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Abstract

We are dealing with the validity of a large deviation principle for the two-dimensional
Navier-Stokes equation, with periodic boundary conditions, perturbed by a Gaussian ran-
dom forcing. We are here interested in the regime where both the strength of the noise and
its correlation are vanishing, on a length scale ε and δ(ε), respectively, with 0 < ε, δ(ε) << 1.
Depending on the relationship between ε and δ(ε) we will prove the validity of the large
deviation principle in different functional spaces.

1 Introduction

We are dealing here with the following randomly forced two-dimensional incompressible Navier-
Stokes equation with periodic boundary conditions, defined on the domain D = [0, 2π]2,

∂tu(t, x) = ∆u(t, x)− (u(t, x) · ∇)u(t, x) +∇p(t, x) +
√
ε ∂t ξ

δ(t, x), x ∈ D, t ≥ 0,

divu(t, x) = 0, x ∈ D, t ≥ 0, u(0, x) = u0(x), x ∈ D.
(1.1)

Here u denotes the velocity and p denotes the pressure of the fluid. Moreover, ξδ(t, x) denotes
a Gaussian random forcing. We are interested in the regime where the noise is weak, that is its
typical strength is of order

√
ε << 1, and almost white in space, that is its correlation decays

on a length-scale δ << 1.
As well known, in order to have well posedness in C([0, T ]; [L2(D)]2) for equation (1.1),

the Gaussian noise ξδ cannot be white in space. In fact, white noise in space and time has
been considered in [8], where the well-posedness of equation (1.1) has been studied in suitable
Besov spaces of negative exponent, for µε-almost every initial condition, where µε is a suitable
centered Gaussian measure, depending on ε > 0. It turns out that, for different values of
ε > 0, the measures µε are all singular, so that the result proved in [8] does not imply the
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well posedness of equation (1.1) for any initial datum in some subset of the Besov space that
remains independent of ε > 0.

In the present paper, we assume that for any fixed δ > 0 the noise ξδ(t, x) is sufficiently
smooth in the space variable x ∈ D to guarantee that for any initial condition u0 ∈ [L2(D)]2

there exists a unique generalized solution in C([0, T ]; [L2(D)]2) (see Section 2 for all details).
As a consequence of the contraction principle and of some continuity properties of the solution
of equation (1.1), for any δ > 0 fixed, the family {L(uε,δ)}ε>0, given by the solutions of equation
(1.1), satisfies a large deviation principle in C([0, T ]; [L2(D)]2), for any T > 0 fixed, with rate
ε and action functional

IδT (f) =
1

2

∫ T

0
|Q−1

δ

(
f ′(t)−Af(t)− b(f(t))

)
|2[L2(D)]2 dt,

where A is the Stokes operator, b is the Navier-Stokes nonlinearity and Qδ is the square root
of the covariance of the noise ξδ (see Section 2 for all definitions and notations and also [4]).

In [3], the limiting behaviors, as δ ↓ 0, for the large deviation action functional IδT , as well
as for the corresponding quasipotential V δ have been studied. Namely it has been proven that
if the operator Qδ converges strongly to the identity operator, and a few other conditions are
satisfied, then the operators IδT and V δ converge pointwise, as δ ↓ 0, to the operator

IT (f) =
1

2

∫ T

0
|f ′(t)−Af(t)− b(f(t))|2[L2(D)]2 dt, (1.2)

and the operator
V (x) = |x|2[H1(D)]2 ,

respectively. Notice that IT and V would be the natural candidates for the large deviation
action functional in C([0, T ]; [L2(D)]2) and the quasi-potential in [L2(D)]2, in case equation
(1.1), perturbed by space-time white noise, were well-posed in [L2(D)]2.

In [3] we have first taken the limit in ε and then in δ. In the present paper we describe what
happens in the relevant case the parameter δ is a function of the parameter ε that describes
the intensity of the noise, and

lim
ε→0

δ(ε) = 0. (1.3)

Namely, we show that in this case the family {uε,δ(ε)}ε>0 satisfies a large deviation principle
in the space C([0, T ];Bσp (D)), where Bσp (D) is a suitable Besov space of functions, with σ < 0
and p ≥ 2. Moreover, in the case condition (1.3) is supplemented with the condition

lim
ε→0

ε δ(ε)−η = 0, (1.4)

for some η > 0, we prove that the family {uε,δ(ε)}ε>0 satisfies a large deviation principle in
the space C([0, T ]; [L2(D)]2), where equation (1.1), corresponding to δ = 0, is ill-posed. In
both cases, the action functional that describes the large deviation principle is the operator IT
defined in (1.2).

We would like to mention the fact that in [12] Hairer and Weber have studied a similar
problem for the stochastic reaction-diffusion equation ∂tu(t, x) = ∆u(t, x) + c u(t, ξ)− u3(t, ξ) +

√
ε ∂t ξ

δ(ε)(t, x), x ∈ D, t ≥ 0,

u(0, x) = u0(x), x ∈ D,

(1.5)
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where D is a bounded smooth domain, either in R2 or in R3. By using the recently developed
theory of regularity structures, they study the validity of a large deviation principle for the
solutions {uε,δ(ε)}ε>0 of equation (1.5), in the case condition (1.3) is satisfied. Actually, they
prove that if, in addition to (1.3), the following conditions hold

lim
ε→0

ε log δ(ε)−1 = λ ∈ [0,∞), for d = 2, lim
ε→0

ε δ(ε)−1 = λ ∈ [0,∞), for d = 3,

then the family {uε,δ(ε)}ε>0 satisfies a large deviation principle in C([0, T ], Cη(D)), where
Cη(D) is some space of functions of negative regularity in space, with respect to the action
functional

IλT (f) =
1

2

∫ T

0
|∂tf −∆f + cλ f + f3|2[L2(D)]2 dt,

for some explicitly given constant cλ, depending on λ and d and such that c0 = −c.
Moreover, they also consider the renormalized equation

∂tu(t, x) = ∆u(t, x) + (c+ 3 ε c
(1)
δ(ε) − 9 ε2 c

(2)
δ(ε))u(t, ξ)− u3(t, ξ) +

√
ε ∂t ξ

δ(ε)(t, x),

u(0, x) = u0(x), x ∈ D,

where c
(1)
δ(ε) and c

(2)
δ(ε) are the constants, depending on the dimension of the underlying space,

arising from the renormalization procedure. They prove that, in this case, if (1.3) holds, then
the family of solutions {uε,δ(ε)}ε>0 satisfies a large deviation principle in C([0, T ], Cη(D)), with
action functional I0

T .

Unlike Hairer and Weber, that use techniques from the theory of regularity structures to
prove the validity of the large deviation principle, in this paper we use the weak convergence
approach to large deviations, as developed in [5] for SPDEs (see also [13], [7] and [1] for some
relevant applications of this method). The argument is simpler and gives a stronger result.
In particular, we are able to prove that, when condition (1.4) is satisfied, then the family
{uε,δ(ε)}ε>0 satisfies a large deviation principle in the space of continuous trajectories with
values in the space H itself and not in a functional space of negative regularity. Notice that
in [6] we have studied an analogous problem for the Φ2n

d - model

To this purpose, let {ϕε}ε>0 be any sequence of {Ft}t≥0-predictable processes, taking values
in a ball of L2(0, T ; [L2(D)]2), P-almost surely, such that

lim
ε→0

ϕε = ϕ weakly in L2(0, T ; [L2(D)]2), P− a.s.

for some {Ft}t≥0-predictable process ϕ taking values in the same ball of L2(0, T ; [L2(D)]2). As
we will explain in Section 3, in order to use the weak convergence approach to large deviations,
we have to show that if uϕεε is the solution of the equation

du(t) = [Au(t) + b(u(t)) +Qε ϕε(t)] dt+
√
ε dwδ(ε)(t), t ≥ 0, u(0) = u0,

then we have

lim
ε→0
|uϕεε − uϕ|E = 0 P− a.s. (1.6)
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where uϕ the solution of the random problem

du

dt
(t) = Au(t) + b(u(t)) + ϕ(t) t ≥ 0, u(0) = u0,

and E coincides with the space C([0, T ]; [L2(D)]2) or C([0, T ];Bσp (D)), depending on whether
condition (1.4) is satisfied or not. We would like to stress the fact that the proof of (1.6) is
quite different, in the two different cases.

If (1.4) is satisfied, then we can work in a Hilbertian framework. For every α > 0 and
ε > 0, we use the splitting

uϕεε = vα,ϕεε + zαε + Φϕε
ε ,

where

Φϕε
ε (t) =

∫ t

0
e(t−s)AQδ(ε) ϕε(s) ds, t ≥ 0,

and

zαε (t) =
√
ε

∫ t

−∞
e(t−s)(A−α) dw̄δ(ε)(s), t ≥ 0, (1.7)

so that
uϕεε (t)− uϕ(t) = [vα,ϕεε (t)− vα,ϕ0 (t)] + zαε (t) + [Φϕε

ε (t)− Φϕ
0 (t)] .

