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ABSTRACT

This paper deals with variational optical flow approaches for motion estimation under varying illu-
mination conditions in weakly textured scenes. It proposes a systematic and complete study on de-
scriptor-based data-terms that lead to a robust variational optical flow model. Unlike the literature
which most often only experimentally shows that a descriptor is illumination invariant, this contribu-
tion gives a theoretical proof of this invariance. First, a local illumination change model is proposed
and used to mathematically check whether a descriptor is invariant or not with respect to illumination
variations between images. Then, this contribution proposes two general mathematical formulations
which can be used to design a wide variety of new illumination-invariant descriptors. To illustrate the
interest of the proposed approach, two novel illumination-invariant descriptors are constructed using
the proposed general formulations. Moreover, the performance of the descriptors was evaluated on nu-
merous datasets with known ground truth optical flow, while the robustness of the variational optical
flow approach was highlighted using complex medical image sequences without ground truth. These
experimental results have shown that data-terms based on the proposed descriptors led to accurate and
constant optical flow under varying illumination conditions.

c© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Context of the work

Optical flow (OF) is an essential part of various computer vi-

sion applications. Despite the numerous and effective methods

published during the last decades, OF determination remains

challenging due to the data variability arising from both the ac-

quisition conditions and the scenes themselves.

Recently, convolutional neural network (CNN)-based meth-

ods such as FlowNet [1], FlowNet2 [2], PWC-Net [3], Lite-

FlowNet [4] have demonstrated impressive OF results, both

in terms of accuracy and from the computation time point of

view. However, such learning-based approaches often require

the availability of databases with ground truth OF for the CNN

training. Moreover, in order to get highly accurate results, the

∗∗Corresponding author: Tel.: +33 3 72 74 39 47
e-mail: christian.daul@univ-lorraine.fr (Christian Daul)

content of the images in the testing phase should be similar to

that of the images of the training dataset. In fact, there exist ap-

plications in which CNN-based OF methods are quite difficult

to be used due to the lack of training datasets. For instance,

in medical imaging, it is often difficult to construct training

datasets with known ground truth OF.

Alternatively, the patch-matching methods (e.g. DeepFlow

[5], FlowFields [6], EpicFlow [7], CPM-Flow [8]) establish ho-

mologous point correspondences by matching image patches.

Their effectiveness has been shown on well-known bench-

marks, namely Middlebury [9], MPI Sintel [10] and KITTI [11,

12]. However, most of images in these benchmarks are with

rather numerous and/or well contrasted image primitives or tex-

tures. For a particular (but widespread) class of difficult im-

ages characterized by a lack of textures and strong illumination

changes (such scenes are classical in medical endoscopy for in-

stance), patch-matching methods are often less efficient than

© 2018 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S107731421830256X
Manuscript_9b2a5165d5487d24131e6758ad94cf30

http://www.elsevier.com/open-access/userlicense/1.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S107731421830256X


2

variational methods [13, 14, 15, 16].

As an example, Fig. 1 illustrates the OF result obtained by the

CPM-Flow patch matching method [8] and the proposed varia-

tional method for a pair of gastroscopic images with very weak

textures. Figs. 1(a)-1(b) are two consecutive video-frames of

the inner stomach wall obtained with the endoscope axis which

is relatively perpendicular to the epithelium surface and with

a camera translation between the two acquisitions (i.e. with a

camera movement without in- and out-plane rotations). In such

a situation the flow field vectors should all be almost parallel

and their magnitude should only slightly change according to

the distance between the camera and the scene points. It is

clearly visible in Fig. 1(c) that the vector field obtained with

the CPM-Flow method [8] is not uniform. Indeed, the three red

image rectangles highlight zones in which there is a large dis-

parity in the vector magnitudes and orientations reveal rather

large errors in the OF determination. On the contrary, as shown

in Fig. 1(d), with the variational method proposed in this pa-

per, the vector field is quite uniform, both in orientation and

magnitude1.

As illustrated by the previous example, variational methods

remain valuable approaches for difficult scenes with few tex-

tures and with changing illumination conditions. Moreover, the

variational methods can also be used as a refinement step in

other approaches such as the FlowNet [1]. Contrary to recent

publications which highlighted the interest of CNN-based or

patch matching methods, this contribution focuses on the con-

tributing role of variational methods for weakly textured scenes

under strong illumination changes. The aim of this study is not

to compare the performance of different OF approaches (learn-

ing based methods, patch matching approaches or variational

methods) since they have all optimal performances for different

scene types, and their applicability depends on the scene type

(e.g., in medical endoscopy it is not possible to obtain ground

1The difference in uniformity of the OF fields of the IIOF-NLDP method

and the CPM-Flow method is also shown in the 120 images of the gastroscopic

video-sequence (pyloric antrum region of the stomach) provided as a supple-

mentary material of this paper.

(a) source image (b) target image

(c) CPM-Flow (d) Proposed variational method

Fig. 1. OF results of the CPM-Flow method [8] and the proposed method

on a pair of gastroscopic images.

truth flow fields for the learning step of CNN-based methods).

The goal of this paper is rather to deeply investigate patch-based

illumination invariant descriptors leading to robust data-terms

in a variational OF model. From the theoretical point of view,

the major contribution of this paper lies in the general math-

ematical formulation of illumination-invariant descriptors that

facilitate the design of robust data-terms.

1.2. Previous works

The importance of variational OF estimation has been

demonstrated since the pioneering work of Horn and

Schunck [17]. Since this publication, numerous improvements

were presented in the field of variational OF. Interested readers

may refer to [9, 18, 19] for a comprehensive overview of OF

methods and the general principles behind them.

Variational models for OF estimation can be generally for-

mulated as follows. Given a source image Is and a target image

It, the dense flow field u = (ux, uy) between Is and It is com-

puted by minimizing

E(u) = Ereg(u) + λEdata(Is, It,u), (1)

where Ereg is a regularization term that assumes smoothness of

solution u, Edata stands for the data-term that measures the sim-

ilarity of the pixels in Is and It while parameter λ > 0 controls

the relative importance of the data and regularization terms.
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The data-terms Edata(Is, It, u) proposed in the literature corre-

spond to an energy with one or several components Ei(Is, It, u):

Edata(Is, It,u) =

K∑
i=1

λiEi(Is, It,u). (2)

The scalars λi > 0 act as weights controlling the relative im-

portance of the K different data-term parts. Each component

Ei(Is, It,u) in (2) is based on a certain constancy assumption.

The classical variational OF methods [17, 20, 21, 22] define

the data-term using the well-known brightness constancy as-

sumption (BCA):

It(x + ux) = Is(x). (3)

More specifically,

Edata = EBCA =
∑
x∈Ω

Ψ(Is(x) − It(x + ux)), (4)

where Ψ(·) is a penalty function and Ω stands for the image

domain. It is clear that the BCA is most often not an appropri-

ate assumption since, in many real scenes, the illumination of

homologous pixels changes between two images.

Brox et al. [23] have shown that the robustness against illu-

mination changes can be improved by combining the BCA with

the gradient constancy assumption (GCA, energy EGCA). The

two-component data-term becomes:

Edata = λ1EBCA + λ2EGCA, (5)

with

EGCA =
∑
x∈Ω

Ψ(‖∇It(x + ux) − ∇Is(x)‖). (6)

This popular BCA-GCA data-term was implemented in several

optical flow methods [24, 25]. However, Xu et al. [13] showed

that a simultaneous use of BCA and GCA in all pixels is not

optimal in terms of robustness. In fact, an efficient simultane-

ous use of BCA and GCA is difficult to reach because deter-

mining the weights (which give the appropriate relative impor-

tance of the BCA and GCA terms) is not easy and is strongly

scene dependent. Moreover, the simultaneous use of both con-

stancy assumptions leads also to a computational complexity in

solving the optimization problem. Consequently, Xu et al. [13]

proposed to use a binary mapping method that locally selects

(according the pixel values in space Ω) Edata based either on

BCA or on GCA. Although GCA is less sensitive than BCA to

illumination variations, it is only invariant under additive illu-

mination changes. As pointed out in [26] and [27], GCA is not

able to compensate for the multiplicative illumination changes.

In particular, in scenarios with large illumination changes, GCA

is usually not fulfilled since multiplicative illumination changes

are significant in such scene conditions.

Other constancy assumptions based on high order derivatives

such as the Laplacian and the Hessian have been investigated

in [28]. The data-term proposed in [28] is obtained by a linear

combination (as in (2)) of BCA, GCA, the Laplacian constancy

assumption, and the Hessian constancy assumption. However,

the use of higher order derivatives significantly increases both

the computational complexity and the sensitivity with respect

to noise (data-term based on GCA is less sensitive to noise than

that in [28] since it contains lower order derivatives). More gen-

erally, a major drawback of a linear combination of constancy

assumptions lies in the difficulty to find the weights λi in (2)

ensuring a robust OF determination for different scenes.

Wedel et al. [29] proposed an alternative to higher-order

constancy assumptions that preprocesses the images using a

structure-texture decomposition. The input image for OF es-

timation is a linear combination of the structure and texture

components, with an emphasis on the texture components. Al-

though this method was successfully used in [18], its compu-

tation complexity is high and the weight adjustment (balance

between texture and structure) is not trivial for different scenes.

In other approaches [30, 31, 32, 33, 34, 35], the data-term

was computed with photometric invariants to improve the ro-

bustness of the OF against illumination changes in color image

sequences. The overall idea behind photometric invariants is

detailed in Mileva et al. [32]. These authors proposed a data-

term combining several photometric invariants obtained from

normalized RGB channels, log-derivatives, from the HSI color

space, or from the rφθ color space. However, this model is only

applicable to color images. Zimmer et al. [34] proposed to use

constraint normalization, and a HSV color representation with
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higher order constancy assumptions.

Kumar et al. [27] assume that the image intensity I is pro-

portional to the product of illumination L with reflection R,

i.e. I ∝ L × R. The authors proposed to decouple the inten-

sities of images Is and It in a illumination component L and

reflection component R. Then, the OF field between Is and It

is estimated from the two images Ĩs = β log Ls + log Rs and

Ĩt = β log Lt+log Rt, with β ∈ (0, 1) since reflectance is invariant

to illumination changes. It was demonstrated that the decou-

pled method combined with the BCA and GCA assumptions

achieves improved accuracy under high illumination variation.

However, the performance of this method strongly depends on

the accurate estimation of the illumination component L. No

theoretical basis that proves that this method is invariant to illu-

mination changes was provided.

