

Lamniform sharks from the Cenomanian (Upper Cretaceous) of Venezuela

Guillaume Guinot, Jorge Carrillo-Briceño

► To cite this version:

Guillaume Guinot, Jorge Carrillo-Briceño. Lamniform sharks from the Cenomanian (Upper Cretaceous) of Venezuela. *Cretaceous Research*, 2018, 82, pp.1-20. 10.1016/j.cretres.2017.09.021 . hal-01942118

HAL Id: hal-01942118

<https://hal.science/hal-01942118v1>

Submitted on 9 Jan 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Year: 2018

Lamniform sharks from the Cenomanian (Upper Cretaceous) of Venezuela

Guinot, Guillaume ; Carrillo-Briceño, Jorge

Abstract: Sampling of Cenomanian fossil-rich horizons within the La Luna Formation of two localities in the Zulia and Trujillo states (northern Venezuela) yielded numerous shark teeth belonging to various species within the order Lamniformes (Mackerel sharks). Twelve lamniform species were identified including three new species (*Squalicorax lalunaensis* sp. nov., *Squalicorax moodyi* sp. nov., *Acutalamna karsteni* gen. et sp. nov.) and the genus *Microcarcharias* gen. nov. is proposed to accommodate with the peculiar morphology of the small-sized odontaspidid *M. saskatchewanensis*. Other taxa reported here include *Cretoxyrhina mantelli*, *Cretolamna* sp., cf. *Nanocorax* sp. and five *Squalicorax* species left in open nomenclature. This is the first report of chondrichthyans from the mid-Cretaceous of Venezuela and one of the few records of this group from the Cenomanian of South America. The composition of these assemblages suggests some degree of endemism in the La Luna Sea but also possible connexions with the Western Interior Seaway. One of the most striking features of these assemblages is the high anacoracid diversity (eight species) despite the corresponding outer shelf/upper slope palaeoenvironments of the La Luna Formation. The high diversity of these opportunistic predators is probably related to the high diversity of medium to large marine vertebrates that provided food resources. **Keywords** Chondrichthyes; Anacoracidae; La Luna Formation; South America; Upper Cretaceous

DOI: <https://doi.org/10.1016/j.cretres.2017.09.021>

Posted at the Zurich Open Repository and Archive, University of Zurich

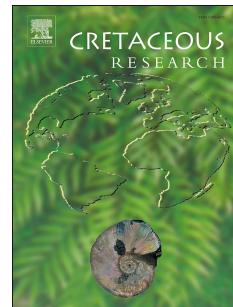
ZORA URL: <https://doi.org/10.5167/uzh-140822>

Journal Article

Accepted Version

The following work is licensed under a Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License.

Originally published at:


Guinot, Guillaume; Carrillo-Briceño, Jorge (2018). Lamniform sharks from the Cenomanian (Upper Cretaceous) of Venezuela. *Cretaceous research*, 82:1-20.

DOI: <https://doi.org/10.1016/j.cretres.2017.09.021>

Accepted Manuscript

Lamniform sharks from the Cenomanian (Upper Cretaceous) of Venezuela

Guillaume Guinot, Jorge Carrillo-Briceño

PII: S0195-6671(17)30297-5

DOI: [10.1016/j.cretres.2017.09.021](https://doi.org/10.1016/j.cretres.2017.09.021)

Reference: YCRES 3720

To appear in: *Cretaceous Research*

Received Date: 19 June 2017

Revised Date: 4 September 2017

Accepted Date: 23 September 2017

Please cite this article as: Guinot, G., Carrillo-Briceño, J., Lamniform sharks from the Cenomanian (Upper Cretaceous) of Venezuela, *Cretaceous Research* (2017), doi: 10.1016/j.cretres.2017.09.021.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 **Lamniform sharks from the Cenomanian (Upper Cretaceous) of Venezuela**

2

3

4 Guillaume GUINOT^a*, Jorge CARRILLO-BRICEÑO^b

5

6

7 ^a *Institut des Sciences de l'Evolution de Montpellier, UMR5554, cc 064, Université de Montpellier,*
8 *Place Eugène Bataillon, 34095 Montpellier Cedex 5, France.*9 ^b *Paleontological Institute and Museum, University of Zurich, Karl-Schmid-Strasse 4, Zürich, 8006,*
10 *Switzerland.*

11

12

13

14

15

16

17

18

19

20 *Corresponding author. Email: guillaume.guinot@umontpellier.fr; Phone: +33 (0) 4 67 14 32 64

21 **Abstract.** Sampling of Cenomanian fossil-rich horizons within the La Luna Formation of two localities
22 in the Zulia and Trujillo states (northern Venezuela) yielded numerous shark teeth belonging to
23 various species within the order Lamniformes (Mackerel sharks). Twelve lamniform species were
24 identified including three new species (*Squalicorax lalunaensis* sp. nov., *Squalicorax moodyi* sp. nov.,
25 *Acutalamna karsteni* gen. et sp. nov.) and the genus *Microcarcharias* gen. nov. is proposed to
26 accommodate with the peculiar morphology of the small-sized odontaspidid *M. saskatchewanensis*.
27 Other taxa reported here include *Cretoxyrhina mantelli*, *Cretolamna* sp., cf. *Nanocorax* sp. and five
28 *Squalicorax* species left in open nomenclature. This is the first report of chondrichthyans from the
29 mid-Cretaceous of Venezuela and one of the few records of this group from the Cenomanian of
30 South America. The composition of these assemblages suggests some degree of endemism in the La
31 Luna Sea but also possible connexions with the Western Interior Seaway. One of the most striking
32 features of these assemblages is the high anacoracid diversity (eight species) despite the
33 corresponding outer shelf/upper slope palaeoenvironments of the La Luna Formation. The high
34 diversity of these opportunistic predators is probably related to the high diversity of medium to large
35 marine vertebrates that provided food resources.

36

37 **Keywords.** Chondrichthyes; Anacoracidae; La Luna Formation; South America; Upper Cretaceous.

38 **1. Introduction**

39 Mackerel sharks (Lamniformes) form a clade of mainly marine selachians represented today by
40 fifteen species included within ten genera (Weigmann, 2016). Despite their relative low diversity,
41 recent lamniforms display a wide range of marine habitats (from intertidal to bathypelagic zones), a
42 large array of behaviours (slow-swimming benthopelagic to fast oceanic swimmers) and include a
43 number of feeding strategies (top predators, filter feeders, opportunistic predators, scavengers).
44 Analysis of the fossil record indicates that lamniform diversity was much higher in the past, especially
45 in the Cretaceous-Paleogene interval (Cappetta, 2012; Guinot and Cavin, 2016). This, along with the
46 large range of morphological disparity (Compagno, 1990) and body size (1 to 10 meters) of modern
47 representatives of this clade suggest that Recent Mackerel sharks gather derived relic forms of a
48 formerly flourishing group. One of the key events in the lamniform evolutionary history is their
49 dramatic mid-Cretaceous (~125 - 90 Ma) diversification (Cappetta, 2012; Guinot et al., 2012; Guinot
50 and Cavin, 2016; Underwood, 2006) that occurred relatively early after the first appearance of the
51 group in the fossil record (Valanginian, Rees, 2005). This marked Aptian-Cenomanian radiation
52 resulted in the rapid apparition of a number of modern and fossil lamniform clades showing a variety
53 of specialisations and ecological characteristics. These include small nectobenthic predators that
54 were comparable in size range, dental morphology, ecology and even gross general morphology with
55 some modern Ground Sharks (Carcharhiniformes) (Siverson et al., 2007; Vullo et al., 2016). Following
56 this mid-Cretaceous diversification, lamniforms became a major component of chondrichthyan
57 faunas throughout the Late Cretaceous-Paleogene interval. The abundance and diversity of
58 lamniform taxa since their mid-Cretaceous diversification suggest that their generic diversity is
59 relatively well known in comparison to other chondrichthyan groups (Underwood et al., 2016).
60 However, the Cretaceous lamniform species diversity remains difficult to assess due to poor
61 definition/illustration of many nominal species and difficulties in assessing intraspecific
62 morphological variations (Siverson et al., 2007; Siversson et al., 2015). A more general issue is that
63 our perception of Cretaceous chondrichthyan diversity is mainly based on European, North African

64 and North American localities, whereas data from the southern hemisphere and particularly from
65 South America is comparatively scarce.

66 The mid-Cretaceous chondrichthyan record in South America is based on a few isolated reports. In
67 Brazil, the upper Aptian–lower Albian Santana Formation of the Araripe Basin yielded several
68 articulated specimens of the batomorphs *Iansan beurleni* (Silva Santos, 1968) and *Stahlija*
69 *sertanensis* Brito, Leal and Gallo, 2013 and of the hybodont *Tribodus limae* Brito and Ferreira, 1989.

70 Isolated rostral denticles of the sclerorhynchiform *Atlanticopristis equatorialis* Pereira and Medeiros,
71 2008 were reported from the lower Cenomanian Alcântara Fm. The Peruvian record is restricted to

72 the lamniform species *Priscusurus adruptodontus* Kriwet, 2006 from the Albian of northwestern Peru.

73 Turonian chondrichthyans include *Ptychodus chappelli* Reinhart, 1951 (probably synonymous with *P.*
74 *mammilaris* Agassiz, 1838, see Cappetta, 2006) and *Onchosaurus* species from Colombia (Parámo

75 Fonseca, 1997), also reported from Ecuador (Dunkle, 1951). Fossil record of mid-Cretaceous

76 chondrichthyans from Venezuela is no richer than elsewhere in South America and is restricted to

77 the Cenomanian-Campanian of La Luna Formation. These reports include *Ptychodus atcoensis* Hamm,

78 2009, probably from the Coniacian (Carrillo-Briceño and Lucas, 2013), “*Ptychodus decurrens*” Agassiz,

79 1835 from the Cenomanian-Santonian (Carrillo-Briceño, 2009) and *Ptychodus cyclodontis* Mutter,

80 Iturrealde-Vinent and Carmona, 2005 reported as *Ptychodus* sp. from the Cenomanian-Santonian of La

81 Luna Fm. (Carrillo-Briceño, 2009) and from an unknown locality (Venezuela or Colombia) tentatively

82 assigned to La Luna Fm. (Brito and Janvier, 2002). Moody and Maisey (1994) signaled the presence of

83 *Squalicorax* in the Cenomanian of La Luna Quarry but did not provide illustrations. The presence of

84 *Squalicorax* from La Luna Quarry represents the only report of non-ptychodontid chondrichthyans

85 from the mid-Cretaceous of Venezuela (Cenomanian of La Luna Fm.) and one of the two records of

86 Cretaceous lamniforms from this region along with the Maastrichtian record of *Serratolamna serrata*

87 from the Andes region (Carrillo-Briceño et al., 2008). Based on the fossil shark specimens of Moody

88 and Maisey (1994) from the La Luna Quarry (Sierra de Perijá, Zulia state) and additional collected

89 material from the Cordillera de Mérida (Trujillo state), this paper provides the first description of

90 lamniform sharks from the Cenomanian of Venezuela and adds to the knowledge of the mid-
91 Cretaceous marine diversity in the northernmost part of South America.

92

93 **2. Geographical and geological Settings**

94 The specimens described here come from two different quarry outcrops in western Venezuela (Fig.
95 1), where rocks of La Luna Formation are extracted for cement production. One of the locations is
96 the quarry exploited by Cementos Andinos company and located in the Andes range (Cordillera de
97 Mérida), east of Lake Maracaibo, 10 km to the northeast of Monay city (9° 36.57' 06" N, 70° 24' 14"
98 W), Candelaria Municipality, Trujillo estate (Chejendé region, Figure 2). The second outcrop is located
99 in La Luna Quarry, Sierra de Perijá, west of Maracaibo Lake, approximately 20 km to the northwest of
100 Villa del Rosario town (10° 22' 21" N, 72° 27' 45" W), Rosario de Perijá Municipality, Zulia estate
101 (Maracaibo Basin, Fig. 2).

102 La Luna Formation (Upper Cretaceous) is characterized by a sequence of marine rocks deposited
103 under anoxic-dyoxic conditions along the passive margin of northern South America during the
104 Cenomanian-Campanian (Zapata et al., 2003) and is the most prolific petroleum source rock in
105 western Venezuela and part of eastern Colombia (Tribovillard et al., 1991; Zapata et al., 2003;
106 Zumberge, 1984). La Luna Formation is characterized by alternating black or dark-gray limestones
107 and organic calcareous shales, where calcareous concretions are abundant (Davis et al., 1999; Juana
108 et al., 1980; Tribovillard et al., 1991) and reaching in some cases very large sizes (e.g. Albino et al.
109 2016, fig. 3). The unit has been subdivided by Renz (1959) into three members exposed in the
110 southeast of the Maracaibo basin (Lara and Trujillo states, Cordillera de Mérida): the lower, La
111 Aguada Member (~ 60 m thick of a dense dark-grey limestones and black shales); the middle,
112 Chejendé Member (~ 80 m thick of black shales and marls); and the upper, Timbetes Member (~ 90
113 m thick of laminated limestones and shales).

114 The fossiliferous outcrop of the Cementos Andinos Quarry belongs to the Aguada Member (Fig. 2)
115 and is characterized by dense dark-grey limestones of up to ~ 60-70 cm thick, intercalated with
116 compact and laminated black/dark-grey shales. The material reported here was collected from
117 successive black shale horizons in association with ichnofossils, molluscs (bivalves, gastropods and
118 cephalopods), bony fishes (Carrillo-Briceño et al., 2012) and marine squamate remains (Albino et al.,
119 2016). For more details about the stratigraphy of the Cementos Andinos Quarry see Albino et al.
120 (2016).

