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Abstract. After a sudden catastrophic event occurring in a population of
individuals, panic can spread, persist and become more problematic than the
catastrophe itself. In this paper, we propose to investigate the possible actions
in order to limit panic at a low level, using a recent behavioural model given by
a system of ordinary differential equations, and optimal control theory applied
to complex networks. We establish the existence of a solution to the optimal
control problem for a wide class of abstract complex networks of dynamical
systems, and show how it can be used to reach synchronisation under control
in the network. Finally, we explore numerically different scenarios of panic
spreading corresponding to a tsunami on the Mediterranean coast.

Keywords. Optimal control, dynamical system, complex network, panic, syn-
chronisation.

§ 1. Introduction

Hippocrates, widely referred as the “Father of Medicine” [16], used to classify psychic disorders
and describe their symptoms; he proposed to treat those psychic troubles, among them panic
(associated to the god Pan), by ritual dances accompanied with the sound of music in Phrygian
mode. Nowadays, far from those ancient considerations, although aware of, researchers are
trying to better understand panic, which is not only a disorder troubling single individuals,
but also a sneaky phenomenon that can quickly spread within a population.

The aim of this paper is to explore the possibility to control the panic spreading in the
particular situation when individuals are facing a catastrophic event, with a mathematical
approach, using a recent behavioural modelling called the Panic-Control-Reflex system (PCR
system) [3, 10]. This modelling is given by a set of ordinary differential equations (see Equa-
tion (1) below), and reproduces the behavioural process from reflex to control behaviour,
with the eventuality to transit through panic, and possibly to exhibit a persistence of panic.
The geographical background of the areas impacted by catastrophic events naturally leads to
studying complex networks of PCR systems [4, 2], that is, geographical networks whose nodes
are coupled with multiple instances of a PCR system, with connexions between those nodes,
corresponding to physical displacements. In [2], it is proved that the evacuation of high risk
zones towards refuge zones is a necessary and sufficient condition for the whole population in
the network to return to a daily behaviour, and to avoid a persistence of panic (see Theorem
2 below). But this necessary evacuation can be awkward in some particular places, or even
impossible. Thus it is natural to ask how to act in that case, in order to limit the persistence
of panic at a reasonable level. Here, we propose to model two different types of external ac-
tions to remedy this problem. The first type is a preventive treatment which is expected to
facilitate the behavioural evolution from panic to control behaviour, whereas the second type
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corresponds to a curative action of rescue services on the connexions in the network, targeted
on the dangerous zones. Our goal is to investigate whether this optimal control problem is
well-posed, and to discuss the effect of each control on the panic level.

Our paper is organised as follows. In the next section, we present the modelling ingredients
which motivate the PCR system, and recall the main theoretical results about its dynamics.
We also show how to construct complex networks with multiple instances of a PCR system,
and state the optimal control problem 1. In the third section, we prove our main result
which states that the optimal control problem for the complex network admits a solution. We
demonstrate this theorem for a class of abstract complex networks built with non-identical
instances of a given dynamical system, intending to generalize our study, so that it can be
used for application to other problems, since existing works on the subject of optimal control
in complex networks are quite rare (see however [14]). We explain how control can be used
to achieve synchronisation, and give a new definition of synchronisation under control, which
extends the classical definition of synchronisation in complex networks [1, 8]. Finally, we
propose a numerical exploration of different scenarios for a concrete network corresponding to
a tsunami on the Mediterranean coast.

§ 2. Problem statement

2.1. The Panic-Control-Reflex system

The Panic-Control-Reflex system (PCR system) is a mathematical model for human behaviours
during catastrophic events, developed with the collaboration of geographers in order to better
understand, predict and control the behavioural reactions of individuals facing a brutal disaster
[3, 10]. It is given by the following system of ordinary differential equations

ṙ = γ(t)q(rm − r)−Br + F (r, c)rc+G(r, p)rp
ċ = B1r − C2c+ C1p− F (r, c)rc+H(c, p)cp− ϕ(t)c(bm − b)
ṗ = B2r + C2c− C1p−G(r, p)rp−H(c, p)cp
q̇ = −γ(t)q(rm − r)
ḃ = +ϕ(t)c(bm − b),

(1)

where the unknowns r, c, p, q, b are real-valued functions defined on R, which model the
numbers of individuals in reflex, control, panic, daily and back to daily behaviours respectively.
The parameters B1 > 0, B2 > 0, B = B1 + B2, C1 ≥ 0, C2 ≥ 0, rm > 0, and bm > 0 are real
coefficients, γ, ϕ are smooth functions of t with positive values, F , G, H smooth functions
defined on R2 with values in R.

Let us briefly describe the behavioural process modelled by the PCR system. First, when
the considered catastrophic event occurs, individuals are brought to the reflex behaviour; this
evolution is modelled by the non-linear term γ(t)q(rm − r), in which γ(t) corresponds to the
impact of the catastrophe. Next, individuals are naturally subject to behavioural evolutions
towards control behaviour or panic; those evolutions are modelled by the linear terms B1r and
B2r. Additionally, contagion phenomena can act in parallel between the 3 main behavioural
subgroups (reflex, control behaviour, panic); those contagion phenomena are modelled by
the non-linear terms F (r, c)rc, G(r, p)rp and H(c, p)cp. It is worth noting that the weight
functions F , G and H have been designed to change their signs according to the values of
the proportions r

c , r
p and c

p : more precisely, if the number of individuals in panic is widely
greater than the number of individuals in control behaviour, then H(c, p) < 0, which means
that the contagion brings individuals in control behaviour to imitate individuals in panic. We

1In order to avoid misunderstandings of our work, we emphasize that is it worth distinguishing control
behaviour and control theory.
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refer the reader to [3] or [10] for more details about those imitation functions. In the mean
time, evolutions between panic and control behaviour are modelled by the linear terms C1p,
C2c. We will show below the decisive role of the parameter C1 which models the evolution
from panic towards control behaviour. Finally, the return to daily behaviour operates from the
control behaviour; it is modelled by the non-linear term ϕ(t)c(bm− b). The whole behavioural
process modelled by the PCR system is depicted in figure 1.

q(t)

r(t)

c(t)

p(t)
b(t)

γ(t)

ϕ(t)

B1 F

B2

G

C2

C1
H

Figure 1: Behavioural evolutions and contagion process within a population affected by a catastrophic
event, modelled by the PCR system: r, c, p, q, b correspond to the numbers of individuals in reflex,
control, panic, daily and back to daily behaviours respectively.

