementation detailed in Algorithm 5. Functions pg t q 1ďtďT and their associated primal variables prx t s t 1 q t 1 PTt for t P t1, . . . , T u, are spread over C computing units, each of them handling the same number of nodes, i.e., p@c P t1, . . . , Cuq κ c " κ (with T " κC). The associated hyperedges are then given by p@c P t1, . . . , Cuq V c " tpc ´1qκ `1, . . . , cκu.

Note that, since p@c P t1, . . . , Cuq T Vc " maxtpc ´1qκ, 1u, . . . , mintcκ `1, T u (

, we have p@c P t1, . . . , C ´1uq

T Vc X T Vc`1 " tcκ, cκ `1u, , (58) 
so that Assumption 4.1 holds provided that κ ą 1.

In the local optimization first performed at the n-th iteration of Algorithm 5, we used, for every j P t1, . . . , T u, B j " ř tPTj ω ´1 j,t I Mj and γ n " 1.7. Then, the local or global synchronization steps are performed as described in Section 4.2. In our case, for every t P t1, . . . , T u, T t " T t . If t P T Vc with c P t1, . . . , Cu corresponds neither to the smallest nor the largest index in V c , then 3 values need to be summed to compute rs n,c s t . If t is the smallest or the largest index in V c , then the summation involves only two terms. Finally, if c ą 1 and t " pc ´1qκ (resp. c ă C and t " cκ `1q), then rs n,c s t " rx t`1 n`1{2 s t (resp. rs n,c s t " rx t´1 n`1{2 s t ). In global synchronization steps, by virtue of (58), only variables rs n,c s cκ and rs n,c s cκ`1 need to be transmitted from computing unit c ‰ C to computing unit c `1, which in return sends back the updated averages rx n s cκ and rx n s cκ`1 . This workflow is illustrated in Figures 5 and6 In our simulations, the global synchronizations are activated every 4 iterations. This synchronization frequency was chosen in order to achieve a good trade-off between the communication overhead and a satisfactory convergence speed. The weights pω j,t q 1ďtďT,jPT t are set to 1 |T t | .

Simulation results

The performance of the proposed denoising method are evaluated on the standard test video sequences Foreman, Claire and Irene with T " 72 frames.

These frames are of size 348 ˆ284 for Foreman sequence, 300 ˆ278 and 352 288 of Claire and Irene respectively, hence N " 7115904 (resp. N " 6004800 and N " 7299072). The degraded videos are obtained by adding zero-mean white Gaussian noise to the original video sequences, resulting in an initial SNR (signal-to-noise ratio) of 24.41 dB, 24.77 dB and 25.51 dB for the three sequences respectively. We apply our algorithm only on the luminance channel, while the chrominance is restored with a median filter. Our method is implemented with Julia-0.4.6 and a Message Passing Interface (MPI) wrapper for managing communication between cores [START_REF] Forum | MPI: A Message-Passing Interface standard[END_REF][START_REF] Gropp | Using MPI: Portable Parallel Program-500 ming with the Message Passing Interface[END_REF]. We use a multi-core architecture using 2 Intel(R) Xeon(R) E5-2670 v3 CPU @ 2.3 GHz processors, each with 12 cores, hence C " 24. The experiments are run using 60 iterations of Algorithm 5, which is sufficient to reach convergence. We evaluate the proposed distributed approach in terms of restoration quality and acceleration provided by our algo-rithm with respect to the number of computing units. The images composing the video sequences are partitioned in groups of equal size κ processed by the computing units, thereby we consider the cases when C P t1, 2, 3, 4, 6, 8, 9, 12, 18, 24u 330 cores are employed, as shown in Table 1. Our method achieves satisfactory restoration results with an improvement of 7.6 dB for Foreman, 9 dB for Claire and 5.46 dB for Irene, with respect to the degraded video. Moreover, according to our observations, the convergence to the sought solution was reached in each experiment regardless the number of used cores. Otherwise stated, the quality of the solution is identical, whatever the number of cores activated. Figures 7 and8 show some frames illustrative of the degraded and restored sequences. These illustrate the good visual quality of the performed denoising. 

The execution time with one core is equal to 107003 s, 84247 s and 115711 Figure 9: Speedup with respect to the number of used cores: proposed method (solid, blue, diamond), linear speedup (dashed, green).