121 Specimens from La Luna Quarry were collected from organic calcareous layers made of thin
122 alternations of compact and light brown siliceous-rich platy limestones and darker shales in the
123 lowest part of the exposed section in the La Luna Formation, just above the contact with the
124 underlying Maraca Formation of the Cogollo Group (Moody and Maisey, 1994, p. 2). Shark teeth
125 were found in association with abundant and mostly disarticulated bony fish remains. A preliminary
126 report on fossil fishes from the La Luna Quarry was made by Moody and Maisey (1994) who
127 mentioned one shark taxon (*Squalicorax* sp.) and various osteichthyans (enodontids,
128 *Belonostomus*, *Bananogmius* and unidentified teleost scales and bones). A Cenomanian age was
129 proposed for rocks of La Luna Formation overlaying the Maraca Formation in the Maracaibo Basin
130 (e.g. Juana et al., 1980, fig. IV-12; Dot et al., 2015, fig. 4). However, other authors (Renz, 1982, fig. 4;
131 Erlich et al., 1999, figs. 3-4) suggested the existence of a regional hiatus in the Sierra de Perijá at the
132 base of La Luna Formation where most of the Cenomanian is lacking. Considering the Sierra de Perijá
133 section suggested by Erlich et al. (1999), the basal section of La Luna Formation in La Luna Quarry
134 could correspond to a late Cenomanian age.

135

136 **3. Material and Methods**

137 Specimens from La Luna Quarry were surface-collected in the 90s by paleontologist John M. Moody
138 and other members and collaborators of the Museo de Biología de La Universidad del Zulia

139 Maracaibo, Zulia estate. Surface-collected specimens were extracted from the sediment both
140 chemically (3% formic acid) and mechanically. About 2 Kg of rock were subsequently bulk-collected
141 by one of us (JDCB.) from the fossil-rich horizon, processed in 7.5% formic acid and sieved down to
142 300 μm mesh. This yielded abundant disarticulated osteichthyan microremains but no
143 chondrichthyans. Selachian specimens are well preserved and show no signs of abrasion but nearly
144 all specimens are weakly fractured.

145 Specimens from Cementos Andinos Quarry were surface-collected (between 2013 and 2016) by one
146 of us (JDCB) with the collaboration of the personal of this institution. All specimens are heavily
147 fractured due to strong sediment compaction and some teeth show weak degree of abrasion.
148 Surface-collected specimens were extracted from the sediment both chemically (3% formic acid) and
149 mechanically. About 3 Kg of rock were processed in 7.5% formic acid and sieved down to 300 μm
150 mesh. This yielded some small selachian and osteichthyan tooth fragments and distorted
151 osteichthyan vertebrae.

152 Specimens from Zulia state (La Luna Quarry) are housed in the collections of the Museo de Biología
153 de La Universidad del Zulia Maracaibo, Zulia estate (with the acronym MBLUZ-P) and specimens from
154 Trujillo state (Cementos Andinos Quarry) are housed in the paleontological collection of the Alcaldía
155 Bolivariana de Urumaco, Venezuela (with the acronym AMU-CURS).

156

157 **4. Systematic Palaeontology**

158 The terminology and systematic framework used here largely follow those of Cappetta (2012).

159

160 Class Chondrichthyes Huxley, 1880

161 Subclass Elasmobranchii Bonaparte, 1838

162 Cohort Euselachii Hay, 1902

163 Subcohort Neoselachii Compagno, 1977

164 Order Lamniformes Berg, 1958

165 Family Anacoracidae Casier, 1947

166 Genus *Nanocorax* Cappetta, 2012

167 cf. *Nanocorax* sp.

168 Figures 3A-B

169

170 *Material.* One tooth (AMU-CURS-906) from Cementos Andinos quarry (Trujillo state).

171

172 *Description.* This small-sized tooth is slightly higher (5.5 mm) than wide (4.5 mm) and occupies an

173 anterolateral jaw position. The main cusp is bent to the posterior, thin and elongate. The lingual face

174 of the main cusp is convex while the labial face is flat with the exception of a light median bulge at

175 the base of the crown. The mesial cutting edge is slightly concave whereas the distal one is straight. A

176 low mesial heel is present, poorly individualised from the main cusp and oblique. The distal heel is

177 nearly horizontal. Both mesial and distal heels have abrupt and vertical lateral edges. The cutting

178 edges are smooth and continuous from the apex of the main cusp until the lateral edges of the heels.

179 A rather well-developed lingual neck marks the limit between the crown and root. The root is high

180 and stubby with short, thick and basally-oriented lobes. The distal root lobe is more developed and

181 narrower than the distal one. The labial root face exhibits a very slight bulge that overhangs a

182 depressed median region where several large foramina open. A central and two additional foramina

183 are present on the basal root face.

184

185 *Remarks.* The morphology of this tooth including nearly flat labial face, smooth cutting edges and
186 heels, stubby root with short lobes is rather uncommon among anacoracid species. The root – and to
187 a lesser extent the crown – morphologies bear resemblances with those of some *Nanocorax* teeth, in
188 particular lateral teeth of *Nanocorax crassus* (Cappetta and Case, 1999) from the upper Cenomanian
189 Woodbine Formation of Texas (Cappetta and Case, 1999, 1975; Welton and Farish, 1993). However,
190 lateral teeth of *N. crassus* have a more convex labial crown face, more lingually oriented main cusp,
191 less differentiated mesial heel and more developed mesial cutting edge. *Nanocorax microserratodon*
192 (Shimada, 2008) described from the ?Coniacian of Kansas and also known from the Santonian to
193 Campanian of England, France, Belgium and Morocco (see Guinot et al., 2013) is the other nominal
194 *Nanocorax* species known so far. Teeth of *N. microserratodon* differ from the Venezuelan tooth in
195 having a wider main cusp with a typical mesiodistal twisting, small serrations unevenly present on
196 main cusp and heels, more labio-lingually developed crown and root, weak demarcation between
197 main cusp and mesial heel and stronger labial crown bulge. More material is needed to better assess
198 the systematic attribution of the Venezuelan specimen, especially considering the heterodonty of
199 some *Nanocorax* species.

200

201 Genus *Squalicorax* Whitley, 1939202 *Squalicorax moodyi* sp. nov.

203 Figures 3C-H

204

205 *Derivation of name.* The species is named in honour of John M. Moody, who left a valuable legacy in
206 the study of Mesozoic vertebrate faunas from Venezuela.

207

208 *Holotype.* MBLUZ P-432-C.

209

210 *Material.* Four teeth (MBLUZ P-430, MBLUZ P-432-C, MBLUZ P-432-D and MBLUZ P-881-B) from La
211 Luna quarry (Zulia state).

212

213 *Type stratum.* Organic calcareous limestone/shales in the lowest part of the La Luna Formation, just
214 above the contact with the underlying Maraca Formation of the Cogollo Group (see Moody and
215 Maisey, 1994).

216

217 *Diagnosis.* Anacoracid shark with small teeth not exceeding 8 mm in both width and height. Gradient
218 monognathic heterodonty. Main cusp triangular, rather wide and inclined distally; strongly convex
219 lingual crown face; wide lingual neck. No differentiated mesial heel. Distal heel low, convex and
220 oblique. Apex of main cusp occasionally extends slightly beyond the distal edge of the heel. Cutting
221 edges and heels serrated; serrations taper near apex and lateral extremities of heels. Basal edge of
222 labial crown face, scalloped, strongly concave with marked bulge. Root lobes well developed,
223 separated by deep concavity of basal root edge. Mesial root lobe thin with sharp extremity; distal
224 lobe wider with rounded extremity. Concave mesial and distal root edges.

225

226 *Description.* Teeth of anteriormost position are slightly higher (8 mm) than wide (6 mm), strongly
227 mesio-distally compressed and asymmetrical. The triangular main cusp is high and bent distally with
228 a strongly convex labial face and a flat labial face. The apex of the main cusp is sharp and slightly bent
229 labially. The mesial cutting edge of the main cusp is convex and connect to a very low, poorly
230 individualized and strongly oblique mesial heel. The distal cutting edge of the main cusp is slightly
231 concave in its median region and is separated from the distal heel by a notch. The distal heel is rather
232 low, convex and moderately oblique. The lateral extremities of both the mesial and distal heels

233 terminate in a thin enamelled blade that is supported by a narrow root protuberance and oriented
234 labially. A broad lingual neck is present in the basal region of the crown. The basal edge of the labial
235 crown face exhibits a strong triangular concavity in its median region with a marked bulge that
236 overhangs the root. Root foramina pierce the enamelled bulge, which confers a scalloped aspect to
237 the bulge. The labial marginal areas of the basal crown face are flat but oriented labially, whereas the
238 labial face of the main cusp is vertical. The cutting edges and heels have small and rather regular
239 serration that diminish in size and taper toward the lateral edge of the heels and near the apex of
240 the main cusp. The root is bilobate and mesio-distally compressed. The root lobes are well-developed
241 and separated by a deep and wide concavity of the basal root edge. The lingual root face exhibits a
242 wide and poorly individualized lingual protuberance that is pierced by a wide nutritive foramen along
243 with other smaller foramina. Additional rather wide foramina are present on the basal root face of
244 the lobe. The mesial root lobe is thin with a relatively acute extremity whereas the distal lobe is
245 much wider with a rounded labial edge. Both the mesial and distal edges of the root are markedly
246 concave in lingual view. The labial root face is low and bears a marked concavity in its central area.
247 Large, oval-shaped foramina open near (in lateral regions) or on (in medial region) the crown/root
248 edge. Teeth from more lateral positions become gradually wider than high with a strongly distally
249 bent main cusp than can extend slightly beyond the distal edge of the heel. The mesial heel is not
250 differentiated from the cutting edge of the main cusp whereas the distal heel is similar in shape to
251 that of anterior teeth but less inclined to the base of the tooth. The mesial cutting edge is slightly
252 convex whereas the distal one is nearly straight. The shape of the apex varies in teeth from
253 anterolateral and lateral positions, being either bent to the commissure or erect, but in all teeth
254 show some degree of labial inclination. The labial concavity of the basal crown edge is wider and less
255 deep than in anterior teeth. The root is mesio-distally elongate with a flat basal face and a wider
256 concavity of the basal root edge than in anterior teeth.

258 *Remarks.* By the morphology of their asymmetrical root lobes, wide and deep concavity of basal root
259 edge, broad neck, labially inclined apex, regular serrations and strongly convex labial crown face,
260 teeth of *Squalicorax moodyi* sp. nov. differ from those of other known mid-Cretaceous anacoracid
261 species. Several nominal and unnamed small-sized anacoracid species are known from mid-
262 Cretaceous deposits. The species *Squalicorax volgensis* (Glikman in Glikman and Shvazhaite, 1971)
263 was described from the lower Cenomanian of Saratov Province (Russia) based on scarce and
264 incomplete specimens but additional material from the type stratum was figured by Siverson et al.
265 (2007). Teeth of this species differ from those of *Squalicorax moodyi* sp. nov. by the absence of
266 serrations, more squared distal root lobe in basal view, absence of marked notches on the mesial and
267 distal edges of the root and more marked notch between the main cusp and distal heel. *Squalicorax*
268 *pawpawensis* Siverson, Lindgren and Kelley, 2007 is another mid-Cretaceous anacoracid with small-
269 sized teeth known from the Albian of Texas. *Squalicorax pawpawensis* can be readily differentiated
270 from the Venezuelan species by its lower rooted-teeth, more symmetrical root lobes, more
271 irregularly present serrations, less deep concavity of basal root edge, more mesio-distally elongate
272 root, absence of serration on distal heel and presence of small short vertical folds on basal edge of
273 the labial crown face. Siverson (1996; p. 845, pl. 6) described specimens from the upper
274 Cenomanian–lower Turonian Beedagong Claystone of Western Australia (now referred to as Haycock
275 Marl) he attributed to *S. volgensis* but were later considered as a separated, unnamed species
276 (Siverson et al., 2007). This taxon is probably conspecific or closely-related with the tooth reported as
277 *S. volgensis* from the upper Cenomanian of Kansas (Shimada and Martin, 2008) and with some of the
278 material published as *S. volgensis* by Cappetta and Case (1999; pl. 5, fig. 1) from the
279 Turonian/Coniacian boundary of Texas, whereas the remaining of the specimens attributed to *S.*
280 *volgensis* by Cappetta and Case (1999; pl. 4, figs. 7-8) from the Albian of Texas likely belong to *S.*
281 *pawpawensis* (see Siverson et al., 2007). This unnamed taxon from Australia and USA differs from
282 *Squalicorax moodyi* sp. nov. by its incipient serration occasionally present on the median region of
283 the mesial cutting edge, higher and smooth distal heel, narrower neck and less marked – or absence

284 of – notches on the mesial and distal edges of the root. Teeth of *Squalicorax priscoserratus* Siverson,
285 Lindgren and Kelley, 2007 from the upper Albian Pawpaw Formation in Texas differ from *Squalicorax*
286 *moodyi* sp. nov. in having a more gracile and narrower main cusp with more marked and coarser
287 serrations, more mesio-distally elongate and lower root and less marked concavity of the basal root
288 edge. A specimen figured by Glikman and Shvazhaite (1971; pl. 1, fig. 10 non figs. 8-9) from the
289 Cenomanian of Russia (Saratov Province) as *Palaeoanacorax obliquus* (Reuss, 1845) represents a
290 *Squalicorax* tooth from an anterior position in labial view. Although the species *S. obliquus* is based
291 on a few poorly preserved teeth (Reuss, 1845; pl. 4, figs. 1-3) (see below), the specimen from Russia
292 strongly differs from the type material collected from Turonian of Czech Republic. The general
293 morphology of the Russian specimen could, however, fall within the variation of *Squalicorax moodyi*
294 sp. nov. but the lack of additional view and poor quality of the line-drawing preclude further
295 taxonomic assignment. Welton and Farish (1993; p. 120) figured an anterolateral and a posterior
296 tooth of a *Squalicorax* sp. from the Weno Formation (Albian) of Texas. Teeth of this unnamed species
297 are comparable in size and general morphology to *Squalicorax moodyi* sp. nov. suggesting that these
298 two taxon are closely-related. However, the Albian taxon displays morphological differences
299 including more symmetrical root with less developed distal lobe, less regular and irregularly present
300 serrations, marked notch between main cusp and distal heel, and presence of vertical folds below
301 the lingual neck, that differ from the species described here. To date, *Squalicorax moodyi* sp. nov. is
302 only known from the type locality.

