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Usually, the most important structures in an image are extracted by an edge detector. Once extracted edges are binarized, they represent the shape boundary information of an object. For the edge-based localization/matching process, the differences between a reference edge map and a candidate image are quantified by computing a performance measure. This study investigates supervised contour measures for determining the degree to which an object shape differs from a desired position. Therefore, several distance measures are evaluated for different shape alterations: translation, rotation and scale change. Experiments on both synthetic and real images exhibit which measures are accurate enough for an object pose or matching estimation, useful for robot task as to refine the object pose.

I. INTRODUCTION AND CONTEXT

Object detection and recognition are used in many computer vision applications. In the past, several methods have been developed to achieve this in digital images, involving, for example, directly shape context [START_REF] Belongie | Shape context: A new descriptor for shape matching and object recognition[END_REF], patches [START_REF] Crivellaro | Robust 3d object tracking from monocular images using stable parts[END_REF], points of interest [START_REF] Schmid | Evaluation of interest point detectors[END_REF] or region based-methods [START_REF] Zhang | Review of shape representation and description techniques[END_REF]. The shape representation of an object is particularly useful for accurate industrial inspection tasks, where this shape must be aligned with a reference model of the interested object [START_REF] Steger | Machine vision algorithms and applications[END_REF]. A contour-based representation remains a class of methods and exploits only the shape boundary information. In this paper, we focus on distance measures between the acquired features (contours [START_REF] Canny | A computational approach to edge detection[END_REF]) in a candidate image and an ideal contour map model. This represents a supervised evaluation of the shape representation. As the shape of the sought object is already known (by a reference pose, for example), a learning stage is not necessary to estimate the object pose. Consequently, supervised edge detection evaluations compute a score between a ground truth edge map (G t ) and a candidate image (D c ) to achieve this task. Originally, they are used to assess edge detection methods [START_REF] Chabrier | Comparative study of contour detection evaluation criteria based on dissimilarity measures[END_REF], [START_REF] Lopez-Molina | Quantitative error measures for edge detection[END_REF], [START_REF] Magnier | Edge detection: A review of dissimilarity evaluations and a proposed normalized measure[END_REF], [START_REF] Magnier | A Review of Supervised Edge Detection Evaluation Methods and an Objective Comparison of Filtering Gradient Computations Using Hysteresis Thresholds[END_REF]; here, a contour-based localization evaluation of these measures is investigated. Thus, they compute a score of coherence which qualifies the correct object pose possibility. 

II. SUPERVISED EDGE DETECTION EVALUATIONS

Several alterations may interfere and disturb the object pose estimation, as translation, rotation or scale change of the interest object. Both their own shape(s) and their contours are altered, as illustrated in Fig. 1. Supervised contour measures are presented below. Then, an evaluation process is fulfilled, determining the degree to which an object shape differs from a desired position as a function of different alterations.

Various evaluation methods have been proposed in the literature to assess different shapes of edges using pixel-based ground truth (see reviews in [START_REF] Dubuisson | A modified Hausdorff distance for object matching[END_REF], [START_REF] Chabrier | Comparative study of contour detection evaluation criteria based on dissimilarity measures[END_REF], [START_REF] Lopez-Molina | Quantitative error measures for edge detection[END_REF], [START_REF] Magnier | Edge detection: A review of dissimilarity evaluations and a proposed normalized measure[END_REF], [START_REF] Magnier | A Review of Supervised Edge Detection Evaluation Methods and an Objective Comparison of Filtering Gradient Computations Using Hysteresis Thresholds[END_REF]). Indeed, a supervised evaluation criterion computes a dissimilarity measure between a ground truth (G t ) and a detected contour map (D c ) of an original image I. In this paper, the closer to 0 the score of the evaluation is, the more the segmentation is qualified as suitable. To assess an edge detector, the confusion matrix remains a cornerstone in boundary detection evaluation methods. Comparing pixel per pixel G t and D c , the 1st criterion to be assessed is the common presence of edge/nonedge points. A basic evaluation is composed of statistics by combining G This type of assessment is useful for region segmentation evaluation [START_REF] Crum | Generalized overlap measures for evaluation and validation in medical image analysis[END_REF], but, a reference-based edge map quality measure requires that a displaced edge should be penalized in function of FPs and/or FNs and of the distance from the position where it should be located [START_REF] Magnier | Edge detection: A review of dissimilarity evaluations and a proposed normalized measure[END_REF] [START_REF] Magnier | A Review of Supervised Edge Detection Evaluation Methods and an Objective Comparison of Filtering Gradient Computations Using Hysteresis Thresholds[END_REF], as shown in Fig. 2. 