The PCR system has been considered for simulations of concrete scenarios of catastrophic
events, like an earthquake in Japan [10] or a tsunami on the Mediterranean coast [4]. The
parameter rm models the maximum capacity of individuals which can be in reflex behaviour.
Without loss of generality, we will set rm = 1 in the rest of the paper. The parameter bm
models the maximum capacity of individuals which can return to the daily behaviour. We
assume that this maximum capacity coincides with the total population

Π = r + c+ p+ q + b

involved in the catastrophic event, thus we can reduce system (1) to a 4 equations system

ẋ = ψ(t, x), (2)

where x = (r, c, p, q)T and

ψ(t, x) =


γ(t)q(1− r)−Br + F (r, c)rc+G(r, p)rp

B1r − C2c+ C1p− F (r, c)rc+H(c, p)cp− ϕ(t)c(r + c+ p+ q)
B2r + C2c− C1p−G(r, p)rp−H(c, p)cp

−γ(t)q(1− r)

 .

The mathematical analysis of the PCR system (2) is presented in [3]. The following Theo-
rem summaries its dynamics, and highlights the decisive role of the parameter C1 which models
the evolution from panic to control behaviour. The proof is detailed in [3].

Theorem 1. For any initial condition x0 ∈ (R+)4, the Cauchy problem{
ẋ = ψ(t, x), t > 0,
x(0) = x0,
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admits a unique global solution whose components are non-negative and bounded.
If C1 > 0, then the trivial equilibrium 0 ∈ R4 is the only equilibrium, and it is globally

asymptotically stable. If C1 = 0, then the solution of system (2) stemming from any initial
condition x0 = (r0, c0, p0, q0) such that

r0 + c0 + p0 + q0 > 0

presents a persistence of panic, that is

lim
t→+∞

p(t) = p̄ > 0.

The latter theorem shows that a bifurcation occurs in the PCR system (2) when the evo-
lution parameter C1 approaches 0 (see figure 2). This bifurcation is analysed in [3], where it
is proved that it corresponds to a degenerate case of a saddle-node bifurcation at infinity.

t

p(t)
C1 = 0

C1 > 0

Figure 2: Panic level p(t) for the PCR system (2). If C1 > 0, then the panic level decreases to 0,
which corresponds to a favourable return of all individuals to the daily behaviour. If C1 = 0, then the
panic persists.

2.2. PCR network

When considering the geographical relief of the zone impacted by the catastrophic event, it is
natural to improve the previous modelling by a spatial modelling. One way is to construct a
complex network whose nodes are coupled with multiple instances of the PCR system. Let
us consider a simple graph G = (V , E ) made with a finite set V = {1, . . . , n} of n vertices,
where n is a positive integer, and a finite set E = {e1, . . . , ek} of k weighted edges [4, 2], with
non-negative weights ε1, . . . , εk. For each integer l ∈ {1, . . . , k}, there exists a unique pair of
vertices (i, j) such that el connects vertex i towards vertex j.

We set ε = (ε1, . . . , εk) ∈ (R+)k, and introduce the matrix of connectivity L(ε) of order n,
whose off-diagonal coefficients are given by

Lji(ε) =
{
εl if el = (i, j) ∈ E ,

0 else,

and whose diagonal coefficients satisfy

Lii(ε) = −
n∑
j=1
j 6=i

Lji(ε).

Next we couple each node in the graph with an instance of the PCR system (2). Thus we set

xi = (ri, ci, pi, qi)T , X = (x1, . . . , xn)T ,
H = diag {1, 1, 1, 0} , HX = (Hx1, . . . , Hxn)T .

(3)
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Figure 3: PCR network with 4 nodes and 3 weighted edges. Nodes 1 and 2 are of type (1), that is,
are coupled with an instance of the PCR system such that C1 = 0, whereas nodes 3 and 4 are of type
(2), that is, are coupled with an instance of the PCR system such that C1 > 0. Preventive control u0
is exerted on each node, and curative controls (u1, u2, u3) are exerted along each edge.

The definition of the matrix H means that individuals in daily behaviour q are not concerned
with migrations in the network.

We allow the different instances of system (2) to admit different values of parameters, and
we will especially focus on the effect of coupling PCR systems with different values of the
parameter C1, identified previously as a bifurcation parameter.

Definition 1. We will call node of type (1) a node coupled with an instance of the PCR system
such that C1 = 0, and node of type (2) a node coupled with an instance of the PCR system
such that C1 > 0.

A PCR network is given by

Ẋ = Ψ(t, X) + L(ε)HX, (4)

where Ψ(t, X) =
(
ψ(1)(t, x1), . . . , ψ(n)(t, xn)

)T . The above index in ψ(i)(t, xi), 1 ≤ i ≤ n,
indicates that the values of parameter C1 can differ from one node in the network to another.
The next theorem, presented in [2], establishes a necessary and sufficient condition for the
solution of the PCR network (4) to converge to the trivial equilibrium, which correspond to a
global return of all individuals to the daily behaviour. It is also a condition for synchronisation
in the network, since every node exhibits the same asymptotic dynamics under the considered
assumptions.

Theorem 2. For any initial condition X0 ∈ (R+)4n, the Cauchy problem{
Ẋ = Ψ(t, X) + L(ε)HX, t > 0,
X(0) = X0,

admits a unique solution whose components are non negative. The trivial equilibrium 0 ∈ R4n

is the only equilibrium if and only if every node of type (1) is connected to at least one node
of type (2) by an oriented chain. It that case, the trivial equilibrium is globally asymptotically
stable.