303

304

Squalicorax lalunaensis sp. nov.

305

Figure 4

306

307 *Derivation of name.* After the La Luna Formation.

308

309 *Holotype.* AMU-CURS-897.

310

311 *Material.* Twelve teeth (AMU-CURS-894 to 905) from Cementos Andinos quarry (Trujillo state).

312

313 *Type stratum.* Laminated black/dark-grey shales in the basal part of the La Aguada Member, La Luna
314 Formation.

315

316 *Diagnosis.* Anacoracid shark with small teeth (less than 9 mm high) showing moderate degree of
317 gradient monognathic and possibly dignathic heterodonty. Main cusp biconvex and triangular with
318 narrow apical region; main cusp moderately to strongly inclined to the commissure with convex
319 mesial cutting edge. Mesial heel elongate and well separated from main cusp in lateral teeth. Distal
320 heel convex and individualized from main cusp by marked notch. Moderately developed basal bulge
321 at base of labial crown face; basal bulge restricted to median region of crown in anteriors and
322 laterals, extended to marginal crown edges in posteriors. Cutting edges of heels and main cusp sharp
323 and well developed, devoid of serrations. Lingual neck of moderate and sub-equal width from mesial
324 to distal edges. Root bilobate; mesial root lobe thin and elongate; distal lobe short with blunt
325 extremity, nearly squared in laterals and posteriors. Lingual root face short and convex in profile
326 view. Marginal edges of root concave in labial/lingual views. Basal root face flat except in anteriors.
327 Labial root face with foramina of variable shape below basal crown bulge.

328

329 *Description.* Teeth of this species are relatively small, not exceeding 9 mm, and show a moderate
330 degree of gradient monognathic and possibly dignathic heterodonty. Anterior teeth are higher than

331 wide with a biconvex main cusp inclined to the commissure and sigmoid in lingual/labial views. The
332 cutting edges of the main cusp and heels are sharp and rather developed. The mesial cutting edge of
333 the main cusp is convex whereas the distal cutting edge is straight to slightly convex. The mesial heel
334 is fairly low, short, oblique and separated from the main cusp by a slight concavity. The distal heel is
335 convex and short, individualized from the main cusp by a notch. A moderately developed basal bulge
336 is present at the base of the labial crown face but restricted to the median region of the crown,
337 where it overhangs the root in occlusal view. The lingual crown face exhibits a neck of even width
338 from its distal to medial extremities. The root is bilobate with labially oriented lobes separated by a
339 V-shaped basal edge of variable depth and width according to tooth position. The mesial root lobe
340 tend to be thinner and more elongate than the distal one that is short with a blunt extremity. The
341 central areas of the basal root face is concave in profile view and bears a narrow and poorly marked
342 lingual protuberance in anteriormost teeth where a central foramina is present. Other rather large
343 foramina are present on the basal face of the lobes. The lingual face is fairly low and convex in profile
344 view. A short vertical protuberance is present on the lingual face, below the lateral edge of the distal
345 heel, which confers a concave outline of the distal root edge. The labial root face is flat in its marginal
346 areas and concave in its center where several foramina of variable sizes are present immediately
347 below the labial protuberance of the crown. Lateral teeth are wider than high and labio-lingually
348 compressed with a strongly distally bent and sigmoid (in lingual view) main cusp. The mesial crown
349 heel is high and elongate. The distal heel is well developed, sub-horizontal and separated from the
350 main cusp by a deep notch. The basal bulge of the labial crown face is thin with an indented basal
351 edge. The root is mesio-distally expanded with a flat basal face in profile view and concave mesial
352 and distal edges in lingual/labial views. Posterior teeth have a sub-horizontal and sigmoid main cusp
353 and vary from wider than high to as high as wide. The basal bulge of the labial crown face reaches
354 the lateral margins of the crown. The distal root lobe has a nearly squared distal angle whereas the
355 mesial one is sharp. Short vertical ridges are irregularly present on the labial bulge, below the distal
356 heel. All teeth have smooth and sharp cutting edges.

357

358 *Remarks.* Teeth of *Squalicorax lalunaensis* sp. nov. differ from those of other anacoracid species by
359 the combination of smooth and sharp cutting edges, sigmoid main cusp in labial-lingual view, distal
360 heel separated from main cusp by marked notch, well-developed mesial heel in antero-laterals and
361 laterals, bilobate and asymmetrical root with mesial root lobe thin and elongate and distal lobe short
362 with blunt extremity (nearly squared in laterals and posteriors), and presence of short vertical folds
363 on the labial crown face (below the distal heel). The morphology of posterior teeth (some rather
364 large ones are mesio-distally short whereas other smaller ones are strongly mesio-distally elongate
365 are morphologically closer to laterals) may suggest a dignathic heterodonty for this species. The
366 species *Squalicorax intermedius* (Glikman in Glikman and Shvazhaite, 1971) (originally included in the
367 genus *Palaeoanacorax*) was based on two poorly figured teeth from the Upper Turonian of Western
368 Kazakhstan (Mangyshlak) but additional material from the type locality was subsequently attributed
369 to this species (Glikman, 1980). One of the *S. intermedius* teeth (Glikman, 1980; pl. 12, fig. 6) is a
370 latero-posterior tooth that exhibits comparable characters to those of *S. lalunaensis* sp. nov. but
371 differs by its much more marked basal bulge of the labial crown face, wider main cusp, less
372 differentiated mesial heel, less labio-lingually compressed aspect, and presence of serrations. Vullo
373 et al. (2007) reported one tooth attributed to *Squalicorax* cf. *intermedius* that can be separated from
374 those of the species described here by its strong serrations, wider and non-sigmoid main cusp and
375 more rounded extremities of root lobes; along with its larger size. Glikman (1980, p. 99) erected the
376 subspecies *Palaeoanacorax obliquus subserratus* based on the single latero-posterior tooth figured
377 by Glikman (1964; p. 76, pl. 3, fig. 7) as *Palaeoanacorax falcatus* from the Cenomanian of Saratov
378 (Russia). The cutting edges of this tooth appear smooth although the description reports irregular
379 serrations on some specimens. In addition, the tooth figured by Glikman (1964) differs from those of
380 *S. lalunaensis* sp. nov. by its shorter and wider main cusp, less marked convexity of the mesial cutting
381 edge of main cusp and lower distal heel. *Squalicorax pamiricus* (Glikman in Glikman and Shvazhaite,
382 1971) was described on the basis of two crown fragments from the lower Turonian (Mammites

383 nodosoides Zone) of Tajikistan but additional material from the type locality was figured by (Glikman,
384 1980), both under the genus name *Palaeoanacorax*. Teeth of this species bear serrations and can
385 further be separated from *S. lalunaensis* sp. nov. by their more symmetrical root, wider and less
386 sigmoid main cusp in lingual/labial views. Teeth of *S. pawpawensis* can be readily separated from
387 those of *S. lalunaensis* sp. nov. by their less individualised mesial heel, presence of serrated cutting
388 edges, more flared labial extremities of root lobes and less concave basal bulge of labial crown face
389 with more numerous and finer indentations. Teeth of a number of nominal and unnamed small-sized
390 *Squalicorax* species with smooth or irregularly serrated cutting edges may resemble those of *S.*
391 *lalunaensis* sp. nov. Species of the *S. volgensis* group (including *S. volgensis* and an unnamed species
392 from the Cenomanian–Turonian of Australia, Texas and upper Cenomanian of Kansas) are
393 represented by teeth of comparable morphology with those of *S. lalunaensis* sp. nov. and these
394 taxon are likely closely-related. However, teeth of this group of taxa differ from those of the species
395 described here by their less mesio-distally expanded laterals, presence of weak and uneven
396 serrations (see Siverson et al., 2007), smooth labial crown face in posteriors and mesial heel less
397 individualised from the main cusp. *Squalicorax* aff. *pawpawensis* reported from the Cenomanian of
398 Canada (Underwood and Cumbaa, 2010) is another small-sized anacoracid that is close to the *S.*
399 *volgensis* group. This material have a less elongate main cusp and higher mesial heel.

400

401 *Squalicorax* aff. *lalunaensis* sp. nov.

402

Figures 5A-B

403

404 *Material.* One tooth (AMU-CURS-907) from Cementos Andinos quarry (Trujillo state).

405

406 *Remarks.* The single (lateral) tooth referred to this taxon resembles those of *S. lalunaensis* sp. nov.
407 but differs by its larger size, more robust general aspect, much wider main cusp with convex distal
408 edge, wider lingual neck, less marked notch separating the main cusp from the distal heel, wider
409 labial angle between the main cusp and basal root face, higher root and presence of marked and
410 irregular serrations on the mesial and distal cutting edges of main cusp and distal heel.

411

412 *Squalicorax* sp. 1

413 Figures 5C-I

414

415 *Material.* Three teeth (MBLUZ P-15, MBLUZ P-430-B, MBLUZ P-430-C) from La Luna quarry (Zulia
416 state).

417

418 *Description.* The anterior tooth of this taxon is higher (8.5 mm) than wide (7.5 mm). The crown is
419 composed of a fairly low and wide triangular main cusp that is slightly bent to the commissure and
420 low and short distal heel. The main cusp is strongly convex lingually and flat labially with straight
421 mesial and distal cutting edges. A thick lingual neck is present. The labial crown face bears a strongly
422 marked labial bulge in its W-shaped basal edge that protrudes labially. The labial bulge is strongly
423 scalloped by numerous notches where nutritive foramina of variable size open. Faint thin and short
424 vertical folds are present on the labial bulge. The root is high and stocky with short and wide root
425 lobes and slightly concave lateral edges in lingual view. Lateral and latero-posterior teeth are as high
426 as wide, reaching 12.5 mm in maximum size. The main cusp is moderately inclined to the posterior
427 with straight to slightly convex mesial cutting edge and straight distal cutting edge. The mesial heel is
428 elongate and weakly demarcated from the main cusp by a slight concavity in lingual view. The distal
429 heel is low and elongate. Both heels have their lateral extremities supported by a thin protuberance

430 of the root oriented labially. The basal bulge of the labial crown face is strongly marked, labially
431 oriented in the marginal regions and scalloped with short folds associated with larger but low
432 enamelled protuberances. The root is fairly high with a large concavity of the basal edge separating
433 two labially-oriented lobes. The mesial root lobe is shorter and thicker than the distal one, which
434 exhibits a sharp mesial extremity. Several labial foramina are present both at the crown/root edge
435 and below. All teeth bear large and regular serrations on the cutting edges and heels.

436

437 *Remarks.* Teeth of this taxon bear resemblances with those of *Squalicorax* sp. 3 described below but
438 display differences including a less individualised mesial heel, wider and less labially convex main
439 cusp, labial folds and more strongly and finely scalloped labial crown bulge and strongly labially
440 oriented marginal regions of labial bulge. *Squalicorax* sp. 1 can be differentiated from *Squalicorax* sp.
441 4 by its teeth with higher root, more developed root lobes, straight mesial cutting edge of main cusp
442 and more indented labial crown bulge. The taxon reported as *Squalicorax* sp. 1 from the upper
443 Turonian of the Kwanza Basin in Angola by Antunes and Cappetta (2002) might be closely related to
444 the species described here. However, the Angolan taxon differs in having less marked labial concavity
445 of the root and narrow notch separating the main cusp from distal heel in lateral teeth and in the
446 overall morphology of anteriors. This material cannot be assigned to any nominal *Squalicorax* species
447 and likely represents a separated species.

448

449 *Squalicorax* sp. 2

450 Figures 5J-N

451

452 *Material.* Two teeth (AMU-CURS-892 and AMU-CURS-893) from Cementos Andinos quarry (Trujillo
453 state).

454

455 *Description.* The two lateral teeth of this taxon are slightly wider than high, reaching maximum width
456 of 12 mm. The triangular main cusp is large and bent to the commissure with a strongly convex
457 lingual face and a slight convex labial face. The lower part of the labial face of main cusp bears a
458 shallow vertical depression in its median region. The mesial cutting edge is slightly convex in lingual
459 view whereas the distal cutting edge is straight. The mesial heel is elongate but low and
460 undifferentiated from the cutting edge except by a light concavity. The distal heel is well developed
461 and sub-horizontal with an uneven straight to slightly convex outline in lingual view. A very broad
462 triangular-shaped lingual neck delimits the crown from the root. The basal region of the labial crown
463 face bears a moderately developed bulge that tapers towards the marginal regions. The labial bulge
464 is concave in its median part and indented by depressions where large labial foramina open. Cutting
465 edges of the main cusp and heels bear thin, irregular and marked serrations that penetrate deep into
466 the crown. The root is fairly low, mesio-distally developed and bilobate. The mesial root lobe is
467 rather short with a sharp extremity whereas the distal lobe is more developed, thicker, with a blunt
468 extremity. Both lobes are separated by a wide concavity of the basal root edge. The lingual crown
469 face is low and exhibits a narrow and shallow central protuberance. A central foramina is present on
470 the flat basal face, along with other foramina randomly located and of variable size.