F oM (G t , D c ) = 1 - 1 max (|G t | , |D c |) • p∈Dc 1 1 + κ • d 2 Gt (p) κ ∈ ]0; 1] F oM revisited [15] F (G t , D c ) = 1 - 1 |G t | + β • F P • p∈Gt 1 1 + κ • d 2 Dc (p) κ ∈ ]0; 1] and β ∈ R + Combination of F oM and statistics [17] d 4 (G t , D c ) = 1 2 • (T P -max (|G t | , |D c |)) 2 + F N 2 + F P 2 (max (|G t | , |D c |)) 2 + F oM 2 (G t , D c ) κ ∈ ]0; 1] Edge map quality mea- sure [18] D p (G t , D c ) = 1/2 |I|-|Gt| • p∈F P 1 - 1 1 + κ•d 2 Gt (p) + 1/2 |Gt| • p∈F N 1 - 1 1 + κ•d 2 T P (p) κ ∈ ]0; 1] Symmetric FoM [9] SF oM (G t , D c ) = 1 2 • F oM (G t , D c ) + 1 2 • F oM (D c , G t ) κ ∈ ]0; 1] Maximum FoM [9] MF oM (G t , D c ) = max (F oM (G t , D c ) , F oM (D c , G t )) κ ∈ ]0; 1] Yasnoff measure [19] Υ (G t , D c ) = 100 |I| • p∈Dc d 2 Gt (p) None Hausdorff distance [20] H (G t , D c ) = max max p∈Dc (d Gt (p)), max p∈Gt (d Dc (p)) None Maximum distance [12] f 2 d 6 (G t , D c ) = max   1 |D c | • p∈Dc d Gt (p), 1 |G t | • p∈Gt d Dc (p)   None Distance to G t [21][12][8] D k (G t , D c ) = 1 |D c | • k p∈Dc d k Gt (p), k = 1 for [21] and [12] k ∈ R + Oversegmentation mea- sure [22] Θ (G t , D c ) = 1 F P • p∈Dc dG t (p) δTH k
for [START_REF] Odet | Scalable discrepancy measures for segmentation evaluation[END_REF]:

k ∈ R + and δ T H ∈ R * + Undersegmentation measure [22] Ω (G t , D c ) = 1 F N • p∈Gt dD c (p) δTH k
for [START_REF] Odet | Scalable discrepancy measures for segmentation evaluation[END_REF]:

k ∈ R + and δ T H ∈ R * + Relative Distance Error [12], [23], [24] RDE k (G t , D c ) = k 1 |D c | • p∈Dc d k Gt (p) + k 1 |G t | • p∈Gt d k Dc (p), k ∈ R + , k = 1 for [12], k = 2 for [23], [24] Symmetric distance [12][8] S k (G t , D c ) = k p∈Dc d k Gt (p)) + p∈Gt d k Dc (p) |D c ∪ G t | , k = 1 for [12] k ∈ R + Baddeley's Delta Metric [25] ∆ k (G t , D c ) = k 1 |I| • p∈I |w(d Gt (p)) -w(d Dc (p))| k k ∈ R + and a convex function w : R → R Magnier et al. measure [26] Γ(G t , D c ) = F P +F N |Gt| 2 • p∈Dc d 2 Gt (p) None Complete distance mea- sure [9] Ψ(G t , D c ) = F P +F N |Gt| 2 • p∈Gt d 2 Dc (p) + p∈Dc d 2 Gt (p) None λ measure [28] λ(G t , D c ) = F P +F N |Gt| 2 • p∈Dc d 2 Gt (p) + min |G t | 2 , |Gt| 2 T P 2 • p∈Gt d 2 Dc (p) None Edge Mismatch Measure (EM M ) [27] EM M (G t , D c ) = 1 - T P T P + ω • p∈F N δ Dc (p) + • p∈F P δ Gt (p) M dist ∈ R + , D max ∈ R + , ω ∈ R + , ∈ R + . δ Dc (p) = d Dc (p), if d Dc (p) < M dist D max , otherwise and δ Gt (p) = d Gt (p), if d Gt (p) < M dist D max , otherwise.
In [START_REF] Sezgin | Survey over image thresholding techniques and quantitative performance evaluation[END_REF]:

M dist = 0.025•|I|, D max = |I|/10, ω = 10/|I|, = 2.
Table 1 reviews the most relevant measures involving distances. Thus, for a pixel p belonging to the candidate contour D c , d Gt (p) represents the minimal Euclidian distance between p and G t . These types of distance measures play an important role in image matching and may be used to determine the degree of resemblance between two objects [START_REF] Huttenlocher | A multi-resolution technique for comparing images using the hausdorff distance[END_REF] [START_REF] Dubuisson | A modified Hausdorff distance for object matching[END_REF]. To achieve this, if p belongs to G t , d Dc (p) corresponds to the minimal distance between p and D c , Fig. 2 illustrates the difference between d Gt (p) and d Dc (p). Mathematically, denoting (x p , y p ) and (x t , y t ) the pixel coordinates of two points p and t respectively, thus d Gt (p) and d Dc (p) are described by:

     for p ∈Dc: d G t (p)= Inf (xp -xt) 2 + (yp -yt) 2 , t ∈ Gt , for p ∈Gt: d Dc (p)= Inf (xp -xt) 2 + (yp -yt) 2 , t ∈ Dc .
These distance functions refer to the Euclidean distance.

On the one hand, some distance measures are specified in the evaluation of over-segmentation (i.e., distances of FPs), for example: Υ, D k , Θ and Γ; see also [START_REF] Dubuisson | A modified Hausdorff distance for object matching[END_REF], [START_REF] Magnier | Edge detection: A review of dissimilarity evaluations and a proposed normalized measure[END_REF], [START_REF] Magnier | A Review of Supervised Edge Detection Evaluation Methods and an Objective Comparison of Filtering Gradient Computations Using Hysteresis Thresholds[END_REF]. On the other hand, the Ω measure assesses an edge detection by computing only under-segmentation (distances of FNs). Other edge detection evaluation measures consider both distances of FPs and FNs [START_REF] Abdulrahman | From contours to ground truth: How to evaluate edge detectors by filtering[END_REF]. A perfect segmentation using an oversegmentation measure could be an image including no edge points. As demonstrated in [START_REF] Magnier | A Review of Supervised Edge Detection Evaluation Methods and an Objective Comparison of Filtering Gradient Computations Using Hysteresis Thresholds[END_REF], another limitation of only over-and under-segmentation evaluations are that several binary images can produce the same result. Therefore, a complete and optimum edge detection evaluation measure should combine assessments of both over-and under-segmentation, as H, ∆ k , f 2 d 6 , S k , RDE k , Ψ and λ.