Example 1. Consider the graph depicted in figure 3. The corresponding matrix of connectivity
is given by

L(ε) =


−ε1 0 0 0

0 −ε2 0 0
+ε1 +ε2 −ε3 0

0 0 +ε3 0

 .
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Furthermore, we have

L(ε)Hx =


−ε1Hx1
−ε2Hx2

+ε1Hx1 + ε2Hx2 − ε3Hx3
+ε3Hx3

 .

We assume that nodes 1 and 2 (depicted in red) are of type (1), that is, are coupled with an
instance of the PCR system such that C1 = 0, whereas nodes 3 and 4 (depicted in green) are of
type (2), that is, are coupled with an instance of the PCR system such that C1 > 0. According
to Theorem 2, if ε1 = 0 or ε2 = 0, then the PCR network will exhibit a persistence of panic.
At the opposite, if ε1 > 0 and ε2 > 0, then the solution of the PCR network will converge
towards the trivial equilibrium 0 ∈ R16, and the 4 nodes will synchronize.

As mentioned in our introduction, the evacuation of nodes of type (1) towards nodes of
type (2) can be awkward in some particular situations. Furthermore, the catastrophic event
can itself break some connexions in the network. For instance, an earthquake could damage a
bridge connecting both sides of a river, or could hinder traffic flow on some avenue. In that
case, the network would exhibit a persistence of panic. Now the question is to identify possible
external actions in order to avoid such a situation.

2.3. Control problem

In order to avoid the possible persistence of panic pointed above, we consider a multiple control
u = (u0, u1, . . . , uk) for the network problem (4), in which:

• u0 models a preventive control introduced to facilitate the evolution from p to c, which
appears in the system through the term (C1 + u0)p,

• (u1, . . . , uk) corresponds to a curative control introduced in order to increase the coupling
strength along each edge in the network, with the terms (εi+ui)ri, (εi+ui)ci, (εi+ui)pi,
1 ≤ i ≤ k.

Many concrete actions can be envisaged for those two types of controls. On the one hand,
for the preventive control u0, awareness campaigns can be organised in the areas for which
a high potential of catastrophic event is identified; those campaigns can be integrated to
the educational programs to better prepare individuals to the known risks. On the other
hand, curative controls u1, . . . , uk can be made through rescue services, in order to clear
some hindered avenue, or to repair any urban installation. We indicate that it is a work in
progress, in collaboration with geographers, to establish an exhaustive list of possible actions
in concordance with the mathematical control functions (u0, u1, . . . , uk).

Next we consider the following general control problem

Ẋ = Ψ̃(t, X, u) + L̃(ε, u)HX, (5)

where Ψ̃(t, X, u) =
(
ψ̃(t, x1, u), . . . , ψ̃(t, xn, u)

)T ,

ψ̃(t, x, u) =


−Br + γ(t)q(1− r) + F (r, c)rc+G(r, p)rp

B1r − C2c+ (C1 + u0)p− F (r, c)rc+H(c, p)cp− ϕ(t)c(r + c+ p+ q)
B2r + C2c− (C1 + u0)p−G(r, p)rp−H(c, p)cp

−γ(t)q(1− r)

 ,

and the matrix L̃(ε, u) is defined by

L̃(ε, u) = L(ε1 + u1, . . . , εk + uk). (6)
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The matrix L̃(ε, u) is simply obtained by replacing εl by εl + ul, 1 ≤ l ≤ k in L(ε), that is,
L̃(ε, u) = L(ε+ u). For brevity, we will denote this matrix L̃.

The next theorem shows that the solutions of the general control problem (5) corresponding
to non-negative controls is global and admits non-negative components. In other words, the
general control problem (5) is well-posed.

Theorem 3. Let u = (u0, u1, . . . , uk) denote a multiple control with non-negative values. We
assume that u is continuous in t and bounded. Then for any X0 ∈ (R+)4n, the Cauchy problem{

Ẋ = Ψ̃(t, X, u) + L̃(ε, u)HX, t > 0,
X(0) = X0,

admits a unique global solution whose components are non-negative and bounded.

Proof. Given any initial condition X0 ∈ (R+)4n, existence and uniqueness of a local in time
solution X(t, X0) defined on some interval [0, τ ] with τ > 0, are a straightforward consequence
of Cauchy-Lipschitz Theorem [9].

Non-negativity. In order to prove the non-negativity property, we introduce a modified
problem as follows. For x̂ =

(
r̂, ĉ, p̂, q̂

)
∈ R4, define

ψ̂
(
x̂, u

)
=
(
ψ̂1
(
x̂, u

)
, ψ̂2

(
x̂, u

)
, ψ̂3

(
x̂, u

)
, ψ̂4

(
x̂, u

))T
by

ψ̂1
(
x̂, u

)
= +γq̂(1− r̂)−Br̂ + F (r̂, ĉ)r̂ĉ+G(r̂, p̂)r̂p̂

ψ̂2
(
x̂, u

)
= B1r̂ − C2ĉ+ (C1 + u0) |p̂| − F (r̂, ĉ)r̂ĉ+H(ĉ, p̂)ĉp̂− ϕĉ(r̂ + ĉ+ p̂+ q̂)

ψ̂3
(
x̂, u

)
= B2r̂ + C2ĉ− (C1 + u0)p̂−G(r̂, p̂)r̂p̂−H(ĉ, p̂)ĉp̂

ψ̂4
(
x̂, u

)
= −γq̂(1− r̂),

where we omit the dependence in t in order to lighten our notations.
Next, for X̂ =

(
x̂1, . . . , x̂n

)
, consider the modified network problem

˙̂xi = ψ̂
(
x̂i, u

)
+
∑
k=1
k 6=i

L̃ikH |x̂k| −
∑
k=1
k 6=i

L̃ikHx̂i, 1 ≤ i ≤ n,

with the notation |x̂| =
(
|r̂| , |ĉ| , |p̂| , |q̂|

)
, and L̃ik denoting the coefficient of indices (i, k) in

the matrix L̃ = L̃(ε, u). For the same initial condition X0 as in the non-modified problem,
existence and uniqueness of a local in time solution X̂(t, X0) defined on some interval [0, τ̂ ]
with τ̂ > 0, are also obtained by Cauchy-Lipschitz Theorem.