Haussecker and Fleet [36] introduced a framework that tackle

the illumination issue by using explicit models of the underly-

ing physical process that causes illumination changes. In this

framework, the OF field and the parameters of the illumina-

tion model have to be simultaneously estimated. Unlike [36],

Negahdaripour [37] proposed the generalized dynamic image

model (GDIM) that describes the illumination changes as a

combination of a multiplicative and an additive component re-

gardless of the underlying physical events. Accordingly, the

author replaced the classical BCA in (3) by a more general con-

stancy constraint:

It(x + ux) = axIs(x) + bx, (7)

where the brightness of corresponding pixels in two consecutive

images is related via the motion vector ux, as well as by the

radiometric parameters ax and bx. It is clear that the GDIM

model is suited to many scenes due its general nature. Kim et

al. [38] used this model to construct a robust variational method

for OF computation. However, the optimization of the OF with

this method is quite complex for a limited effectiveness.

Recently, descriptor-based variational OF methods became

very popular because of their effectiveness in tackling the

problem of illumination changes. The underlying idea of

these methods is to construct a robust data-term by defining

illumination-invariant descriptors at each pixel. Some popu-

lar descriptor-based approaches are the census transform-based

methods [39, 40, 41, 42], the rank transform-based method [43],

the correlation-based methods [44, 45, 14, 46], the MLDP

method of Mohamed et al. [15], and the NND method of Ali

et al. [16].

1.3. Motivation of the paper

As demonstrated in [16], the descriptor-based methods are

able to preserve accuracy of the OF under changing illumi-

nation conditions. However, up to now, most of the contri-

butions describing descriptor-based methods only introduce a

formulation of the descriptors and use experiments to highlight

their performances, without giving a mathematical justification

of their invariance according to illumination change models.

Moreover, although many of the descriptors are based on sim-

ilar principles, there is no unified theoretical basis for defining

these descriptors.

In preliminary works we proposed a new illumination-

invariant descriptor [47] and a general form [48] from which

descriptors can be derived. However, no general and detailed

mathematical discussion was given about the illumination in-

variance of descriptors and their design. Moreover, no thor-

ough assessment and comparison of existing and new descrip-

tors were made on reference benchmarks (KITTI, MPI-Sintel,

etc.). This paper proposes further developments in the def-

inition of illumination-invariant data terms in variational OF

model. The major contributions of this paper are as follows:

1. We use a local illumination change model to describe

the illumination changes between homologous images re-

gions. Complex scene illumination changes can be con-

sidered when the corresponding neighborhoods in images

Is and It are small enough.

2. We propose a unified theoretical basis for defining

illumination-invariant descriptors in the data-term of vari-

ational approaches. This theoretical basis is used to gives

answers to following questions : What explains the ro-

bustness against illumination changes of some well-known
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models as the census transform, the correlation transform

or the complete rank transform? What are their underlying

mathematical concepts?

3. We introduce two generalized formulations facilitating the

design of illumination-invariant descriptors (a completely

novel formulation and a more detailed description of the

formulation in [48]).

4. Based on the generalized formulations, we propose two

illumination-invariant descriptors (a novel descriptor and

an improved mathematical justification of the descriptor

in [48]).

5. We also present a comparison and evaluation of

illumination-invariant descriptors using the same varia-

tional model.

1.4. Paper organization

The remainder of this paper is organized as follows. Sec-

tion 2 presents the global and general framework for the

descriptor-based variational OF methods. Section 3 proposes an

illumination change model, as well as a criterion to determine

whether a descriptor is invariant or not to illumination changes.

This section also recalls some existing descriptors which are ro-

bust to varying illumination, and mathematically proves their il-

lumination invariance. Two generalized forms of illumination-

invariant descriptors are introduced in Section 4. The general

forms given in Section 4 are then used to propose two novel

descriptors in Section 5. In Section 6, the performance of the

new descriptors is compared to that of reference descriptors of

the literature. Section 7 shows the interest of the proposed OF

approach in the frame of complex scene mosaicing. The last

section gives a general conclusion for this contribution.

2. Descriptor-based Variational Optical Flow Model

In the general energy given in (1), descriptor-based data-

terms can be formulated as follows:

Edata =
∑
x∈Ω

Ψ(D(PIs (x)) − D(PIt (x + ux))), (8)

where Is and It : Ω → R are source and target images respec-

tively, Ω = {x = (x, y) | 1 ≤ x ≤ N, 1 ≤ y ≤ M} ⊆ N2, Ψ(·)

is a penalty function and D is a descriptor that locally charac-

terizes image region similarities in images Is and It. D(PI(x))

denotes the feature descriptor of the pixels in the neighborhood

of pixel x in image I, this descriptor being computed with the

pixel values of patch PI(x) centered on x.

While the data-term in (8) will take various forms, the regu-

larization term in (1) is kept constant in this contribution. We

use the non-local total variation as in [45, 49, 50, 14, 25] to

define the regularization term:

Ereg(u) =
∑
x∈Ω

∑
x′∈Nx

wx′
x ‖ux − ux′‖1, (9)

where Nx is the set of neighbor pixels centered on pixel x and

the weights wx′
x depend on the similarity between pixels x and

x′. Similarly to [14], the weights wx′
x are defined as follows:

wx′
x = exp

−‖x − x′‖2

2σ2
1

−
‖L(x) − L(x′)‖2

2σ2
2

, (10)

where σ1 and σ2 are parameters controlling the similarity mea-

sure, and L(x) is the color vector in the CIE Lab color space.

According to [14], by defining a weight matrix W in space

R|Ω|×|N|,

W =


wx′∈N(1,1)

(1,1) · · · wx′∈N(1,1)

(1,1)
...

. . .
...

wx′∈N(N,M)

(N,M) · · · wx′∈N(N,M)

(N,M)

 , (11)

and a linear operator K : R2×|Ω| → R2×|Ω|×|N|

Ku =


ux′∈N(1,1) − u(1,1) · · · ux′∈N(1,1) − u(1,1)

...
. . .

...

ux′∈N(N,M) − u(N,M) · · · ux′∈N(N,M) − u(N,M)

 ,
where |N| is the size of the neighborhoods Nx, the regulariza-

tion term (9) can be rewritten as

Ereg = F(Ku), (12)

with F : R2×|Ω|×|N| → R is a function defined by

F(z) = ‖W · z‖1. (13)

Therefore, flow field u is computed by solving following opti-

mization problem:

min
u

F(Ku) + λEdata(Is, It,u). (14)
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This optimization can be effectively implemented using the

projected-proximal-point algorithm [51]. The details of the al-

gorithm are beyond the scope of this work. Interested readers

can refer to [51, 14] for more details on the mathematical con-

cepts.

The following section details the underlying principles of

the descriptor-based data-terms that are robust to illumination

changes.

3. Descriptor-based Illumination-Invariant Data-Terms

The descriptor-based data-term in (8) is robust against il-

lumination changes when local descriptor D is illumination-

invariant, i.e., if pixel x in Is and pixel (x + ux) in It are two

corresponding pixels then D(PIs (x)) = D(PIt (x + ux)).

Local descriptors D are computed with small patches PI(x0)

centered at pixel x0 in image I and with a size of (2k+1)×(2k+1)

pixels, where k is a positive integer. PI(x0) can be represented

by a vector taking the pixel intensity values as components:

PI(x0) = [I(x0), I(x1), . . . , I(xn)]T ∈ Rn+1, (15)

where n = (2k + 1)2 − 1 is the number of neighbor pixels of x0

in the patch. The general formulation of descriptors D for any

pixel x0 in image I can be written as:

D(PI(x0)) =



f0 (PI(x0))

f1 (PI(x0))
...

fm (PI(x0))


∈ Rm, (16)

where fi : Rn+1 → R, i = 0, . . . ,m are real functions.

The main issue arising when designing an illumination in-

variant data-term lies in the definition of the functions fi(·) lead-

ing to an accurate OF field.

3.1. Illumination change model and illumination-invariance

criterion for descriptors

In numerous scenes (e.g. in outdoor or medical scenes) the

illumination changes between consecutive images of a video-

sequence are complex and cannot be represented by a global

model. For instance, gradient constancy over complete images

(or large image parts) is most often not a realistic illumination

change assumption since the illumination variation is barely

constant for all homologous pixels of two images. Illumina-

tion changes between images should rather be locally modeled

to be as general as possible in terms of scene types.

Negahdaripour [37] simulated the illumination changes by an

affine transformation (see (7)). This pixel-wise model is able to

capture complex variations. However, as shown in [38], inte-

grating this model into a variational calculus algorithm leads to

a complex optimization problem and high computation times

since, besides a flow vector, parameters ax and bx have to be

estimated for each pixel.

An interesting fact is that two consecutive video frames have

usually the property of local stationarity such that all pixels in a

small image region may share the same parameters in the illu-

mination variation model. Therefore, the assumption is made

that the illumination changes of all corresponding pixels in

small homologous neighborhoods in two consecutive images

can be accurately represented by a model with constant para-

meters.

Thus, instead of using the linear model in (7) at pixel-level,

a patch-based model is used to describe locally the illumination

changes between homologous neighborhoods:

PIt (x + ux) = axPIs (x) + bx, (17)

where ax ∈ R>0, b ∈ R, PIs (x) and PIt (x + ux) are two corre-

sponding patches in Is and It, and ux is the displacement vector

at pixel x of image Is. Constant values of parameters ax and bx

in small image regions allows for modelling complex illumina-

tions changes between images.

Unlike in the GDIM model in (7), parameter ax in the pro-

posed model is assumed to be greater than 0, since the intensity

values of pixels are non-negative. Rather than computing the

values of parameters ax and bx, the model in (17) is only used

to design illumination independent descriptors.

The criterion allowing to confirm or to contradict the illu-

mination invariance property of descriptor D is first given by

exploiting (17).

Definition 1. Descriptor D is illumination-invariant if it is in-
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variant with respect to the illumination variation model given

in (17). In other words, D has to satisfy following constraint:

D(PI(x0)) = D(ax0 PI(x0) + bx0 ), (18)

for all ax0 ∈ R>0, bx0 ∈ R.

Equation (18) gives the necessary condition for descriptors

to be illumination-invariant.

The literature presents descriptor-based variational OF meth-

ods that have only been experimentally proven to be robust to

illumination changes [39, 40, 41, 42, 43, 44, 45, 14, 15, 16].

The data-terms of these methods use patch-based descriptors

under the form given in (8). In sub-sections 3.2 and 3.3, we

rewrite some well-known descriptors and explain how it can be

mathematically checked whether these descriptors are invariant

or not with respect to the illumination change model proposed

in (17).