One of the most popular descriptors is named the Figure of Merit (F oM). This distance measure has an advantage because it ranges from 0 to 1, where 0 corresponds to a perfect segmentation [START_REF] Abdou | Quantitative design and evaluation of enhancement/thresholding edge detectors[END_REF]. Nonetheless, for F oM, the distance of the FNs is not recorded and contours having a small displacement compared to their desired positions are strongly penalized as statistic measures (detailed in [START_REF] Magnier | A Review of Supervised Edge Detection Evaluation Methods and an Objective Comparison of Filtering Gradient Computations Using Hysteresis Thresholds[END_REF]). Several evaluation measures are derived from F oM: F , d 4 , EM M , MF oM, SF oM and D p . Contrary to F oM, the F measure computes the distances of FNs but not of the FPs. In addition, the d 4 measure depends particularly on T P , F P , F N and ≈1/4 on F oM, but d 4 penalizes FNs like the F oM measure. Note that EM M computes a score different from 1 if there exists at least one TP (cf. experiments). Otherwise, SF oM and MF oM take into account both distances of FNs and FPs, so they can compute a global evaluation of a contour image. However, MF oM does not consider FPs and FNs at the same time, contrary to SF oM . Another way to compute a global measure is represented by D p . Nevertheless, D p is more sensitive to FNs than FPs because of its huge coefficient (cf. Table 1).

A second measure widely computed in matching techniques is represented by the Hausdorff distance H, measuring the mismatch of two sets of points [START_REF] Huttenlocher | A multi-resolution technique for comparing images using the hausdorff distance[END_REF]. This measure is useful in object recognition, the algorithm aims to minimize H, reporting the mismatch of two shapes [START_REF] Hemery | Comparative study of localization metrics for the evaluation of image interpretation systems[END_REF] [START_REF] Paumard | Robust comparison of binary images[END_REF]. It is well known that this distance could be strongly deviated by only one pixel positioned sufficiently far from the pattern, there are several enhancements of H presented in [START_REF] Huttenlocher | A multi-resolution technique for comparing images using the hausdorff distance[END_REF][12] [START_REF] Baudrier | Binary-image comparison with local-dissimilarity quantification[END_REF]. As pointed out in [START_REF] Dubuisson | A modified Hausdorff distance for object matching[END_REF], an average distance from the edge pixels in D c to those in G t is more appropriate, like S k , RDE k or Ψ. Moreover, S k takes small values in the presence of low level of outliers, whereas the score becomes large as the level of mistaken points increases [START_REF] Dubuisson | A modified Hausdorff distance for object matching[END_REF][8] but is sensitive to remote misplaced points [START_REF] Magnier | Edge detection: A review of dissimilarity evaluations and a proposed normalized measure[END_REF]. Otherwise, derived from H, the Delta Metric (∆ k ) [START_REF] Baddeley | An error metric for binary images[END_REF] intends to estimate the dissimilarity between each element of two binary images, but is highly sensitive to distances of misplaced points. The λ measure penalizes highly FNs compared to FPs, because the more FNs are present in D c , the more D c the desirable object becomes unrecognizable.

Finally, an objective assessment of these measures (and others) has been performed by varying the thresholds on contours of images obtained by filtering techniques, see [START_REF] Chabrier | Comparative study of contour detection evaluation criteria based on dissimilarity measures[END_REF][9][10], [START_REF] Abdulrahman | A New Objective Supervised Edge Detection Assessment using Hysteresis Thresholds[END_REF] [START_REF] Magnier | A Review of Supervised Edge Detection Evaluation Methods and an Objective Comparison of Filtering Gradient Computations Using Hysteresis Thresholds[END_REF]. Theoretically, the minimum score of the measure corresponds to the best edge map, compared to the ground truth. Here, a study is led as a function of the position of the candidate object contours which may be corrupted by undesirable pixels caused by object translation, rotation of scale change (or/and due to noise and/or blur in real images).

III. EVALUATIONS AND EXPERIMENTAL RESULTS

Object localization, recognition and matching are practical tools in the computer vision domain. Usually, they are designed to meet the requirements of industrial alignment applications (automated optical inspection, industrial automation, target search, visual servoing...). The distance measures detailed above are compared here with the specific purpose of contour-based object localization evaluation. Such measures are tested on synthetic and real image in order to assess if they could be useful and accurate enough to recognize and match objects. The two subsections above present both experiments on synthetic and real images. 22 error measure are tested:

Dice * , F oM, F , d 4 , MF oM, SF oM , D p , Υ, H, f 2 d 6 , D k k=2 , Θ, Ω, RDE k=1 , RDE k=2 , S k k=1 , S k k=2 , ∆ k , Γ, Ψ,
λ and EM M , showcasing the advantages and drawbacks of each one. The tests carried out in the experiments are intended to be as complete as possible, and thus as close as possible to reality. Note that the Matlab code of the distance measures as F oM, D k , S k and ∆ k are available at http://kermitimagetoolkit.net/library/code/. Others are available on the mathworks website: https: //fr.mathworks.com/matlabcentral/fileexchange/ 63326-objective-supervised-edge-detectionevaluation-by-varying-thresholds-of-the-thinedges. Firstly, to verify if the measure has the required properties, different alterations are applied to create synthetic localization results simulating real ones.

A. Localization and Recognition of Synthetic Objects

In order to quantify the reliability of a measure of dissimilarity, an edge map of a synthetic shape is affected by various alterations: rotation, translation and scale change. Thus, it allows to verify if the evolution of the provided score obtained by a measure is in line with the expected behavior: small error for close shapes and large penalty for shapes that differ. Note that there exist matching techniques imposing grid of specific window on the image, typically in order to search small objects in the image [START_REF] Huttenlocher | A multi-resolution technique for comparing images using the hausdorff distance[END_REF][32] [START_REF] Boughnim | Hand posture classification by means of a new contour signature[END_REF] or line tackers [START_REF] Deriche | Tracking line segments[END_REF].

Here the distance measures consider both full images of the same size: the ground truth (with an isolated object) and the candidate object contour. For the quantification of similarity, special consideration should be given to the ability of a skill measure to penalize important dissimilarities and ignore the unimportant ones; as an example few spurious isolated undesirable pixels must not disturb a measure if the object is close to its desired location. To do that, a synthetic shape is created (see Fig. 3(a)). Candidate shapes are also created to simulate movements, thereupon compared with the desired location (ground truth). For assessment, a validation measure is sought so that it can appropriately penalize differences in the three continuous deformations: 1) rotation, 2) translation and 3) scale. Thus, a curve is obtained for each measure and each alteration type. Only some curves are reported in this paper, curves which are not reported are similar to other ones.

1) Rotation:

The test is performed by rotating the control shape incrementally up to a total rotation of 2π, as illustrated in Fig. 3. Then, the metric distances are computed between the rotated contour and the reference shape. The shape of the curve of the measure scores is expected to be roughly symmetric around π. It is noteworthy that locations of local extrema of the curve depend on the shape of the object. Usually, a minimum is computed for distance measures at 180 • , due the rough symmetry of the shape, as for H. For example, in Fig. 3(d), some contours of the rotated shape are aligned with the desired location, creating two minima at 160 • and 200 • for the λ measure. So, this measure penalizes strongly FNs, so it computes an error at 180 • larger than before or after, because various details of the shape are missing. However, the Dice measure computes a pixel per pixel score and does not record distances, so its behavior is unstable. Also, F oM measure and its derivatives are also unstable and very sensitive to small rotations, minima are not clearly detectable. 2) Translation: In this test, the contour shape is gradually translated by moving the shape away from its original location along a horizontal straight line, cf. Fig. 4 (the results are the same for translations in other directions). The resulting measure scores have a minimum at 0, where the two contours are collocated. Scores obtained for measures as H and RDE grows linearly, as a function of the shape displacement. Concerning Dice or EM M , the obtained curves have obvious discontinuities, demonstrating the limited sensitivity of these measures to translation. EM M obtains a score of 1 when no TP exists. Also, F oM and its derivatives are sensitive to displacements, with a jump after few pixel displacements and with score attaining its maximum (value 1) when no common points between the two shapes. The over segmentation of Υ is not monotonous when not TP are present. Other measures behave desirably, with a good response: increasing monoton-ically. Note that the λ measure decreases at the end of this experiment because there exists less pixels in the candidate shape than in the image containing all the object contours.