Our aim is to show that there exists a random family {αε}ε>0 such that the three terms on the
right hand side above, corresponding to α = αε, converge to zero in Lp(Ω;C([0, T ]; [L2(D)]2)).
In order to prove that we proceed with suitable energy estimates. Here, the key point is the
fact that for every p ≥ 1 there exist θ > 0 and a random variable Kε(p) such that

|zαε |C([0,T ];Lp(O)) ≤ (α ∨ 1)−θ cp(T )Kε(p), P− a.s.

and for any η small enough and any p, q ≥ 1 there exist c1,η(p, q) and c2,η(p, q) such that

E |Kε(p)|q ≤ c1,η(p, q)
(
ε δ(ε)−η

)c2,η(p,q)
.

If (1.4) is not satisfied, we have to work with the mild formulation of the equation in the
space ET := C([0, T ];Bσp (D)) ∩ Lβ(0, T ;Bαp (D)), where Bσp (D) and Bαp (D) are suitable Besov
spaces, with σ < 0 < α, β ≥ 1 and p ≥ 2 satisfying suitable conditions. Also in this case
we proceed with a suitable splitting of the solution uϕεε , but we cannot proceed with energy
estimates. We consider the decomposition

uϕεε − uϕ = [vε(t)− uϕ(t)] + zε(t),

where zε(t) is the process defined in (1.7), corresponding to α = 0. In this case, one of the key
points in order to prove (1.6) is showing that∣∣∣∣∫ ·

0
e(·−s)Ab(zε(s)) ds

∣∣∣∣
ET
≤ c2(t)

∣∣zε ⊗ zε − ε ϑδ(ε)I∣∣Lρ(0,T ;[H−ρ(D)]4)
,

for a suitable ρ > 1 and a suitable constant ϑδ(ε) such that

lim
ε→0

E |zε ⊗ zε − ε ϑδ(ε) I|κLp(0,T ;[Hσ(D)]4) = 0,

for any κ, p ≥ 1 and σ < 0. This follows from arguments analogous to those used in [8]
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2 Notations and preliminaries

We consider here the following incompressible Navier-Stokes equation with periodic boundary
conditions on the two-dimensional domain D = [0, 2π]2,

∂tu(t, x) = ∆u(t, x)− (u(t, x) · ∇)u(t, x) +∇p(t, x) +
√
ε ∂t ξ

δ(t, x), x ∈ D, t ≥ 0,

divu(t, x) = 0, x ∈ D, t ≥ 0, u(0, x) = u0(x), x ∈ D,

u(t, x1, 0) = u(t, x1, 2π), u(t, 0, x2) = u(t, 2π, x2), (x1, x2) ∈ [0, 2π]2, t ≥ 0,
(2.1)

where 0 < ε, δ << 1 are some small positive constants. Here ξδ(t, x) is a Wiener process on
[L2(D)]2, with covariance Qδ to be defined below.

We assume that the initial condition u0 and the noise ξδ have zero average in space, so that
u(t) remains with zero average for all time. It is not difficult to get rid of this assumption.

In what follows, we will denote by H the subspace of [L2(D)]2 consisting of periodic,
divergence free and zero average functions, that is

H =

{
u ∈ [L2(D)]2 :

∫
D
u(x) dx = 0, divu = 0, u is periodic in D

}
.

H turns out to be a Hilbert space, endowed with the standard scalar product 〈·, ·〉H inherited
from [L2(D)]2. Moreover, we will denote by P the Leray-Helmholtz projection of [L2(D)]2

onto H.
Now, for any k = (k1, k2) ∈ Z2

0 = Z2 \ {(0, 0)} we define

ek(x) =
1

2π

k⊥

|k|
ei x·k =

1

2π

k⊥

|k|
ei (x1k1+x2k2), x = (x1, x2) ∈ D, k ∈ Z0,

where

k⊥ = (k2,−k1), |k| =
√
k2

1 + k2
2.

It turns out that the family {ek}k∈Z2
0

is a complete orthonormal system in HC, the complexi-
fication of the space H. For every s ∈ R, we define

Hs(D) :=

u : D → R : |u|2Hs(D) :=
∑
k∈Z2

0

|〈u, ek〉|2|k|2s <∞

 .

Next, for q ∈ N, we set δq := Π2q − Π2q−1 , where Πn denote the projection of H into
Hn := span{ek}|k|≤n. Namely

δqu =
∑

2q−1<|k|≤2q

〈u, ek〉H ek, u ∈
⋃
s∈R

Hs(D).

For any σ ∈ R and p ≥ 1, we define

Bσp (D) :=

u ∈
⋃
s∈R

Hs(D) :
∑
q∈N

2pqσ|δqu|pLp(D) <∞

 .
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Bσp (D) turns out to be a Banach space, endowed with the norm

|u|Bσp (D) :=

∑
q∈N

2pqσ|δqu|pLp(D)

 1
p

.

Now, we define the Stokes operator

Au = P∆u, u ∈ D(A) = H ∩ [H2(D)]2,

where P is the Helmodtz projection. It is immediate to check that for any k ∈ Z2
0

Aek = −|k|2ek, k ∈ Z2
0.

For any r ∈ R, we denote by (−A)r the r-th fractional power of −A, defined on its domain
D((−A)r). It is well known that D((−A)r) is the closure of the space spanned by {ek}k∈Z2

0

with respect to the norm in [H2r(D)]2 and the mapping

u ∈ D((−A)r) 7→ |(−A)ru|H ∈ [0,+∞),

defines a norm on D((−A)r), equivalent to the usual norm in [H2r(D)]2. Moreover, we have
that the Leray-Helmholtz projection P maps [H2r(D)]2 into D((−A)r), for every r ∈ R.

Due to the incompressibility condition, the nonlinearity in equation (2.1) can be rewritten
as

(u · ∇)v = div (u⊗ v),

where

u⊗ v =

(
u1v1 u1v2

u2v1 u2v2

)
.

In what follows, we shall set

b(u, v) = −Pdiv (u⊗ v), b(u) = −Pdiv (u⊗ u). (2.2)

We recall here that, whenever the quantities on the left-hand sides make sense, it holds

〈b(u), u〉H = 0, 〈b(u), Au〉H = 0, (2.3)

(for a proof see e.g. [14]).
Finally, concerning the noisy perturbation ξδ(t, x) in equation (2.1), it is a Wiener process

on [L2(D)]2 and has zero average. In what follows, we shall set

wδ(t) := Pξδ(t), t ≥ 0.

wδ(t) is now a Wiener process on H, and we assume it can be written as

wδ(t, x) =
∑
k∈Z2

0

λk(δ)ek(x)βk(t), t ≥ 0, x ∈ D,
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where {ek}k∈Z2
0

is the orthonormal basis that diagonalizes the operator A, {βk(t)}k∈Z2
0

is a

sequence of independent Brownian motions defined on the stochastic basic (Ω,F , {Ft}t≥0,P),
and for any δ > 0

λk(δ) =
(
1 + δ |k|2γ

)− 1
2 , k ∈ Z2

0,

for some fixed γ > 0. In other words, wδ is a Wiener process on H with covariance Qδ =
(I + δ(−A)γ)−1. We would like to stress that our result easily generalizes to more general
covariance operators.

As we mentioned above, in the present paper we are interested in the asymptotic behavior
of equation (2.1), as both ε and δ go to zero. In particular, we shall assume that δ is a function
of ε, such that

lim
ε→0

δ(ε) = 0.

In what follows we shall denote by Qε the bounded linear operator in H defined by

Qεek = λk(δ(ε)) ek, k ∈ N.

Now, if we project equation (2.1) on H, with the notations we have just introduced, it can
be rewritten as

du(t) = [Au(t) + b(u(t))] dt+
√
ε dwδ(ε)(t), t ≥ 0, u(0) = u0. (2.4)

As proven e.g. in [11], equation (2.4) admits a unique generalized solution uε ∈ C([0, T ];H).
This means that uε is a progressively measurable process taking values in C([0, T ];H), such
that P-a.s. equation (2.4) is satisfied in the integral form

〈uε(t), ϕ〉H = 〈u0, ϕ〉H +

∫ t

0
〈uε(s), Aϕ〉H ds+

∫ t

0
〈b(uε(s), ϕ), uε(s)〉H ds+

√
ε
〈
wδ(ε)(t), ϕ

〉
H
,

for every t ∈ [0, T ] and ϕ ∈ D(A).

In what follows, for every α ≥ 0 and ε > 0, we consider the auxiliary Ornstein-Uhlenbeck
problem

dz(t) = (A− α)z(t) dt+
√
ε dw δ(ε)(t), t ≥ 0, (2.5)

whose unique stationary solution is given by

zαε (t) =
√
ε

∫ t

−∞
e(t−s)(A−α) dw̄ δ(ε)(s), t ∈ R. (2.6)

Notice that here w̄ δ(ε)(t) is a two sided cylindrical Wiener process, defined by

w̄ δ(ε)(t, x) =
∑
k∈Z2

0

λk(δ(ε))ek(x) β̄k(t), (t, x) ∈ R×D,

where

β̄k(t) =


βk(t), if t ≥ 0,

β̃k(−t), if t < 0,
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for some sequence of independent Brownian motions {β̃k(t)}k∈Z2
0
, defined on the stochastic

basis (Ω,F , {Ft}t≥0,P) and independent of the sequence {βk(t)}k∈Z2
0
.

