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Abstract— Usually, the most important structures in an image

are extracted by an edge detector. Once extracted edges are

binarized, they represent the shape boundary information of

an object. For the edge-based localization/matching process,

the differences between a reference edge map and a candidate

image are quantified by computing a performance measure. This

study investigates supervised contour measures for determining

the degree to which an object shape differs from a desired

position. Therefore, several distance measures are evaluated for

different shape alterations: translation, rotation and scale change.

Experiments on both synthetic and real images exhibit which

measures are accurate enough for an object pose or matching

estimation, useful for robot task as to refine the object pose.

Keywords— Distance transform, similarity measures, contours.

I. INTRODUCTION AND CONTEXT

Object detection and recognition are used in many computer
vision applications. In the past, several methods have been
developed to achieve this in digital images, involving, for
example, directly shape context [1], patches [2], points of
interest [3] or region based-methods [4]. The shape represen-
tation of an object is particularly useful for accurate industrial
inspection tasks, where this shape must be aligned with a
reference model of the interested object [5]. A contour-based
representation remains a class of methods and exploits only
the shape boundary information. In this paper, we focus on
distance measures between the acquired features (contours [6])
in a candidate image and an ideal contour map model. This
represents a supervised evaluation of the shape representation.
As the shape of the sought object is already known (by a
reference pose, for example), a learning stage is not necessary
to estimate the object pose. Consequently, supervised edge
detection evaluations compute a score between a ground truth
edge map (Gt) and a candidate image (Dc) to achieve this task.
Originally, they are used to assess edge detection methods
[7],[8],[9],[11]; here, a contour-based localization evaluation
of these measures is investigated. Thus, they compute a score
of coherence which qualifies the correct object pose possibility.
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Fig. 1. Example of translation, rotation and scale change of Dc.
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Fig. 2. Example of ground truth (Gt) versus (vs.) a candidate contour (Dc).

II. SUPERVISED EDGE DETECTION EVALUATIONS

Several alterations may interfere and disturb the object pose
estimation, as translation, rotation or scale change of the
interest object. Both their own shape(s) and their contours are
altered, as illustrated in Fig.1. Supervised contour measures
are presented below. Then, an evaluation process is fulfilled,
determining the degree to which an object shape differs from
a desired position as a function of different alterations.

Various evaluation methods have been proposed in the
literature to assess different shapes of edges using pixel-based
ground truth (see reviews in [12],[7],[8],[9],[11]). Indeed, a
supervised evaluation criterion computes a dissimilarity mea-
sure between a ground truth (Gt) and a detected contour map
(Dc) of an original image I . In this paper, the closer to 0
the score of the evaluation is, the more the segmentation is
qualified as suitable. To assess an edge detector, the confusion
matrix remains a cornerstone in boundary detection evaluation
methods. Comparing pixel per pixel Gt and Dc, the 1st
criterion to be assessed is the common presence of edge/non-
edge points. A basic evaluation is composed of statistics
by combining Gt and Dc. Afterwards, denoting | · | as the
cardinality of a set (e.g. |Gt| represents the number of edge
pixels in Gt), all points are divided into four sets (cf. Figs.1):

• True Positive points (TPs): TP = |Gt ∩Dc|,
• False Positive points (FPs): FP = |¬Gt ∩Dc|,
• False Negative points (FNs): FN = |Gt ∩ ¬Dc|,
• True Negative points (TNs): TN = |¬Gt ∩ ¬Dc|.
Various edge detection evaluations involving confusion ma-

trices have been developed , cf. [8][9][11]. The Dice measure
[13] is one example: Dice

∗(Gt, Dc) = 1 − 2·TP

2·TP+FN+FP
.

This type of assessment is useful for region segmentation eval-
uation [16], but, a reference-based edge map quality measure
requires that a displaced edge should be penalized in function
of FPs and/or FNs and of the distance from the position where
it should be located [9][11], as shown in Fig. 2.