3.2. Existing Local descriptors

3.2.1. Census transform

The Census transform [39] has been used as an effective

solution for computing OF under outdoor lighting conditions

[40, 41, 42]. Writing the Census transform under the form given

in (16) leads to:

DCensus(PI(x0)) =



sgn(I(x0) − I(x1))

sgn(I(x0) − I(x2))
...

sgn(I(x0) − I(xn))


(19)

with

sgn(υ) =

 1, υ > 0

0, otherwise.
(20)

3.2.2. Complete rank transform (CRT)

The CRT descriptor [43] is computed as follows:

DCRT (PI(x0)) =



∑n
j=0 sgn(I(x0) − I(x j))∑n
j=0 sgn(I(x1) − I(x j))

...∑n
j=0 sgn(I(xn) − I(x j))


. (21)

The i-th component of DCRT gives the number of pixels in

PI(x0) having a smaller intensity than pixel xi.

Fig. 2. Kirsch edge kernels for the LDP and MLDP descriptor computa-

tion. Kernel Mi, i ∈ {1, 2, . . . , 8} is used to determine the gradient compo-

nent along the i-th direction defined by the line passing through points x0

and xi.

3.2.3. Local Directional Pattern (LDP)

The LPD descriptor [52] corresponding to pixel x0 is a binary

code computed for patch PI(x0) of size 3 × 3 pixels and based

on the eight Kirsch edge kernels Mi, i ∈ {1, 2, . . . , 8} given in

Fig. 2. The LDP descriptor is mathematically defined as:

DLDP(PI(x0)) =



sgn(|M1 ⊗ PI(x0)| − mk)

sgn(|M2 ⊗ PI(x0)| − mk)
...

sgn(|M8 ⊗ PI(x0)| − mk)


(22)

where operator ⊗ gives the sum of the element-wise product of

two matrices, and mk is the k-th largest element in array {|M1 ⊗

PI(x0)|, |M2 ⊗ PI(x0)|, . . . , |M8 ⊗ PI(x0)|}. As shown in Fig. 2,

the edge response in direction i is given by Mi ⊗ PI(x0) and

i = 1 corresponds to the East direction. The edge magnitudes

along the i-th direction (defined by pixel pair x0 and xi) is used

to determine the binary code for pixel x0.

3.2.4. Modified Local Directional Pattern (MLDP)

Mohamed et al. [15] used the descriptor of Section 3.2.3 to

obtain the modified local directional pattern (MLDP). Similarly

to the LDP descriptor, the MLDP vector corresponds to an 8-bit

information generated from the signs of the eight Kirsch edge

responses. This descriptor is defined by:

DMLDP(PI(x0)) =



sgn(M1 ⊗ PI(x0))

sgn(M2 ⊗ PI(x0))
...

sgn(M8 ⊗ PI(x0))


, (23)

where sgn(·) is a binary function as defined in (20).



8

3.2.5. Correlation transform

For the correlation transform [14], the descriptor is defined

with the mean µP and variance σ2
P of the n + 1 pixels intensities

of the patch:

DCorr(PI(x0)) =



I(x0)−µP
σP

I(x1)−µP
σP

...

I(xn)−µP
σP


, (24)

with µP =
∑n

i=0 I(xi)
n+1 , and σ2

P =
∑n

i=0 (I(xi)−µP)2

n+1 .

3.2.6. Normalized Neighborhood Descriptor (NND)

In order to compute their descriptor, Ali et al. [16] used a

patch PI(x0) with a minimal size of 5 × 5 pixels (i.e., k ≥ 2).

At central pixel x0, a sub-patch P0 ⊂ PI(x0) of size (2k′ + 1) ×

(2k′ + 1) is defined (k′ > 0). Here, x0 is also the central pixel

of sub-patch P0, and the size of PI(x0) and P0 is constrained by

k = 2k′. Likewise, there exists a set of m = (2k′ + 1)2 − 1 sub-

patches {P j | P j ⊂ PI(x0)}mj=1 where P j has the same size as P0.

The pixels within sub-patch P j are denoted by x1
j , x

2
j , . . . , x

m+1
j .

Using theses patches, the NND descriptor is defined as:

DNND(PI(x0)) =



exp −‖P1−P0‖
2

h2
x0

exp −‖P2−P0‖
2

h2
x0

...

exp −‖Pm−P0‖
2

h2
x0


, (25)

where

‖P j − P0‖
2 =

m+1∑
i=1

(I(xi
j) − I(xi

0))2, (26)

and h2
x0

=

3∑
k=0

‖P2k+1 − P0‖
2/4. (27)

In (27), P1,P3,P5, and P7 are 4 sub-patches centered at 4

neighbor pixels of x0, namely x1, x3, x5 and x7, respectively (re-

fer to Fig. 2 for the relative pixel positions).

3.3. Descriptor Illumination-Invariance Assessment

Until now, the effectiveness in estimating OF under changing

illumination conditions has only been shown experimentally for

the descriptors listed in Section 3.2. To the best of our knowl-

edge, none of the corresponding contributions have discussed

the mathematical concepts explaining why such descriptors can

cope with illumination changes. This sub-section mathemati-

cally justifies the appropriateness of these descriptors.

Theorem 1. Descriptors DCensus, DCRT , DLDP, DMLDP, DCorr,

and DNND are illumination-invariant.

Proof. Denote Di as the i-th component of descriptor D and
P̃I(x0) = ax0 PI(x0) + bx0 . One needs to prove that for all ax0 ∈

R>0 and bx0 ∈ R,

Di(PI(x0)) = Di(P̃I(x0)). (28)

- For DCensus, the i-th component can be written as:

Di
Census(PI(x0)) = sgn(I(x0) − I(xi)). (29)

Due to ax0 > 0,

Di
Census(P̃I(x0)) = sgn(ax0 (I(x0) − I(xi)))

= Di
Census(PI(x0)). (30)

- The i-th DCRT component is:

Di
CRT (PI(x0)) =

n∑
j=0

sgn(I(xi) − I(x j)). (31)

Because ax0 > 0,

sgn[(ax0 I(xi) + bx0 ) − (ax0 I(x j) + bx0 )] =

= sgn[ax0 (I(xi) − I(x j))] = sgn(I(xi) − I(x j)).
(32)

Therefore, Di
CRT (P̃I(x0)) = Di

CRT (PI(x0)).
- Similarly, each component of DLDP, can be written as:

Di
LDP(PI(x0)) = sgn(|Mi ⊗ PI(x0)| − ms

k) (33)

where ms
k is the k-th largest element in array

As = {|M1 ⊗ PI(x0)|, . . . , |M8 ⊗ PI(x0)|}. (34)

Thus,

Di
LDP(P̃I(x0)) = sgn

(
|Mi ⊗ P̃I(x0)| − mt

k

)
, (35)

where mt
k is the k-th largest element in array

At = {|M1 ⊗ P̃I(x0)|, . . . , |M8 ⊗ P̃I(x0)|}. (36)

As it can be seen in Fig. 2, the sum of the elements in the Kirsch
matrix Mi equals zero for all i = 1, . . . , 8. Thus, it is easy to
conclude that

Mi ⊗
[
ax0 PI(x0) + bx0

]
= ax0 (Mi ⊗ PI(x0)) . (37)

Therefore, ∀i, j ∈ {1, . . . , 8},∀ax0 > 0,∣∣∣Mi ⊗ P̃I(x0)
∣∣∣ ≥ ∣∣∣M j ⊗ P̃I(x0)

∣∣∣
⇔ |Mi ⊗ PI(x0)| ≥

∣∣∣M j ⊗ PI(x0)
∣∣∣ . (38)
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It means that the element order in array At is the same as the
element order in the corresponding array As. More precisely,
if ms

k = |M j ⊗ PI(x0)| is the k-th largest element in array As,
then its corresponding mt

k = |M j⊗ P̃I(x0)| is also the k-th largest
element in arrayAt. Therefore,

Di
LDP(P̃I(x0)) = Di

LDP(PI(x0)). (39)

- For DMLDP, the i-th component can be written as:

Di
MLDP(PI(x0)) = sgn(Mi ⊗ PI(x0)). (40)

From (37) it follows:

sgn(Mi ⊗
[
ax0 PI(x0) + bx0

]
) = sgn(ax0 (Mi ⊗ PI(x0))).

Therefore, with ax0 > 0

Di
MLDP(P̃I(x0)) = Di

MLDP(PI(x0)). (41)

- Component i of descriptor DCorr becomes:

Di
Corr(PI(x0)) = (I(xi) − µP) /σP. (42)

One has

Di
Corr(P̃I(x0)) =

(
ax0 I(xi) + bx0 − µP̃

)
/σP̃, (43)

ax0 I(xi) + bx0 − µP̃ = ax0 I(xi) + bx0 − ax0µP − bx0

= ax0 (I(xi) − µP), (44)

and

σP̃ =

√√
1

n + 1

n∑
i=0

(ax0 I(xi) + bx0 − µP̃)2

=

√√
1

n + 1

n∑
i=0

a2
x0

(I(xi) − µP)2 = ax0σP. (45)

By combining (43), (44), and (45) we deduce

Di
Corr(P̃I(x0)) = Di

Corr(PI(x0)). (46)

- Finally, the i-th component of descriptor DNND is:

Di
NND(PI(x0)) = exp

(
−‖Pi − P0‖

2/h2
x0

)
. (47)

Let us consider the NND descriptor on P̃I(x0). From (26) and
(27) one gets

Di
NND(P̃I(x0)) = exp

(
−‖P̃i − P̃0‖

2/h̃2
x0

)
, (48)

where

‖P̃i − P̃0‖
2 =

m+1∑
i=1

(ax0 I(xi
j) + bx0 − ax0 I(xi

0) − bx0 )2

=

m+1∑
i=1

a2
x0

(I(xi
j) − I(xi

0))2

= a2
x0
‖Pi − P0‖

2, (49)

and

h̃2
x0

=

∑3
k=0 ‖P̃2k+1 − P̃0‖

2

4

= a2
x0

∑3
k=0 ‖P2k+1 − P0‖

2

4
= a2

x0
h2

x0
. (50)

By combining (48), (49), and (50), one obtains

Di
NND(P̃I(x0)) = exp

−a2
x0
‖Pi − P0‖

2

a2
x0

h2
x0

= Di
NND(PI(x0)). (51)

In this section it was theoretically proven why descriptors

DCensus, DCRT , DLDP, DMLDP, DCorr and DNND are effective for

OF estimation under changing illumination conditions. How-

ever, experimental results in [14, 15, 16] demonstrated that

there is a significant difference in the accuracy of OF fields

estimated by these descriptors. Thus, the design of illumina-

tion invariant descriptors leading to accurate flow fields and in-

volving a limited computational complexity remains an open

challenge. The next section provides two generalized types of

illumination-invariant descriptors that will facilitate the design

of new descriptors that are robust to illumination changes.