It is well known that for any fixed ε > 0 the process zαε belongs to Lp(Ω;C([0, T ];D((−A)β)),
for any T > 0, p ≥ 1 and β < γ/2. In the case α = 0, we shall set

zε(t) := z0
ε (t). (2.7)

3 The problem and the method

We are here interested in the study of the validity of a large deviation principle, as ε ↓ 0, for
the family {L(uε)}ε∈ (0,1), where uε is the solution of the equation

du(t) = [Au(t) + b(u(t))] dt+
√
ε dwδ(ε)(t), t ≥ 0, u(0) = u0. (3.1)

Here and in what follows, T > 0 is fixed and ε > 0 7→ δ(ε) > 0 is a function such that

lim
ε→0

δ(ε) = 0. (3.2)

We will prove that depending on the scaling we assume between ε and δ(ε), the family
{L(uε)}ε∈ (0,1) satisfies a large deviation principle in E , where E is a suitable space of tra-
jectories on [0, T ], taking values in some space of functions defined on the domain D and
containing H.

Theorem 3.1. Let ε 7→ δ(ε) be a function satisfying (3.2). Moreover, assume that there exists
η > 0 such that

lim
ε→0

ε δ(ε)−η = 0. (3.3)

Then, for any u0 ∈ H, the family {L(uε)}ε>0 satisfies a large deviation principle in C([0, T ];H),
with action functional

IT (f) =
1

2

∫ T

0
|f ′(t)−Af(t)− b(f(t))|2H dt. (3.4)

Theorem 3.2. Let ε 7→ δ(ε) be a function satisfying (3.2). Moreover, let σ < 0 and p ≥ 2 be
such that

σ > −2

p
∨
(

2

p
− 1

)
.

Then, for any u0 ∈ Hθ(D), with θ ≥ σ + 1 − 2/p, the family {L(uε)}ε>0 satisfies a large
deviation principle in C([0, T ];Bσp (D)), with the same action function IT introduced in (3.4).

In order to prove Theorems 3.1 and 3.2, we follow the weak convergence approach, as
developed in [5]. To this purpose, we need to introduce some notations. For any T > 0, we
denote by PT the set of predictable processes in L2(Ω× [0, T ];H), and for any γ > 0, we define
the sets

SγT =

{
f ∈ L2(0, T ;H) :

∫ T

0
|f(t)|2H dt ≤ γ

}
,
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and
AγT =

{
u ∈ PT : u ∈ SγT , P− a.s.

}
.

Next, for any predictable process ϕ(t) taking values in L2([0, T ];H), we denote by uϕ the
solution of the problem

du

dt
(t) = Au(t) + b(u(t)) + ϕ(t) t ≥ 0, u(0) = u0. (3.5)

Moreover, for every ε > 0 we denote by uϕε (t) the generalized solution of the problem

du(t) = [Au(t) + b(u(t)) +Qε ϕ(t)] dt+
√
ε dwδ(ε)(t), t ≥ 0, u(0) = u0. (3.6)

Notice that wδ(ε)(t) = Qδ(ε)w(t), where

w(t, x) =
∞∑
k=1

ek(x)βk(t).

Then, by using the notations introduced in [5], we have

uϕε = Gε
(√

εw +

∫ ·
0
ϕ(t) dt

)
,

where Gε(ψ) denotes the solution f of the problem

df(t) = [Af(t) + b(f(t))] dt+Qδ(ε)dψ(t), f(0) = u0.

As for equation (2.4), for any fixed ε ≥ 0 and for any T > 0 and κ ≥ 1, equation (3.6)
admits a unique generalized solution uϕε in Lκ(Ω;C([0, T ];H)). As a particular case (ε = 0),
we have also well-posedness for equation (3.5).

By proceeding as in [5], the following result can be proven.

Theorem 3.3. Let E be a Polish space of trajectories defined on [0, T ] with values in a space
of functions defined on the domain D and containing the space H, and let IT be the functional
defined in (3.4). Assume that

1. the level sets {IT (f) ≤ r} are compact in E, for every r ≥ 0;

2. for every family {ϕε}ε>0 ⊂ AγT that converges in distribution, as ε ↓ 0, to some ϕ ∈ AγT ,
in the space L2(0, T ;H), endowed with the weak topology, the family {uϕεε }ε>0 converges
in distribution to uϕ, as ε ↓ 0, in E.

Then the family {L(uε)}ε>0 satisfies a large deviation principle in E, with action functional
IT .

Actually, as shown in [5], the convergence of uϕεε to uϕ implies the validity of the Laplace
principle in E with rate functional IT . This means that, for any continuous mapping Γ : E → R
it holds

lim
ε→0
−ε logE exp

(
−1

ε
Γ(uε)

)
= inf

f∈E
( Γ(f) + IT (f) ) . (3.7)
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And, once one has shown that the level sets of IT are compact in E , the validity of the Laplace
principle as in (3.7) is equivalent to say that the family {L(uε)}ε>0 satisfies a large deviation
principle in E , with action functional IT .

The proof of condition 1 in Theorem 3.3 is obtained once we show that, when the space
L2(0, T ;H) is endowed with the topology of weak convergence, the mapping

ϕ ∈ L2(0, T ;H) 7→ uϕ ∈ E ,

is continuous. More precisely, condition 1 will follow if we can prove that for any sequence
{ϕn}n∈N in L2(0, T ;H), weakly convergent to some ϕ ∈ L2(0, T ;H), it holds

lim
n→∞

|uϕn − uϕ|E = 0.

As for condition 2, we will use Skorohod theorem and rephrase such a condition in the
following way. Let (Ω̄, F̄ , P̄) be a probability space and let {w̄δ(ε)(t)}t≥0 be a Wiener process,
with covariance Qδ, defined on such a probability space and corresponding to the filtration
{F̄t}t≥0. Moreover, let {ϕ̄ε}ε>0 and ϕ̄ be {F̄t}t≥0-predictable processes taking values in SγT ,
P̄ almost surely, such that the distribution of (ϕ̄ε, ϕ̄, w̄

δ(ε)) coincides with the distribution of
(ϕε, ϕ, w

δ(ε)) and
lim
ε→0

ϕ̄ε = ϕ̄ weakly in L2(0, T ;H), P̄− a.s.

Then, if ū ϕ̄εε is the solution of an equation analogous to (3.6), with ϕε and w δ(ε) replaced
respectively by ϕ̄ε and w̄ δ(ε), we have that

lim
ε→0

ū ϕ̄εε = ū ϕ̄ in E , P− a.s. (3.8)

We would like to stress that condition 1 in Theorem 3.3 follows from condition 2. Actually,
if we take in equation (3.6)

√
ε = 0 and {ϕε}ε>0 = {ϕn}n∈N and ϕ deterministic, then condition

1 is a particular case of condition 2.

4 Proof of Theorem 3.1

In what follows, {ϕε}ε∈ (0,1) and ϕ are predictable processes in AγT , for some γ > 0 fixed, such
that ϕε converges to ϕ, P almost surely, in the weak topology of L2(0, T ;H).

For any α ≥ 0 and ε > 0, we introduce the random equation

dv

dt
(t) = Av(t) + b(v(t) + zαε (t) + Φε(t)) + α zαε (t), v(0) = u0 − zαε (0), (4.1)

where zαε is the process introduced in (2.6), solution of the linear equation (2.5), and

Φε(t) =

∫ t

0
e(t−s)AQε ϕε(s) ds, t ≥ 0,

is the solution of the problem

dΦε

dt
(t) = AΦε(t) +Qε ϕε(t), Φε(0) = 0.
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Notice that if ϕε ∈ AγT , for some γ > 0, then

|Φε(t)|Lp(D) ≤ c
∫ t

0
(t− s)−

p−2
2p |ϕε(s)|H ds,

so that

|Φε|pLp(0,T ;Lp(D)) ≤ c
∫ T

0

(∫ t

0
(t− s)−

p−2
2p |ϕε(s)|H ds

)p
dt

≤ cT |ϕε|pL2(0,T ;H)

(∫ T

0
s
− p−2

2p ds

) p+2
2

.

This implies that

|Φε|Lp(0,T ;Lp(D)) ≤ cT,p
√
γ, P− a.s. (4.2)

As shown e.g. in [11], equation (4.1) admits a unique solution

vαε ∈ C([0, T ];H) ∩ L2(0, T ;V ), (4.3)

and the unique generalized solution uαε of equation

du(t) = [Au(t) + b(u(t)) +Qε ϕε(t)] dt+
√
ε dwδ(ε)(t), t ≥ 0, u(0) = u0, (4.4)

can be decomposed as

uαε (t) = vαε (t) + zαε (t) + Φε(t), t ∈ [0, T ].

Lemma 4.1. Assume that {ϕε}ε>0 ⊂ AγT , for some fixed γ > 0. Then, there exists cT,γ > 0
such that for every ε > 0 and t ∈ [0, T ]

|vαε (t)|2H +

∫ t

0
|vαε (s)|2V ds

≤ cT,γ exp
(
c |zαε |4L4(0,t;L4(D))

)(
|u0|2H + |zαε (0)|2H + (α2 + 1) |zαε |4L4(0,t;L4(D)) + 1

)
.

(4.5)

Moreover, we have

|vαε |4L4(0,T ;L4(D))

≤ cT,γ exp
(
c |zαε |4L4(0,t;L4(D))

)(
|u0|2H + |zαε (0)|2H + (α2 + 1) |zαε |4L4(0,t;L4(D)) + 1

)2
.