Table 1. List of error measures involving distances, generally: k = 1 or k = 2 , and, κ = 0.1 or κ = 1/9 .
Error measure name Formulation Parameters

Pratt’s FoM [14] FoM (Gt, Dc) = 1− 1

max (|Gt| , |Dc|)
·
�

p∈Dc

1

1 + κ · d2
Gt

(p)
κ ∈ ]0; 1]

FoM revisited [15] F (Gt, Dc) = 1− 1

|Gt|+ β · FP
·
�

p∈Gt

1

1 + κ · d2
Dc

(p)
κ ∈ ]0; 1] and β ∈ R+

Combination of FoM

and statistics [17] d4 (Gt, Dc) =
1
2 ·

�
(TP − max (|Gt| , |Dc|))2 + FN

2 + FP
2

(max (|Gt| , |Dc|))2
+ FoM2 (Gt, Dc) κ ∈ ]0; 1]

Edge map quality mea-
sure [18] Dp (Gt, Dc) =

1/2
|I|−|Gt| ·

�

p∈FP

�
1− 1

1 + κ·d2
Gt
(p)

�
+ 1/2

|Gt| ·
�

p∈FN

�
1− 1

1 + κ·d2
TP

(p)

�
κ ∈ ]0; 1]

Symmetric FoM [9] SFoM (Gt, Dc) =
1
2 · FoM (Gt, Dc) +

1
2 · FoM (Dc, Gt) κ ∈ ]0; 1]

Maximum FoM [9] MFoM (Gt, Dc) = max (FoM (Gt, Dc) , FoM (Dc, Gt)) κ ∈ ]0; 1]

Yasnoff measure [19] Υ(Gt, Dc) =
100
|I| ·

� �
p∈Dc

d
2
Gt

(p) None

Hausdorff distance [20] H (Gt, Dc) = max

�
max
p∈Dc

(dGt
(p)),max

p∈Gt

(dDc
(p))

�
None

Maximum distance [12] f2d6 (Gt, Dc) = max



 1

|Dc|
·
�

p∈Dc

dGt
(p),

1

|Gt|
·
�

p∈Gt

dDc
(p)



 None

Distance to Gt

[21][12][8] D
k (Gt, Dc) =

1

|Dc|
· k

� �
p∈Dc

d
k

Gt
(p), k = 1 for [21] and [12] k ∈ R+

Oversegmentation mea-
sure [22] Θ(Gt, Dc) =

1
FP

·
�

p∈Dc

�
dGt

(p)
δTH

�k

for [22]: k ∈ R+ and δTH ∈ R∗
+

Undersegmentation
measure [22] Ω (Gt, Dc) =

1
FN

·
�

p∈Gt

�
dDc

(p)
δTH

�k

for [22]: k ∈ R+ and δTH ∈ R∗
+

Relative Distance

Error [12], [23], [24] RDEk (Gt, Dc) = k

�
1

|Dc|
·
�

p∈Dc

d
k

Gt
(p) + k

�
1

|Gt|
·
�

p∈Gt

d
k

Dc
(p), k ∈ R+, k = 1 for [12], k = 2 for [23],

[24]

Symmetric distance
[12][8] S

k (Gt, Dc) =
k

����
�

p∈Dc

d
k

Gt
(p)) +

�
p∈Gt

d
k

Dc
(p)

|Dc ∪Gt|
, k = 1 for [12] k ∈ R+

Baddeley’s Delta Metric
[25] ∆k(Gt, Dc) = k

�
1
|I| ·

�
p∈I

|w(dGt
(p))− w(dDc

(p))|k k ∈ R+ and a convex function w : R �→ R

Magnier et al. measure
[26] Γ(Gt, Dc) =

FP+FN

|Gt|2 ·
� �

p∈Dc

d
2
Gt

(p) None

Complete distance mea-
sure [9] Ψ(Gt, Dc) =

FP+FN

|Gt|2 ·
� �

p∈Gt

d
2
Dc

(p) +
�

p∈Dc

d
2
Gt

(p) None

λ measure [28] λ(Gt, Dc) =
FP+FN

|Gt|2 ·
� �

p∈Dc

d
2
Gt

(p) + min
�
|Gt|2, |Gt|2

TP 2

�
·
�

p∈Gt

d
2
Dc

(p) None

Edge Mismatch Measure
(EMM ) [27] EMM(Gt, Dc) = 1− TP

TP + ω ·
��

p∈FN
δDc

(p) + � ·
�

p∈FP
δGt

(p)
�

Mdist ∈ R+, Dmax ∈ R+, ω ∈ R+,
� ∈ R+.

δDc
(p) =

�
dDc

(p), if dDc
(p) < Mdist

Dmax, otherwise
and δGt

(p) =

�
dGt

(p), if dGt
(p) < Mdist

Dmax, otherwise.
In [27]: Mdist = 0.025·|I|,
Dmax = |I|/10, ω = 10/|I|, � = 2.