Now, we recall that H = diag {1, 1, 1, 0} (see Equation (3)), which means that the q̂i
components, 1 ≤ i ≤ n, are not coupled. It follows that

q̂i(t) = q̂i(0)e−
∫ t

0
γ(s)(1−r̂i(s))ds

, t ∈ [0, τ̂ ], 1 ≤ i ≤ n, (7)

which implies q̂i(t) ≥ 0 for all t ∈ [0, τ̂ ] and 1 ≤ i ≤ n, since q̂i(0) ≥ 0.
Let us next examine the non-negativity of other components r̂i, ĉi and p̂i, 1 ≤ i ≤ n. We

employ a truncation method presented in [15]. Define the real-valued function χ on R by

χ(s) =
{

0 if s > 0,
1
2s

2 if s ≤ 0.
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The function χ is of class C 1 on R, with χ′(s) = 0 if s > 0, χ′(s) = s if s ≤ 0. Furthermore, it
enjoys the properties

χ(s) ≥ 0, χ′(s) ≤ 0, 0 ≤ χ′(s) s = 2χ(s), ∀s ∈ R. (8)

Next we introduce for each i such that 1 ≤ i ≤ n the function ρ defined by

ρ(t) = χ
(
r̂i(t)

)
, t ∈ [0, τ̂ ].

We have ρ(0) = 0, since r̃i(0) ≥ 0. Moreover, ρ is continuously differentiable on [0, τ̂ ], and we
have

ρ′(t) = ˙̂ri(t)χ′
(
r̂i(t)

)
.

In the mean time, we have

˙̂ri = γq̂i
(
1− r̂i

)
−Br̂i + F

(
r̂i, ĉi

)
r̂iĉi +G

(
r̂i, p̂i

)
r̂ip̂i +

∑
k=1
k 6=i

L̃ik |r̂k| −
∑
k=1
k 6=i

L̃ikr̂i,

which leads to

ρ′(t) = γq̂iχ
′(r̂i)− γq̂ir̂iχ′(r̂i)−Br̂iχ′(r̂i)+ F

(
r̂i, ĉi

)
ĉir̂iχ

′(r̂i)
+G

(
r̂i, p̂i

)
p̂ir̂iχ

′(r̂i)+
n∑
k=1
k 6=i

L̃ik |r̂k|χ′
(
r̂i
)
−

n∑
k=1
k 6=i

L̃kir̂iχ
′(r̂i).

Since the control functions ul, 0 ≤ l ≤ k, are assumed to be non-negative, we have L̃ij ≥ 0 for
all i, j such that 1 ≤ i ≤ n and 1 ≤ j ≤ n. Moreover, the non-negativity of q̂i, combined with
the properties (8) imply

ρ′(t) ≤ 2Mρ(t),
where M is defined by

M = sup
t∈[0, τ̂ ]

[
F
(
r̂i(t), ĉi(t)

)
ĉi(t) +G

(
r̂i(t), p̂i(t)

)
p̂i(t)

]
< +∞.

Integrating the latter inequality leads to

ρ(t) ≤ ρ(0)e2Mt, t ∈ [0, τ̂ ],

which implies ρ(t) ≤ 0. Finally, we obtain ρ(t) = 0 for all t ∈ [0, τ̂ ], thus r̂i(t) ≥ 0 for all
t ∈ [0, τ̂ ]. Applying the same method leads to ĉi(t) ≥ 0 and p̂i(t) ≥ 0 for all t ∈ [0, τ̂ ].

The components of the solution X̂(t, X0) of the modified problem are non-negative, so
X̂(t, X0) is also a solution of the initial non-modified problem on [0, τ̂ ]. By uniqueness, we
have X̂(t, X0) = X(t, X0) on [0, τ ] ∩ [0, τ̂ ]. Finally, it is easily seen that τ = τ̂ , thus we have
proved the non-negativity of the components of X(t, X0) on [0, τ ].

Boundedness. Introduce the function θ defined by

θ(t) =
n∑
i=1

[
ri(t) + ci(t) + pi(t) + qi(t)

]
, t ∈ [0, τ ].

It is differentiable on [0, τ ]. Since L̃(ε, u) is a matrix whose sum of coefficients of each column,
we have

θ̇(t) = −ϕ(t)
n∑
i=1

ci(t)
[
ri(t) + ci(t) + pi(t) + qi(t)

]
,

which implies that θ̇(t) ≤ 0 for all t ∈ [0, τ ]. Consequently, we have θ(t) ≤ θ(0) for all t > 0,
which proves the boundedness of the solution. The proof is complete.
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The aim of introducing the multiple control u = (u0, u1, . . . , uk) is to limit panic at a
reasonable level in complex networks for which we can predict, using Theorem 2, a persistence
of panic on nodes of type (1). However, the latter proof shows that the solution of the control
problem satisfies

qi(t) > 0, t > 0, 1 ≤ i ≤ n,
for each initial condition such that qi(0) > 0, 1 ≤ i ≤ n (see Equation (7)). This demonstrates
that the trivial equilibrium 0 ∈ R4n cannot be reached in a finite time, when starting from
such initial conditions. A more pragmatic goal would be to reach a neighbourhood N of the
trivial equilibrium. For instance, we can look for a multiple control so that the panic level is
limited under a given proportion of the total population in a finite time.

2.4. Optimality criterion

In what follows, we denote by U the set of admissible control functions, composed with
Lebesgue-integrable functions u = (u0, u1, . . . , uk) for which there exists T > 0 such that u is
defined on [0, T ] with values in K̃ = [0, 1]k+1. Note that T may depend on u.

Let u = (u0, u1, . . . , uk) ∈ U denote an admissible control for the general control problem
(5). Applying this multiple control, we aim to reach a neighbourhood N of the trivial equilib-
rium 0 ∈ R4n. Additionally, we would like to minimize on U the performance index on Bolza
type [5] :

J̃(X0, u, T ) = α0T +
∫ T

0

[
α1

n∑
i=1

p2
i (t) + α2u

2
0(t) + α3

k∑
l=1

u2
l (t)

]
dt, (9)

where the parameters αi, 0 ≤ i ≤ 3, are non-negative real coefficients such that

α0 + α1 + α2 + α3 > 0,

introduced in order to weight the impact of each component of the multiple control. For
instance, setting α2 = 0 means that the control function u0 is cost-free. The expression of
J̃(X0, u, T ) corresponds to the wish to limit the level of panic during the control process, while
mobilising the less rescue services to operate during the catastrophic event. If the coefficient
α0 is set to 1, whereas α1, α2 and α3 are set to 0, we simply obtain a time optimal problem.