471

472 *Remarks.* The overall tooth morphology of this taxon is relatively common among large mid-
473 Cretaceous *Squalicorax* and the scarcity of the material recovered from La Luna Formation precludes
474 finer taxonomic assignment. Most mid-Cretaceous *Squalicorax* teeth with comparable general
475 morphology (e.g. relatively large teeth with strong serrations and fairly wide main cusp) were placed
476 within - or put in close relationship within - either *Squalicorax curvatus* (Williston, 1900) or
477 *Squalicorax falcatus* (Agassiz, 1843). This situation was in great parts due to the quality of the type
478 series of both species, being represented by scarce incomplete specimens for the former and by

479 drawings of a heterogenous series for the latter (see Siverson et al. 2007 for illustrations of the
480 lectotype of *S. falcatus*). In addition, morphologies of these two taxa appear to be quite distinct
481 when type materials are compared but teeth from some *Squalicorax* populations were frequently
482 included, despite morphological differences, into one or both of these taxa (see Underwood and
483 Cumbaa, 2010). Teeth of *Squalicorax* sp. 2 can be differentiated from those of *S. falcatus* by their
484 narrower main cusp with straight distal cutting edge, less convex contact between the lingual crown
485 face and root, more marked labial crown bulge and lower root with more developed lobes. Teeth of
486 *S. curvatus* have a lower and much broader main cusp, higher heels with the mesial one being
487 generally more individualised than in *Squalicorax* sp. 2. Specimens figured in Welton and Farish
488 (1993, p. 116, figs. 1-2) as *S. curvatus* from the Cenomanian (Lewisville Member of the Woodbine
489 Formation) of Texas fall outside of the range of variation of *S. curvatus* and are morphologically close
490 to those of *Squalicorax* sp. 2. However, differences including less developed root lobes with
491 shallower concavity of the basal root edge and higher lingual root face in the North American
492 material separate both taxa. *Squalicorax obliquus* (Reuss, 1845) and *Squalicorax heterodon* (Reuss,
493 1845) are two species described from the Turonian of Czech Republic. In the original description of *S.*
494 *heterodon*, Reuss (1845; p. 3, pl. 3, figs. 49-71) considered that all *Corax* (the former name of
495 *Squalicorax*) species described by Agassiz (1843) excepted *Corax pristodontus* and *Corax*
496 *appendiculatus* (with the exception of pl. 26 fig. 3) should be lumped into a single taxon. [It should be
497 noted that parts of the material on which Agassiz based his species *C. appendiculatus* corresponds to
498 the squaliform genus *Centrophoroides* (pl. 26a, figs. 18-20, *non* figs. 16-17, pl. 26, fig. 3 as *Galeus*
499 *appendiculatus*), whereas the remaining specimens belong to the genus *Squalicorax*]. Consequently,
500 he erected the species *S. heterodon* to accommodate this lumping, clearly stating that some of his
501 material (pl. 3, figs 49-50, 52-53, 55-63, 65-68) corresponds to *S. falcatus*, others (pl. 3, figs. 51, 54) to
502 *S. kaupi*, some specimens (pl. 3, figs. 64, 70) to *C. affinis* (now in the genus *Pseudocorax*), whereas he
503 considered the remaining teeth (pl. 3, figs. 64, 70) to be close to *C. appendiculatus*. Although it is
504 clear that the type series of *S. heterodon* is heterogeneous, the different species lumped into this

505 taxon name do not correspond to those mentioned by Reuss and only a thorough re-examination of
506 Reuss's material will allow the assessment of the identity of the species figured under the name *S.*
507 *heterodon*. The species name *S. heterodon* cannot be considered valid and must be considered
508 *nomen neglectum*. The species *S. obliquus* is based on three specimens (pl. 4, figs 1-3) from the
509 Turonian of Czech Republic but Reuss himself indicated (Reuss, 1845; p. 4) that one specimen (pl. 4,
510 fig. 2) might belong to a different species. Assessing the degree of morphological variation of this
511 species is complicated as the material (pl. 4, figs 1, 3) is incomplete and might be morphologically
512 close to some specimens figured in *S. heterodon*. Teeth of *Squalicorax* sp. 2 are morphologically close
513 to the Reuss's specimen (pl. 4, fig. 2) but differ by their shorter distal heel. The crown of the
514 incomplete most lateral tooth of *Squalicorax* sp. 2 but the root morphology of *S. obliquus* teeth is not
515 known.

516

517 *Squalicorax* sp. 3

518 Figures 50-S

519 ? 1927 *Squalicorax baharijensis*; Stromer, pl. 1, fig. 26 *non* pl. 1, figs 25, 27.

520 ? 1989 *Squalicorax baharijensis* Stromer; Werner, pl. 15, fig. 1 *non* pl. 14, figs 1-9 & pl. 15, figs 2-3.

521

522 *Material*. Two teeth (MBLUZ P-881 and MBLUZ P-430-D) from La Luna quarry (Zulia state).

523

524 *Description*. The anterior tooth is higher (10 mm) than wide (7.5 mm). The triangular main cusp is
525 erect though slightly bent to the commissure with a nearly straight distal cutting edge and a slightly
526 convex mesial cutting edge in its median region. The mesial heel is short, oblique, and poorly
527 individualised from the main cusp. The distal heel is convex, fairly low and oblique, which contrasts

528 with the vertical distal edge of main cusp. The lingual face of main cusp is strongly convex whereas
529 the labial face is flat. A very wide lingual neck is present, reaching its maximum width in its median
530 region. The lower area of the labial crown face is oriented labially and exhibits a marked labial bulge
531 that overhangs the root in its central part. The basal edge of the labial crown face shows a fairly
532 narrow and concave median area that bears five notches corresponding to the openings of labial root
533 foramina. The labial marginal areas of the basal crown edge are convex. The cutting edges of main
534 cups and heels bear relatively coarse serrations with the exception of the smooth lateral edges of the
535 heels. The root is bilobate and V-shaped in basal view with a marked concavity of the basal edge of
536 the labial crown face. The distal root lobe is wider with a more rounded distal edge in basal view. A
537 central foramen is present on the basal face, along with other smaller foramina over the basal
538 surface. Large, oval-shaped labial foramina are present at (median area) or below (marginal areas)
539 the root/crown edge. The lateral tooth is more mesio-distally elongate than the anterior and slightly
540 higher (11 mm) than wide (10 mm). The mesial and distal cutting edges of the main cusp are fairly
541 straight. A well-developed mesial heel is present, slightly oblique and fairly low. The distal heel is sub-
542 horizontal, low and separated from the main cusp by a notch. The labial crown face is similar to that
543 of the anterior tooth though more mesio-distally elongate with a less deep median concavity and
544 more numerous notches where large labial foramina open. The root lobes are oriented laterally and
545 form a shallow and wide concavity of basal root edge. The distal root lobe is shorter and wider than
546 the mesial one. The basal root face is fairly flat. The mesial edge of the root is straight and oblique
547 whereas the distal one bears a shallow notch below the crown/root edge. Below the labial crown
548 bulge, the large oval-shaped foramina opening at the crown-root edge bear a thin veil of
549 osteodentine over the enamelled edges. Other large and smaller foramina are present on the labial
550 face.

551

552 *Remarks.* This taxon is represented by scarce material but exhibits tooth characters that differ from
553 other *Squalicorax* species reported here. *Squalicorax* sp. 3 is morphologically close to *Squalicorax* sp.
554 1 described here from the same locality but differs by its more developed and individualised mesial
555 heel (in laterals), narrower main cusp, labial crown face with less marked basal bulge and less labially
556 oriented marginal areas, basal edge of labial crown face devoid of vertical folds. The size and
557 morphology of the lateral tooth of *Squalicorax* sp. 3 is comparable to the specimen figured in the
558 original description of *Squalicorax baharijensis* (Stromer, 1927) by Stromer (1927; pl. 1, fig. 26) and
559 refigured by Werner (1989; pl. 15, fig. 1) from the upper Cenomanian of the Gebel Dist Member of
560 the Bahariya Formation in Egypt, although the latter likely corresponds to a more lateral tooth file. As
561 already noted by Siverson et al. (2007) the specimen illustrated by Werner (1989) strongly contrasts
562 from the topotypic material of *S. baharijensis* she illustrated and probably represents a different
563 species. Based on the scarce material from Egypt and Venezuela, it is preferable to leave this species
564 in open nomenclature.

565

566 *Squalicorax* sp. 4

567 Figures 5T-V

568

569 *Material.* Two teeth (MBLUZ P-432 and MBLUZ P-432-B) from La Luna quarry (Zulia state).

570

571 *Description.* These lateral teeth is wider (11 mm) than high (8.5 mm) and exhibit a triangular main
572 cusp bent to the posterior. The main cusp is biconvex but strongly labio-lingually compressed. The
573 mesial edge of the main cusp is slightly convex and undifferentiated from the low mesial heel. The
574 distal heel is low, convex and sub-horizontal with a marked demarcation from the main cusp. A
575 rather large lingual neck is present. The basal edge of the labial crown face is concave in its median

576 region where it bears a labial bulge, whereas the marginal edges are convex and less protruded.
577 Rather coarse but irregular serrations are present on cutting edges and heels of the crown.
578 Serrations reach maximum width in the lower part of the cutting edges and proximal part of the
579 heels and taper near the apex of the main cusp. The root is low with fairly narrow lobes oriented
580 laterally. The basal face is weakly concave in labial view and bears a central foramen and other
581 foramina of variable sizes. The mesial and distal root edges are concave. The labial root face is
582 pierced by several foramina, some of them being situated in very shallow notched of the labial crown
583 bulge.

584

585 *Remarks.* This material shares features with teeth of *Squalicorax* sp. 2 from Cementos Andinos
586 quarry. However, teeth of *Squalicorax* sp. 4 differ in having a more convex labial face of main cusp,
587 marked labial angle between distal heel and main cusp, lower root (in labial view) with more
588 symmetrical root lobes and thinner basal labial bulge of the crown. In addition to their smaller size,
589 teeth of *Squalicorax* sp. 4 bear serrations that differ from those of *Squalicorax* sp. 2. In the latter (Fig.
590 5M), serrations penetrate deep into the crown in labial view and are thin, irregular and separated by
591 rather wide depressed areas. Serrations of teeth of *Squalicorax* sp. 4 are rather large, blunt and
592 separated by narrow notches (Fig. 5V). Teeth of *Squalicorax* sp. 4 differ from the laterals of
593 *Squalicorax* sp. 3 from the same locality in being more labio-lingually compressed with no
594 differentiated mesial heel, lower root, more convex labial face of main cusp, more symmetrical root
595 lobes, more convex and oblique distal heel and less scalloped labial bulge. Teeth of *Squalicorax* sp. 4
596 have a more convex mesial cutting edge than laterals of *Squalicorax* sp. 1, lower root with thinner
597 and less developed root lobes. The morphology of teeth of *Squalicorax* sp. 4 does not fall into the
598 range of variation of any nominal or unnamed species published so far.

599

600 Family Cretoyrhinidae Glikman, 1958

601 Genus *Cretoxyrhina* Glikman, 1958

602 *Cretoxyrhina mantelli* (Agassiz, 1843)

603 Figures 6A-B

604

605 *Material.* One incomplete tooth (MBLUZ P-41) from La Luna quarry (Zulia).

606

607 *Description.* This tooth is cuspidate with a broad main cusp inclined distally. The labial cusp face is
608 almost flat whereas the lingual face is markedly convex. A pair of oblique lateral heels is present, the
609 distal one being less inclined and higher than the distal one. The heels bear no cusplets, although the
610 mesial one is damaged, and the cutting edges are continuous from the main cusp to the lateral
611 extremity of the heels. The crown lacks ornament but bears a faint central vertical fold at the base of
612 the labial crown face. The labial crown very weakly overhangs the root in occlusal view. The base of
613 the lingual crown face is marked by a rather thick neck that reaches its maximum thickness in its
614 median part. The root is wide (25 mm), bilobate and asymmetrical with a more elongate, more
615 oblique and thinner mesial lobe. The basal edge of the root is strongly concave. The lingual root face
616 bears an acute lingual protuberance that is pierced by a central foramen. The lingual face of the
617 distal extremity of the root lobes is nearly flat. Numerous oval-shaped labial foramina open below
618 the basal edge of the crown and others are randomly situated over the labial face of the root lobes.
619 Lingual foramina are present on the marginal faces, below the basal crown edge.

620

621 *Remarks.* The species *Cretoxyrhina mantelli* is known from a large number of Upper Cretaceous
622 localities worldwide, but the specimen reported here represents the first record of the genus in
623 South America. Numerous associated tooth sets have been described (Bourdon and Everhart, 2011;
624 Shimada, 1997a; Welton and Farish, 1993) and the dentition and range of variation of this species is

625 relatively well known. The specimen described here agrees with the morphology of *C. mantelli* and
626 probably represents an upper lateral tooth. *Cretoxyrhina denticulata* (Glikman, 1957) is another
627 species of this genus that occurs in the Cenomanian of Russia and North America (Underwood and
628 Cumbaa, 2010), France (Vullo, 2015) and England (Guinot et al., 2013). This differs from *C. mantelli* in
629 having lateral and posterior teeth of adult specimens with lateral cusplets and being smaller with a
630 more stubby general aspect.

631

632 Family Odontaspidae Müller and Henle, 1839

633 Genus *Microcarcharias* gen. nov.

634

635 *Derivation of name.* After the small size of the teeth and their overall resemblance to the teeth of the
636 modern lamniform shark *Carcharias* Rafinesque, 1810.

637

638 *Type species.* *Odontaspis saskatchewanensis* Case, Tokaryk and Baird, 1990 from the lower Turonian
639 of Canada. The age of the type stratum was initially indicated as Coniacian in original publication but
640 was subsequently revised to early Turonian (Cumbaa and Tokaryk, 1999; Underwood and Cumbaa,
641 2010).