(4.6)

Proof. Let vαε be the solution of problem (4.1), having the regularity specified in (4.3). Due to
the first identity in (2.3), we have

1

2

d

dt
|vαε (t)|2H + |vαε (t)|2V

= 〈b(zαε (t) + Φε(t)), v
α
ε (t)〉H + 〈b(vαε (t), zαε (t) + Φε(t)), v

α
ε (t)〉H + α 〈zαε (t), vαε (t)〉H .
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For every η > 0, we have

|〈b(zαε (t) + Φε(t)), v
α
ε (t)〉H | = |〈b(z

α
ε (t) + Φε(t), v

α
ε (t)), zαε (t) + Φε(t)〉H |

≤ |vαε (t)|V |zαε (t) + Φε(t)|2L4(D) ≤ η |v
α
ε (t)|2V + cη

(
|zαε (t)|4L4(D) + |Φε(t)|4L4(D)

)
.

As H1/2(D) ↪→ L4(D), by interpolation, we have

|〈b(vαε (t), zαε (t) + Φε(t)), v
α
ε (t)〉H | = |〈b(v

α
ε (t)), zαε (t) + Φε(t)〉H |

≤ c|vαε (t)|V |vαε (t)|H1/2 |zαε (t) + Φε(t)|L4(D) ≤ c|vαε (t)|3/2V |v
α
ε (t)|1/2H |z

α
ε (t) + Φε(t)|L4(D)

≤ η |vαε (t)|2V + cη |vαε (t)|2H
(
|zαε (t)|4L4(D) + |Φε(t)|4L4(D)

)
.

Moreover, we have

α| 〈zαε (t), vαε (t)〉H | ≤ η |v
α
ε (t)|2V + cη α

2 |zαε (t)|2H−1 .

Therefore, if we pick η = 1/6, we get

d

dt
|vαε (t)|2H + |vαε (t)|2V

≤ c |vαε (t)|2H
(
|zαε (t)|4L4(D) + |Φε(t)|4L4(D)

)
+ c (α2 + 1) |zαε (t)|4L4(D) + c |Φε(t)|4L4(D).

Due to (4.2), by using the Gronwall lemma this yields (4.5).

In order to prove (4.6), we notice that, as H1/2(D) ↪→ L4(D), by interpolation we have

|vαε |4L4(0,T ;L4(D)) ≤ c
∫ T

0
|vαε (s)|2V |vαε (s)|2H ds ≤ |vαε |2L∞(0,T ;H)|v

α
ε |2L2(0,T ;V ).

Therefore, (4.6) follows immediately from (4.5).

Remark 4.2. 1. Due to (A.8), there exist κ̄ ≥ 1 and c(T ) > 0 such that for any ε > 0

αε := c(T ) |Kε(4, βη)|κ̄ ∨ 1 =⇒ |zαεε |L4(0,T ;L4(D)) ≤ 1 and |zαεε (0)|H ≤ 1. (4.7)

Thanks to (4.6), this implies that

|vαεε |L4(0,T ;L4(D)) ≤ cT,γ
(
|u0|H + α2

ε + 1
)
, P− a.s. (4.8)

and in view of (A.9), we can conclude that if (3.3) holds, then

E |vαεε |κL4(0,T ;L4(D)) ≤ cγ(T, κ) (|u0|κH + 1) , κ ≥ 1. (4.9)
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2. As a consequence of (4.5), if ϕ ∈ AγT and vϕ is a solution to the problem

dv

dt
(t) = Av(t) + b(v(t) + Γ(ϕ)(t)), v(0) = u0,

where

Γ(ϕ)(t) :=

∫ t

0
e(t−s)Aϕ(s) ds,

we have

|vϕ(t)|2H +

∫ t

0
|vϕ(s)|2H ds ≤ cT,γ

(
1 + |u0|2H

)
. (4.10)

Moreover, by interpolation,

|vϕ|L4(0,T ;L4(D)) ≤ cT,γ(1 + |u0|H). (4.11)

In the next lemma we investigate the continuity properties of the operator Γ and we prove
the convergence of Φε to Γ(ϕ) in case the sequence {ϕε}ε>0 is weakly convergent to ϕ.

Lemma 4.3. For every ρ < 1, there exist θρ > 0 and cθ > 0 such that

|Γ(ϕ)|Cθρ ([0,T ];Hρ(D)) ≤ cρ |ϕ|L2(0,T ;H), P− a.s. (4.12)

for every ϕ ∈ L2(0, T ;H). In particular, if {ϕε}ε>0 is a family in AγT , weakly convergent in
L2(0, T ;H) to some ϕ ∈ AγT , for every ρ < 1 we have

lim
ε→0
|Φε − Γ(ϕ)|C([0,T ];Hρ(D)) = 0, P− a.s. (4.13)

Proof. For every β ∈ (0, 1), we have

Γ(ϕ)(t) = cβ

∫ t

0
(t− s)−β+1e(t−s)AYβ(ϕ)(s) ds,

where

Yβ(ϕ)(s) =

∫ s

0
(s− σ)−βe(s−σ)Aϕ(σ) dσ.

Due to the Young inequality, we get

|Yβ(ϕ)|pLp(0,T ;H) =

∫ T

0

(∫ s

0
(s− σ)−β|ϕ(σ)|H dσ

)p
ds ≤ |ϕ|p

L2(0,T ;H)

(∫ T

0
s
− 2βp
p+2 ds

) p+2
2

,

and hence, if β < 1/2 + 1/p, we have

|Yβ(ϕ)|Lp(0,T ;H) ≤ cp(T ) |ϕ|L2(0,T ;H).

Now, as shown e.g. in [10], if β > ρ/2 + 1/p we have that the mapping

Y ∈ Lp(0, T ;H) 7→
∫ t

0
(t− s)−β+1e(t−s)AY (s) ds ∈ C

β− ρ
2
− 1
p ([0, T ];Hρ(D)),
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is continuous. Therefore, we can conclude that

|Γ(ϕ)|
C
β− ρ2−

1
p ([0,T ];Hρ(D))

≤ cρ,β(T ) |ϕ|L2(0,T ;H), P− a.s.

if ρ/2 + 1/p < β < 1/2 + 1/p, and this implies (4.12).

Now, in order to prove (4.13), we notice that

Φε − Γ(ϕ) = Γ(Qε(ϕε − ϕ)) + Γ(Qεϕ− ϕ).

Since Qε(ϕε − ϕ) ∈ AγT and Qε(ϕε − ϕ) ⇀ 0, as ε ↓ 0, weakly in L2(0, T ;H), due to the
compactness of the immersion of Cθρ1 ([0, T ];Hρ1(D)) into C([0, T ];Hρ2(D)), for every ρ1 > ρ2,
from (4.12) we conclude that

lim
ε→0
|Γ(Qε(ϕε − ϕ))|C([0,T ];Hρ(D)) = 0, P− a.s. (4.14)

for every ρ < 1. Moreover, thanks again to (4.12),

|Γ(Qε ϕ− ϕ)|pC([0,T ];Hρ(D)) ≤ cρ|Qε ϕ− ϕ|L2(0,T ;H) → 0, P− a.s.

as ε→ 0, and together with (4.14), this implies (4.13).

Remark 4.4. Notice that, as the sequence {ϕε}ε>0 and the process ϕ are in AγT , we can
conclude that the convergence in (4.13) is in Lp(Ω), for any p ≥ 1.

In what follows, we shall denote

ραε (t) := vαε (t)− vϕ(t), t ≥ 0.

It is immediate to check that ραε is a solution to the problem

dραε
dt

(t) = Aραε (t) + b(vαε (t) + zαε (t) + Φε(t))− b(vϕ(t) + Γ(ϕ)(t)) + α zαε (t), ραε (0) = −zαε (0).

(4.15)

Lemma 4.5. If {ϕε}ε>0 ⊂ AγT and ϕ ∈ AγT , for every α ≥ 0 we have

sup
t∈ [0,T ]

|ραε (t)|2H +

∫ T

0
|ραε (t)|2V dt ≤ cγ(T ) exp

(
u0|4H + 1

)
(
|zαε (0)|2H + |zαε |2L4(0,T ;L4(D))

(
|vαε |2L4(0,T ;L4(D)) + 1 + α2

)
+ |zαε |4L4(0,T ;L4(D))

+|Φε − Γ(ϕ)|2L4(0,T ;L4(D))

(
1 + |u0|2H + |vαε |2L4(0,T ;L4(D))

))
.

(4.16)
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Proof. Taking into account of the first identity in (2.3), we have

1

2

d

dt
|ραε (t)|2H + |ραε (t)|2V = 〈b(vαε (t))− b(vϕ(t)), ραε (t)〉H + 〈b(Φε(t))− b(Γ(ϕ)(t)), ραε (t)〉H

+ 〈b(zαε (t)), ραε (t)〉H + 〈b(vαε (t), zαε (t)) + b(zαε (t), vαε (t)), ραε (t)〉H

+ 〈b(zαε (t),Φε(t)) + b(Φε(t), z
α
ε (t)), ραε (t)〉H + 〈b(ραε (t),Φε(t)), ρ

α
ε (t)〉H

+ 〈b(vϕ(t),Φε(t)− Γ(ϕ)(t)) + b(Φε(t)− Γ(ϕ)(t), vαε (t)), ραε (t)〉H + α 〈zαε (t), ραε (t)〉H

:=
8∑
j=1

Iαε,j(t).