Finally, we can state the optimal control problem for the complex network of non-identical
PCR systems. The problem is to find a pair (X, u) defined on some interval [0, T ], such that

Ẋ = Ψ̃(t, X, u) + L̃(ε, u)HX, t > 0,
X(0) = X0,

X(T ) ∈ N ,

min
u∈U

J̃(X0, u, T ),

(10)

where X0 is a given initial datum in (R+)4n, and N denotes a neighbourhood of the trivial
equilibrium 0 ∈ R4n. In the next section, we shall see that problem (10) can also be written
as an optimal control problem for a complex network of controlled PCR systems.

§ 3. Existence of an optimal control for complex networks

This section is devoted to establishing an existence theorem for optimal control problems in
complex networks. In order to generalize our study, so that it can be used for application to
other problems, we consider abstract complex networks built with non-identical instances of
a given controlled dynamical system, and we deduce from the general case the existence of
a solution to the optimal control problem (10) corresponding to complex networks of PCR
systems.
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3.1. Preliminary results

Let us consider an optimal control problem of the general form
ẋ = f

(
t, x(t), u(t)

)
, t0 ≤ t ≤ T,(

t0, T, x(t0), x(T )
)
∈ S,

min
u∈U

J(x0, u, T ),
(11)

where f is a function defined on R × RN × RM with values in RN and positive integers N ,
M ; S is a subset of R2+2N , and U is the set of admissible control functions, composed with
Lebesgue-integrable functions u = (u1, . . . , uM ) for which there exists T > 0 such that u is
defined on [t0, T ] with values in a subset K of RM . We assume that the performance criterion
J(x0, u, T ) can be written

J(x0, u, T ) = φ
(
t0, T, x0, x(T )

)
+
∫ T

t0

δ
(
t, x(t), u(t)

)
dt, (12)

where φ is a function defined on S and δ a function defined on R× RN × RM .
Introduce the class F of feasible pairs (x0, u) such that there exist T > 0 and an integrable

function x defined on [t0, T ], such that

x(t) = x0 +
∫ T

t0

f
(
t, x(t), u(t)

)
dt, t0 ≤ t ≤ T,

with u ∈ U and
(
t0, T, x(t0), x(T )

)
∈ S. From [5] (Chapter III, Theorem 4.1), we have the

following theorem.

Theorem 4. Suppose that K is a compact subset of RM , and f is a continuous function such
that there exist positive constants k1, k2 with

|f(t, x, u)| ≤ k1
(
1 + |x|

)
,

|f(t, x, u)− f(t, y, u)| ≤ k2 |x− y| ,
(13)

for all t ∈ R, x, y ∈ RN and u ∈ U . Assume furthermore that δ is continuous and

(i) F is not empty,

(ii) S is compact and φ is continuous on S,

(iii) K is convex, f(t, x, u) = α(t, x) + β(t, x)u, where α, β are defined on R × RN , and
δ(t, x, ·) is convex on K.

Then there exists a solution (x0, u) to the optimal control problem (11).

For all x ∈ RN , |x| denotes the usual quadratic norm of x on RN , defined by

|x|2 =
N∑
i=1

x2
i .

The product β(t, x)u has to be understood as the product of a matrix β(t, x) of M columns
and N lines with a vector u ∈ RM . It is worth noting that x and y in property (13) can be
replaced by the solutions x(t) and y(t) starting from any initial conditions x0, y0 such that
(x0, u) and (y0, u) belong to F (see [5], Lemmas 5.2 and 5.4 in Chapter III). Finally, we
mention that the compacity assumption on S can be weakened (see [5]).
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3.2. Existence theorem for abstract complex networks

In this section, we aim to prove an existence theorem for an optimal control problem in complex
networks of dynamical systems, built with multiple instances of problem (11).

Let us consider again a simple graph G = (V , E ) made with a finite set V = {1, . . . , n} of
n vertices, where n is a positive integer, and a finite set E = {e1, . . . , ek} of k weighted edges,
with non-negative weights ε1, . . . , εk. We suppose that each node is coupled with an instance
of problem (11), and we allow additional controls along each edge of the network. Thus we
consider the optimal control problem for the complex network of the following form:

Ẋ = g
(
t, X(t), U(t)

)
+ L̃(ε, U)HX, t0 ≤ t ≤ T,(

t0, T, X(t0), X(T )
)
∈ S̃,

min
U∈Ũ

J̃(X0, U, T ).
(14)

The latter optimal control problem (14) is a generalisation of problem (10). Here, we have
introduced X = (x1, . . . , xn)T ∈ RnN , where xi ∈ RN denotes the state of node i, 1 ≤ i ≤ n;
U = (u1, . . . , un, un+1, . . . , un+k)T ∈ RnM+k, where ui ∈ RM denotes the controls exerted
on node i, 1 ≤ i ≤ n, and un+l ∈ R, 1 ≤ l ≤ k, denotes the control exerted along each edge
el ∈ E . Note that for 1 ≤ i ≤ n, we have ui ∈ RM , whereas un+l ∈ R for 1 ≤ l ≤ k. The
function g is defined by

g(t, X, U) =
(
f (1)(t, x1, u1), . . . , f (n)(t, xn, un)

)T
,

where the above index in f (i)(t, xi, ui) indicates that the complex network is composed with
non-identical instances of problem (11), that is, instances for which parameters in the function
f may differ from one node to another. The matrix of connectivity L̃(ε, U) is defined as in
equation (6), and the matrix H is a diagonal matrix of order N , whose diagonal coefficient Hii

is equal to 0 or 1, whether the corresponding component xi is coupled; as in equation (3), we
have

HX = (Hx1, . . . , Hxn)T .
Next, S̃ is a subset of R2+2nN , and J̃ is a performance index defined by

J̃(X0, U, T ) =
n∑
i=1

J (i)(xi(0), ui, T
)

+
∫ T

t0

δ̃(t, X, un+1, . . . , un+k)dt, (15)

where δ̃ is defined on R × RnN × Rk, which means that J̃ is obtained by superposition of
the performance indices J (i) of each node i, and a second term which takes into account the
controls exerted along each edge in the network. Finally, Ũ denotes the set of Lebesgue-
integrable functions

U = (u1, . . . , un, un+1, . . . , un+k)
for which there exists T > 0 such that U is defined on [0, T ] with values in a subset K̃ of
RnM+k.