642

643 *Diagnosis.* Odontaspidid possessing small (less than 6 mm high) and gracile teeth with gradient
644 monognathic and dignathic heterodonty. Main cusp slender, biconvex, triangular and bent lingually.
645 Pair of erect lateral cusplets in labial position relative to main cusp; wide and bulbous lower region of
646 cusplets overhanging the root in marginal area; thin and needle-like in upper region, straight to
647 slightly diverging. Cutting edges of main cusp thin and low, sometimes discontinuous with those of

648 cusplets. Basal region of crown overhanging the root labially in occlusal view. Main cups with median
649 vertical ridge occasionally present in lower region of labial face, connected to a slight bulge at the
650 basal crown edge. Faint short vertical ridges on basal edge of labial crown face. Root holaulacorhize
651 and bilobate with flared distal region of root branches. Strong lingual root protuberance with wide
652 and deep nutritive groove pierced by large central foramen. Numerous large foramina on labial root
653 face. Upper lateral teeth more inclined to the posterior, rarely with an additional mesial cusplet.
654 Lower laterals with wider crown. Posterior teeth low with short and mesio-distally oriented root
655 branches; basal root face flat. Lateral cusplets wide and short. Labial crown ornament of more or less
656 pronounced vertical ridges on main cusp and cusplets.

657

658 *Remarks.* This genus adds to the diversity of small mid-Cretaceous lamniform sharks and can be
659 separated from those by the following association of tooth characters: small size of teeth (the
660 smallest of all known odontaspidids), marked lingual root protuberance, peculiar morphology of
661 lateral cusplets, labial bulge of basal crown face and labial crown ornamentation. Teeth of the
662 odontaspidid genus *Cenocarcharias* Cappetta and Case, 1999 are close in size and morphology to
663 those of *Microcarcharias* gen. nov. but differ in their thicker main cusp with peculiar lingual wrinkles,
664 wide lingual neck and wider and stouter lateral cusplets that not protrude labially relatively to the
665 main cusp. Teeth of *Rouletia* Vullo, Cappetta and Néraudeau, 2007 can be differentiated from to
666 those of *Microcarcharias* gen. nov. by their larger size, more robust general aspect, wide lower
667 region of main cup, lack of labial crown overhang, poorly individualized cusplets and absence of
668 crown ornamentation. *Johnlongia* Siverson, 1996 is another mid-Cretaceous odontaspidid genus
669 whose teeth show a strong lingual protuberance and gracile and elongate main cusp. However, teeth
670 of *Johnlongia* can be easily distinguished by their extremely developed lingual root protuberance
671 with a rectangular shape in basal view, very high crown heels, rectilinear basal edge of the labial
672 crown face and typical foraminifera on the margino-lingual root faces. Teeth of a few non-

673 odontaspids may resemble some of *Microcarcharias* gen. nov. Among them, the tentative
674 archaeolamnid genus *Dallasiella* Cappetta and Case, 1999 has teeth that differ from *Microcarcharias*
675 gen. nov. by their flatter labial crown face, lower and wider cusplets not protruding labially, less
676 marked nutritive groove and thicker root lobes. *Haimirichia* Vullo, Guinot and Barbe, 2016 is another
677 small mid-Cretaceous lamniform included in the family Haimirichiidae. Teeth of *Haimirichia* are easily
678 separated from those of *Microcarcharias* gen. nov. less marked lingual root protuberance and
679 nutritive groove, flat basal edge of the labial crown face, wide and developed root lobes in laterals
680 with flat basal face with wider and shorted cusplets.

681

682 *Microcarcharias saskatchewanensis* (Case, Tokaryk and Baird, 1990) comb. nov.

683 Figures 6C-O

684

685 1974 *Odontaspis applegatei* Meyer, p. 201-202, fig. 64.

686 1990 *Odontaspis saskatchewanensis* Case, Tokaryk and Baird, p. 1085, figs 4-5.

687 1990 *Synodontaspis lilliae* Case, Tokaryk and Baird, p. 1085, fig. 6.

688 1993 *Carcharias* sp. A; Welton and Farish, p. 91, figs 1-6.

689 2001a *Carcharias saskatchewanensis* (Case, Tokaryk and Baird); Cicimurri, p. 36, fig. 7n;

690 2001b *Carcharias saskatchewanensis* (Case, Tokaryk and Baird); Cicimurri, p. 188, fig. 5q.

691 2006 *Carcharias saskatchewanensis* (Case, Tokaryk and Baird); Shimada et al., p. 11, figs 9.3-9.4.

692 2006 *Carcharias tenuiplicatus* (Cappetta and Case, 1975); Shimada et al., p. 13, figs 9.5-9.6.

693 2008 *Carcharias saskatchewanensis* (Case, Tokaryk and Baird); Shimada and Martin, p. 92, fig. 5H.

694

695 *Material.* Two teeth (AMU-CURS-890 and AMU-CURS-891) from Cementos Andinos quarry (Trujillo
696 state) and three teeth (MBLUZ P-14, MBLUZ P-433 and MBLUZ P-14-B) from La Luna quarry (Zulia
697 state).

698

699 *Description.* Teeth of this species are small, not exceeding 6 mm high. Teeth from the anterior files
700 are sub-symmetrical with a narrow triangular main cup that is erect and bent lingually. The main cusp
701 is biconvex and bears very thin and low cutting edges that become very thin or fade out on the heels.
702 The heels are strongly inclined basally and bear a pair of lateral cusplets. Lateral cusplets are erect or
703 slightly diverging, oriented lingually and conical with a wide lower region that thins out in the upper
704 half. Cusplets are well separated from the main cusp and in labial position relatively to the main
705 cusp. The basal edge of the labial crown face bears a bulge that is more marked below the heels than
706 in its central part. A thin lingual neck separates the lingual crown face from the root. The root is
707 holaulacorhize and bilobate with well-developed root branched that are inclined basally. Root
708 branches become thinner distally and largely overtake the labial edge of the heels. The lingual root
709 protuberance is marked and separated by a wide nutritive groove that is pierced by a large central
710 foramen. The marginal regions of the lingual root face bear numerous foramina that are aligned just
711 below the crow/root edge. The labial root face is high, abrupt, and pierced by several wide foramina
712 including a large central foramen. Teeth from antero-lateral files are more asymmetrical in upper
713 files than in lower files. Teeth from these files can show a narrower and more protruding lingual
714 protuberance of the root. The distal extremity of the root lobes is slightly bent basally. The mesial
715 root lobe is shorter and wider than the distal one. The labial face of the main cusp can show a thin
716 median vertical ridge in lower region ending in a slight bulge at the basal edge of the crown. Some
717 faint labial vertical ridges are irregularly distributed below the distal edge of the cusplets and poorly
718 marked folds can be present on the basal edge of the labial crown face, on both sides of the labial
719 bulge.

720

721 *Remarks.* In addition to the description of the species *Microcarcharias saskatchewanensis* comb.
722 nov., Case et al. (1990) described the species *Synodontaspis lilliae* Case, Tokaryk and Baird, 1990 on
723 the basis of two teeth from the same locality. The authors only figured the holotype represented by a
724 lateral tooth. Comparing this specimen with laterals of *M. saskatchewanensis* comb. nov.
725 subsequently reported from the Cenomanian of Texas (Welton and Farish, 1993) and Colorado
726 (Shimada et al., 2006 as *Cenocarcharias tenuiplicatus*) indicate that the holotype of *S. lilliae* is a
727 lateral tooth of *M. saskatchewanensis* comb. nov. Consequently, we consider the species *S. lilliae* a
728 junior synonym of *M. saskatchewanensis* comb. nov. This species has been reported from a number
729 of Cenomanian to lower Turonian localities in the Western Interior Seaway: lower Turonian of
730 Canada (Case et al., 1990), Cenomanian (Eagle Ford Group, Britton Formation) of Texas (Welton and
731 Farish, 1993: p. 91; Meyer 1974), Colorado (Shimada et al., 2006), Kansas (Shimada and Martin
732 2008) and S. Dakota (Cicimurri, 2001a, 2001b). The material reported here represents the
733 southernmost record of this species and the first outside the WIS.

734

735 Family Otodontidae Glikman, 1964

736 Genus *Cretolamna* Glikman, 1958737 *Cretolamna* sp.

738 Fig. 6P

739

740 *Material.* One incomplete tooth (MBLUZ P-86) from La Luna quarry (Zulia state).

741

742 *Description.* The single specimen recovered is an incomplete tooth embedded in matrix with only the
743 labial face being observable. The tooth is wider (14 mm) than high, although the apex of the crown is
744 lacking. The main cusp is triangular and inclined to the posterior with a convex labial face except in
745 its central region where a vertical concavity is present at the base of the cusp. A pair of low and
746 broad lateral cusplets is present, separated from the cutting edges of the main cusp by a narrow
747 notch. The mesial cusplet is diverging and bears an incipient secondary cusplets in its mesial edge.
748 The distal cusplet is incomplete but both mesial and distal marginal cusplets bear a blade-like
749 extension of enameloid that exceeds the lateral edges of the root. The basal edge of the labial crown
750 face is flat except in the median region where a slight bulge is present. The labial crown face is
751 devoid of ornamentation apart from very faint and short vertical folds at the basal edge of the crown.
752 The labial root face is flat to slightly concave in profile view shows two large and triangular-shaped
753 lobes separated by a narrow v-shaped notch. Both lobes bear a protuberance on the angle between
754 their lateral and basal root edges. Numerous large and oval-shaped foramina open on the labial root
755 face.

756

757 *Remarks.* The genus *Cretolamna* is amongst the most commonly reported lamniforms in post-Aptian
758 Cretaceous deposits. Most Cretaceous records of this genus (and several younger records) were
759 assigned to the species *Cretolamna appendiculata* (Agassiz, 1843). Yet, this species was based on a
760 heterogeneous series that lumped several different species and genera with unclear stratigraphic
761 and precise geographic details, which led Siverson (1999) to designate a lectotype. A much needed
762 revision of Late Cretaceous *Cretolamna* (Siversson et al., 2015) untangled a large part of the
763 taxonomic lumping within this genus and concluded that the species *C. appendiculata sensu stricto*
764 should be restricted to the material from the type area (Cenomanian-Coniacian of Lewes, England)
765 and lower Turonian of France (Bettrechies). Because of the difficulties in identifying *Cretolamna*

766 material at species level even based on numerous well-preserved specimens, we prefer to leave the
767 specimen described here in open nomenclature.

768 Although Upper Cretaceous records of *Cretolamna* are frequent worldwide (see Cappetta, 2012),
769 reports of this genus from South America are scarce. Previous reports include an abraded tooth from
770 the Maastrichtian of Argentina attributed to *C. appendiculata* (Bogan and Agnolin, 2010) and
771 *Cretolamna biauriculata* (Wanner, 1902), from the Maastrichtian of Brazil (Rebouças and Silva
772 Santos, 1956). The tooth described here indicates the presence of the genus *Cretolamna* from South
773 America as soon as in the earliest Late Cretaceous.

774

775 Lamniformes *incet. sedis*

776 Genus *Acutalamna* gen. nov.

777

778 *Derivation of name.* From the latin *acutus* (sharp, pointed) in allusion to the elongated and sharp
779 morphology of the crown.

780

781 *Type species.* *Acutalamna karsteni* gen. et sp. nov.

782

783 *Diagnosis.* Lamniform with gradient monognathic heterodonty. Cuspidate teeth higher than wide.
784 Slender main cusp weakly (anterior teeth) to strongly (laterals) bent distally, devoid of lateral
785 cusplets; main cup sigmoid in labial and profile views. Lateral heels oblique in anterior teeth; mesial
786 heel incipient to absent in more lateral tooth files. Cutting edges smooth, low and thin. Large crown
787 neck. U-shaped root of anaulacorhize stage. Root bilobate, asymmetrical with more developed and
788 thinner mesial lobe; strong and protruding lingual protuberance with central foramen. Labial root

789 face with variable number of foramina below the crown/root edge. More lateral teeth strongly
790 asymmetrical with short and stubby mesial root lobe and incipient or no mesial crown heel; basal
791 root edge curved and wide. Heels absent in latero-posterior teeth.

792

793 *Remarks.* The genus *Priscusurus* Kriwet, 2006 was erected on the type species *Priscusurus*
794 *adruptodontus* Kriwet, 2006 from the ?middle Albian (Muerto Limestone Fm.) of northwestern Peru.
795 Yet, the type series mainly includes incomplete teeth and appears to be heterogeneous. The
796 holotype (BMNH P. 36287) of *P. adruptodontus* is a complete tooth embedded in matrix of which
797 only the lingual face is observable. This tooth shows characters of anacoracid lamniforms (flat basal
798 face of the root, poorly differentiated root lobes, labio-lingually compressed root, concave marginal
799 areas of the lingual root face and triangular-shaped crown) that are typically found in *Squalicorax*
800 species. Other teeth (?Fig 2B-C and Fig. 3J) also belong to the genus *Squalicorax*. Consequently, as
801 the holotype is the bearer of the scientific name a species-group taxon (ICZN Art. 72.10), the species
802 *adruptodontus* must be transferred to the genus *Squalicorax*. However, since the holotype of *S.*
803 *adruptodontus* comb. nov. (Kriwet, 2006) is embedded in matrix and represents a species of
804 *Squalicorax*, an extremely diverse genus comprising 53 nominal species (Cappetta et al., 2014) with
805 high variability in tooth morphologies, the figured specimens are not sufficient to justify the validity
806 of the species. Accordingly, *S. adruptodontus* comb. nov. (Kriwet, 2006) should be considered *nomen*
807 *dubium*. In the absence of type species for the genus *Priscusurus*, this genus name should be
808 considered *nomen nudum* and the non-*Squalicorax* teeth of the original type series of *Priscusurus*
809 *adruptodontus* should be included in an unnamed species of the genus *Acutalamna* gen. nov. (see
810 below).