4. Generalized Formulations for Illumination-Invariant

Descriptors

Consider two vectors vs = [vs
0, v

s
1, . . . , v

s
n]T and vt =

[vt
0, v

t
1, . . . , v

t
n]T in Rn+1 such that

vt
i = axvs

i + bx,∀i = 0, 1, . . . , n (52)

with ax ∈ R>0 and bx ∈ R. These vectors correspond to the de-

scriptors of patches PIs and PIt of the source (Is) and target (It)

images, respectively. The relationship between the two vectors

given in (52) is based on the illumination change model given

in (17).

To propose general forms of illumination-invariant descrip-

tors, let us start with the following lemma.

Lemma 1. Suppose vs and vt are two vectors in Rn+1 satisfy-

ing (52). If {α0, α1, . . . , αn} is a sequence of real numbers such

that 
α2

0 + α2
1 + · · · + α2

n , 0

α0 + α1 + · · · + αn = 0,
(53)
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then
n∑

i=0

αivt
i = ax

n∑
i=0

αivs
i , and (54)

sgn
n∑

i=0

αivt
i = sgn

n∑
i=0

αivs
i . (55)

Proof. We have,
n∑

i=0

αivt
i =

n∑
i=0

αi (axvs
i + bx)︸       ︷︷       ︸

vt
i=axvs

i +bx

= ax

n∑
i=0

αivs
i + bx

n∑
i=0

αi︸︷︷︸
=0

. (56)

From
∑n

i=0 αi = 0 and ax > 0, one can deduce that
∑n

i=0 αivt
i = ax

∑n
i=0 αivs

i

sgn
(∑n

i=0 αivt
i

)
= sgn

(∑n
i=0 αivs

i

)
.

(57)

Using Lemma 1, we can propose two general forms of

illumination-invariant descriptors as follows.

4.1. Descriptor Form based on Sign-Invariance

Using Lemma 1, a generalized form of illumination-invariant

descriptors can be defined as:

D(PI(x0)) =



sgn
(∑n

j=0 α0, jI(x j)
)

sgn
(∑n

j=0 α1, jI(x j)
)

...

sgn
(∑n

j=0 αm, jI(x j)
)


, (58)

where αi = {αi,0, αi,1, . . . , αi,n}, i = 0, 1, . . . ,m are the sequences

of real numbers satisfying (53).

With (58), it is possible to generate new descriptors by

choosing appropriate values for αi. For instance, when αi =

{αi,0, αi,1, . . . , αi,n} with αi,0 = 1, αi,i = −1, αi, j = 0 with

j < {0, i}, the functions fi in (16) are equal to sgn (I(x0) − I(xi)),

and one gets (19) of the DCensus descriptor. Likewise, with sim-

ilar calculations, it is possible to show that descriptors DCRT ,

DLDP and DMLDP respectively defined in (21), (22) and (23),

can be derived from the general equation (58).

4.2. Descriptor Form based on Illumination Model Parameter

Elimination

This section presents a generalized form of illumination-

invariant descriptors based on the elimination of the illumina-

tion model parameters ax0 and bx0 . The aim is to construct de-

scriptor D such that it verifies (18):

Di(PI(x0)) = Di(ax0 PI(x0) + bx0 ),∀i. (59)

To this end, the i-th component in D is defined by:

Di(PI(x0)) = Ψ

(
g1,i(PI(x0))
g2,i(PI(x0))

)
(60)

where Ψ(·) is a non-constant function and g1,i, g2,i : Rn+1 → R

are functions such that

g1,i(ax0 PI(x0) + bx0 ) = h(ax0 )g1,i(PI(x0)) (61)

g2,i(ax0 PI(x0) + bx0 ) = h(ax0 )g2,i(PI(x0)), (62)

with function h(.) taking ax0 as unique variable. Thus, one has

for each component i of a descriptor:

Di(ax0 PI(x0) + bx0 ) = Ψ

(
g1,i(PI(x0))
g2,i(PI(x0))

)
= Di(PI(x0)),

and, consequently, D(ax0 PI(x0) + bx0 ) = D(PI(x0)).

As an example, the following function can be used both as

g1,i and g2,i in (61) and (62) :

g(PI(x0)) = γ

 L∑
i=1

( n∑
j=0

αi, jI(x j)
)τ

η

, (63)

where the sequences {αi, j}
n
j=0, i = 0, 1, . . . , L satisfy condi-

tion (53), and γ, τ and η are fixed positive numbers. In this

case, g(ax0 PI(x0) + bx0 ) = (ax0 )τηg(PI(x0)).

Descriptors DCorr and DNND are two specific cases of the gen-

eralized form (60). For example, for descriptor DCorr, one can

see that

Di
Corr(PI(x0)) =

I(xi) − µP

σP

= Ψ

(
g1,i(PI(x0))
g2,i(PI(x0))

)
(64)

in which functions Ψ, g1,i and g2,i are given by:
Ψ(x) = x

g1,i(PI(x0)) = I(xi) − µP

g2,i(PI(x0)) = σP = 1
√

n+1

(∑n
i=0(I(xi) − µP)2

) 1
2 .

(65)

We have, I(xi) − µP =
∑n

j=0 αi, jI(xi) with the sequence {αi, j}
n
j=0

is given by

αi, j =


−1

n+1 , if j , i

n
n+1 , otherwise.

(66)
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Fig. 3. Robinson kernels used to define the first descriptor. The patch cor-

responds to a 3 × 3 neighborhood around pixel x0.

It is remarkable that sequence {αi, j}
n
j=0 satisfies condition (53)

for all i = 0, 1, . . . , n. Therefore, functions g1,i and g2,i in (64)

can be rewritten as:

g1,i(PI(x0)) =

n∑
j=0

αi, jI(xi) (67)

g2,i(PI(x0)) =
1

√
n + 1

( n∑
i=0

( n∑
j=0

αi, jI(xi)
)2
) 1

2

(68)

where αi, j is defined by (66). Referring to (63), it can be seen

that in (67), the parameters γ, L, τ, and η are set to 1, while

in (68), γ = 1
√

n+1
, L = n, τ = 2, and η = 1

2 .

5. From the Generalized Formulations to New Descriptors

As shown before, the existing descriptors given in Section 3.2

are particular cases of the two generalized formulations given

in Section 4. Using these two formulations, one can design

new illumination-invariant descriptors. Note that the general-

ized formulations are the starting points for the construction of

illumination invariant descriptors. The main issue now lies in

the choice of appropriate functions and parameters in (58) for

the sign invariance descriptors and in (60) for the illumination

model parameter elimination approach.

This section introduces, as examples, two novel descrip-

tors derived from the second general form (60)-(63). Simi-

larly, other descriptors could be derived from the first general

form (58). The assessment of the performance of the proposed

descriptors is given in Section 6.

As visible in (17), a linear model is used to represent the

illumination changes. This model leads to high accuracy if it

is applied on small enough neighborhoods. Thus, to define the

descriptor for pixel x0 in image I, we consider a 3 × 3 patch

PI(x0) = [I(x0), I(x1), . . . , I(x8)]T centered at x0 (see Fig. 3).

5.1. First Proposed Descriptor

The first descriptor (D1) based on the elimination of the il-

lumination change model parameters ax and bx is designed as

follows:

D1(PI(x0)) =
Ax0

‖Ax0‖2
, (69)

whereAx0 = [M1 ⊗ PI(x0), . . . ,M8 ⊗ PI(x0)]T is a vector in R8

and M1,M2, . . . ,M8 are eight Robinson compass kernels (see

Fig. 3).

Note that the sum of the elements in the Robinson compass

kernels is 0. Thus, a Robinson kernel corresponds to a sequence

of coefficients {α j}
9
j=1 satisfying condition (53). The descriptor

given in (69) relates to local images structures since each kernel

gives a response in one of eight directions around pixel x0.

Referring to (60), one can see that the i-th component in D1

is given by Di
1(PI(x0)) = Ψ

( g1,i(PI (x0))
g2,i(PI (x0))

)
in which


Ψ(x) = x

g1,i(PI(x0)) = Mi ⊗ PI(x0) =
∑9

j=0 αi, jI(xi)

g2,i(PI(x0)) =

(∑8
i=0

(∑9
j=0 αi, jI(x j)

)2
) 1

2
.

(70)

Functions g1,i, g2,i are defined using (63), and {αi, j}
9
j=1 is the

sequence of the elements of matrix Mi satisfying (53).

Descriptor D1 simulates a star-shaped structure which gives

normalized grey-level variations in eight directions, along hori-

zontal, vertical and diagonal line segments originating all from

the patch center (pixel x0). It captures a local 2D intensity vari-

ation information which relates to the shape and sharpness of

the textures overlapped by the patch. For homologous points

in two images, the descriptor response is similar when the local

grey-level distributions are similar. The similarity measurement

with this descriptor is robust since intensity differences attenu-

ate the effect of additive intensity changes (elimination of bx0 ),

whereas the normalization with ‖Ax0‖ limits the effect of multi-

plicative intensity changes (elimination of ax0 ).
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5.2. Second Proposed Descriptor

In this example, the functions in the general form (60) are

defined as:
Ψ(x) = exp(x)

g1,i(PI(x0)) = I(xi) −min(PI(x0))

g2,i(PI(x0)) = max(PI(x0) −min(PI(x0)).

(71)

This leads to descriptor D2:

D2(PI(x0)) =



exp I(x0)−min(PI (x0))
max(PI (x0)−min(PI (x0))

exp I(x1)−min(PI (x0))
max(PI (x0)−min(PI (x0))

...

exp I(xn)−min(PI (x0))
max(PI (x0)−min(PI (x0))


. (72)

The idea behind descriptor D2 is similar to that which moti-

vated the design of D1. The main difference is that the structure

corresponding to D2 is not necessarily “star-shaped” because

the structure center from which the line segments originate is

not x0 but the pixel with the smallest intensity min(PI(x0))

in patch PI(x0). With this minimum, the intensity changes

relating to textures are maximized. Effects of additives and

multiplicative illumination terms are attenuated by subtracting

min(PI(x0)) from the patch intensities and by normalization

with (max(PI(x0)) - min(PI(x0))).

The next section compares the performance of all descriptors

discussed in this paper (the descriptors of the literature and the

two proposed ones).

6. Descriptor Performance Comparison

As mentioned in Section 1, the aim of this work is not to pro-

pose a competitive OF method. The main objective of this con-

tribution is to propose a theoretical study on the illumination-

invariant descriptors used in variational OF models. For this

reason, this paper focuses on the evaluation and comparison of

the performance of descriptors by estimating the OF in scenes

with and without strong illumination changes.

The proposed descriptors are compared to the descriptors

presented in Section 3.2: Census [39], CRT [43], LDP [52],

MLDP [15], Corr [14], and NND [16]. For a fair evaluation, all

descriptors are placed in the same variational OF model as pre-

sented in Section 2. The configuration of the variational model

is presented in subsection 6.1.