Table 1 reviews the most relevant measures involving dis-
tances. Thus, for a pixel p belonging to the candidate contour
Dc, dGt

(p) represents the minimal Euclidian distance between
p and Gt. These types of distance measures play an important
role in image matching and may be used to determine the
degree of resemblance between two objects [20][12]. To
achieve this, if p belongs to Gt, dDc

(p) corresponds to the
minimal distance between p and Dc, Fig. 2 illustrates the dif-
ference between dGt

(p) and dDc
(p). Mathematically, denoting

(xp, yp) and (xt, yt) the pixel coordinates of two points p and
t respectively, thus dGt

(p) and dDc
(p) are described by:






for p∈Dc: dGt
(p)= Inf

��
(xp − xt)2 + (yp − yt)2, t ∈ Gt

�
,

for p∈Gt: dDc
(p)= Inf

��
(xp − xt)2 + (yp − yt)2, t ∈ Dc

�
.

These distance functions refer to the Euclidean distance.
On the one hand, some distance measures are specified in

the evaluation of over-segmentation (i.e., distances of FPs),
for example: Υ, D

k, Θ and Γ; see also [12], [9], [11]. On
the other hand, the Ω measure assesses an edge detection by
computing only under-segmentation (distances of FNs). Other

edge detection evaluation measures consider both distances
of FPs and FNs [10]. A perfect segmentation using an over-
segmentation measure could be an image including no edge
points. As demonstrated in [11], another limitation of only
over- and under-segmentation evaluations are that several
binary images can produce the same result. Therefore, a com-
plete and optimum edge detection evaluation measure should
combine assessments of both over- and under-segmentation,
as H , ∆k, f2d6, Sk, RDEk, Ψ and λ.

One of the most popular descriptors is named the Figure
of Merit (FoM ). This distance measure has an advantage
because it ranges from 0 to 1, where 0 corresponds to a perfect
segmentation [14]. Nonetheless, for FoM , the distance of the
FNs is not recorded and contours having a small displacement
compared to their desired positions are strongly penalized
as statistic measures (detailed in [11]). Several evaluation
measures are derived from FoM : F , d4, EMM , MFoM ,
SFoM and Dp. Contrary to FoM , the F measure computes
the distances of FNs but not of the FPs. In addition, the d4



measure depends particularly on TP , FP , FN and ≈1/4 on
FoM , but d4 penalizes FNs like the FoM measure. Note that
EMM computes a score different from 1 if there exists at least
one TP (cf. experiments). Otherwise, SFoM and MFoM

take into account both distances of FNs and FPs, so they can
compute a global evaluation of a contour image. However,
MFoM does not consider FPs and FNs at the same time,
contrary to SFoM . Another way to compute a global measure
is represented by Dp. Nevertheless, Dp is more sensitive to
FNs than FPs because of its huge coefficient (cf. Table 1).

A second measure widely computed in matching techniques
is represented by the Hausdorff distance H , measuring the
mismatch of two sets of points [20]. This measure is useful
in object recognition, the algorithm aims to minimize H ,
reporting the mismatch of two shapes [29][30]. It is well
known that this distance could be strongly deviated by only
one pixel positioned sufficiently far from the pattern, there
are several enhancements of H presented in [20][12][31]. As
pointed out in [12], an average distance from the edge pixels
in Dc to those in Gt is more appropriate, like S

k, RDEk or
Ψ. Moreover, Sk takes small values in the presence of low
level of outliers, whereas the score becomes large as the level
of mistaken points increases [12][8] but is sensitive to remote
misplaced points [9]. Otherwise, derived from H , the Delta
Metric (∆k) [25] intends to estimate the dissimilarity between
each element of two binary images, but is highly sensitive to
distances of misplaced points. The λ measure penalizes highly
FNs compared to FPs, because the more FNs are present in
Dc, the more Dc the desirable object becomes unrecognizable.

Finally, an objective assessment of these measures (and oth-
ers) has been performed by varying the thresholds on contours
of images obtained by filtering techniques, see [7][9][10],
[28][11]. Theoretically, the minimum score of the measure
corresponds to the best edge map, compared to the ground
truth. Here, a study is led as a function of the position of
the candidate object contours which may be corrupted by
undesirable pixels caused by object translation, rotation of
scale change (or/and due to noise and/or blur in real images).