811

812 *Additional species.* Excluding the specimens originally assigned to *Priscusurus adruptodontus* from
813 the Albian of Peru (Kriwet, 2006) that correspond to the *nomen dubium* species *S. adruptodontus*

814 comb. nov. results in a series (Fig. 2B-C *non* Fig. 2A & ?Fig 2B-C, Fig. 3A-I *non* Fig. 3J) composed of
815 fragmentary specimens that make difficult the identification of the material at the species level.
816 Consequently, although the morphology of these teeth corresponds to an *Acutalamna* species, it is
817 preferred to leave it in open nomenclature. Cappetta (2012) figured two teeth attributed to
818 *Priscusurus adruptodontus* from the upper Albian of Ecuador. The material was originally said to
819 come from Peru but was actually collected from the Napo Fm. (Western Oriente Basin) of Ecuador
820 (Cappetta pers. com. 2017) and reported as “undetermined lamniform probably representing a new
821 genus” (Jaillard, 1997; p. 58). While the material from Peru (Kriwet, 2006) here attributed to
822 *Acutalamna* sp. corresponds to lateral to latero-posterior teeth, specimens from Ecuador are
823 represented by anterior and antero-lateral teeth. Hence, it is possible that they correspond to the
824 same taxon but the lack of comparable specimens between the two localities and the fragmentary
825 state of preservation of the Peruvian material precludes certain judgement. Biddle (1993) figured
826 two teeth (pl. 4, figs. 19-20) as ?*Microcorax* sp. from the middle Albian of France. These show a bulky
827 and asymmetrical root with a strong lingual protuberance and wide lingual neck as well as a sigmoid
828 main cusp with wide lower part. These characters allow the attribution of these specimens to the
829 genus *Acutalamna* gen. nov. However, teeth from France differ from the other Albian specimens by
830 their more robust general morphology and probably correspond to a different, unnamed species.
831 Cappetta (2012) proposed that the material figured by Dalinkevičius (1935, p. pl. 5, figs. 114-118) as
832 *Oxyrhina* (?) *primaeva* from the Albian of Lithuania might be included in the genus *Priscusurus* (now
833 *Acutalamna* gen. nov.). Yet, one of these specimens (pl. 5, fig. 118) was designated by Landemaine
834 (1991) as the holotype of the species *Squalicorax primigenius* Landemaine, 1991 whereas the
835 remaining specimens (pl. 5, figs. 114-117) present characters typical of the genus *Acrolamna*
836 Zhelezko, 1990 (labio-lingually compressed teeth with no lingual root protuberance, wide and short
837 root lobes, wide triangular main cusp) and should be included within this genus. The genus
838 *Acutalamna* gen. nov. described here includes a single nominal species (*Acutalamna karsteni* gen. et
839 sp. nov.) and ranges from the Albian to the Cenomanian.

840

841 *Acutalamna karsteni* gen. et sp. nov.

842

Fig. 7

843

844 *Derivation of name.* In honour of Hermann Karsten a 19th century German naturalist who conducted
845 a pioneer exploration in northern South America and collected a number of palaeontological material
846 from the Cretaceous and Pleistocene of Colombia and Venezuela (Carrillo-Briceño et al., 2016).

847

848 *Holotype.* AMU-CURS-908.

849

850 *Type stratum.* Laminated black/dark-grey shales in the basal part of the La Aguada Member, La Luna
851 Formation.

852

853 *Material.* Six teeth (AMU-CURS-908 to AMU-CURS-913) from Cementos Andinos Quarry (Trujillo
854 state) and one tooth (MBLUZ P-431) from La Luna Quarry (Zulia state).

855

856 *Diagnosis.* As for genus.

857

858 *Description.* Anterior teeth are cuspidate, higher (10 mm) than wide (5 mm), slender and gracile. The
859 crown is composed of an elongate and lingually-inclined main cusp that is slightly bent distally and a
860 pair of lateral heels. The lingual face of the cusp is strongly convex whereas the labial face is slightly
861 convex to nearly flat with an incipient basal bulge. The crown heels are inclined basally with the

862 mesial heel being more oblique than the distal one. Cutting edges are thin but sharp and run
863 continuously from the apex of the main cusp to the lateral margins of the heels. The upper part of
864 the crown is bent labially and shows a slight twisting, which confers a sigmoid shape to the main cusp
865 in profile view. The crown/root edge of the lingual face bears by a thick neck. The root is
866 anaulacorhize, bilobate and U-shaped in lingual/labial view with a concave basal face in profile view.
867 Root branches are individualized and oriented labially. The mesial root lobe is slenderer and more
868 elongate than the distal one. The lingual root face bears a strong and wide lingual bulge that is
869 pierced by a wide central foramen. Numerous small foramina open on the lingual root face,
870 immediately below the neck. The labial root face bears a few foramina in central position and others
871 more irregularly open on the lingual face of the root lobes. Teeth from more lateral files have a more
872 robust general morphology. The main cusp is wider in its lower part and has a more marked sigmoid
873 outline in both lingual and profile views. The labial crown face is convex with a basal bulge. The distal
874 heel is incipient or absent whereas the mesial heel is low and less oblique than in anterior teeth. The
875 root is compact with strongly asymmetrical lobes that are well separated by an arched basal edge.
876 The lingual root bulge is wide and strongly protrudes lingually but is less differentiated from the root
877 lobes than in anterior teeth. The mesial root lobe is elongate whereas the distal one is short and
878 stubby, sometimes poorly differentiated from the rest of the root. A series of foramina underline the
879 labial crown bulge, sometimes associated with more irregularly situated foramina near the basal root
880 edge. Latero-posterior teeth are low with incipient distal root lobe and no differentiated crown heels.

881

882 *Remarks.* Teeth of *Acutalamna karsteni* gen. et sp. nov. differ from the unnamed species from
883 Ecuador (Cappetta, 2012) by their more marked and more individualized lingual protuberance. The
884 specimens reported from the Albian of France (Biddle, 1993) differ from *Acutalamna karsteni* gen. et
885 sp. nov. by their more robust general aspect, more mesio-distally compressed root and less elongate
886 main cusp with a wider basal region. The single (antero-lateral) tooth recovered from La Luna Quarry

887 is a museum specimen that could not be extracted from the sediment, nonetheless the observable
888 features present on the lingual face allows attribution of this specimen to *A. karsteni* gen. et sp. nov.
889 The material described here represents the last occurrence of the genus which is otherwise known
890 only from the upper Albian of Ecuador (Cappetta, 2012) and ?middle Albian of Peru (Kriwet, 2006)
891 and middle Albian of France (Biddle, 1993).

892

893 **5. Discussion**

894 5.1. Stratigraphy and palaeobiogeography

895 The specimens described here were sampled from two horizons within the La Luna Formation: one
896 from the Aguada Member (Cementos Andinos Quarry, Trujillo state) and the other from just above
897 the contact between the Maraca Formation (Cogollo Group) and the La Luna Formation (La Luna
898 Quarry, Zulia state). While a Cenomanian age was proposed for the Aguada Member based on
899 foraminifera and ammonites (Renz, 1959), the presence of horizons of Cenomanian age in the
900 Maracaibo Basin, from which the La Luna Quarry samples originate, has been controversial (Dot et
901 al., 2015; Erlich et al., 1999; Renz, 1982). The two sampled localities have distinct (and rich)
902 anacoracid composition but they share two taxa: *M. saskatchewanensis* and *A. karsteni*. Despite its
903 small-sized teeth, *M. saskatchewanensis* was collected from various Cenomanian fossil-rich horizons
904 in the Western Interior Seaway (WIS) as well as from one lower Turonian locality in the WIS (see
905 above). *Acutalamna* remains were so far known exclusively from the middle-upper Albian by at least
906 two unnamed species groups (one from South America represented by two closely-related, if not
907 conspecific, morphs and one from France). In addition, the La Luna quarry also yielded the species
908 *Squalicorax* sp. 3, to which some material from the upper Cenomanian of Egypt has been referred
909 (see above). Although the Cementos Andinos quarry and the La Luna quarry faunas are probably not
910 contemporaneous, the presence of *M. saskatchewanensis* and *A. karsteni* in both localities and of
911 *Squalicorax* sp. 3 in the Maracaibo Basin suggest a Cenomanian age for the base of the La Luna

912 Formation in this region. This is consistent with the suspected presence of upper Cenomanian strata
913 forming the base of the La Luna Formation in the northwestern and central parts of the Maracaibo
914 Basin, where rocks of La Luna Formation unconformably rest on upper Albian rocks (Erlich et al.,
915 2000, 1999).

916 *Microcarcharias saskatchewanensis* was a small, probably nectobenthic shark typical of the Western
917 Interior Seaway fauna and its presence in Venezuela suggests marine connexions between the WIS
918 and the La Luna Sea. In addition, *Squalicorax moodyi* sp. nov. (La Luna quarry) is morphologically
919 close to *Squalicorax* sp. from the upper Albian of Texas Welton and Farish (1993; p. 120) and *S.*
920 *lalunaensis* sp. nov. (Cementos Andinos quarry) is close to the *S. volgensis* group (upper Cenomanian
921 of Australia and Kansas) and to *Squalicorax* aff. *pawpawensis* from the Cenomanian of Canada
922 (Underwood and Cumbaa, 2010). Although *C. mantelli* and *Cretolamna* species are very common in
923 the Cenomanian of North America, these are cosmopolitan taxa that might not be reliable for
924 palaeobiogeographic interpretations. However, the ichthyodectiform fish *Xiphactinus* Leidy, 1870
925 reported from Cementos Andinos quarry (Carrillo-Briceño et al., 2012) is another taxon typically
926 found in the WIS. These occurrences suggests more affinities in fauna composition with the North
927 American WIS than with African assemblages (see Antunes and Cappetta, 2002) although the
928 *Squalicorax* sp. 3 specimen from La Luna Formation is morphologically close to the Cenomanian
929 taxon reported from Egypt (Stromer, 1927; pl. 1, fig. 26). The lamniform assemblage reported here
930 shows little similarities with taxa reported from other Southern Continents. An early Cenomanian
931 selachian assemblage from South India (Underwood et al., 2011) yielded a single *Squalicorax* species
932 (*Squalicorax* aff. *baharijensis*) that does not compare with the La Luna *Squalicorax* species along with
933 teeth belonging to the cosmopolitan *Cretolamna appendiculata* group. Most other lamniform and
934 non-lamniform sharks present in the Indian assemblage have anti-tropical distributions, which
935 suggests that temperature, along with endemism, might explain differences in lamniform
936 composition between these assemblages. Higher latitudes may also explain the differences in
937 lamniform composition of selachian assemblages from Australia (Siverson, 1999, 1997, 1996) that

938 comprise a high taxic diversity but very few anacoracids including representatives of the *S. volgensis*
939 group. According to Erlich et al. (2000) the La Luna Sea was situated in a restricted basin surrounded
940 by topographic highs that restricted connexions excepted in the north/northeast part. The lamniform
941 material described here indicates some degree of endemism (anacoracids) that agrees with the
942 restricted conditions of the sea and also indicates some connexions with northern seas. These marine
943 connexions with northern oceans were certainly continuous through most of the Late Cretaceous as
944 some other taxa reported from younger parts of the La Luna Formation such as the probably
945 Coniacian *Ptychodus atcoensis* (Carrillo-Briceño and Lucas, 2013) and the Cenomanian-Santonian
946 *Ptychodus cyclodontis* (Carrillo-Briceño, 2009) are known from the Coniacian of North America
947 (Hamm, 2009) and the Turonian of the Caribbean (Mutter et al., 2005), respectively.

948

949 5.2. Palaeoenvironment and palaeoecology

950 La Luna Formation has been interpreted as a typical marine environment where laminated organic-
951 rich intervals suggest a deposition in the mid-shelf to upper continental slope under anoxic or poorly
952 oxygenated conditions (e.g. Bralower and Lorente, 2003; Erlich et al., 1999; Macellari and De Vries,
953 1987; Zapata et al., 2003). According to Tribouillard et al. (1991), the rich organic matter of the
954 sediments in the La Aguada Member (Andes of Trujillo and Lara states) is of algal origin. González de
955 Juana et al. (1980) suggested that the La Aguada Member could be considered as a transitional
956 environment between the shallow waters of the Maraca formation (or La Puya Member according to
957 Renz, 1968, 1959) and the pelagic facies of the La Luna Formation. Erlich et al. (1999) and Méndez
958 (1981) suggested that the anoxic conditions of the La Luna Formation during the late Albian-early
959 Cenomanian transgression were not due to water depth but to pre-existing anoxic conditions in the
960 slope zone. On basis of benthic and planktonic foraminifera, Méndez (1981) recognized an increase
961 in the submersion of the platform, but probably with depths that did not exceed 50 m.