Theorem 5. Suppose that the hypotheses of Theorem 4 hold for each instance of problem (11).
Furthermore, assume that S̃ is compact, K̃ is compact and convex, and δ̃(t, X, ·) is continuous
and convex on K̃. Then the optimal control problem for the complex network (14) admits a
solution (X0, U).

Proof. The optimal control problem (14) for the complex network can be written
Ẋ = f̃

(
t, X(t), U(t)

)
, t0 ≤ t ≤ T,(

t0, T, X(t0), X(T )
)
∈ S̃,

min
u∈Ũ

J̃(X0, U, T ),
(16)
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with the following notations:

f̃
(
t, X(t), U(t)

)
= g
(
t, X(t), U(t)

)
+ L̃(ε, U)HX,

J̃(X0, U, T ) = φ̃
(
t0, T, X0, X(T )

)
+
∫ T

t0

∆(t, X0, U)dt,

where

φ̃
(
t0, T, X0, X(T )

)
=

n∑
i=1

φ(i)(t0, T, xi(0), xi(T )
)
,

∆(t, X0, U) = δ̃(t, X0, un+1, . . . , un+k) +
n∑
i=1

δ(i)(t, xi, ui).

Let us check that the hypotheses of Theorem 4 are satisfied for the rewritten complex
network problem (16). First, the set K̃ is assumed to be compact. Next, the continuity of f (i)

for 1 ≤ i ≤ n implies the continuity of f̃ , as well as the properties (13). The continuity of δ̃
and δ(i), 1 ≤ i ≤ n, implies that of ∆.

The existence of a feasible pair for each instance of problem (11) guaranty the existence of
a feasible pair for problem (16), so hypothesis (i) in Theorem 4 is satisfied. The continuity of
φ̃ follows from that of φ(i), 1 ≤ i ≤ n, thus hypothesis (ii) in Theorem 4 is satisfied as well.

It remains to check hypothesis (iii) for the rewritten network problem (16). Each instance
of problem (11) satisfies hypothesis (iii), thus we have

f (i)(t, xi, ui) = α(i)(t, xi) + β(i)(t, xi)ui, 1 ≤ i ≤ n.

Let us introduce

A(t, X) =
(
α(i)(t, xi)

)
1≤i≤n, B(t, X) =

(
β(i)(t, xi)

)
1≤i≤n.

It follows that we can write

f̃(t, X, U) = Ã(t, X) + B̃(t, X),
Ã(t, X, U) = A(t, X) + L(ε)HX,
B̃(t, X, U)U = B(t, X)U + L(U)HX.

Finally, the convexity of ∆(t, X, ·) follows from that of δ̃(t, X, ·) and δ(t, xi, ·), 1 ≤ i ≤ n.
The proof is complete.

In the next section, we apply Theorem 5 to the optimal problem (10) for complex networks
of PCR systems stated above. Obviously, Theorem 5 can be applied to many other problems,
e.g. air traffic networks [11].

3.3. Existence of an optimal control for complex networks of PCR systems

Now we are ready to prove the existence of an optimal control for problem (10). Let X0 denote
any initial datum in (R+)4n, and N a compact neighbourhood of the trivial equilibrium
0 ∈ R4n. We introduce S̃ = {0} × [0, θ]× {X0} ×N , with θ > 0 sufficiently large, K = [0, 1]
and K̃ = Kk+1. We obtain the following existence theorem.

Corollary 1. The optimal control problem (10) for the complex network of PCR systems
admits a solution (X0, u

∗), with u∗ minimizing (9).
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Proof. First, we show that the optimal control problem (4) can be rewritten as an optimal
control for multiple instances of controlled PCR systems. Indeed, it suffices to introduce

ψ(t, x, u0) =


γ(t)q(1− r)−Br + F (r, c)rc+G(r, p)rp

B1r − C2c+ (C1 + u0)p− F (r, c)rc+H(c, p)cp− ϕ(t)c(r + c+ p+ q)
B2r + C2c− (C1 + u0)p−G(r, p)rp−H(c, p)cp

−γ(t)q(1− r)

 ,

and

J(x0, u0, T ) = α0

n
T +

∫ T

0
δ
(
t, x(t), u0(t)

)
dt, δ

(
t, x(t), u0(t)

)
= α1p

2(t) + α2u
2
0(t).

Now we prove that the hypotheses of Theorem 4 hold for each instance of the previous system.
By virtue of Theorem 3, it is seen that the solution X(t) of problem (4) starting from any
initial condition X0 ∈ (R+)4n, associated with any control u ∈ U , evolves in a compact set
M ⊂ (R+)4n. This implies the boundedness of the solution x(t) of the Cauchy problem{

ẋ = ψ(t, x, u0), t > 0,
x(0) = x0,

corresponding to any control u0 with values in K. Since K is compact as well, we obtain
property (13), by applying the mean value theorem, ψ being of class C 1. Next, we easily
prove that F is non-empty, since (x0, η) with η ∈]0, 1], is a feasible pair. Assumption (ii) in
Theorem 4 hold as well, since S̃ = {0} × [0, θ]× {X0} ×N is compact and

φ(t0, T, x0, xT ) = α0

n
T.

Finally, assumption (iii) is directly verified, since K = [0, 1] is convex, and δ
(
t, x(t), ·

)
is

convex.
It remains to introduce

δ̃(t, X0, u1, . . . , uk) = α3

k∑
l=1

u2
l (t).