III. EVALUATIONS AND EXPERIMENTAL RESULTS

Object localization, recognition and matching are practical
tools in the computer vision domain. Usually, they are
designed to meet the requirements of industrial alignment
applications (automated optical inspection, industrial
automation, target search, visual servoing...). The distance
measures detailed above are compared here with the specific
purpose of contour-based object localization evaluation. Such
measures are tested on synthetic and real image in order to
assess if they could be useful and accurate enough to recognize
and match objects. The two subsections above present both
experiments on synthetic and real images. 22 error measure
are tested: Dice

∗, FoM , F , d4, MFoM , SFoM , Dp, Υ, H ,
f2d6, Dk

k=2, Θ, Ω, RDEk=1, RDEk=2, Sk

k=1, Sk

k=2, ∆k, Γ,
Ψ, λ and EMM , showcasing the advantages and drawbacks
of each one. The tests carried out in the experiments are

intended to be as complete as possible, and thus as close
as possible to reality. Note that the Matlab code of the
distance measures as FoM , D

k, S
k and ∆k are available

at http://kermitimagetoolkit.net/library/code/.
Others are available on the mathworks website: https:
//fr.mathworks.com/matlabcentral/fileexchange/
63326-objective-supervised-edge-detection-
evaluation-by-varying-thresholds-of-the-thin-
edges. Firstly, to verify if the measure has the required
properties, different alterations are applied to create synthetic
localization results simulating real ones.

A. Localization and Recognition of Synthetic Objects

In order to quantify the reliability of a measure of dissimi-
larity, an edge map of a synthetic shape is affected by various
alterations: rotation, translation and scale change. Thus, it
allows to verify if the evolution of the provided score obtained
by a measure is in line with the expected behavior: small
error for close shapes and large penalty for shapes that differ.
Note that there exist matching techniques imposing grid of
specific window on the image, typically in order to search
small objects in the image [20][32][33] or line tackers [34].
Here the distance measures consider both full images of the
same size: the ground truth (with an isolated object) and the
candidate object contour. For the quantification of similarity,
special consideration should be given to the ability of a
skill measure to penalize important dissimilarities and ignore
the unimportant ones; as an example few spurious isolated
undesirable pixels must not disturb a measure if the object
is close to its desired location. To do that, a synthetic shape
is created (see Fig. 3(a)). Candidate shapes are also created
to simulate movements, thereupon compared with the desired
location (ground truth). For assessment, a validation measure
is sought so that it can appropriately penalize differences in
the three continuous deformations: 1) rotation, 2) translation
and 3) scale. Thus, a curve is obtained for each measure and
each alteration type. Only some curves are reported in this
paper, curves which are not reported are similar to other ones.

1) Rotation: The test is performed by rotating the control
shape incrementally up to a total rotation of 2π, as illustrated
in Fig. 3. Then, the metric distances are computed between the
rotated contour and the reference shape. The shape of the curve
of the measure scores is expected to be roughly symmetric
around π. It is noteworthy that locations of local extrema
of the curve depend on the shape of the object. Usually, a
minimum is computed for distance measures at 180◦, due the
rough symmetry of the shape, as for H . For example, in Fig.
3(d), some contours of the rotated shape are aligned with the
desired location, creating two minima at 160◦ and 200◦ for
the λ measure. So, this measure penalizes strongly FNs, so it
computes an error at 180◦ larger than before or after, because
various details of the shape are missing. However, the Dice

measure computes a pixel per pixel score and does not record
distances, so its behavior is unstable. Also, FoM measure and
its derivatives are also unstable and very sensitive to small
rotations, minima are not clearly detectable.



(a) Dc superimposed on Gt (b) Rotation of 50◦ (c) Rotation of 90◦ (d) Rotation of 220◦ (e) Rotation of 255◦
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Fig. 3. Examples of localization metrics behaviors for a rotation alteration for each 5◦: from 0◦ to 360◦. The legend is available in Fig. 1(d). FoM , F ,
SFoM and MFoM obtain almost the same scores. Score evolutions for are the same for Dice

∗, d4 and Dp. Also Υ behaves like D
k , Γ, Ψ and Θ which

is the perfect symmetry of Ω. Scores tied to S
k
k={1,2}, RDEk={1,2}, f2d6, ∆k and Ψ are also similar. EMM behaves lire λ.