962 Strata of the Aguada Member in Cementos Andinos quarry, especially the laminated black/dark-grey
963 shales, yielded abundant bony fish remains represented by scales and isolated and semi-articulated
964 cranial and postcranial elements of *Xiphactinus* (Carrillo-Briceño et al., 2012), other
965 ichthyodectiforms, enchodontids and small indeterminate fishes. Marine sauropsids are represented
966 in the locality by a single taxon, *Lunaophis aquaticus* Albino, Carrillo-Briceño and Neenan, 2016, a
967 marine snake that exploited tropical environments. According to our own observations, benthic
968 invertebrates are scarce in the shales of the Cementos Andinos quarry with only small bivalve moulds
969 in the limestones (along with undetermined ammonites) and some inoceramids in the calcareous
970 concretions. This could suggest periods of better oxygenated conditions on the sea floor for the La
971 Aguada Member or may indicate that these organisms were tolerant to anoxic environments, as
972 suggested for other sections of the La Luna Formation (e.g., Tribouillard et al., 1991). Although it is
973 somewhat difficult to suggest a specific palaeoenvironment for this section of the La Aguada
974 Member using the known vertebrate assemblage, the abundant fish remains may suggest well-
975 oxygenated surface waters being part of a stratified water column. In La Luna Quarry, Moody and
976 Maisey (1994) reported abundant fish remains (e.g. enchodontids, *Belonostomus*, *Bananogmius* and
977 unidentified teleost scales and bones), and our sample from dissolved rocks yielded abundant
978 disarticulated osteichthyan microremains. Although there is no clear environmental definition for
979 this section using fossil assemblages, the Cenomanian rocks of the La Luna Formation in the Sierra de
980 Perijá were considered representative of outer shelf to upper slope deposits (Erlich et al., 1999).
981 The most striking feature of the lamniform assemblages reported here is the high diversity of this
982 group in the Cenomanian La Luna Sea with 12 species representing five families. In addition, a semi-
983 complete (1.2 metres long), articulated vertebral column of a possible lamniform shark was also
984 found *in situ* in the Cementos Andinos quarry. However, this specimen has been destroyed by quarry
985 workers before being studied and only photographs were available to us. Nevertheless, one
986 specimen figured here (CURS-893) and referred to *Squalicorax* sp. 2 was collected from the same
987 layer, less than 20 cm from the vertebrae, which possibly indicates that the articulated vertebral

988 column might belonged to a *Squalicorax*. While the palaeoecology of *Acutalamna* is not well known
989 (although its tooth morphology suggests a nectobenthic predator or scavenger), the remaining taxa
990 recovered represent various habits. The tooth morphology and anatomy of *Cretoxyrhina mantelli*
991 suggest that this shark was an active pelagic predator feeding on large vertebrate preys (Shimada,
992 1997b), whereas there are numerous evidences of scavenging of large marine vertebrates
993 (plesiosaurs, mosasaurs, turtles, large actinopterygians) by different *Squalicorax* species in the Late
994 Cretaceous (Dortangs et al., 2002; Everhart, 2005; Schwimmer et al., 1997; Strganac et al., 2015).
995 Feeding habits of *Cretolamna* species are more difficult to assess as the species diversity of this genus
996 with a long stratigraphic range is probably underestimated. However, a report of numerous teeth of
997 "*C. appendiculata*" around an elasmosaurid carcass from the Santonian of Japan (Shimada et al.,
998 2010) suggests that at least some of the *Cretolamna* species happened to prey on dead carcasses,
999 either occasionally or exclusively. *Microcarcharias saskatchewanensis* exhibits very small teeth of
1000 tearing type, which indicate a small nectobenthic predator probably feeding on small bony fishes and
1001 invertebrates. The dominance of anacoracids in La Luna quarry (four *Squalicorax* species) and
1002 Cementos Andinos quarry (three *Squalicorax* and one probable *Nanocorax* species) is correlated with
1003 the apparent high diversity of medium to large marine vertebrates found in association, which is
1004 consistent with their probable opportunistic feeding strategy (active predation and scavenging).
1005 Comparably high anacoracid diversity is known in mid-Cretaceous chondrichthyan assemblages from
1006 the WIS (Bice and Shimada, 2016; Cappetta and Case, 1999; Siverson et al., 2007; Welton and Farish,
1007 1993), which also generally co-occur with large marine vertebrates. However, WIS assemblages
1008 mostly represent shallow to inner shelf epicontinental marine environments that contrast with the
1009 palaeoenvironments suggested for the La Luna Sea in the Cenomanian. The anacoracid material
1010 reported here indicates that the outer shelf/upper slope environments of the La Luna Sea were
1011 favorable to these sharks during the earliest Late Cretaceous. Previous reports of anacoracids from
1012 deep marine environments were restricted to the uppermost Cretaceous of Angola (Antunes and
1013 Cappetta, 2002) and Israel (Lewy and Cappetta, 1989). The assemblages described here indicate that

1014 anacoracids were adapted to outer shelf/slope marine environments early in their evolutionary
1015 history. The contrast in palaeoenvironments between the La Luna Sea and the WIS (although some
1016 species present in both regions are closely related, see above) might partly explain the differences in
1017 anacoracid composition of respective assemblages. However, this may also be due to differences in
1018 stratigraphic origins of these assemblages, suggesting that anacoracid evolutionary rates were high
1019 in the mid-Cretaceous. This is a likely possibility given the large number of unnamed species from the
1020 North American mid-Cretaceous.

1021

1022 **6. Conclusions**

1023 This contribution is the first report of chondrichthyans from the mid-Cretaceous of Venezuela and
1024 one of the few records of this group from the Cenomanian of South America. Two sampled sites
1025 within the La Luna Formation yielded twelve lamniform species including a number of new taxa.
1026 Comparisons between these assemblages and others suggests a Cenomanian age for the base of the
1027 La Luna Formation in the Maracaibo Basin. The composition of these assemblages indicates some
1028 degree of endemism in the La Luna Sea that agrees with the restricted environmental conditions
1029 proposed for this sea, but also suggests more probable connexions with the Western Interior Seaway
1030 than with Southern Continent seas. The anacoracid diversity of these assemblages is strikingly high
1031 (eight species in total) despite the outer shelf/upper slope palaeoenvironments of the La Luna
1032 Formation. The high diversity of these opportunistic predators is probably related to the high
1033 diversity of large marine vertebrates reported from these localities, which provided abundant food
1034 resources.

1035

1036 **Acknowledgments**

1037 We are grateful to the geologists Carlos Torres, Engelberth Montilla, Crisanto Silva, Norelis Valera,
1038 and Cementos Andinos CA., for generous and significant collaboration during fieldwork. Tito Barros,
1039 Gilson Rivas and John Moody, are thanked for support and permission to study the specimens
1040 housed in the Museo de Biología de La Universidad del Zulia. Anne-Lise Charrault (ISE-M, University
1041 of Montpellier) helped with the restauration of some specimens from Trujillo state. To the Instituto
1042 del Patrimonio Cultural de Venezuela gave permissions for collecting and studying the specimens.
1043 Marcelo Sánchez-Villagra provided generous economical support and collaboration during fieldwork
1044 activities. The reviewers (C.J. Underwood and R. Vullo) and Editor are thanked for their comments on
1045 an earlier version on the manuscript.

1046

1047 **References**

1048 Agassiz, L., (1833-44). *Recherches sur les poissons fossiles* 3, 422.

1049 Albino, A., Carrillo-Briceño, J.D., Neenan, J.M., 2016. An enigmatic aquatic snake from the
1050 Cenomanian of Northern South America. *PeerJ* 4, e2027. doi:10.7717/peerj.2027

1051 Antunes, M.T., Cappetta, H., 2002. Sélaciens du Crétacé (Albien-Maastrichtien) d'Angola.
1052 *Palaeontographica Abteilung A* 264, 85–146.

1053 Berg, L.S., 1958. *System der rezenten und fossilen Fischartigen und Fische*. Deutscher Verlag
1054 Wissenschaft, Berlin, 310 pp.

1055 Bice, K.N., Shimada, K., 2016. Fossil marine vertebrates from the Codell Sandstone Member (middle
1056 Turonian) of the Upper Cretaceous Carlile Shale in Jewell County, Kansas, USA. *Cretaceous
1057 Research* 65, 172–198. doi:10.1016/j.cretres.2016.04.017

1058 Biddle, J.-P., 1993. Les élasmodbranches de l'Albien inférieur et moyen (Crétacé inférieur) de la Marne
1059 et de la Haute-Marne (France), in: Herman, J., Van Waes, H. (Eds.), *Professional Paper of the
1060 Belgian Geological Survey. Professional Paper of the Belgian Geological Survey*, Brussels, pp.
1061 191–240.

1062 Bogan, S., Agnolin, F.L., 2010. Primera ictiofauna marina del Cretácico Superior (Formación Jaguel,
1063 Maastrichtiano) de la provincia de Río Negro, Argentina. Papéis Avulsos de Zoologia (São
1064 Paulo).

1065 Bonaparte, C.L.J.L., 1838. Selachorum tabula analytica. Nuovi Annali delle Scienze Naturali 1, 195–
1066 214.

1067 Bourdon, J., Everhart, M.J., 2011. Analysis of an associated *Cretoxyrhina mantelli* dentition from the
1068 Late Cretaceous (Smoky Hill Chalk, Late Coniacian) of western Kansas. Transactions of the
1069 Kansas Academy of Science 114, 15–32.

1070 Bralower, T.J., Lorente, M.A., 2003. Paleogeography and Stratigraphy of the La Luna Formation and
1071 Related Cretaceous Anoxic Depositional Systems. PALAIOS 18, 301–304. doi:10.1669/0883-
1072 1351(2003)018<0301:PASOTL>2.0.CO;2

1073 Brito, P.M., Janvier, P., 2002. A ptychodontid (Chondrichthyes, Elasmobranchii) from the Upper
1074 Cretaceous of South America. Geodiversitas 24, 785–790.

1075 Brito, P.M., Leal, M.E.C., Gallo, V., 2013. A new Lower Cretaceous guitarfish (Chondrichthyes,
1076 Batoidea) from the Santana Formation, northeastern Brazil. Boletim do Museu Nacional.
1077 Nova serie geologia 1–14.

1078 Brito, P.M.M., Ferreira, P.L.N., 1989. The first Hybodont shark, *Tribodus limae* n. gen., n. sp., from the
1079 Lower Cretaceous of Chapada do Araripe (North-East Brazil). Anais da Academia Brasileira de
1080 Ciências 61, 53–57.

1081 Cappetta, H., 2012. Chondrichthyes - Mesozoic and Cenozoic Elasmobranchii: Teeth, Handbook of
1082 Paleoichthyology. Verlag F. Pfeil, Munich.

1083 Cappetta, H., 2006. Elasmobranchii Post-Triadici (index specierum), Fossilium Catalogus I: Animalia.
1084 Blackhuys Publishers, Leiden.

1085 Cappetta, H., Adnet, S., Akkrim, D., Amalik, M., 2014. New *Squalicorax* species (Neoselachii:
1086 Lamniformes) from the Lower Maastrichtian of Ganntour phosphate deposit, Morocco.
1087 Palaeovertebrata 38, e3.

1088 Cappetta, H., Case, G.R., 1999. Additions aux faunes de sélaciens du Crétacé du Texas (Albien
 1089 supérieur-Campanien). *Palaeo Ichthyologica* 9, 5–111.

1090 Cappetta, H., Case, G.R., 1975. Sélaciens nouveaux du Crétacé du Texas. *Geobios* 8, 303–307.

1091 Carrillo-Briceño, J.D., 2009. Presencia del género “*Ptychodus*” (Elasmobrachii: Ptychodontidae) en el
 1092 cretácico superior de los Andes de Trujillo, Venezuela. *Geominas* 37, 207–210.

1093 Carrillo-Briceño, J.D., Alvarado-Ortega, J., Torres, C., 2012. Primer registro de *Xiphactinus* Leidy, 1870
 1094 (Teleostei, Ichtyodectiformes) en el Cretacico superior de América del Sur (Formacion La
 1095 Luna, Venezuela). *Revista Brasileira de Paleontologia* 15, 327–335.

1096 Carrillo-Briceño, J.D., Amson, E., Zurita, A., Sánchez-Villagra, M.R., 2016. Hermann Karsten (1817–
 1097 1908): a German naturalist in the Neotropics and the significance of his paleovertebrate
 1098 collection. *Fossil Record* 20, 21–36. doi:10.5194/fr-20-21-2016

1099 Carrillo-Briceño, J.D., Ayala, R., Chavez, E.O., Gonzalez, G., 2008. Registro de *Serratolamna serrata*
 1100 (Elasmobranchii: Serratolamnidae) en el Cretácico Superior (Maestrichtiense) de los Andes
 1101 Venezolanos. *Geominas* 36, 160–163.

1102 Carrillo-Briceño, J.D., Lucas, S.G., 2013. The first tooth set of *Ptychodus atcoensis* (Elasmobranchii:
 1103 Ptychodontidae), from the Cretaceous of Venezuela. *Swiss J Palaeontol* 132, 69–75.
 1104 doi:10.1007/s13358-013-0053-3

1105 Case, G.R., Tokaryk, T.T., Baird, D., 1990. Selachians from the Niobrara Formation of the Upper
 1106 Cretaceous (Coniacian) of Carrot River, Saskatchewan, Canada. *Can. J. Earth Sci.* 27, 1084–
 1107 1094. doi:10.1139/e90-112

1108 Casier, E., 1947. Constitution et évolution de la racine dentaire des Euselachii. II-Etude comparative
 1109 des types. *Bulletin de l’Institut Royal des Sciences Naturelles de Belgique* 23, 1–32.

1110 Cicimurri, D.J., 2001a. Cretaceous elasmobranchs of the Greenhorn Formation (middle Cenomanian–
 1111 middle Turonian), western South Dakota, in: Santucci, V.L., McClelland, L. (Eds.), *Proceedings*
 1112 of the 6th Fossil Ressource Conference. *Geologic Resources Division Technical Report*.

1113 Cicimurri, D.J., 2001b. Fossil selachians from the Bell Fourche Shale (Cretaceous, Cenomanian), Black
1114 Hills region of South Dakota and Wyoming. *Mountain Geologist* 38, 181–192.

1115 Compagno, L.J.V., 1990. Relationships of the megamouth shark, *Megachasma pelagios*
1116 (Lamniformes: Megachasmidae), with comments on its feeding habits. *National Oceanic and*
1117 *Atmospheric Administration Technical Report, National Marine Fisheries Service* 90, 357–
1118 379.

1119 Compagno, L.J.V., 1977. Phyletic relationships of living sharks and rays. *American Zoologist* 17, 303–
1120 322.

1121 Cumbaa, S.L., Tokaryk, T.T., 1999. Recent discoveries of Cretaceous marine vertebrates on the
1122 eastern margins of the Western Interior Seaway, p. 57–63. In *Summary of Investigations*
1123 1999. Volume 1. *Miscellaneous Report 99-4.1. Saskatchewan Geological Survey,*
1124 *Saskatchewan Energy Mines.*

1125 Dalinkevičius, J.A., 1935. On the fossil fishes of the Lituanian chalk. I. Selachii. *Mémoires de la Faculté*
1126 *des Sciences de l' Universite de Vytautas le Grand* 9, 247–305.