The performance of the descriptors were evaluated on five

datasets with known ground truth OF and including images cor-

responding to five scene conditions:

1. Weak illumination changes combined with small displace-

ments (Section 6.2).

2. Weak illumination changes combined with large displace-

ments (Section 6.3).

3. Strong illumination changes associated with small dis-

placements (Section 6.4).

4. Strong illumination changes associated with large dis-

placements (Section 6.5).

5. All possible illumination change and displacement com-

binations (weak or strong illumination changes combined

with small, or large displacements, Section 6.6).

Moreover, this section also proposes a subjective comparison

using real endoscopic images. In addition, the effects of some

parameters on the performance of each descriptor are reported

in this section.

6.1. Experimental configuration

In this performance study, all descriptors are placed in ex-

actly the same optimization scheme such that the only fac-

tors influencing the differences in the OF field results are

the descriptors themselves. Thus, to evaluate the descrip-

tors, the same regularization term (see (9)) and the same data-

term (see (8)) with a quadratic penalty function Ψ(v) = ‖v‖2

were used as energy in the minimization process (the quadratic

penalty function facilitates the optimization problem solving).

Similarly to [14], the minimization in (14) is performed with

the projected-proximal-point algorithm [51] and the classical

coarse-to-fine warping strategy is used to cope with large dis-

placements. This pyramidal approach uses a classical bilinear

interpolation for building the images at different levels, and for
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Table 1. Default values of parameters σ1, σ2, Pys and λ obtained with the

Middlebury and KITTI training datasets.

Desc.
Middlebury KITTI

σ1 σ2 Pys λ σ1 σ2 Pys λ

D1 3 5 0.8 50 1 5 0.9 50

D2 3 5 0.7 15 1 5 0.9 30

Census 3 5 0.8 20 1 5 0.9 30

CRT 5 7 0.5 0.8 1 5 0.9 1.1

LDP 5 7 0.8 17 1 5 0.7 25

MLDP 3 5 0.5 9 1 5 0.8 7

Corr 3 5 0.5 12 1 5 0.9 10

NND 3 5 0.7 100 1 5 0.9 75

up-sampling the flow field to the finer level. At each pyramid

level, 5 warps and 40 iterations per warp are used to optimize

the energy. As recommended in [18], a median filter of size 5×5

is applied to the intermediate flow results after every warping it-

eration.

In the data-term, the default size of the descriptor patch

PI(x0) is 3 × 3 pixels, except for the patch in the NND descrip-

tor where this number is 5 × 5 (a size lower than 5 × 5 is not

possible for this descriptor). In the regularization-term, the size

of neighborhood Nx in (9) is systematically set to 5 × 5.

The remaining parameters consisting of σ1 and σ2 in (10),

λ in (14), and the pyramid scale factor Pys (parameter Pys cor-

responds classically to the ratio of both the image width and

height when passing from level n to level n + 1) are specifically

adjusted for each descriptor. The optimal parameter quadru-

plet (σ1, σ2, Pys, λ) is obtained for each descriptor by com-

puting the OF for all combinations of following parameter val-

ues: σ1 and σ2 ∈ {1, 3, 5, 7}, Pys ∈ {0.5, 0.6, 0.7, 0.8, 0.9}, and

λ ∈ (0, 140]. The effects of parameters Pys and λ will be stud-

ied because they are the most crucial for ensuring robust and

accurate flow field estimation.

6.2. Weak illumination changes associated with small displace-

ments

The Middlebury training benchmark [9] was used in this

case. This dataset consists of eight training image pairs with

known ground truth. The training image pairs include syn-

thetic images, hidden textures in real scenes, indoor and out-

door scenes, etc. Besides weak illumination changes and small

displacements, these images also include rather pronounced

textures leading to optimal OF computation conditions. The

Average End-point Error (AEE) and the Average Angular Error

(AAE) are the two reference quality criteria used to measure

the accuracy of the estimated flow fields on the eight training

image pairs.

Different combinations of σ1, σ2, Pys and λ values (see at

the end of Section 6.1) were systematically tested to find the

optimal settings for these parameters. The optimal values corre-

spond to the parameter combinations for which the mean AEE

and the mean AAE computed for the eight image pairs of the

training Middlebury dataset are the lowest. Table 1 gives for

each descriptor the optimal parameter values. The strategy of

this experimental adjustment method was to consider large in-

terval values for all parameters to be sure to find an optimal

combination for the {σ1, σ2, Pys, λ} quadruplet.

The OF results in terms of AEE and AAE values are given

in Table 2 for the different descriptors. The lowest and the sec-

ond lowest errors obtained for each image pair correspond to

bold numbers and underlined numbers, respectively. As visi-

ble, most of the best results were obtained by one of the two

proposed descriptors (D1). It is noticeable that, whatever the

descriptor, for weak illumination changes there is no signifi-

cant difference in terms of AEE and AAE for some images (e.g.

Grove2 or Hydrangea), while for some other images some de-

scriptors, like LDP, may lead to high AEE (e.g. for Urban3)

or AAE (e.g. for Venus) errors. For all images, the AEE and

AAE values remain among the smallest for the two proposed

descriptors (D1 and D2). This result is confirmed in Table 3

which ranks the descriptors according to two criteria (average

AEE and average AAE computed for the eight training image

pairs). In terms of accuracy (AEE and AAE), MLDP is the

only descriptor of the literature which is placed on one of the

first three places of this ranking while descriptor D1 is the most

accurate.
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Table 2. AEE and AAE values obtained for the Middlebury training database. Parameters σ1, σ2, λ and Pys were set on the default values given in Table 1.

Des.
Dimetrodon Grove2 Grove3 Hydrangea RubberWhale Urban2 Urban3 Venus

AEE AAE AEE AAE AEE AAE AEE AAE AEE AAE AEE AAE AEE AAE AEE AAE

D1 0.11 2.09 0.13 1.80 0.46 4.79 0.17 2.07 0.08 2.68 0.35 3.30 0.48 3.55 0.25 3.88

D2 0.20 4.37 0.13 1.76 0.48 5.08 0.18 2.16 0.08 2.68 0.35 3.48 0.71 5.06 0.25 3.75

Census 0.26 5.51 0.15 2.01 0.52 5.34 0.19 2.21 0.09 2.73 0.37 3.50 0.68 4.79 0.91 7.48

CRT 0.22 4.82 0.17 2.24 0.56 5.83 0.19 2.17 0.23 2.99 0.44 3.98 0.71 5.02 0.30 4.06

LDP 0.14 2.83 0.26 3.32 1.03 9.31 0.22 2.49 0.11 3.36 0.64 4.94 2.8 11.32 7.25 18.48

MLDP 0.13 2.35 0.13 1.84 0.48 5.02 0.17 2.06 0.08 2.71 0.33 3.18 0.57 4.18 0.26 3.68

Corr 0.23 4.86 0.20 2.53 0.49 5.21 0.17 2.01 0.08 2.60 0.34 3.65 0.75 5.67 0.28 4.26

NND 0.22 4.62 0.19 2.77 0.63 6.50 0.18 2.29 0.09 3.06 0.52 3.93 0.59 4.28 0.34 5.3

Table 3. Descriptor ranking according to the accuracy (the average errors)

on the eight image pairs of Table 2.

Rank Average AEE Average AAE

1 D1 0.255 D1 3.02

2 MLDP 0.268 MLDP 3.12

3 D2 0.297 D2 3.54

4 Corr 0.320 Corr 3.85

5 NND 0.345 CRT 3.89

6 CRT 0.352 NND 4.09

7 Census 0.396 Census 4.19

8 LDP 1.556 LDP 7.00

6.3. Weak illumination changes associated with large dispal-

cements

The KITTI 2012 [11] and KITTI 2015 [12] datasets are

composed of real-world images taken from a driving platform

and consist of 194 and 200 image pairs, respectively. All se-

quences are with known ground truth and, even if the illumi-

nation changes are rather weak in average, these changes are

varying along the image sequences since they are arising in real

scenes. However, even for the large displacements between im-

ages, the illumination changes remain moderate.

The AEE and BP3 (the percentage of bad-pixels which have

an end-point error above 3 pixels) are the two quality criteria

used for an objective comparison. Four sequences in the KITTI

2012 training set, namely sequences 11, 15, 44, and 74, were

chosen to determine the optimal (default) values of parameters

σ1, σ2, Pys and λ for each descriptor. The adjusted parameter

combinations are those leading to the lowest mean BP3 value in

the non-occluded areas. The default values for the parameters

are shown in the KITTI column of Table 1 for all descriptors.

Table 4 shows a comparison of the proposed descriptors D1

and D2 with the existing descriptors. It is noticeable that the

Corr descriptor is ranked at the first position according to all the

quality criteria. Descriptors D1 and D2 take the remaining two

positions in the top three. The 4th and 5th places were obtained

by NND and MLDP. However, there is no significant difference

in the quality indexes between the descriptors of the top five.

Globally, the average errors of descriptors Census, CRT and

LDP are significantly higher than those of the five first places.

6.4. Strong illumination changes associated with small dis-

placements

In order to compare descriptor performance in this case, we

report experimental results on image pairs with simulated illu-

mination changes. The RubberWhale image pair of the Middle-

bury training dataset was used in these experiments. As visible

in Fig. 4(d) and Fig. 4(e), this image pair exhibits few illumina-

tion changes and small displacements. Illumination variations

were simulated and applied on this pair to obtain images with

strong illumination changes. The ground truth OF of these im-

age pairs being available, the AEE and AAE criteria are again

used to quantify the descriptor performance.
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Table 4. Results for the KITTI 2012 [11] and the KITTI 2015 [12] training datasets. The reported error measures are the mean of average end-point errors

(AEE), and the percentage of erroneous pixels over a threshold of 3 pixels (BP3). Noc and Occ stand for non-occluded and occluded, respectively.

Descriptors

KITTI 2012 KITTI 2015

Noc Occ Noc Occ

AEE BP3(%) AEE BP3(%) AEE BP3(%) AEE BP3(%)

Corr 1.95 8.81 4.97 18.33 6.07 21.74 12.66 30.11

D2 2.10 9.33 5.28 18.74 6.40 22.65 13.26 30.78

D1 2.12 9.39 5.38 19.05 6.46 23.20 13.14 31.35

NND 2.12 9.57 5.36 19.52 6.40 23.12 13.02 31.40

MLDP 2.19 9.57 5.44 19.27 6.57 23.32 13.33 31.47

Census 3.79 14.35 10.78 24.91 9.24 28.05 19.18 36.23

CRT 4.25 15.36 12.04 25.83 9.79 28.67 20.46 36.80

LDP 10.03 24.06 20.95 33.39 14.71 34.69 27.49 41.93

The illumination changes between the source and target im-

ages are controlled using:

Iout(x, y) =


0 if M(x, y).Iin(x, y) + C ≤ 0

255 if M(x, y).Iin(x, y) + C ≥ 255

[M(x, y).Iin(x, y) + C] otherwise

(73)

where Iin and Iout are the (original) input and (illumination mod-

ified) output images respectively, M is a multiplicative mask,

C is an additive constant, and [.] is the rounding symbol of

M(x, y).Iin(x, y) + C to its closest integer.