(a) 20 pixels translation (b) 80 pixels translation (c) 160 pixels translation (d) 220 pixels translation

0 100 200 300 400

 Object translation (pixels)

0

0.5

1

M
ea

su
re

 s
co

re

0 100 200 300 400

 Object translation (pixels)

0

0.5

1

M
ea

su
re

 s
co

re

0 100 200 300 400

 Object translation (pixels)

0

0.5

1

M
ea

su
re

 s
co

re

0 100 200 300 400

 Object translation (pixels)

0

200

400

M
ea

su
re

 s
co

re

0 100 200 300 400

 Object translation (pixels)

0

100

200

300

M
ea

su
re

 s
co

re

0 100 200 300 400

 Object translation (pixels)

0

0.5

1

M
ea

su
re

 s
co

re

0 100 200 300 400

 Object translation (pixels)

0

5000

10000

M
ea

su
re

 s
co

re

(e) Dice
∗ scores (f) FoM scores (g) Υ scores (h) Hausdorff scores (i) RDE scores (j) EMM scores (k) λ scores

Fig. 4. Examples of localization metrics behaviors for a translation alteration: 20 pixels on the X-axis (horizontal) per translation. FoM , F , SFoM and
MFoM obtain almost the same scores. Score evolutions for are the same for Dice

∗, d4 and Dp. Also Υ behaves like D
k , Γ and Ψ. Scores tied to H ,

f2d6, Ω and ∆k are also similar. Score evolutions for are the same for Sk
k={1,2},and RDEk={1,2}.
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Fig. 5. Examples of localization metrics behaviors for a scale alteration. FoM , F , SFoM and MFoM obtain almost the same scores. Score evolutions
for are the same for Dice

∗, d4 and Dp. Scores tied to H , RDEk={1,2}, Sk
k={1,2}, f2d6, Dk , Υ, Θ, Ω, Γ and Ψ are also similar.

2) Translation: In this test, the contour shape is gradually
translated by moving the shape away from its original location
along a horizontal straight line, cf. Fig.4 (the results are
the same for translations in other directions). The resulting
measure scores have a minimum at 0, where the two contours
are collocated. Scores obtained for measures as H and RDE

grows linearly, as a function of the shape displacement.
Concerning Dice or EMM , the obtained curves have obvious
discontinuities, demonstrating the limited sensitivity of these
measures to translation. EMM obtains a score of 1 when
no TP exists. Also, FoM and its derivatives are sensitive to
displacements, with a jump after few pixel displacements and
with score attaining its maximum (value 1) when no common
points between the two shapes. The over segmentation of Υ
is not monotonous when not TP are present. Other measures
behave desirably, with a good response: increasing monoton-

ically. Note that the λ measure decreases at the end of this
experiment because there exists less pixels in the candidate
shape than in the image containing all the object contours.

3) Scale Changement: For this experiment, the shape un-
dergoes a decrease in size with the maximal scale 8th the
original size (see Fig.5). Scores from the measures are com-
puted between the ground truth and the rescaled shape. For
all shapes, excepted Dice, each measure exhibits the expected
behavior of being strictly decreasing. However, the graph
of EMM has sharp discontinuities that exhibit its unstable
response to scaling, because its responses are 1 without TP.
The scores of the FoM and its derivatives are not decreasing
enough, excepted where the two contours are collocated.
Finally, λ behaves correctly converging throw 0 until a scale
of 3, and continue to converge less rapidly after.
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(a) First frame with Gt in blue (b) Edge accumulation (c) Last frame superimpozed on Gt (d) Dice
∗ scores (e) FoM scores
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Fig. 6. Localization metrics behaviors on real experiment. The image in (b) represents the edge movements as a function of the time (from blue to red).
FoM , F , SFoM and MFoM obtain almost the same scores which are close to Dice

∗, d4 and Dp evolution. Scores tied to H , ∆k , Θ, Γ, Ψ, Υ, Dk ,
S
k
k=2, RDEk=1, RDEk=2 and f2d6 are similar. Score evolutions are the same for Sk

k=1, EMM and λ.

B. Localization and Recognition of Real Objects

Experiments on color real images were also performed. In
Figs. 6 and 8, thin edges are extracted using the Canny edge
detector (σ = 1) [6][36] and a non-maximum suppression: the
selected pixels are those having gradient magnitude at a local
maximum along the gradient direction, which is perpendicular
to the edge orientation [35]. Here, by moving the camera, the
aim is to determine when the object is at the desired position
in the image using thin binary edges as features, the scores
must converge to 0 as summarized in Fig. 7. This desired
position corresponds to the object in the last video frame, as
shown in Figs. 6(c) and 8(c), each frame may be corrupted by
numerous FPs and the candidate object may contain FNs. The
first video contains 264 frames, whereas the second video is
composed of 116 frames of size 720×1280. The ground truth
corresponds to binary boundaries of the desired position of the
object, represented in blue pixels in Figs. 6(a) and 8(a). Green
pixels represent TPs, red points are FPs whereas blue pixels
which are also Gt are tied to FNs. These features are dilated
with a structural element of size 3×3 for a better visualization.