Figure 9 shows that the speedup increases superlinearly as we increase the number of cores from 1 to 9. Indeed, when a small number of cores are used, the dataset cannot be stored in the cache memory, due to its large size. Hence, a significant amount of time is spent in RAM access [START_REF] Janakiram | GDP: A paradigm for intertask communication in grid computing through distributed pipes[END_REF]. By increasing the number of cores, the data seem to fit better in the cache size, which reduces the RAM access time and consequently the global execution time despite the communication overhead. However, as the number of core exceeds 9, a saturation effect is observed (in agreement with Amdahl's law [42]) .

In order to investigate this behavior, we display in Figure 10 

Conclusion

This paper has introduced a fully parallelized version of the preconditioned dual block-coordinate forward-backward algorithm for computing proximity operators. Our algorithm benefits from all the advantages of primal-dual methods and the acceleration provided by a block-coordinate strategy combined with a variable metric approach. We mainly focused on an instance of the proposed approach for which we proposed a practical asynchronous implementation, assuming that a given number of computing units is available. Although our distributed algorithm can be applied to a wide range of problems, we investigated its application to video sequence denoising. The experimental results we obtained are quite promising and demonstrate the ability of our algorithm to take advantage of multiple cores. An acceleration of about 15 was reached with a standard two-processor computer configuration. In future works, we intend to experiment different distributed implementations based on other partitioning strategies and hypergraph topologies and to study the application of our distributed framework to other proximal optimization algorithms.
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 1 Figure 1: Connected hypergraph of J " 7 nodes and L " 4 hyperedges.

end end rx j s t where

  j is any node in V ℓ . According to Assumption 4.1-(ii)(a), these indices may only be common to hyperedges having preceding or following index values (i.e. ℓ ´1 or ℓ `1). Finally, Assumption 4.1-(ii)(b) means that no overlap is allowed between block indices shared with the preceding hyperedge and the following one.
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 2 Figure 2: Hypergraph of J " 7 nodes, C " 4 computing units and L " 5 hyperedges.
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 33 Figure 3: (top) Partitioning of J " 7 nodes and L " 5 hyperedges on C " 4 computing units. (bottom) Partitioning of J " 7 nodes and L " 1 hyperedge on C " 4 computing systems.

Figure 4 :

 4 Figure 4: Global synchronisation process: Transmission of local summations to the next computing unit (top) ; Transmission of averaged blocks to the previous computing unit (bottom).

  by an example showing two computing units handling κ " 3 nodes.

Figure 7 :

 7 Figure 7: Foreman sequence: Input degraded images (top) initial SNR = 24.41 dB, associated restored images (bottom) final SNR = 32.04 dB.

Figure 9

 9 Figure 9 shows the speedup in execution time with respect to the number of

Figure 8 :

 8 Figure 8: Irene sequence: Input degraded images (top) initial SNR = 25.51 dB, associated restored images (bottom) final SNR = 30.97 dB.

340 s for

 for Foreman, Claire and Irene sequences respectively. Those large values illustrate the difficulty in solving this high dimensional non-smooth optimization problem. Irene sequence.

  the execution times per core on the Foreman sequence, for the three main steps of Algorithm 5. Namely, the local optimization, local synchronization, and global synchronization when either C " 8 or C " 24 cores are used. As expected we observe a significant reduction of the execution time for the local optimization step when going from 8 to 24 cores, but the gain factor is less than 3, although the computations are then performed independently on each core. The average execution time for the local synchronization step is also reduced as the number of images handled by each core decreases. One can finally observe that the global communication overhead increases as a larger number of cores is used. This behavior appears to be consistent, however it can be noticed on Figure10(b) that the second set of cores (13 to 24q is much slower than the first one, which is detrimental to the global synchronization process. This seems to point out hardware limitations of the Intel-based two-processor computer architecture that we use.