Now, we are going to estimate each one of the terms Iαε,j(t), for j = 1, . . . , 8. We have

Iαε,1(t) = 〈b(ραε (t), vϕ(t), ραε (t)〉H = −〈b(ραε (t)), vϕ(t)〉H ,

so that, by interpolation, for any η > 0,

|Iαε,1(t)| ≤ |ραε (t)|V |ραε (t)|L4(D)|vϕ(t)|L4(D) ≤ η |ραε (t)|2V + cη |ραε (t)|2H |vϕ(t)|4L4(D). (4.17)

For Iαε,2(t) we have

Iαε,2(t) = 〈b(Φε(t),Φε(t)− Γ(ϕ)(t)) + b(Φε(t)− Γ(ϕ)(t),Γ(ϕ)(t)), ραε (t)〉H ,

and, by proceeding as for Iαε,1(t), we have

|Iαε,2(t)| ≤ η |ραε (t)|2V + cη

(
|Φε(t)|2L4(D) + |Γ(ϕ)(t)|2L4(D)

)
|Φε(t)− Γ(ϕ)(t)|2L4(D). (4.18)

For Iαε,3(t), we have

|Iαε,3(t)| = |〈b(zαε (t)), ραε (t)〉H | ≤ η |ρ
α
ε (t)|2V + cη |zαε (t)|4L4(D), (4.19)

and, in an analogous way,

|Iαε,4(t)|+ |Iαε,5(t)| ≤ η |ραε (t)|2V + cη |zαε (t)|2L4(D)

(
|vαε (t)|2L4(D) + |Φε(t)|2L4(D)

)
. (4.20)

Concerning Iαε,6(t), by interpolation we get

|Iαε,6(t)| ≤ η |ραε (t)|2V + cη |Φε(t)|4L4(D) |ρ
α
ε (t)|2H . (4.21)

Finally, with the same arguments used for Iαε,3, and also for Iαε,4 and Iαε,5, we get

|Iαε,7(t)| ≤ η |ραε (t)|2V + cη

(
|vϕ|2L4(D) + |vαε (t)|2L4(D)

)
|Φε(t)− Γ(ϕ)|2L4(D). (4.22)

For the last term, we have

|Iαε,8(t)| ≤ η |ραε (t)|2V + cη α
2 |zαε (t)|2H−1 . (4.23)
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Therefore, if we take η = 1/14, we obtain

d

dt
|ραε (t)|2H + |ραε (t)|2V ≤ c |ραε (t)|2H

(
|vϕ(t)|4L4(D) + |Φε(t)|4L4(D)

)
+
(
|Φε(t)|2L4(D) + |Γ(ϕ)(t)|2L4(D) + |vϕ(t)|2L4(D) + |vαε (t)|2L4(D)

)
|Φε(t)− Γ(ϕ)(t)|2L4(D)

+c |zαε (t)|2L4(D)

(
|vαε (t)|2L4(D) + |Φε(t)|2L4(D) + α2

)
+ c |zαε (t)|4L4(D).

Recalling that

ϕ ∈ AγT =⇒ |Γ(ϕ)|Lp(0,T ;Lp(D)) ≤ cp(T ) γ, P− a.s.

as a consequence of the Gronwall lemma, this implies that

sup
t∈ [0,T ]

|ραε (t)|2H +

∫ T

0
|ραε (t)|2V dt ≤ cγ(T ) exp

(
|vϕ|4L4(0,T ;L4(D))

)
(
|zαε (0)|2H + |zαε |2L4(0,T ;L4(D))

(
|vαε |2L4(0,T ;L4(D)) + 1 + α2

)
+ |zαε |4L4(0,T ;L4(D))

+|Φε − Γ(ϕ)|2L4(0,T ;L4(D))

(
1 + |vϕ|2L4(0,T ;L4(D)) + |vαε |2L4(0,T ;L4(D))

))
.

Thanks to (4.11), we conclude that (4.16) holds.

4.1 Conclusion of the proof of Theorem 3.1

We have already seen that, if α is any given non-negative constant and vαε (t) is the solution to
problem (4.1), then it holds

uϕεε (t) = vαε (t) + zαε (t) + Φε(t), t ≥ 0.

Since uϕ(t) = vϕ(t) + Γ(ϕ)(t), this implies that we can write

uϕεε (t)− uϕ(t) = [vαεε (t)− vϕ(t)] + zαεε (t) + [Φε(t)− Γ(ϕ)(t)] , t ≥ 0,

where αε is the random constant defined in (4.7).

Due to (4.8) and (4.16), it is immediate to check that

|vαεε (t)− vϕ(t)|2H ≤ cγ(T, |u0|H)
[
|zαεε (0)|2H + |zαεε |4L4(0,T ;L4(D))

+
(
|zαεε |2L4(0,T ;L4(D)) + |Φε − Γ(ϕ)|L4(0,T ;L4(D))

) (
1 + α2

ε

)]
.

Now, in view of (A.8), for any β ∈ (0, 1/4) there exists cβ(T ) such that for every α > 0

|zαε |C([0,T ];L4(D)) ≤ cβ(T )Kε(4, β), P− a.s.
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This implies that, if we fix any η ∈ (0, 1/2γ) satisfying (3.3) and βη ∈ (0, 1/4) so that (A.9)
holds, we get

|vαεε (t)− vϕ(t)|2H ≤ cγ,η(T, |u0|H)
(
K4
ε (4, βη) +K2

ε (2, β) + |Φε − Γ(ϕ)|L4(0,T ;L4(D))

) (
1 + α2

ε

)
.

(4.24)
As a consequence of (A.9) and assumption (3.3), we have

sup
ε∈ (0,1)

Eακε <∞, κ ≥ 1.

Then, thanks again to (A.9), from (4.24) we can conclude that for any κ ≥ 1

E |vαεε − vϕ|κC([0,T ];H) ≤ cγ,η,κ(T, |u0|H)

[(
ε δ(ε)−η

)cκ +
(
E |Φε − Γ(ϕ)|κL4(0,T ;L4(D))

) 1
2

]
.

Because of (3.3), (4.12) and (4.13), this implies that

lim
ε→0

ε δ(ε)−η = 0 =⇒ lim
ε→0

E |vαεε − vϕ|κC([0,T ];H) = 0, κ ≥ 1. (4.25)

Since

|uϕεε − uϕ|C([0,T ];H) ≤ |vαεε − vϕ|C([0,T ];H) + |zαεε |C([0,T ];H) + |Φε − Γ(ϕ)|C([0,T ];H),

(4.25), together once more with (4.12) and (4.13), implies that

lim
ε→0

ε δ(ε)−η = 0 =⇒ lim
ε→0

E |uϕεε − uϕ|κC([0,T ];H) = 0, κ ≥ 1. (4.26)

In view of Theorem 3.3 and all comments in Section 3 after Theorem 3.3, we can conclude
that Theorem 3.1 is proved.

5 Proof of Theorem 3.2

In what follows, we fix any σ < 0 and p ≥ 2 such that

σ > −2

p
∨
(

2

p
− 1

)
.

Because of such a condition, we can fix two real constants α and β such that

2

p
> α > −σ > 0, p ≥ 2, β ≥ 2, −1

2
+

1

p
<
α

2
− 1

β
<
σ

2
. (5.1)

Once fixed α, σ, p and β, for any 0 ≤ s < t we denote

Es,t := C([s, t];Bσp (D)) ∩ Lβ(s, t;Bαp (D)).

Es,t turns out to be a Banach space, endowed with the norm

|v|Es,t := sup
r∈ [s,t]

|v(r)|Bσp (D) + |v|Lp(s,t;Bαp (D).
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In the case s = 0, we shall set E0,t = Et.
Our purpose here is to show that under condition (3.2) the family {uε}ε∈ (0,1) satisfies a

large deviation principle in C([0, T ];Bσp (D)), with action functional IT , as defined in (3.4). In
view of Theorem 3.3 and the arguments in Section 3, this follows once we prove that for any
sequence {ϕε}ε>0 ⊂ AγT , P-almost surely convergent to some ϕ ∈ AγT , with respect to the
topology of weak covergence in L2(0, T ;H), the sequence {uϕεε }ε>0 converges P-almost surely
to uϕ in C([0, T ];Bσp (D)).

For any ε > 0, we introduce the random equation

dvε
dt

(t) = Avε(t) + b(vε(t) + zε(t)) +Qε ϕε, vε(0) = u0 − zε(0), (5.2)

where zε(t) = z0
ε (t) is the process introduced in (2.7). In particular, we have

uϕεε (t)− uϕ(t) = [vε(t)− uϕ(t)] + zε(t) =: ρε(t) + zε(t), t ≥ 0,

Since

dρε
dt

(t) = Aρε(t) + b(vε(t) + zε(t))− b(uϕ(t)) +Qε ϕε(t)− ϕ(t), ρε(0) = −zε(0),

we have that ρε(t) solves the following integral equation

ρε(t) = −etAzε(0) +

∫ t

0
e(t−s)A (b(vε(s))− b(uϕ(s))) ds+

∫ t

0
e(t−s)Ab(zε(s)) ds

+

∫ t

0
e(t−s)A (b(ρε(s), zε(s)) + b(zε(s), ρε(s))) ds

+

∫ t

0
e(t−s)A (b(uϕ(s), zε(s)) + b(zε(s), u

ϕ(s))) ds+ [Φε(t)− Γ(ϕ)(t)] =:
6∑
i=1

Iε,i(t).