Three cases of illuminations changes are considered:

• Case 1: The source-target image pair corresponds to the

original RubberWhale image pair (Figs. 4(d) and 4(e)). In

this case, the illumination variation between two images is

very small.

• Case 2: The source-target image pair is in Fig. 4(f) -

Fig. 4(g), where the illumination of the target image is

changed by the multiplier M illustrated in Fig. 4(a), and

by additive factor C = 20.

• Case 3: The source-target image pair is in Fig. 4(h) -

Fig. 4(i). In this case, the illumination in both source

and target images are changed by the multiplicative masks

given in Fig. 4(b) and Fig. 4(c) respectively, and with

C = 0 in the source image and C = 20 in the target image.

The small squares in Figs. 4(h) and 4(i) indicate two 3 × 3

neighborhoods of homologous pixels of the source (Is) and tar-

get (It) images. In Fig. 4(j), the intensities (computed from the

RGB colors) of these homologous regions are given by the left

and right 3 × 3 grids, while the central grid with dashed lines

gives the intensity ratios Is/It of corresponding pixels. One can

notice that in the central grid the nine intensity ratios are slightly

different. In fact, small ratio differences indicate that the illu-

mination variation between the 3×3 homologous patches is not

exactly affine. These test conditions allow to simulate in a re-

alistic way a real situation in which the intensity changes can

only deviate a little bit from a perfect affine illumination model

in small 3 × 3 neighborhoods.

For each descriptor, the optimal values of parameters σ1, σ2,

Pys and λ are determined by testing all their combinations on

the three images pairs in Fig. 4. The optimal values of σ1 and

σ2 of the regularization term (see (9) and (10)) were the same

for all descriptors, namely σ1 = 3 and σ2 = 5. On the contrary,

scale parameter Pys and weight λ have different values for each

descriptor: (Pys, λ) = (0.8, 50) for descriptor D1, (0.7, 15) for

D2, (0.8, 20) for Census, (0.6, 0.8) for CRT, (0.8, 17) for LDP,

(0.6, 5) for MLDP, (0.6, 12) for Corr, and (0.7, 100) for NND.

It is noticeable that, compared to the optimal values obtained

for the weak illumination changes given in Table 1, the opti-
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(a) (b) (c)

(d) Source image 1 (e) Target image 1

(f) Source image 2 (g) Target image 2

(h) Source image 3 (i) Target image 3

(j) Intensity values and ratios

Fig. 4. Experiments with simulated illumination changes. Images (a), (b)

and (c) represent the multiplicative masks used to generate the synthetic

illuminations in (g), (h) and (i), respectively. Sub-figures (d) to (i) present

the source-target image pairs used to evaluate the performance of the de-

scriptors and their stability against illumination changes in terms of OF

accuracy. (d) and (e) : image pair simulating weak illumination changes.

(f) and (g) : strong illumination change in the target image center. (h) and

(i) strong vertical illumination intensity gradient between the source and

target images. (j) Intensity values of the two 3 × 3 homologous regions

marked by squares in Figs. 4(h) and 4(i). The central grid gives the inten-

sity ratios of homologous pixels of these regions.

mal values of the pyramid scale parameter Pys corresponding

to descriptors CRT, MLDP and Corr increased from 0.5 to 0.6.

The impact of the parameter pair (Pys, λ) on the performance

of each descriptor will be discussed in detail in Section 6.6.1.

The results of these experiments with strong illumination

Fig. 5. Performances and stability in terms of AEE and AAE values ob-

tained for different descriptors with the three different illumination change

simulations represented in Fig. 4.

changes are given in Fig. 5 for the six descriptors of the lit-

erature and the two proposed descriptors. AEE and AAE are

the two reference quality criteria used to measure the accuracy

of the estimated flow fields. In the following, the terms “stable”

or “stability” refer to the ability of a descriptor to lead to sim-

ilar OF accuracy under weak and strong illumination changes

(i.e. the accuracy remains constant when passing from weak to

strong illumination changes). It is noticeable that all descrip-

tors demonstrate stability with respect to illumination varia-

tions. This confirms the relevance of the proposed illumination-

invariant criterion in (18). We can observe that, in this exper-

iment, the quantitative results of the four descriptors D1, D2,

Corr and Census are slightly better compared to those of the

remaining four (CRT, LDP, MLDP and NND).

This result in terms of accuracy stability under strong illumi-

nation change conditions is visually illustrated in Fig. 6 which
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(a) Ground truth (b) BCA (c) Census (d) CRT (e) LDP

(f) MLDP (g) Corr (h) NND (i) D1 (j) D2

Fig. 6. OF results for the RubberWhale sequence with simulated illumination variations. The source-target image pair is given in Figs. 4(h)-4(i).

shows different OF images computed for Figs. 4(h) and 4(i)

with the vertical gradient illumination change (case 3). It visi-

ble in Fig. 6 that the colors of the OF image obtained with the

brightness constancy assumption (BCA, see Fig. 6(b)) is quite

different from those of the ground truth given in Fig. 6(a). Un-

surprisingly, the worst OF is that obtained with the BCA as-

sumption. The differences with the ground truth is by far less

perceptible for the illumination-invariant descriptors whose OF

are shown in Figs. 6(c)-6(j).

6.5. Strong illumination changes associated with large dis-

placements

Both the clean pass and the final pass of the Bamboo-2

and Shaman-3 sequences (each sequence consists of 50 im-

ages) of the MPI Sintel training dataset [10] are used in these

experiments because they include strong illumination changes

and large displacements between two consecutive images (see

Fig. 7). Similarly to the parameter adjustment done in Sec-

tion 6.4, the best combination of (σ1, σ2, Pys, λ) quadruplets

consists of constant σ1 and σ2 parameters (their values are 3

and 5, respectively) and descriptor dependent Pys pyramid scale

and λ weight values.

The experimental results are reported in Table 5. By consid-

ering only this table, one can conclude that four descriptors (D1,

D2, Corr and MLDP) outperform the remaining four descrip-

tors which are almost systematically among the least accurate

for all images. One can notice that Corr notably exhibits high

accuracy in this table.

6.6. Descriptor comparison on a more general dataset

In subsections 6.2 to 6.5, the descriptor performances were

evaluated on images corresponding to four distinct situations

obtained by using images with either small or large dis-

placements combined with either weak or strong illumination

changes. The aim of this subsection is to assess the descriptor

performances on a dataset including simultaneously all the four

situations tested separately in previous subsections.

This “more general” dataset consists of nine image pairs in-

volving two benchmarks, namely Middlebury and MPI Sintel.

The first three image pairs are those given in Fig. 4 (modified

Middleburry images) and including either weak or strong il-

lumination changes combined with small displacements. The

other six image pairs are extracted from two final pass se-

quences of the MPI Sintel training dataset [10]. More specifi-

cally, four consecutive images from frame-0039 to frame-0042

of the Bamboo-2 sequence (see Figs. 7(a)-7(d)) represent three

image pairs, and four other consecutive images from frame-

0001 to frame-0004 of the Shaman-3 sequence (see Figs. 7(e)-

7(h)) correspond to the last 3 image pairs. These MPI-Sintel

data were chosen since they include both small and strong illu-

mination changes associated to large displacements.

The AEE and AAE metrics are used to objectively evaluate

the accuracy of the OF field. Besides the OF accuracy tests, this

custom-made dataset is also used to evaluate the effects of some
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(a) Bamboo-2, frame 0039 (b) Bamboo-2, frame 0040 (c) Bamboo-2, frame 0041 (d) Bamboo-2, frame 0042

(e) Shaman-3, frame 0001 (f) Shaman-3, frame 0002 (g) Shaman-3, frame 0003 (h) Shaman-3, frame 0004

Fig. 7. Four consecutive images in the final pass of the Bamboo-2 and Shaman-3 sequences of the MPI Sintel training dataset [10]. The first row includes

the Bamboo images and the second row shows the Shaman images.

Table 5. Results for the Bamboo 2 and Shaman 3 sequences of the MPI Sintel [10] training dataset. These sequences include illumination changes.

Clean Final

Bamboo 2 Shaman 3 Bamboo 2 Shaman 3

Avg. AEE Avg. AAE Avg. AEE Avg. AAE Avg. AEE Avg. AAE Avg. AEE Avg. AAE

Corr 1.73 D1 7.53 D1 0.16 D2 2.32 Corr 1.62 Corr 7.43 MLDP 0.31 MLDP 4.31

D1 1.85 Corr 7.66 Corr 0.16 D1 2.43 D1 1.68 D1 7.48 D1 0.32 D1 4.41

MLDP 1.88 D2 7.72 D2 0.17 Corr 2.53 MLDP 1.70 MLDP 7.52 Corr 0.33 D2 4.59

D2 2.01 MLDP 7.95 MLDP 0.17 MLDP 2.59 D2 1.86 D2 7.65 NND 0.35 Corr 4.66

NND 2.04 NND 7.97 NND 0.17 NND 2.63 NND 2.00 NND 7.66 D2 0.36 NND 4.98

LDP 2.60 LDP 9.22 CRT 0.21 Census 2.82 CRT 2.56 LDP 9.85 LDP 0.41 LDP 5.46

CRT 2.65 CRT 10.29 Census 0.21 CRT 2.89 Census 2.64 CRT 10.26 CRT 0.46 CRT 6.13

Census 2.80 Census 10.83 LDP 0.25 LDP 3.72 LDP 2.80 Census 10.67 Census 0.47 Census 6.30

important parameters on the performance of the descriptors.

6.6.1. Influence of parameters

This subsection investigates the impact of two crucial OF

scheme parameters on the descriptor performances. These pa-

rameters are the pyramid scale parameter Pys and the trade-

off parameter λ in (14). It is usually difficult to adjust these

two parameters under different displacements between image

and for different illumination changes. Therefore, a descriptor

should not only be accurate, but (i) its accuracy should as less

as possible be affected by scene variations and (ii) the crucial

OF scheme parameters should be easily adjustable.

The experiments in Sections 6.2, 6.3, 6.4 and 6.5 have shown

that setting the values of σ1 and σ2 in (10) to 3 and 5 re-

spectively is appropriate for the four different scene conditions.