3) Scale Changement: For this experiment, the shape undergoes a decrease in size with the maximal scale 8th the original size (see Fig. 5). Scores from the measures are computed between the ground truth and the rescaled shape. For all shapes, excepted Dice, each measure exhibits the expected behavior of being strictly decreasing. However, the graph of EM M has sharp discontinuities that exhibit its unstable response to scaling, because its responses are 1 without TP. The scores of the F oM and its derivatives are not decreasing enough, excepted where the two contours are collocated. Finally, λ behaves correctly converging throw 0 until a scale of 3, and continue to converge less rapidly after. 

B. Localization and Recognition of Real Objects

Experiments on color real images were also performed. In Figs. 6 and8, thin edges are extracted using the Canny edge detector (σ = 1) [START_REF] Canny | A computational approach to edge detection[END_REF][36] and a non-maximum suppression: the selected pixels are those having gradient magnitude at a local maximum along the gradient direction, which is perpendicular to the edge orientation [START_REF] Ziou | Edge detection techniques: An overview[END_REF]. Here, by moving the camera, the aim is to determine when the object is at the desired position in the image using thin binary edges as features, the scores must converge to 0 as summarized in Fig. 7. This desired position corresponds to the object in the last video frame, as shown in Figs. 6(c) and 8(c), each frame may be corrupted by numerous FPs and the candidate object may contain FNs. The first video contains 264 frames, whereas the second video is composed of 116 frames of size 720×1280. The ground truth corresponds to binary boundaries of the desired position of the object, represented in blue pixels in Figs. 6(a) and 8(a). Green pixels represent TPs, red points are FPs whereas blue pixels which are also G t are tied to FNs. These features are dilated with a structural element of size 3×3 for a better visualization.

For the first video, object contours are easily extracted, with spurious undesirable points at the end of the video, as illustrated in Fig. 6(a)-(c). Consequently, only edge points detected out of the candidate object shape may disturb the contour-based localization. Indeed, curves tied to H, ∆ k , Υ and S k behave stochastically (see the caption of Fig. 6 concerning other measures). Also, Dice and F oM scores converge only to lower values when the candidate object is close to the desired location. Only Ω and λ measures have the intended behavior for this sequence, as summarized in Tab.2.

The second video is heavily corrupted by a random noise on the each color plane (SNR≈11dB). These disturbances create spurious pixels in the edge detection process, but especially, the edges of the candidate object are not well localized or not present. Therefore, the majority of measures behaves stochastically, and the last frame does not represent the best score for them (see Fig. 8 and its caption). For the F oM measure, usually its scores decrease, even though the curve converges considerably only for the last frames. On the EM M measure converges rapidly, but, remains constant after few number of frames. The Ω measure is relatively constant, excepted for the last frames where it decreases. Lastly, the λ measure behaves as expected with a minimum at the end.

IV. CONCLUSION

This study presents an assessment of measures for contourbased recognition and localization of known objects. Thus, the Dice and 20 distance measures are evaluated trough different shape alterations: translation, rotation and scale change. Experiments on real images exhibit which measures are accurate enough for an object pose or shape matching estimation. Clearly, a measure involving false negative distances remains more accurate than other techniques, as the under-segmentation measure Ω. However, when some parts of the candidate image are missing, but detected close to their desired positions, they are not taken into account by Ω. Alternatively, the λ measure remains well defined for this assessment. Missing edges are penalized higher than spurious Table 2. Reliability of the reviewed edge detection evaluation measures.

Meas.

Tr. ones because some isolated points disturb the shape location, as the majority of the measures, cf. Tab.2. Finally, λ does not need any tuning parameter or specific window and may be useful to validate a visual servoing process.