The convexity of K̃ = [0, 1]k+1 and δ̃(t, X0, ·) are clear, and this achieves the proof.

3.4. Synchronisation under control in PCR networks

In this section, we briefly show how control can be used to achieve synchronisation in the
PCR network (4). Let us consider a PCR network built with non-identical instances of PCR
systems (2). Assume that there exists at least one node (x) of type (1), that is, with C1 = 0
(see Definition 1), which is not evacuated towards any node of type (2). By virtue of Theorem
2, the corresponding PCR network will exhibit a persistence of panic on node (x), whereas
nodes of type (2) will converge to the trivial equilibrium corresponding to a return to daily
behaviour. In other words, one can find at least two nodes in the network which do not present
the same dynamics.

Now, assume that a multiple control (u0, u1, . . . , uk) is applied on the network, and con-
sider the controlled PCR network (10). By virtue of Corollary 1, for any compact neighbour-
hood N of the trivial equilibrium, and any given initial datum X0 ∈ (R+)4n, there exists
such a multiple control (u0, u1, . . . , uk) satisfying X(T ) ∈ N , with T > 0 (depending on
N ), and minimizing the performance index given by (9). Generalising this situation leads to
the following definition, which extends the classical definition of synchronisation in complex
networks [1, 8].
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Definition 2. Consider an optimal control problem (14) for an abstract complex network made
of n nodes (xi), 1 ≤ i ≤ n.

If for every initial condition X0, there exists a control U defined on [0, T ], such that

xi(T ) = xj(T ),

for any pair of nodes (xi, xj), we say that the network synchronises under control.
If for every ε > 0 and every initial condition X0, there exists a control U defined on [0, T ],

such that
|xi(T )− xj(T )| < ε,

for any pair of nodes (xi, xj), we say that the network asymptotically synchronises under
control.

By virtue of Corollary 1, we obtain the following proposition.

Proposition 1. The controlled PCR network (5) asymptotically synchronises under control.

As mentioned previously, the trivial equilibrium 0 ∈ R4n cannot be reached in finite time
for some initial condition X0 such that

∑n
i=1 qi(0) > 0. This means that the controlled PCR

network (5) can only synchronise asymptotically under control.
More generally, it is a work in progress to identify minimal hypotheses on the dynamics of

a given complex network, to guaranty that it can synchronise or asymptotically synchronise
under control.

§ 4. Numerical simulations

In this final section, we present a selection of numerical simulations for the optimal control
problem of PCR networks (10). By virtue of Corollary 1, the existence of a solution to that
problem is guaranteed. However, we aim to measure the effect of each control on the panic
level. Is the preventive control u0 more efficient than the curative control (u1, . . . , un) ? Does
time optimal control imply a high mobilisation of control along the edges of the network ? Is it
possible to control the panic level without controlling a part of the network, or is it necessary
to act on each node and each edge ? These are some of the questions we investigate in what
follows.

4.1. Risk of tsunami on the Mediterranean coast

It is known [6] that a submarine fracture, at about 80 km away from the french Mediterranean
littoral, potentially generates seismic events of variable intensity, which in turn can provoke
tsunamis of low intensity, which roll over the coast after a very short time. The french city
of Nice is particularly exposed to that risk. Nevertheless, the size of the wave is expected
to remain under a high-risk level, which mean that the panic provoked by the arrival of the
tsunami would represent the major danger.

Figure 4(a) shows an aerial picture of the old city-centre of Nice, bordering the littoral,
divided into many small beaches, which are separated from the urban installations by the
famous avenue Promenade des Anglais. The graph which is depicted in figure 4(b) is the result
of a collaboration with geographers [10], [4], and represents the network of high-density places
and their possible connexions. We remark that this graph can be split into a finite number
of small connected graphs, which have a structure similar to that of the graph presented in
figure 3. For that reason, we propose to test our model on such a 4 nodes network. The red
nodes (1) and (2) are coupled with an instance of the PCR system such that C1 = 0, since
they correspond to beach places where the risk of panic is expected to be high, while the green
nodes (3) and (4) are coupled with an instance of the PCR system with C1 > 0, since they
correspond to protected places.
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Figure 4: (a) Aerial picture of the city of Nice, France. The city-centre borders the littoral, divided
into many small beaches, which are separated from the urban installations by the Promenade des
Anglais. (b) Complex network of high-density places and their possible connexions.

Table 1: Parameters of the 4 nodes PCR network depicted in figure 3 for the numerical simulations.

Parameter Value
B1 0.3
B2 0.3
C1 on nodes 3, 4 0.1
C1 on nodes 1, 2 0.0
C2 0.2
ε1 0.1
ε2 0
ε3 0.1

We emphasize that the null value of ε2 implies that node (2) is not evacuated. By virtue of
Theorem 2, we can deduce that in absence of control, the panic level on node (2) will persist.
On the other hand, by virtue of Proposition 1, we know that the network asymptotically
synchronises under control. The values of other parameters are given in table 1. Those values
have been chosen with a qualitative approach, since the fine calibration of the model is a work
in progress [13]. The imitation functions are given by Holling type [7] non linear terms:

F (r, c)rc = −βrc1 + r
+ βrc

1 + c

G(r, p)rp = −βrp1 + r
+ βrp

1 + p

H(c, p)cp = −βcp1 + c
+ βcp

1 + p
.

Here, we assume that the imitation process can be neglected with respect to the evolution
process, thus we set β = 10−3. Finally, the initial condition is chosen to model the fact that
all individuals are in the daily behaviour when the catastrophic event occurs. Thus we set

ri(0) = 0, ci(0) = 0, pi(0) = 0, qi(0) = 1, 1 ≤ i ≤ n.

Numerical simulations have been performed with the free and open-source software BOCOP
developed by the INRIA [12], in a Debian/GNU-Linux environment. In the next sections,
we present the results of 7 different choices of parameters αi, 0 ≤ i ≤ 3, involved in the
performance criterion J̃ given by (9), and pf , which represents the panic level expected under
the effect of the control (u0, u1, u2, u3) (see table 2).
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Table 2: Values of parameters αi, 0 ≤ i ≤ 3, involved in the performance criterion J̃ given by (9),
and of the final panic level pf , for the 7 numerical simulations; numerical results for the final time Tf ;
numerical results for the minimum J̃min of the performance criterion.