These values were also chosen in these experiments. The re-

sults in this section were obtained by testing in a systematic

way all combinations of Pys and λ. The pyramid scale parame-

ter Pys took values 0.5, 0.6, 0.7, 0.8 and 0.9 successively, while

the trade-off parameter λ in (14) varied from 0.05 to 140. How-

ever, to show more clearly the optimal value range of λ, we

only present here, for each descriptor, the experimental results

with λ-values around its optimal range. For each descriptor,

the AEE and AAE curves according to λ are given for every

values of Pys. Thus, for the Census descriptor λ belongs to

[1:1:40], where [1:1:40] means that λ takes the values ranging

from 1 to 40 and are changing with a step of 1. Similarly, λ ∈

[0.05:0.05:5] for CRT, λ ∈ [1:1:40] for LDP, λ ∈ [0.05:0.05:1]

∪ [2:1:100] for MLDP and Corr, λ ∈ [1:1:140] for NND, λ ∈

[1:1:100] for D1, and λ ∈ [1:1:40] for D2.
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(a) AEE and AAE of Census (b) AEE and AAE of CRT

(c) AEE and AAE of LDP (d) AAE and AAE of MLDP

(e) AEE and AAE of Corr (f) AAE and AAE of NND

(g) AEE and AAE of D1 (h) AEE and AAE of D2

Fig. 8. OF accuracy according the values of parameters Pys and λ. The mean AAE and AEE values are computed for the dataset described at the beginning

of Section 6.6 and plotted according λ for different values of parameter Pys.

The OF of every image pair in the “general” dataset was com-

puted for each descriptor and for all (Pys, λ) pairs. The two

mean values of the nine AEE and AAE criteria obtained for

each (Pys, λ) pair act as descriptor accuracy measure. Fig. 8

shows, for each descriptor and for each value of Pys, the behav-

ior of the mean AEE and AAE errors according to the λ values.

As visible in Fig. 8 for all descriptors, the mean AEE and

AAE curves with Pys = 0.5 (light blue plots) are always above

the curves corresponding to Pys = 0.6, 0.7, 0.8 and 0.9. These

non constant and rather large AEE and AAE mean values ac-

cording to λ show that Pys = 0.5 is inappropriate for scenes

with strong variations in terms of illumination conditions and

displacement magnitudes. In fact, as shown by the other curves,

it appears that parameter Pys should at least have a minimal

value of 0.6.

Curve parts with constantly small AEE and AAE values

(curve plateau with minimal error, CPME) in the plots of Fig. 8

indicate that a descriptor is both accurate and robust towards

changes of illumination conditions and displacement magni-

tudes. Except for CRT (see Fig. 8(b)), MLDP (see Fig. 8(d))

and LDP (see Fig. 8(c)), rather large CPME exist for the de-

scriptors. It is noticeable for the five descriptors with a CPME

in their plots (Census in Fig. 8(a)), LPD in Fig. 8(c), NND in

Fig. 8(f), D1 in Fig. 8(g) and D2 in Fig. 8(h)) that the plateaus

are preserved when Pys increases from 0.6 to 0.9. One can also

notice that an increase of the Pys parameter value also increases

the number of levels in the pyramid scheme. For this reason, a

solution to minimize the computation time while preserving the

CPME in the AEE and AAE plots is to set Pys to 0.6.

For a given descriptor, the optimal value of λ should be in
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an interval in which the AEE and AAE values are constantly

weak (i.e. in the λ interval defined by the common λ values of

the CPME in the AEE and AAE curves of a descriptor). The

optimal value ranges of λ for descriptors are approximately

• Census : [15, 35] (interval width : 20, see Fig. 8(a)),

• CRT : [0.5, 1] (interval width : 0.5, see Fig. 8(b)),

• LDP : [17, 25] (interval width : 8, see Fig. 8(c)),

• MLDP : [3, 9] (interval width : 6, see Fig. 8(d)),

• Corr : [3, 12] (interval width : 9, see Fig. 8(e)),

• NND : [75, 120] (interval width : 45, see Fig. 8(f)),

• D1 : [20, 60] (interval width : 40, see Fig. 8(g)), and

• D2 : [12, 31] (interval width : 19, see Fig. 8(h)).

It is noticeable that, for Pys = 0.6, descriptors Census, NND,

D1, and D2 lead to constantly high accuracy for large ranges of

λ-values. In practice it means that the optimal λ value is easily

adjustable and that these descriptors are the less sensitive to

illumination changes. Descriptor LDP has also high accuracy

in a large range of λ-values when Pys = 0.9 (Dark blue curve

in Fig. 8(c)). Descriptors CRT, MLDP, and Corr have small

λ intervals with high accuracy and seem less appropriate when

the illumination and displacement magnitudes change from one

scene type to another.

6.6.2. Descriptor performance with optimal parameter settings

The mean AAE and AEE values over the nine image pairs

of the “more general” dataset (as described at the beginning of

Section 6.6) are used to compare the performance of the eight

descriptors. These values are computed using the parameter set

optimized in Subsection 6.6.1 (i.e., σ1 = 3, σ1 = 5, Pys = 0.6

for all 8 descriptors, while λ = 20, 0.8, 25, 8, 12, 100, 50, and

15 for descriptors Census, CRT, LDP, MLDP, Corr, NND, D1,

and D2, respectively).

As visible in Fig. 9, even if the differences between the eight

descriptors are very small, the values of the objective criteria

(a) AEE comparison (b) AAE comparison

Fig. 9. Objective comparison between the eight descriptors on the synthetic

dataset.

(AAE and AEE) of descriptors MLDP, Corr and of the two pro-

posed descriptors (D1 and D2) indicate lower OF errors than

those of the other methods (Census, CRT, LDP and NND). By

comparing MLDP, Corr, D1 and D2 is it visible that the AAE

values are nearly the same for the four descriptors, while the

AEE values of the proposed descriptors are slightly better.

By considering globally the results of section 6.6, one can

conclude that the eight descriptors can be separated into four

groups as follows:

• CRT and LDP are among the group of four descriptors

with the least accuracy when the parameters are optimally

tuned and their OF is rather less λ independent (scene con-

dition independent).

• Census and NDD are the other two descriptors of the group

with the least accuracy when the parameters are optimally

tuned, but their OF is more λ independent.

• MLDP and Corr are among the group of four descriptors

with the best accuracy when the parameters are optimally

tuned. However their OF is rather less λ independent.

• D1 and D2 are both in the descriptor group with the best

accuracy when the parameters are optimally tuned and in

the group of descriptors with a λ independent OF.

6.7. Descriptor comparison in very complex scenes

The aim of this section is to test the descriptors on a scene

type with extrem conditions (very inhomogeneous scene illu-

mination, strong illumination changes between images, lack of

textures and large camera displacements). A test on such scenes
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(a) Source image (b) Target image (c) CRT (d) LDP (e) MLDP

(f) Corr (g) Census (h) NND (i) D1 (j) D2

Fig. 10. Experimental result on a gastroscopic image pair. (a) and (b) are two endoscopic images of the pyloric antrum region (without textures and

with illumination changes) used to compute OF fields. These images were provided by Pr. Dominique Lamarque (Ambroise Paré Hospital, Boulogne-

Billancourt, France). Figures from (c) to (j) give the OF results for each descriptor using the classical color code.

is of particular interest since dense OF remains a useful tech-

nique in many applications which need to precisely register im-

ages under complicated conditions. For instance, the mosaicing

of image sequences acquired in gastroscopy [53] or in white

light [54] or fluorescence [55] cystoscopy involves such com-

plex conditions.

As visible in Figs. 10(a)-10(b) and Figs. 11-12, endoscopic

images often include regions without textures, inhomogeneous

scene illumination, varying lighting conditions according the

viewpoint and/or specular reflections. In order to demonstrate

the potential and robustness of the proposed descriptors in such

medical scenes, this section gives OF results for an endoscopic

image pair of the pyloric antrum region (see the source and tar-

get images in Fig. 10). Objective quality criteria such as AAE

or AEE cannot be estimated since no ground truth is available

for these images. Thus, to present OF results, we use the classi-

cal color code representation [9] for which the hue and the satu-

ration correspond to the vector orientation and modulus respec-

tively. In regions with constant colors the OF is also constant.

The homologous point displacements between the two im-

ages in Figs. 10(a)-10(b) are caused both by inner stomach

movements and the endoscopic camera movements. In practice,

due to the varying depth of the surface, the modulus of the flow

vectors should be larger for tissue which is close to the camera

(e.g. pixels in the down left image corner in Fig. 10(a)), and

smaller for tissue which is farther from the camera (e.g. pixels

in the image center). Although there is a difference in magni-

tude and direction between the motion vectors of different pix-

els, the motion fields are smooth for such scenes. Moreover,

the motion vectors inside the black “hole” (duodenum) and the

flow vectors at the circular border of this “hole” (pyloric sphinc-

ter limits) have to be equal since the movement is constant in

this region. As noticeable in Fig. 10, the OF results of Census,

NND, D1 and D2 globally correspond to realistic flow fields

since i) their OF is smooth, and ii) the flow field is constant

onto and around the duodenum black disc (in Figs. 10(g)-10(j)

the absence of the disc shows that flow field is effectively con-

stant in this region). These results are globally less coherent

for the CRT, LDP, MLDP and Corr descriptors. In particular,

the light and dark blue discs in Figs. 10(c)-10(f) indicate a flow

discontinuity which does not correspond to a real displacement

continuity.

6.8. Computation time

This subsection evaluates the run-times requested by each de-

scriptor to determine the descriptor vectors at all pixels in an

image (descriptor time in millisecond, ms), as well as the to-

tal time for computing the OF using that descriptor (OF time

in second, s). The evaluation was performed on the Middle-
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bury Urban2 image pair with a size of 640 × 480 pixels and

using MATLAB R2016a running under Windows 10, 64bits on

a HP Desktop Core i7-4910MQ (2.90 GHz, 16 GB RAM). De-

scriptor vectors are completely computed with the Matlab code,

while the core of the algorithm optimizing the OF (see (14)) is

available as a .mex file (it is first written with the C++ language,

and then compiled into a .mex code to be called in the Matlab

environment). To compute the OF time, parameters σ1, σ2,

Pys, and λ are set based on the results in Section 6.6.1. Specif-

ically, the three parameters σ1, σ2, Pys are set to 3, 5 and 0.6,

respectively. The λ parameters of descriptors D1, D2, Census,

CRT, LDP, MLDP, Corr, and NND are set to 50, 15, 20, 0.8, 25,

8, 12, 100, respectively.

The descriptors are ordered according to increasing compu-

tation time:

- Descriptor time : MLDP (23.5 ms), Census (42 ms), D1

(44.5 ms), Corr (57 ms), D2 (60 ms), LDP (81 ms), NND

(104 ms), and CRT (119 ms).

- OF time : D2 (87.22 s), D1 (87.67 s), Census (89.12 s),

MLDP (91.68 s), Corr (92.14 s), NND (94.22 s), LDP

(94.98 s), and CRT (96.72 s).