Our first goal here is to estimate the norm of each term Iε,i in the space Et, for every t ≤ T ,
and prove a uniform bound for ρε in ET . To this purpose, we first prove a suitable bound for
uϕ in Hθ(D), with θ ∈ (0, 1).

Lemma 5.1. Assume that u0 ∈ Hθ(D), for some θ ∈ [0, 1). Then, for any ϕ ∈ L2(0, T ;H)
we have

sup
t∈ [0,T ]

|uϕ(t)|2Hθ(D) +

∫ T

0
|uϕ(s)|2Hθ+1(D) ds ≤ c

(
|u0|Hθ(D), |ϕ|L2(0,T ;H)

)
. (5.3)

Proof. Since
1

2

d

dt
|uϕ(t)|2H + |uϕ(t)|2V = 〈ϕ(t), uϕ(t)〉H ,

we immediately have

|uϕ(t)|2H +

∫ t

0
|uϕ(s)|2V ds ≤ |u0|2H +

λ1

2

∫ t

0
|ϕ(s)|2H ds. (5.4)

18



For every θ ≥ 0, we have

1

2

d

dt
|uϕ(t)|2Hθ(D) + |uϕ(t)|2Hθ+1(D) = 〈b(uϕ(t)), (−A)θuϕ(t)〉H + 〈ϕ(t), (−A)θuϕ(t)〉H .

Now, if we assume θ < 1 and set q1 = 2/(1− θ) and q2 = 2/θ, we have∣∣∣〈b(uϕ(t)), (−A)θuϕ(t)〉H
∣∣∣ ≤ |uϕ(t)|Lq1 (D)|(−A)θuϕ(t)|Lq2 (D)|uϕ(t)|V .

As
W θ,2(D) ↪→ Lq1(D), W 1−θ,2(D) ↪→ Lq2(D),

this implies that∣∣∣〈b(uϕ(t)), (−A)θuϕ(t)〉H
∣∣∣ ≤ |uϕ(t)|Hθ(D)|uϕ(t)|H1+θ(D)|uϕ(t)|V

≤ 1

4
|uϕ(t)|2H1+θ(D) + c |uϕ(t)|2Hθ(D)|u

ϕ(t)|2V .

Therefore, as∣∣∣〈ϕ(t), (−A)θuϕ(t)〉H
∣∣∣ ≤ |ϕ(t)|H |uϕ(t)|H2θ(D) ≤

1

4
|uϕ(t)|2H1+θ(D) + c |ϕ|2H ,

we conclude that

d

dt
|uϕ(t)|2Hθ(D) + |uϕ(t)|2Hθ+1(D) ≤ c |u

ϕ(t)|2Hθ(D)|u
ϕ(t)|2V + c |ϕ|2H .

Thanks to (5.4), this implies

|uϕ(t)|2Hθ(D) ≤ exp

(
c

∫ T

0
|uϕ(s)|2V ds

)(
|u0|2Hθ(D) + c |ϕ|2L2(0,T ;H)

)
≤ exp

(
c|u0|2H + c |ϕ|2L2(0,T ;H)

)(
|u0|2Hθ(D) + c |ϕ|2L2(0,T ;H)

)
,

and (5.3) easily follows.

Now, let us estimate each term Iε,i, for i = 1, . . . , 6. Since

|Iε,1(t)|Et = sup
s∈ [0,t]

|esAzε(0)|Bσp (D) +

(∫ t

0
|esAzε(0)|βBαp (D) ds

) 1
β

,

according to (5.1), for any t ≤ T we have

|Iε,1(t)|Et ≤ c |zε(0)|Bσp (D) + c

(∫ t

0
s−

1
2

(α−σ)β ds

) 1
β

|zε(0)|Bσp (D) ≤ cT |zε(0)|Bσp (D). (5.5)

Now, for any two processes u(t) and v(t), we define

Λ(u, v)(t) :=

∫ t

0
e(t−s)Ab(u(s), v(s)) ds, t ≥ 0.
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By proceeding as in [8, proof of Lemma 6.3], it is possible to show that if v1 and v2 are
measurable mappings defined on [0, T ], with values in Bαp (D) and Bσp (D), respectively, then

|Λ(vi, vj)(t)|Bσp (D) ≤ c
∫ t

0
(t− s)−

1
2

(1+ 2
p
−α)|v1(s)|Bαp (D)|v2(s)|Bσp (D) ds, t ≤ T, (5.6)

and

|Λ(vi, vj)(t)|Bαp (D) ≤ c
∫ t

0
(t− s)−

1
2

(1+ 2
p
−σ)|v1(s)|Bαp (D)|v2(s)|Bσp (D) ds, t ≤ T, (5.7)

both for (i, j) = (1, 2) and for (i, j) = (2, 1).
It is immediate to check that

b(vε(t))− b(uϕ(t)) = b(ρε(t)) + b(ρε(t), u
ϕ(t)) + b(uϕ(t), ρε(t)), t ≥ 0,

so that, thanks to (5.1), from (5.6) and (5.7) we get

|Iε,2|Et ≤ c1(t)|ρε|Lβ(0,t;Bαp (D))

(
|ρε|C([0,t];Bσp (D)) + |uϕ|C([0,t];Bσp (D))

)
, t ≥ 0,

for some continuous increasing function c1(t), such that c1(0) = 0. Since we are assuming that
θ ≥ σ + 1− 2/p, we have that Hθ(D) ↪→ Bσp (D), so that from (5.3) we obtain

|Iε,2|Et ≤ c1(t) cγ(|u0|Hθ(D))|ρε|Et
(
|ρε|C([0,t];Bσp (D)) + 1

)
. (5.8)

Concerning Iε,3(t), we first notice that

b(zε(t)) = div (zε(t)⊗ zε(t)) = div
(
zε(t)⊗ zε(t)− ε ϑδ(ε)I

)
, t ≥ 0,

where ϑδ(ε) is the constant defined in (A.11), for δ = δ(ε). Then, since for every ρ ≥ −1, η ≥ 0
and p ≥ 2 we have

|etAx|Bρp(D) ≤ c t
−(1+ ρ

2
− 1
p

+ η
2

)|x|H−(1+η)(D), t > 0,

from (2.2) we get

|Iε,3(t)|Bσp (D) ≤ c
∫ t

0
(t− s)−(1+σ

2
− 1
p

+ η
2

) ∣∣div(zε(s)⊗ zε(s)− ε ϑδ(ε)I)
∣∣
[H−(1+η)(D)]4

ds

≤ c
∫ t

0
(t− s)−(1+σ

2
− 1
p

+ η
2

) ∣∣zε(s)⊗ zε(s)− ε ϑδ(ε)I)
∣∣
[H−η(D)]4

ds.

In the same way, we have

|Iε,3(t)|Bαp (D) ≤ c
∫ t

0
(t− s)−(1+α

2
− 1
p

+ η
2

) ∣∣zε(s)⊗ zε(s)− ε ϑδ(ε)I)
∣∣
[H−η(D)]4

ds.

Due to (5.1), this implies that we can find η > 0 and ρ ≥ 1 such that

|Iε,3|Et ≤ c2(t)
∣∣zε ⊗ zε − ε ϑδ(ε)I∣∣Lρ(0,T ;[H−(1+γ)(D)]4)

. (5.9)
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For Iε,4(t), by using again (5.6) and (5.7), we have

|Iε,4(t)|Bσp (D) ≤ c
∫ t

0
(t− s)−

1
2

(1+ 2
p
−α)|ρε(s)|Bαp (D)|zε(s)|Bσp (D) ds,

and

|Iε,4(t)|Bαp (D) ≤ c
∫ t

0
(t− s)−

1
2

(1+ 2
p
−σ)|ρε(s)|Bαp (D)|zε(s)|Bσp (D) ds,

and then, according to (5.1), we can find ρ ≥ 1 such that

|Iε,4|Et ≤ c3(t) |ρε|Lβ(0,t;Bαp (D))|zε|Lρ(0,T ;Bσp (D)) ≤ c3(t) |ρε|Et |zε|Lρ(0,T ;Bσp (D)). (5.10)

As for Iε,4(t), for Iε,5(t) we have

|Iε,5(t)|Bσp (D) ≤ c
∫ t

0
(t− s)−

1
2

(1+ 2
p
−α)|uϕ(s)|Bαp (D)|zε(s)|Bσp (D) ds,

and

|Iε,5(t)|Bαp (D) ≤ c
∫ t

0
(t− s)−

1
2

(1+ 2
p
−σ)|uϕ(s)|Bαp (D)|zε(s)|Bσp (D) ds.

As we are assuming θ ≥ σ + 1 − 2/p, we have that θ > α − 2/p, so that for any η > 0 such
that θ − η > α− 2/p, we have H1+θ−η(D) ↪→ Bαp (D). By interpolation, this implies

|x|Bαp (D) ≤ cη |x|H1+θ−η(D) ≤ cη |x|
1−η
H1+θ(D)

|x|η
Hθ(D)

,

so that

|x|
2

1−η
Bαp (D) ≤ cη |x|

2
H1+θ(D)|x|

2η
1−η
Hθ(D)

.