Figure 10 :

 10 Figure 10: Execution time of Algorithm 5 steps: local optimization (top), local synchronization (middle), global synchronization (bottom).

  stq tPT j " prx j n stq tPT j C then send prsn,cstq tPT Vc XT V c`1 to unit c `1 ; rrxs 1 . . . rxs t´1 rxs t rxs t`1 . . . rxs T s At Ñ rrxs t´1 rxs t rxs t`1 s .

	shown by:				
	end for t P T Vc do rsn,cst "	ÿ jPVcXT	t rx j n`1{2 st ;
	if synchronization is local then	
	for j P Vc do			
	27 28	for t P Tj do rx j n`1 st " rx j n`1{2 st `γnϑc ω ´1 j,t	´rsn,cst |Vc X T t |	´rx j n`1{2 st	29
		end			
	end			
	else				
	Global synchronization:		
	if c ‰ if c ‰ 1 then			
	35 36	´1 `rsn,c´1st `rsn,cst wait for receiving prsn,c´1stq tPT V c´1 XT Vc from unit c for t P T V c´1 X T Vc do rxnst " 1 |T t | ˘;
	37	send prxnstq tPT V c´1 XT Vc to unit c	´1
	end			
	if c ‰ C then wait for receiving prxnstq tPT Vc XT V c`1 from unit c	`1
	;				
	for t P T Vc zpT V c´1 Y T V c`1 q do rxnst "	rsn,cst |T t |	;
	for j P Vc do			
	42 43	for t P Tj do rx j n`1 st " rx j n`1{2 st `γnϑω ´1 j,t `rxnst ´rx j n`1{2 st end	44
	end			
	end				
	end				

  Transmission of local sums prsn,2s t 1 q t 1 Pt6,7u shared between T V 2 " t3, 4, 5, 6, 7u and T V

		Transmit prsn,2s t 1 q t 1 Pt6,7u		
	. . . . . . . . .				. . . . . . . . .
	4 n s t 1 rx 5 n s t 1	rx 6 n s t 1	rx 7 n s t 1	rx 8 n s t 1	rx 9 n s t 1
	Figure 5:				

3 " t6, 7, 8, 9, 10u from computing unit c " 2 to computing unit c " 3.

  Transmit prxns t 1 q t 1 Pt6,7u Transmission of averaged images prxns t 1 q t 1 Pt6,7u from computing unit c " 3 to computing unit c " 2.

	. . . . . . . . .				. . . . . . . . .
	4 n s t 1 rx 5 n s t 1	rx 6 n s t 1	rx 7 n s t 1	rx 8 n s t 1	rx 9 n s t 1
	Figure 6:				

Table 1 :

 1 Investigated simulation scenarios and the number of images per core in each case.

	Number of cores C	1	2	3	4	6	8	9	12 18 24
	Number of images per core κ 72 36 24 18 12 9	8	6	4	3

|S| is the cardinality of a set S.
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Algorithm 3: Distributed Preconditioned Dual Forward-Backward after Dimension Reduction 1 Initialization: 2 V ℓ " index set of nodes in hyperedge ℓ P t1, . . . , Lu 3 T j " index set of blocks used at node j P t1, . . . , Ju 4 T t " index set of nodes using block t P t1, . . . , T u 5 tω j,t | 1 ď j ď J, t P T j u Ăs0, 1s such that p@t P t1, . . . , T uq ÿ 

ω ´1 j,t Aj,tA J j,t , j P Vc ϑc " min jPVc,tPT j ωj,t, ℓ P t1, . . . , Cu y j 0 P R M j , rx j 0 st " rr xst ´ω´1 j,t A J j,t y j 0 , j P Vc, t P Tj. Main loop: for n " 0, 1, . . . do Jn,c Ă Vc

n Bj r y j n regularization of the form h t pprxs t 1 q t 1 PTt q " $ ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' % β t´1,t χ 1 prxs t ´Mt´1Ñt rxs t´1 q `βt`1,t χ 1 prxs t ´Mt`1Ñt rxs t`1 q if t ‰ 1 and t ‰ T

where M t´1Ñt P R LˆL (resp. M t`1Ñt P R LˆL ) is a motion compensation operator between the reference frame x t´1 (resp. x t`1 ) and the current frame

x t , defined as described in [25, Section 5.2.2]. Finally, η, pβ t´1,t q 2ďtďT and pβ t`1,t q 1ďtďT ´1 are positive regularization parameters controlling the strength of the contribution of their associated terms. The values of these parameters

[42] G. M. Amdahl, Validity of the single processor approach to achieving large scale computing capabilities, in: American Fed. Inform. Process. Soc.

(AFIPS 1967), Atlantic City, USA, 1967, pp. 483-485.