For the first video, object contours are easily extracted,
with spurious undesirable points at the end of the video, as
illustrated in Fig. 6(a)-(c). Consequently, only edge points
detected out of the candidate object shape may disturb the
contour-based localization. Indeed, curves tied to H , ∆k,
Υ and S

k behave stochastically (see the caption of Fig. 6
concerning other measures). Also, Dice and FoM scores
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Fig. 7. Expected behavior of a measure scores.

converge only to lower values when the candidate object is
close to the desired location. Only Ω and λ measures have the
intended behavior for this sequence, as summarized in Tab.2.

The second video is heavily corrupted by a random noise
on the each color plane (SNR≈11dB). These disturbances
create spurious pixels in the edge detection process, but
especially, the edges of the candidate object are not well
localized or not present. Therefore, the majority of measures
behaves stochastically, and the last frame does not represent
the best score for them (see Fig.8 and its caption). For the
FoM measure, usually its scores decrease, even though the
curve converges considerably only for the last frames. On the
EMM measure converges rapidly, but, remains constant after
few number of frames. The Ω measure is relatively constant,
excepted for the last frames where it decreases. Lastly, the λ

measure behaves as expected with a minimum at the end.

IV. CONCLUSION

This study presents an assessment of measures for contour-
based recognition and localization of known objects. Thus,
the Dice and 20 distance measures are evaluated trough
different shape alterations: translation, rotation and scale
change. Experiments on real images exhibit which measures
are accurate enough for an object pose or shape matching
estimation. Clearly, a measure involving false negative dis-
tances remains more accurate than other techniques, as the
under-segmentation measure Ω. However, when some parts
of the candidate image are missing, but detected close to
their desired positions, they are not taken into account by
Ω. Alternatively, the λ measure remains well defined for this
assessment. Missing edges are penalized higher than spurious

Table 2. Reliability of the reviewed edge detection evaluation measures.

Meas. Tr. Rot. Sc. Real

Dice
∗ ✗ ✗ ✗ ✗

FoM ✗ ✗ ✗ ✗
F ✗ ✗ ✗ ✗
d4 ✗ ✗ ✗ ✗

SFoM ✗ ✗ ✗ ✗
MFoM ✗ ✗ ✗ ✗

Dp ✗ ✗ ✗ ✗
Υ ≈ ✓ ✓ ✗
H ✓ ✓ ✓ ✗

f2d6 ✓ ✓ ✓ ✗

Meas. Tr. Rot. Sc. Real

D
k ≈ ✓ ✓ ✗

Θ ✓ ✓ ✓ ✗
Ω ✓ ✓ ✓ ≈

RDE ✓ ✓ ✓ ✗
S
k ✓ ✓ ✓ ✗

∆k ✓ ✓ ✓ ✗
Γ ≈ ✓ ✓ ✗
Ψ ≈ ✓ ✓ ✗
λ ✓ ✓ ✓ ✓

EMM ≈ ✓ ✗ ✗
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Fig. 8. Localization metrics behaviors on real experiment with noisy images. The image in (b) represents the edge movements as a function of the time
(from blue to red), showing the huge number of noise pixels along the video. FoM , F , SFoM and MFoM obtain almost the same scores which are close
to Dice

∗, d4 and Dp evolution. The measure ∆k behaves like the Hausdorff distance, stochastically along the video without convergence. Also Υ behaves
like D

k , Θ, Sk
k=2, RDEk=1, RDEk=2 and f2d6. Scores tied to Ψ, Γ , EMM and S

k
k=1 are also similar.

ones because some isolated points disturb the shape location,
as the majority of the measures, cf. Tab.2. Finally, λ does not
need any tuning parameter or specific window and may be
useful to validate a visual servoing process.

The studied measures are tied to edge binarized images
(edge detection methods are not discussed, see [9], [10], [11]).
In practice, illumination changes modify seriously the image
contrast and, additionally to the noise and the blur, may be an
obstacle for shape recognition. To overcome this problem, the
combination of edge-based measures and nonlinear illumina-
tion changes measure [37] could be deeply investigate.
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Fig. 1. Localization metrics behaviors on real experiment tied to Fig. 6 in the original

paper.
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Fig. 2. Localization metrics behaviors on real experiment with noisy images tied to

Fig. 8 in the original paper.