6.9. Global discussion

The experimental results have shown that when a descriptor

fulfills condition (18) it is indeed illumination invariant. With

the variational OF model presented in this work, all the eight

descriptors can reach their best OF accuracy with the pyramid

scale parameter Pys ≥ 0.6.

Considering globally Sections 6.2, 6.3, 6.4, 6.5 and 6.6, de-

scriptors Census, CRT and LDP led to the less accurate OF ac-

curacy in comparison to the other descriptors. The NND de-

scriptor accuracy is nearly equivalent to that of the proposed

descriptors (D1 and D2) on the KITTI training datasets (see Ta-

ble 4), whereas its ranking was not too high on the Middlebury

training set (see Table 3). Moreover, the computation time of

NND is higher (104 ms) than that of the proposed descriptors.

Descriptors MLDP, Corr, D1 and D2 can be considered as being

globally the most accurate for particular illumination change

conditions (Subsections 6.2 to 6.5). However, when consider-

ing the criterion relating to OF accuracy independence towards

the λ parameter, the two proposed descriptors can be considered

as being more robust than MLDP and Corr. Moreover, in the

experiment on gastroscopic images shown in Fig. 10, the pro-

posed descriptors gave subjectively more coherent results than

Corr and MLDP.

The ability to deal both with textureless scenes and with

scenes with various textures is illustrated and confirmed in the

next section on different real-data scenes which are not repre-

sented in the standard benchmarks (Middlebury, KITTI 2012,

KITTI 2015 and MPI-Sintel).

7. Applications to Image Mosaicing in Gastroscopy and

Other Scenes

A major challenge in an image mosaicing application is

to register accurately and robustly a long sequence of images

with poor quality. This subsection shows the mosaicing re-

sults for two image sequences (two patients) of the pyloric

antrum region (see Figs. 11-12). The video-sequences were

provided by Pr. Dominique Lamarque (Ambroise Paré Hos-

pital, Boulogne-Billancourt, France). The image registration is

based on the flow field obtained with descriptor D1 (i.e. the

IIOF-NLDP scheme) using the parameter values as in Table 1:

(σ1, σ2, Pys, λ) = (3, 5, 0.8, 70).

Fig. 11(f) shows a panoramic image computed with 21 im-

ages, while Fig. 12(e) shows the mosaicing result computed for

a sequence of 45 images. The precise mosaics (without struc-

ture discontinuities) of Fig. 11 and Fig. 12 confirm the potential

and robustness of the proposed decriptor2. In these mosaic-

ing examples, the illumination discontinuities were intention-

ally not corrected to show the image superimposition. How-

ever, these discontinuities can be corrected with an approach as

described in [56].

Fig. 13 gives another mosaicing result for textureless im-

ages. This panorama was built with 161 images and represents

2Two videos illustrating the image mosaicing process from which Figs. 11

and 12 have been built are provided as supplementary material.
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(a) (b) (c) (d) (e)

(f) Mosaiced image

Fig. 11. Mosaic built with 21 images of a gastroscopic sequence (5 images of the sequence are also given in the first row). The OF between the images was

directly used to place the pixels of the 21 frames into the coordinate system of the first image which acts as mosaic reference.

(a) (b) (c) (d)

(e) Mosaiced image

Fig. 12. Mosaic built with 45 images of a gastroscopic sequence. The first row gives 4 images of the sequence while (e) shows the mosaiced image.

the landing site of the NASA’s curiosity rover on planet Mars.

The field of view was significantly increased in comparison to

the Mars landscape parts perceptible in a single image. While

the lack of textures is the only common point of gastroscopic

scenes and the red planet landscape, the mosaics in Figs. 11,

12 and 13 were all obtained with the same descriptor and OF
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Fig. 13. Mosaic of a landscape of the red planet. This mosaic was built with 161 images almost weak textures.

scheme parameters. This illustrates the variety of scenes with

can targeted by the proposed variational OF method.

In the cystoscopic data of Fig. 14, the endoscopic bladder im-

ages include textures whose aspect and contrast vary inside and

between the sequences. White light cystoscopy (see Fig. 14(a))

is the standard examination for cancerous bladder lesion diag-

nosis and patient follow-up. Wide field of view mosaics have

several advantages in cystoscopy: the organ inspection is fa-

cilitated since the endoscope and potential lesions can be lo-

cated with respect to anatomical landmarks (this is most often

not the case when simply observing video-sequences), two mo-

saics built at a some week or month interval facilitate the le-

sion evolution assessment (urologists are unable to assess the

evolution by comparing two video-sequences), and the mosaics

can be used by different specialists as a medium of concerta-

tion (i.e., urologists, surgeons, radio-physicians and oncologists

can use a mosaic as a basis of discussion). In the white light

modality, although more or less contrasted textures are present,

the images are affected by strong illumination changes between

different viewpoints and the endoscopic displacement can be

large and saccadic, as in gastroenterology. Fig. 14(a) shows

that the proposed variational OF scheme can be used to signif-

icantly increase the field of view in white light cystoscopy (the

dark and bright regions in this mosaic are due to illumination

changes). Some cystoscopic set-ups also enable to switch be-

tween the white light modality and the fluorescence modality.

In the latter (see Fig. 14(b)), the natural aspect of the bladder

colours and textures is lost, but the detection of cancerous le-

sions located under the epithelium becomes possible. In urol-

ogy, white light and fluorescence endoscopy are two comple-

mentary image modalities. The mark delineated by a circle in

the mosaic of Fig. 14(b) is due to a transurethral resection of a

lesion. The mosaic is used to check whether the whole tumoral

tissue was removed or not during the surgical intervention. It is

worth noticing that the same descriptor and OF scheme param-

eters (that used for the gastroscopic data and given at section

beginning) were again used to build both the white light and

fluorescence mosaics.

8. Conclusion

This contribution shows how illumination invariant data-

terms can be constructed in the frame of OF algorithms. The

illumination changes between images are modelled with affine

transformations which locally link the intensities in small im-

ages regions (in this paper the affine transformation parameters

are constant in a 3 × 3 neighborhood). These local affine trans-

formations enable to deal with complicated (i.e. strong and/or

inhomogeneous) illumination changes between images. It was

also shown how it can be verified whether a descriptor used to

construct a data-term is illumination invariant or not with re-

spect to the proposed model. Until now, this invariance was

most often experimentally highlighted (i.e. without mathemati-

cal proof).

The major contribution of this paper lies in the development

of two general formulations of illumination invariant descrip-

tors, one formulation being based on a descriptor sign invari-

ance, while in the other formulation the idea is to eliminate the

parameters of the affine transformation. These two formula-

tions help to understand the appropriate way to construct illumi-

nation invariant descriptors and act as a starting point for con-

structing accurate and robust data-terms for complex scenes.
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(a) (b)

Fig. 14. Two mosaics of the inner bladder wall epithelium. (a) Wide field of view map constructed with 200 images acquired in the white light modality.

In this reference modality in urology, a clinician (urologist or surgeon) can, due to the natural colors and textures, interpret the scene content in order

to (mentally) localize the endoscope with respect to anatomical landmarks. This modality allows for the diagnosis of multifocal cancerous lesions which

pierce the epithelium. (b) Panoramic mosaic constructed with 95 images acquired in the fluorescence modality. This complementary modality facilitates

the detection of tumoral lesions potentially located under the epithelium and which are not visible in the white light modality.

Two novel illumination invariant descriptors were then pro-

posed in this contribution to illustrate the potential and interest

of the proposed general formulations. The performances of ex-

isting and the novel descriptors were evaluated using datasets

with and without strong illumination changes and with small

and large displacements. One of the main practical results lies

in the fact that the two proposed descriptors led to data-terms al-

lowing to compute an OF with high and constant accuracy, even

for changing illumination conditions (the strong simulated illu-

mination changes did not significantly affect the OF accuracy).

When comparing the overall results of the two proposed de-

scriptors it can be observed that D1 has a little bit higher perfor-

mance than D2. The difference between the two descriptors is

that D1 uses six pixels to determine the vector components with

Robinson kernels, while D2 is only based on a difference of two

pixel values. D1 is probably able to capture more accurately

weak texture structures or is less sensitive to noise (Robinson

kernels compute a difference of mean values). Tests on complex

endoscopic data (with strong illumination changes and almost

no texture) confirmed the robustness of the proposed descrip-

tors to illumination changes.

More generally, all descriptors can be classified in two

groups. On the one hand, the group of sign invariance descrip-

tors (LDP, Census, CRT, MLDP, see Section 4.1) gathers the

vectors those components correspond to binary information ob-

tained by thresholding iconic data based values. On the other

hand, the group of descriptors based on the illumination model

parameter elimination described in section 4.2 (Corr, NND, D1,

D2) consists of descriptor vectors with real value components.

The components of the vectors of both groups are all related to

a description of the texture overlapped by a patch. However,

the thresholding of real values in the binary descriptors gener-

ally leads to a loss of valuable information, especially when the

textures are weakly contrasted. For this reason, the real-value

descriptor performance is, in average, higher for images with

few or poorly contrasted textures. This observation must be

taken into account when developing a descriptor.

The proposed method is quite appropriate for scenes with-

out textures or with very weakly contrasted textures. However,

this method is not limited to such scenes since it can also be

applied to textured scenes. For textured scenes, the proposed

OF method can be improved in terms of computation speed and

accuracy by combining it with matching-based approaches.

As a perspective for applications in endoscopy, the results
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of this paper will be used to optimize the descriptor design

for the registration of endoscopic images with the aim to build

wide-field of view 2D mosaics of the internal bladder wall (cys-

toscopy) and the internal stomach epithelium (gastroscopy).

The OF will be used to determine the non-linear geometri-

cal transformations between homologous image points with the

aim to superimpose the images of the video-sequences.

A natural and further extension of this work is to build 3D

mosaics (internal bladder or stomach wall surfaces superim-

posed by the image textures/colors). To do so, the homolo-

gous image points of image pairs will be associated to struc-

ture from motion (SfM) or simultaneous localization and map-

ping (SLAM) techniques. The feasibility of such approaches

was shown in [57, 58] for the bladder. However, these ap-

proaches use feature extraction methods (as SIFT) in the point

correspondence step. Such correspondences can often not be

robustly determined due to a lack of pronounced textures in the

cystoscopic and gastroscopic images [59]. The proposed OF

method not only determines homologous points in a more ro-

bust way, even in the stomach images, but provides also a more

dense correspondence field as that given by a SIFT approach

(for few and weakly contrasted textures a SIFT method pro-

vides few matches). It is noticeable that SfM or SLAM tech-

niques are only based on images. This avoids the use of active

vision methods [60] which require the modification of standard

endoscopes [61] or the use of non conventional devices [57].
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