According to (5.3), this implies that uϕ ∈ L
2

1−η (0, T ;Bαp (D)) and

|uϕ|
L

2
1−η (0,T ;Bαp (D))

≤ cγ,η(|u0|Hθ(D)). (5.11)

Due to condition (5.1), since θ ≥ σ + 1− 2/p, we can find η ∈ (0, 1) such that

1− 2

β
< η < θ +

2

p
− α.

For such η > 0 we have

|Iε,5(t)|Bσp (D) ≤ c
(∫ t

0
s
− 1

2
(1+ 2

p
−α) β

β−1 ds

)β−1
β

|uϕ|
L

2
1−η (0,t;Bαp (D))

|zε|Lκ(0,t;Bσp (D)), (5.12)

where
1

κ
= 1−

[
1− η

2
+
β − 1

β

]
=

1

β
− 1− η

2
.

Analogously, if we pick η > 1− 2/p, we get∫ t

0
|Iε,5(s)|βBαp (D) ds ≤ c

(∫ t

0
s
− 1

2
(1+ 2

p
−σ)

ds

)β
|uϕ|β

L
2

1−η (0,t;Bαp (D))
|zε|

L
2β

2−β(1−η) (0,t;Bσp (D))
.
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Thanks to (5.11), this, together with (5.12), implies that there exists some ρ ≥ 1 such that

|Iε,5|ET ≤ c4(t) cγ(|u0|Hθ(D))|zε|Lρ(0,t;Bσp (D)). (5.13)

Collecting together (5.5), (5.8), (5.9), (5.10) and (5.13), we conclude that

|ρε|Et ≤ c(t) cγ(|u0|Hθ(D))|ρε|Et
(
|ρε|C([0,t];Bσp (D)) + |zε|Lρ(0,T ;Bσp (D)) + 1

)
+ cT |zε(0)|Bσp (D)

+c (t) cγ(|u0|Hθ(D))
(
|zε|Lρ(0,T ;Bσp (D)) +

∣∣zε ⊗ zε − ε ϑδ(ε)I∣∣Lρ(0,T ;[H−γ(D)]4)

)
+ |Φε − Γ(ϕ)|ET ,

for some continuous increasing function c(t) such that c(0) = 0.
Now, we are going to show that for any sequence {εn}n∈N converging to zero, there exists

a subsequence {εnk}k∈N ⊂ {εn}n∈N, such that

lim
k→∞

|ρεnk |ET = 0, P− a.s. (5.14)

and this clearly implies that
lim
ε→0
|ρε|ET = 0, P− a.s.

As uϕεε (t)− uϕ(t) = ρε(t) + zε(t), for t ∈ [0, T ], according to (A.1) we can conclude that

lim
ε→0

sup
t∈ [0,T ]

|uϕεε (t)− uϕ(t)|Bσp (D) = 0, P− a.s. (5.15)

Let {εn}n∈N be a sequence converging to zero. As we are assuming that α < 2/p, there
exists ρ < 1 such that Hρ(D) ↪→ Bαp (D), so that, due to (4.13) we have

lim
ε→0
|Φε − Γ(ϕ)|ET = 0, P− a.s. (5.16)

Then, as a consequence of (A.1), (A.13) and (5.16), we have that there exists a subsequence
of {εn}n∈N, that for simplicity of notations we are still denoting by {εn}n∈N, and a set Ω′ ⊆ Ω
with P(Ω′) = 1, such that

lim
n→∞

(
|zεn(ω)|C([0,T ];Bσp (D)) +

∣∣zε(ω)⊗ zε(ω)− ε ϑδ(ε)I
∣∣
Lρ(0,T ;[H−γ(D)]4)

+ |Φεn(ω)− Γ(ϕ)(ω)|ET
)

= 0, ω ∈ Ω′.

(5.17)

Next, for any ε > 0 we denote

τε := inf
{
t ≥ 0 : |ρε(t)|Bσp (D) ≥ 1

}
.

If we fix any ω ∈ Ω′, in view of (A.1) there exists some n0 = n0(ω) ∈ N such that for any
n ≥ n0 and t ≤ τεn(ω)

|ρε(ω)|Et ≤ 3 c(t) cγ(|u0|Hθ(D))|ρε(ω)|Et + cT |zε(0)|Bσp (D)) + |Φε(ω)− Γ(ϕ)(ω)|ET

+c (t) cγ(|u0|Hθ(D))
(
|zε(ω)|Lρ(0,T ;Bσp (D)) +

∣∣zε(ω)⊗ zε(ω)− ε ϑδ(ε)I
∣∣
Lρ(0,T ;[H−γ(D)]4)

)
,
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This implies that if we take t0 > 0 such that

3 c(t0) cγ(|u0|Hθ(D)) ≤
1

2
,

for any n ≥ n0 and t ≤ τεn(ω) ∧ t0

|ρεn(ω)|Et ≤ c |Φεn(ω)− Γ(ϕ)(ω)|ET

+cT

(
|zεn(ω)|C([0,T ];Bσp (D)) +

∣∣zεn(ω)⊗ zεn(ω)− εn ϑδ(ε)I
∣∣
Lρ(0,T ;[H−γ(D)]4)

)
.

As a consequence of (5.17), there exists n1 = n1(ω) ≥ n0 such that

cT

(
|zεn(ω)|C([0,T ];Bσp (D)) +

∣∣zεn(ω)⊗ zεn(ω)− εn ϑδ(ε)I
∣∣
Lρ(0,T ;[H−γ(D)]4)

)
+c |Φεn(ω)− Γ(ϕ)(ω)|ET ≤

1

2
, n ≥ n1,

so that τεn(ω) ∧ t0 = t0, for n ≥ n1, and

|ρεn(ω)|Et0 ≤ c |Φεn(ω)− Γ(ϕ)(ω)|ET

+cT

(
|zεn(ω)|C([0,T ];Bσp (D)) +

∣∣zεn(ω)⊗ zεn(ω)− εn ϑδ(ε)I
∣∣
Lρ(0,T ;[H−γ(D)]4)

)
.

Now, we can repeat the same argument in the intervals [(i − 1)t0, it0], for i = 0, . . . , iT ,
where iT is the smallest integer such that iT t0 ≥ T , and we find

|ρεn(ω)|E(i−1)t0,it0
≤ i c |Φεn(ω)− Γ(ϕ)(ω)|ET

+i cT

(
|zεn(ω)|C([0,T ];Bσp (D)) +

∣∣zεn(ω)⊗ zεn(ω)− εn ϑδ(ε)I
∣∣
Lρ(0,T ;[H−γ(D)]4)

)
,

(5.18)

for every n ≥ ni = ni(ω), where ni(ω) ≥ ni−1(ω) is such that

cT

(
|zεn(ω)|C([0,T ];Bσp (D)) +

∣∣zεn(ω)⊗ zεn(ω)− εn ϑδ(ε)I
∣∣
Lρ(0,T ;[H−γ(D)]4)

)
+c |Φεn(ω)− Γ(ϕ)(ω)|ET ≤

1

2i
, n ≥ ni.

Therefore, from (5.18) we obtain that for any n ≥ niT (ω)

|ρεn(ω)|ET ≤ i c |Φεn(ω)− Γ(ϕ)(ω)|ET

+i cT

(
|zεn(ω)|C([0,T ];Bσp (D)) +

∣∣zεn(ω)⊗ zεn(ω)− εn ϑδ(ε)I
∣∣
Lρ(0,T ;[H−γ(D)]4)

)
,

and due to (5.17) we can conclude that

lim
n→∞

|ρεn(ω)|ET = 0.
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A Appendix

Here we describe and prove some properties of the solution of the linear problem. As in Section
2, for every α ≥ 0 and ε > 0 we denote by zαε (t) the stationary solution of the linear problem

dz(t) = (A− α)z(t) dt+
√
ε dwδ(ε)(t), t ≥ 0.

The process zαε (t) is given by

zαε (t) =
√
ε

∫ t

−∞
e(t−s)(A−α) dw̄δ(ε)(s), t ≥ 0.

As we already mentioned in Section 2, for any fixed ε > 0 the process zαε belongs to the space
Lp(Ω;C([0, T ];D((−A)β)), for any T > 0, p ≥ 1 and β < γ/2.

We first want to estimate the norm of zαε in Besov spaces of negative exponent.

Lemma A.1. For any α ≥ 0 and ε > 0 and for any p, κ ≥ 1 and σ < σ′ < 0 it holds

E sup
t∈ [0,T ]

|zαε (t)|κBσp (D) ≤ cκ,p

 ε
∑
k∈Z2

0

|k|2(σ′−1)

κ
2

. (A.1)

Proof. Since zαε (t) = (−A)−
σ
2 (−A)

σ
2 zαε (t), we have

|zαε (t)|Bσp (D) ≤ |(−A)
σ
2 zαε (t)|Lp(D). (A.2)

By using stochastic factorization, for any β ∈ (0, 1) we have

(−A)
σ
2 zαε (t) =

sinπβ

π

∫ t

−∞
(t− s)β−1e(t−s)AYε,β(s) ds,

where

Yε,β(s) =

∫ s

−∞
(s− ρ)−βe(s−ρ)A(−A)

σ
2 dwδ(ε)(ρ).