Scenario 1 2 3 4 5 6 7
α0 0 0 0 0 0 1 1
α1 1 1 1 1 1 1 1
α2 1 0 1 u0 = 0 u0 = 0 1 0
α3 1 1 0 1 1 1 0
pf 10% 10% 10% 10% 5% 5% 5%
Tf 18.513 16.529 18.769 64.11 94.17 17.94 14.39
J̃min 2.918 0.285 2.910 16.152 16.376 23.383 14.769

4.2. Comparison of preventive control and curative controls
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Figure 5: Control of panic in a PCR network. The panic level p̃ corresponds to the situation without
control (dashed lines in a, d, g), whereas the panic level p corresponds to the situation with control
(continuous lines in a, d, g). The first line (a, b, c) shows the numerical results for scenario 1, the
second line (d, e, f) for scenario 2 and the third line for scenario 3.
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We begin by assuming that parameter α0 is null in the performance criterion given by (9),
which means that time is not taken into account in the minimizing process. We would like
to compare the efficiency of the preventive control u0 which is exerted on each node, and the
curative control (u1, u2, u3) with is exerted along the edges of the network.

The first scenario corresponds to the situation with α1 = α2 = α3, which takes into account
the total number of individuals in panic during the event, and does not favour one of both
controls u0 and (u1, u2, u3). We set the final panic level at 10%. Numerical results for this first
scenario are shown in figure 5 (a, b, c). We remark that the control u0 seems to be efficient,
whereas the control u3 is weak. The minimum of the performance criterion is J̃min ' 2.918
(see table 2, last line).

In the second scenario, we suppose that α1 = α3 = 1, whereas α2 = 0, which means that
the preventive control u0 is cost-free. The numerical results are shown in figure 5 (d, e, f), and
the minimum of the performance criterion is J̃min ' 0.285. Not surprisingly, we remark that
u0 is greater than in scenario 1.

In the third scenario, we investigate the effect of setting α3 = 0 and α1 = α2 = 1, which
means that the curative control (u1, u2, u3) is cost-free. The numerical results are shown in
figure 5 (g, h, i), and the minimum of the performance criterion is J̃min ' 2.910. We observe
that u0 has a similar shape as in scenario 1, whereas the curative control u2 exerted along
the edge (2, 3), which is the only possible evacuation path to escape from node (2), reveals a
bang-bang shape with greater values than in scenarios 1 and 2.

For those three first scenarios, we remark that the final times are approximately equal to
each other, since Tf ∈ [16, 19] (see table 2). It seems reasonable to conclude that the preventive
control u0 is more efficient than the curative control (u1, u2, u3).

4.3. Absence of preventive control
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Figure 6: Control of panic in a PCR network without preventive control. The panic level p̃ corre-
sponds to the situation without control (dashed lines in a, d), whereas the panic level p corresponds
to the situation with control (continuous lines in a, d). The first line (a, b, c) shows the numerical
results for scenario 4, the second line (d, e, f) for scenario 5.
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Next, in order to underpin the latter observation, we explore the effect of setting u0 = 0 in
the control problem (5). Corollary 1 and Proposition 1 still apply and guaranty the existence
of a control (u1, u2, u3) such that the PCR network asymptotically synchronises. Thus we test
two novel scenarios with α1 = α3 = 1. We set the final panic level at 10% for scenario 4, and
at 5% for scenario 5. Numerical results are shown in figure 6 (a, b, c) for scenario 4, and figure
6 (d, e, f) for scenario 5. We observe that the values of the final times are much greater than
in scenarios 1, 2, 3. The control u2 exerted along the edge (2, 3) is greater than the control u1
exerted along the edge (1, 3), which is not surprising, since ε2 = 0 < ε1. In the mean time, the
minimum J̃min of the performance criterion, given in table 2 (last line), is much greater than
in scenarios 1, 2, 3 as well, which seems to corroborate the affirmation that preventive control
u0 should be favoured. Roughly speaking, the desired final state can be reached in absence of
preventive control, but it takes more time, with a greater cost.

4.4. Time optimal problem

We finish this section with two additional scenarios taking into account the minimization of
time in the process of control. Thus we set α0 = 1. The corresponding numerical results
are presented in figure 7. In scenario 6, we suppose α1 = α2 = α3 = 1, and pf = 5%. We
remark that the final time Tf is lesser than in scenario 1, despite the final panic level pf is
more exigent. In counterpart, the minimum J̃min of the performance criterion is much greater
(see table 2).
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Figure 7: Time optimal control of panic in a PCR network. The panic level p̃ corresponds to the
situation without control (dashed lines in a, d), whereas the panic level p corresponds to the situation
with control (continuous lines in a, d). The first line (a, b, c) shows the numerical results for scenario
6, the second line (d, e, f) for scenario 7.

In scenario 7, we set α1 = 1, and meanwhile α2 = α3 = 0, which means that the performance
criterion takes into account the panic level during the whole event, but that both preventive
control u0 and curative controls (u1, u2, u3) are cost-free. We observe that the optimal controls
present a bang-bang structure (see figure 7, second line). It is remarkable that the control u2
exerted along the edge (2, 3), expected to act as an evacuation path, admits low values. This
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might be interpreted again in the following sense: it seems cost-less to apply a preventive
control on high-risk areas, than mobilising curative controls in order to displace individuals.

§ 5. Conclusion and perspectives

In this paper, we have presented novel results for the problem of controlling panic in complex
networks of dynamical systems for an original behavioural model. The existence of a minimizing
control has been rigorously proved, in a sufficiently wide framework, which allows application
to other problems. Numerical simulations tend to show that preventive control should be
favoured with respect to curative control, which can represent a precious help for decision
makers.

In a future work, we aim to generalize our study to the optimal control of complex networks
of partial differential equations of parabolic type, in order to take into account in a hybrid model
the superposition of local diffusion and long distance diffusion.
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