Rot. Sc. Real Dice * ✗ ✗ ✗ ✗ F oM ✗ ✗ ✗ ✗ F ✗ ✗ ✗ ✗ d4 ✗ ✗ ✗ ✗ SF oM ✗ ✗ ✗ ✗ MF oM ✗ ✗ ✗ ✗ Dp ✗ ✗ ✗ ✗ Υ ≈ ✓ ✓ ✗ H ✓ ✓ ✓ ✗ f2d6 ✓ ✓ ✓ ✗ Meas. Tr. Rot. Sc. Real D k ≈ ✓ ✓ ✗ Θ ✓ ✓ ✓ ✗ Ω ✓ ✓ ✓ ≈ RDE ✓ ✓ ✓ ✗ S k ✓ ✓ ✓ ✗ ∆ k ✓ ✓ ✓ ✗ Γ ≈ ✓ ✓ ✗ Ψ ≈ ✓ ✓ ✗ λ ✓ ✓ ✓ ✓ EMM ≈ ✓ ✗ ✗
The studied measures are tied to edge binarized images (edge detection methods are not discussed, see [START_REF] Magnier | Edge detection: A review of dissimilarity evaluations and a proposed normalized measure[END_REF], [START_REF] Abdulrahman | From contours to ground truth: How to evaluate edge detectors by filtering[END_REF], [START_REF] Magnier | A Review of Supervised Edge Detection Evaluation Methods and an Objective Comparison of Filtering Gradient Computations Using Hysteresis Thresholds[END_REF]). In practice, illumination changes modify seriously the image contrast and, additionally to the noise and the blur, may be an obstacle for shape recognition. To overcome this problem, the combination of edge-based measures and nonlinear illumination changes measure [START_REF] Steger | Similarity measures for occlusion, clutter, and illumination invariant object recognition[END_REF] Frame number 
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 12 Fig. 1. Example of translation, rotation and scale change of Dc.

  t and D c . Afterwards, denoting | • | as the cardinality of a set (e.g. |G t | represents the number of edge pixels in G t ), all points are divided into four sets (cf. Figs.1): • True Positive points (TPs): T P = |G t ∩ D c |, • False Positive points (FPs): F P = |¬G t ∩ D c |, • False Negative points (FNs): F N = |G t ∩ ¬D c |, • True Negative points (TNs): T N = |¬G t ∩ ¬D c |. Various edge detection evaluations involving confusion matrices have been developed , cf. [8][9][11]. The Dice measure [13] is one example: Dice * (G t , D c ) = 1 -2•T P 2•T P +F N+F P .
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 a345 Fig. 3. Examples of localization metrics behaviors for a rotation alteration for each 5 • : from 0 • to 360 • . The legend is available in Fig. 1(d). F oM, F , SF oM and MF oM obtain almost the same scores. Score evolutions for are the same for Dice * , d 4 and Dp. Also Υ behaves like D k , Γ, Ψ and Θ which is the perfect symmetry of Ω. Scores tied to S k k={1,2} , RDE k={1,2} , f 2 d 6 , ∆ k and Ψ are also similar. EM M behaves lire λ.

Fig. 6 .

 6 Fig. 6. Localization metrics behaviors on real experiment. The image in (b) represents the edge movements as a function of the time (from blue to red). F oM, F , SF oM and MF oM obtain almost the same scores which are close to Dice * , d 4 and Dp evolution. Scores tied to H, ∆ k , Θ, Γ, Ψ, Υ, D k , S k k=2 , RDE k=1 , RDE k=2 and f 2 d 6 are similar. Score evolutions are the same for S k k=1 , EM M and λ.

Fig. 7 .

 7 Fig. 7. Expected behavior of a measure scores.

Fig. 8 .

 8 Fig. 8. Localization metrics behaviors on real experiment with noisy images. The image in (b) represents the edge movements as a function of the time (from blue to red), showing the huge number of noise pixels along the video. F oM, F , SF oM and MF oM obtain almost the same scores which are close to Dice * , d 4 and Dp evolution. The measure ∆ k behaves like the Hausdorff distance, stochastically along the video without convergence. Also Υ behaves like D k , Θ, S k k=2 , RDE k=1 , RDE k=2 and f 2 d 6 . Scores tied to Ψ, Γ , EM M and S k k=1 are also similar.
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 12 Fig. 1. Localization metrics behaviors on real experiment tied to Fig. 6 in the original paper.

Table 1 .

 1 List of error measures involving distances, generally: k = 1 or k = 2 , and, κ = 0.1 or κ = 1/9 .
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