Therefore, if we take p ≥ 1/β, we get

|(−A)
σ
2 zαε (t)|pLp(D) ≤ cβ,p

(∫ t

−∞
s
− (1−β)p

p−1 e
− p
p−1

s
ds

)p−1 ∫ t

−∞
|Yε,β(s)|pLp(D) ds. (A.3)

Now, for any t ∈ R and x ∈ D

E |Yε,β(t, x)|p = cp ε
p
2E

 ∑
k∈Z2

0

∫ t

−∞
λk(δ(ε))|k|σ(t− s)−β e−(t−s)(|k|2+α)ek(x) dβk(s)

p

≤ cp ε
p
2

 ∑
k∈Z2

0

∫ t

−∞
λk(δ(ε))

2|k|2σ(t− s)−2β e−2(t−s)(|k|2+α)|ek(x)|2 ds


p
2

≤ cp ε
p
2

 ∑
k∈Z2

0

|k|2σ+4β−2


p
2

,
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so that, integrating with respect to x ∈ D, for any β < −σ/2, and hence p ≥ −2/σ,

E |Yε,β(t)|pLp(D) ≤ cp

 ε
∑
k∈Z2

0

|k|2(σ+2β−1)


p
2

.

Therefore, thanks to (A.2) and (A.3), for any κ ≥ p ≥ 2/σ this yields

E sup
t∈ [0,T ]

|zαε (t)|κBσp (D) ≤ E sup
t∈ [0,T ]

|(−A)
σ
2 zαε (t)|κLp(D) ≤ cκ,p E sup

t∈ [0,T ]
|(−A)

σ
2 zαε (t)|κLk(D)

≤ cκ,p

 ε
∑
k∈Z2

0

|k|2(σ+2β−1)

κ
2

.

The general case follows from the Hölder inequality.

Next, we estimate the norm of zαε in Lp(D)-spaces. This Lemma could be proved using
stochastic calculus in Banach spaces and the notion of γ-radonfying operators (see [2]). We
give here an elementary proof.

Lemma A.2. For every α ≥ 0 and ε > 0 and for every p ≥ 1 it holds

E |zαε (t)|pLp(D) ≤ cp(T )

(
ε log

(
1 + δ(ε)

δ(ε)

)) p
2

, t ∈ [0, T ]. (A.4)

Proof. For every p ≥ 1 we have

E |zαε (t)|pLp(D) = ε
p
2 E
∫
D

∣∣∣∣∣∣
∑
k∈Z2

0

∫ t

−∞
e−(t−s)(|k|2+α)λk(δ(ε))ek(x) dβ̄k(s)

∣∣∣∣∣∣
p

dx

≤ ε
p
2

∫
D

 ∑
k∈Z2

0

e−2(t−s)(|k|2+α)λk(δ(ε))
2 |ek(x)|2 ds


p
2

dx

≤ |D| ε
p
2

 ∑
k∈Z2

0

1

|k|2(1 + δ(ε)|k|2γ)


p
2

.

Since we have ∑
k∈Z2

0

1

|k|2(1 + δ(ε)|k|2γ)
∼
∫ +∞

1

1

x(1 + δ(ε)xγ)
dx

=
1

γ

∫ ∞
δ(ε)

1

x(1 + x)
dx =

1

γ

(
log(1 + δ(ε)) + log

1

δ(ε)

)
,

this implies that (A.4) holds.
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Now, by proceeding as in the proof of [9, Proposition 2.1], it is possible to show that for
any p ≥ 1 and β ∈ (0, 1/4) there exist θ = θ(p, β) ∈ (0, 1/4) and ρ = ρ(p, β) ∈ (0, 1), and a
random variable Kε(p, β) such that for any α ≥ 0 and ε > 0

|zαε (t)|Lp(D) ≤ (α ∨ 1)−θ(1 + tρ)Kε(p, β), P− a.s., (A.5)

where

Kε(p, β) = cp,β

(∫ +∞

−∞
(1 + σ2)−1|Yε(σ)|mLp(D) dσ

)1/m

, (A.6)

for some m = m(p, β) ≥ 1, and where

Yε(σ) =
√
ε

∫ σ

−∞
(σ − s)−βe(σ−s)A dwδ(ε)(s). (A.7)

In particular, we have

|zαε |C([0,T ];Lp(D)) ≤ (α ∨ 1)−θ cp(T )Kε(p, β), P− a.s. (A.8)

In what follows, it will be important that the random variable Kε(p, β) has all moments
finite, with an uniform bound with respect to ε > 0.

Lemma A.3. Let p, q ≥ 1 and ε > 0 be fixed. Then, for any η ∈ (0, 1/2γ) there exists
βη ∈ (0, 1/4) such that

E |Kε(p, βη)|q ≤ cp,βη ,q
(
ε δ(ε)−η

)cq,p , (A.9)

Proof. It is immediate to check that, for any q ≥ m, we have

E|Kε(p, β)|q ≤ cp,β,q
∫ +∞

−∞
(1 + σ2)−1E |Yε(σ)|qLp(D) dσ.

Now, since

Yε(σ, x) =
√
ε
∑
k∈Z2

0

∫ σ

−∞
(σ − s)−βλk(δ(ε))e−|k|

2(σ−s)ek(x) dβ̄k(s),

we have

E |Yε(σ, x)|p ≤ cp εp/2
∑
k∈Z2

0

|ek|2L∞(D)

∫ ∞
0

s−2βλk(δ(ε))
2e−|k|

2s ds


p
2

≤ cp

ε ∑
k∈Z2

0

|k|−2(1−2β)(1 + δ(ε)|k|2γ)−1


p
2

=: cp Λβ(ε)
p
2 .

This implies that for any p, q ≥ 1

E |Yε(σ)|qLp(D) ≤ c1(q, p) Λβ(ε)c2(q,p),
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for some positive constants c1(q, p) and c2(q, p). Now, we have

Λβ(ε) ∼ ε
∫ +∞

1

1

x1−2β(1 + δ(ε)xγ)
dx = ε

1

γ

(
1

δ(ε)

) 2β
γ
∫ +∞

δ(ε)
y

2β
γ
−1 1

1 + y
dy.

Therefore, if we pick any η ∈ (0, 1/2γ) and define βη := η γ/2, we have

Λβη(ε) ≤ c ε δ(ε)−η,

and this implies (A.9).

In what follows, we shall denoteH := RZ2
0 and µ := N (0, (−A)−1/2). The Gaussian measure

µ is defined on H, but in fact µ(Hσ(D)) = 1, if σ < 0, so that the support of µ is contained in
Hσ(D), for every σ < 0.

Now, for any h ∈ H and δ > 0, we define

hδ :=
∑
k∈Z2

0

〈h, ek〉λk(δ) ek,

where we recall that, for any k ∈ Z2
0 and δ > 0,

λk(δ) =
1√

1 + δ |k|2γ
.

Next, for i = 1, 2 we define

: (hiδ)
2 : (x) =

√
2
[
(hiδ)

2(x)− ϑδ
]
, x ∈ D, δ > 0, (A.10)

where

ϑδ =
1

2(2π)2

∑
k∈Z2

0

k2
1

|k|4
λk(δ)

2 =
1

2(2π)2

∑
k∈Z2

0

k2
2

|k|4
λk(δ)

2. (A.11)

By proceeding as in [8, Appendix] it is possible to prove that for i = 1, 2

∃ lim
δ→0

: (hiδ)
2 : in Lκ(H, µ;Hσ(D)),

and
∃ lim
δ→0

h1
δ h

2
δ in Lκ(H, µ;Hσ(D)),

for every κ ≥ 1 and σ < 0. In particular, due to definition (A.10), this implies that

∃ lim
δ→0

(hδ ⊗ hδ − ϑδ IR2) , in Lκ(H, µ; [Hσ(D)]4). (A.12)

Lemma A.4. For every ε > 0, let us denote zε(t) := z0
ε (t). Then, for σ < 0 and κ, p ≥ 1 we

have
lim
ε→0

E |zε ⊗ zε − ε ϑδ(ε) I|κLp(0,T ;[Hσ(D)]4) = 0. (A.13)
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Proof. It is immediate to check that

zε(t) =
√
εQεz(t), t ∈ R,

where

z(t) =

∫ t

−∞
e(t−s)Adw(t) =

∑
k∈Z2

0

∫ t

−∞
e−(t−s)|k|2 dβk(s).

The process z(t) is stationary Gaussian and L(z(t)) = µ, for every t ∈ R. This means that for
any p ≥ 1

E |zε ⊗ zε − ε ϑδ(ε) I|
p
Lp(0,T ;[Hσ(D)]4)

= E
∫ T

0
|zε(t)⊗ zε(t)− ε ϑδ(ε) I|

p
[Hσ(D)]4

dt

= εp T

∫
H
|Qεh⊗Qεh− ϑδ(ε)I|

p
[Hσ(D)]4

µ(dh) = εp T

∫
H
|hδ(ε) ⊗ hδ(ε) − ϑδ(ε)I|

p
[Hσ(D)]4

µ(dh).

Because of (A.12), this implies (A.13) in the case κ = p ≥ 1. The case κ, p ≥ 1 follows from
the Hölder inequality and the fact that Lp(D) ⊂ Lq(D), if p ≥ q.
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