1127 Davis, C., Pratt, L.M., Sliter, W.V., Mompart, L., Murat, B., 1999. Factors influencing organic carbon
1128 and trace metal accumulation in the Upper Cretaceous La Luna Formation of the western
1129 Maracaibo Basin, Venezuela. *Geological Society of America Special Papers* 332, 203–230.
1130 doi:10.1130/0-8137-2332-9.203

1131 Dortangs, R.W., Schulp, A.S., Mulder, E.W.A., Jagt, J.W.M., Peeters, H.H.G., Graaf, D.T. de, 2002. A
1132 large new mosasaur from the Upper Cretaceous of The Netherlands. *Netherlands Journal of*
1133 *Geosciences* 81, 1–8. doi:10.1017/S0016774600020515

1134 Dot, J.A.M., Baamonde, J.M., Reyes, D., Whilchy, R., Dot, J.A.M., Baamonde, J.M., Reyes, D., Whilchy,
1135 R., 2015. The Cogollo Group and the oceanic anoxic events 1a and 1b, Maracaibo basin,
1136 Venezuela. *Brazilian Journal of Geology* 45, 41–61. doi:10.1590/2317-4889201530192

1137 Dunkle, D.H., 1951. New Western Hemisphere occurrences of fossil selachians. *Journal of the*
1138 *Washington Academy of Sciences* 41, 344–347.

1139 Erlich, R.N., Macsotay I., O., Nederbragt, A.J., Antonieta Lorente, M., 2000. Birth and death of the
1140 Late Cretaceous "La Luna Sea", and origin of the Tres Esquinas phosphorites. *Journal of South
1141 American Earth Sciences* 13, 21–45. doi:10.1016/S0895-9811(00)00016-X

1142 Erlich, R.N., Macsotay I., O., Nederbragt, A.J., Lorente, M.A., 1999. Palaeoecology, palaeogeography
1143 and depositional environments of Upper Cretaceous rocks of western Venezuela.
1144 *Palaeogeography, Palaeoclimatology, Palaeoecology* 153, 203–238. doi:10.1016/S0031-
1145 0182(99)00072-3

1146 Everhart, M.J., 2005. Earliest Record of the Genus *Tylosaurus* (Squamata; Mosasauridae) from the
1147 Fort Hays Limestone (Lower Coniacian) of Western Kansas. *Transactions of the Kansas
1148 Academy of Science* (1903-) 108, 149–155.

1149 Glikman, L.S., 1980. Evolution of Cretaceous and Cenozoic lamnid sharks. *Akademii Nauk SSSR,
1150 Moskova* 247 pp. [In Russian].

1151 Glikman, L.S., 1964. Sharks of Paleogene and their stratigraphic significance. *Nauka Press* 229
1152 Moscow. [in Russian].

1153 Glikman, L.S., 1958. Rates of evolution in lamnid sharks. *Doklady Akademii Nauk SSSR* 123, 568–571.
1154

1155 Glikman, L.S., 1957. On the systematic significance of accessory denticles in the teeth of sharks of the
1156 families Lamnidae and Scapanorhynchidae [in Russian]. *Trudy Geologischeskogo Muzeja "A.
1157 P. Karpinskogo"*, Akademii Nauk SSSR 1, 103–109.

1158 Glikman, L.S., Shvazhaite, R.A., 1971. Sharks of the family Anacoracidae from the Cenomanian and
1159 Turonian of Lithuania, Volga region and Middle Asia. *Paleontologiya i Stratigrafiya Pribaltiki
1160 Belorussii* 3, 185–194 [In Russian].

1161 González de Juana, C., Iturrealde de Arocena, J., Picard, X., 1980. *Geología de Venezuela y de sus
1162 cuencas petrolíferas*, Foninves. ed. Caracas.

1163 Guinot, G., Adnet, S., Cappetta, H., 2012. An analytical approach for estimating fossil record and
1164 diversification events in sharks, skates and rays. *PLoS ONE* 7, e44632.
1165 doi:10.1371/journal.pone.0044632

1166 Guinot, G., Cavin, L., 2016. "Fish" (Actinopterygii and Elasmobranchii) diversification patterns through
1167 deep time. *Biol Rev* 91, 950–981. doi:10.1111/brv.12203

1168 Guinot, G., Underwood, C.J., Cappetta, H., Ward, D.J., 2013. Sharks (Elasmobranchii: Euselachii) from
1169 the Late Cretaceous of France and the UK. *Journal of Systematic Palaeontology* 11, 598–671.
1170 doi:10.1080/14772019.2013.767286

1171 Hamm, S.A., 2009. New Data on the Occurrence and Distribution of *Ptychodus* from the Upper
1172 Cretaceous (Coniacian-Santonian) of Texas. *Dallas Paleontological Society, Occasional Papers*
1173 8, 1–31.

1174 Hay, O.P., 1902. Bibliography and catalogue of the fossil Vertebrata of North America. *Bulletin,*
1175 *United States Geological Survey* 179, 1–868.

1176 Huxley, T.H., 1880. On the application of the laws of evolution to the arrangement of the Vertebrata
1177 and more particularly of the Mammalia. *Proceedings of the Zoological Society of London*
1178 1880, 649–662.

1179 Jaillard, E., 1997. Síntesis estratigráfica y sedimentológica del cretaceo y paleogeno de la cuenca
1180 oriental del Ecuador.

1181 Juana, C.G. de, Arozena, J.M.I. de, Cadillat, X.P., 1980. *Geología de Venezuela y de sus cuencas*
1182 *petrolíferas. Foninves.*

1183 Kriwet, J., 2006. Biology and dental morphology of *Priscusurus adruptodontus*, gen. et sp. nov.
1184 (Chondrychthyes, Lamniformes) from the Albian (Early Cretaceous) of Peru. *Journal of*
1185 *Vertebrate Palaeontology* 26, 538–543.

1186 Landemaine, O., 1991. Sélaciens nouveaux du Crétacé supérieur du sud-ouest de la France. Quelques
1187 apports à la systématique des élasmodranches. *Société Amicale des Géologues Amateurs* 1,
1188 1–45.

1189 Leidy, J., 1870. Remarks on ichthyodorulites and on certain fossil mammals. Proceedings of the
1190 American Philosophical Society 22, 12–13.

1191 Lewy, Z., Cappetta, H., 1989. Senonian elasmobranch teeth from Israel. Biostratigraphic and
1192 paleoenvironmental implications. Neues Jahrbuch für Geologie und Paläontologie,
1193 Monatshefte 1989, 212–222.

1194 Macellari, C.E., De Vries, T.J., 1987. Late Cretaceous upwelling and anoxic sedimentation in
1195 northwestern South America. Palaeogeography, Palaeoclimatology, Palaeoecology 59, 279–
1196 292. doi:10.1016/0031-0182(87)90086-1

1197 Méndez, C.E., 1981. La Formación La Luna. Característica de una cuenca anóxica en una plataforma
1198 de aguas someras. Proceedings of the 7th Congreso Geológico Venezolano 852–866.

1199 Meyer, R.L., 1974. Late Cretaceous elasmobranchs from the Mississippi east Texas embayments of
1200 the Gulf Coastal Plain (Unpubl.). Southern Methodist University, Arlington, Texas.

1201 Moody, J.M., Maisey, J.G., 1994. New Cretaceous Marine Vertebrate Assemblages from North-
1202 Western Venezuela and Their Significance. Journal of Vertebrate Paleontology 14, 1–8.

1203 Müller, J.K., Henle, F.G.J., 1838. Systematische Beschreibung der Plagiostomen. Berlin: Veit and Co,
1204 200 pp.

1205 Mutter, R.J., Iturrealde-Vinent, M., Carmona, J.F., 2005. The first Mesozoic Caribbean shark is from the
1206 Turonian of Cuba: *Ptychodus cyclodontis* sp. nov. (?Neoselachii). Journal of Vertebrate
1207 Paleontology 25, 976–978. doi:10.1671/0272-4634(2005)025[0976:TFMCSI]2.0.CO;2

1208 Parámo Fonseca, M.E., 1997. Les vertébrés marins du turonien de la vallée supérieure du Magdalena,
1209 Colombie - systématique, paléoécologie, paléobiogéographie. Université de Poitiers.

1210 Pereira, A.A., Medeiros, M.A., 2008. A new sclerorhynchiform (Elsamobranchii) from the middle
1211 Cretaceous of Brazil. Rev. Bras. Paleontol. 11, 207–212.

1212 Rafinesque, C.S., 1810. Caratteri di alcuni nuovi generi e nuove specie di animali e pinate della Sicilia,
1213 con varie osservazioni sopra i medisimi 3–69.

1214 Rebouças, J.C., Silva Santos, R., 1956. Fauna ictiológica do fosfato de Pernambuco, Brasil. Boletim da
1215 Divisão de Geologia e Mineralogia, siver 162, 1–29.

1216 Rees, J., 2005. Neoselachian shark and ray teeth from the Valanginian, Lower Cretaceous, of Wawal,
1217 central Poland. *Palaeontology* 48, 209–221.

1218 Reinhart, R.H., 1951. A new shark of the family Ptychodontidae from South America. *University of*
1219 *California Publications in Geological Sciences* 28, 195–202.

1220 Renz, O., 1982. The Cretaceous ammonites of Venezuela. Birkhäuser Verlag, Basel.

1221 Renz, O., 1968. Über die Untergattungen *Venezoliceras* Spath und *Laraiceras* n. subgen., der Gattung
1222 *Oxytropidoceras* Stieler (Ammonoidea) aus den venezolanischen Anden. *Eclogae Geologicae*
1223 *Helvetiae* 61, 615–655.

1224 Renz, O., 1959. Estratigrafía del Cretáceo en Venezuela occidental. *Boletín de Geología* 5, 3–48.

1225 Reuss, A.E., 1845. Die Versteinerungen der Böhmisichen Kreideformation. *Abtheilung* 1: 58 pp.
1226 Stuttgart (Schweizerbart).

1227 Schwimmer, D.R., Stewart, J.D., Dent Williams, G., 1997. Scavenging by sharks of the genus
1228 *Squalicorax* in the Late Cretaceous of North America. *Palaios* 12, 71–83.

1229 Shimada, K., 2008. New anacoracid shark from Upper Cretaceous Niobrara chalk of Western Kansas,
1230 U.S.A. *Journal of Vertebrate Paleontology* 28, 1189–1194.

1231 Shimada, K., 1997a. Dentition of the Late Cretaceous Lamniform Shark, *Cretoxyrhina mantelli*, from
1232 the Niobrara Chalk of Kansas. *Journal of Vertebrate Paleontology* 17, 269–279.

1233 Shimada, K., 1997b. Paleoecological relationships of the Late Cretaceous Lamniform shark,
1234 *Cretoxyrhina mantelli* (AGASSIZ). *J. Paleontol.* 71, 926–933.

1235 Shimada, K., Martin, D.J., 2008. Fossil fishes from the basal Greenhorn Limestone (Upper Cretaceous,
1236 Late Cenomanian) in Russel County, Kansas, in: Farley, G.H., Choate, J.R. (Eds.), *Unlocking the*
1237 *Unknown: Papers Honoring Dr. Richard J. Zakrzewski. Fort Hays Studies*, Hays, Kansas, pp.
1238 89–103.

1239 Shimada, K., Schumacher, B.A., Parkin, J.A., Palermo, J.M., 2006. Fossil marine vertebrates from the
1240 lowermost Greenhorn Limestone (Upper Cretaceous: Middle Cenomanian) in southeastern
1241 Colorado. *Journal of Paleontology Memoir* 63, 1–45.

1242 Shimada, K., Tsuihiji, T., Sato, T., Hasegawa, Y., 2010. A remarkable case of shark-bitten elasmosaurid
1243 plesiosaur. *Journal of Vertebrate Paleontology* 30, 592–597.

1244 Silva Santos, R., 1968. A paleoictiofauna da formação Santana - Euselachii. *Anais da Academia*
1245 *brasileira de Ciências* 4, 491–497.

1246 Siverson, M., 1999. A new large lamniform shark from the uppermost Gearle Siltstone (Cenomanian,
1247 Late cretaceous) of Western Australia. *Transactions of the Royal Society of Edinburgh: Earth*
1248 *Sciences* 90, 49–66.

1249 Siverson, M., 1997. Sharks from the Mid-Cretaceous Gearle siltstone, Southern Carnarvon Basin,
1250 Western Australia. *Journal of Vertebrate Paleontology* 17, 453–465.

1251 Siverson, M., 1996. Lamniform sharks of the mid Cretaceous Alinga Formation and Beedagong
1252 claystone, Western Australia. *Palaeontology* 39, 813–849.

1253 Siverson, M., Lindgren, J., Kelley, L.S., 2007. Anacoracid sharks from the Albian (Lower Cretaceous)
1254 Pawpaw shale of Texas. *Palaeontology* 50, 939–950.

1255 Siversson, M., Lindgren, J., Newbrey, M.G., Cederström, P., Cook, T.D., 2015. Cenomanian-Campanian
1256 (Late Cretaceous) mid-palaeolatitude sharks of *Cretalamna appendiculata* type. *Acta*
1257 *Palaeontologica Polonica* 60, 339–384. doi:10.4202/app.2012.0137

1258 Strganac, C., Jacobs, L. I., Polcyn, M. j., Mateus, O., Myers, T. s., Salminen, J., May, S. r., Araújo, R.,
1259 Ferguson, K. m., Gonçalves, A.O., Morais, M.L., Schulp, A. s., da Silva Tavares, T., 2015.
1260 Geological setting and paleoecology of the Upper Cretaceous Bench 19 Marine Vertebrate
1261 Bonebed at Bentiaba, Angola. *Netherlands Journal of Geosciences* 94, 121–136.
1262 doi:10.1017/njg.2014.32

1263 Stromer, E., 1927. *Ergebnisse der Forschungsreisen Prof. E. Stromers in den Wüsten Ägyptens. II.*
1264 *Wirbeltier-Reste der Baharije-Stufe (Unterstes Cenoman). 9. Die Plagiostomen mit einem*

1265 Anhang über Käno- und mesozoische Rückenflossenstacheln von Elasmobranchiern.

1266 Abhandlungen der Königlich Bayerischen Akademie der Wissenschaften, Math.-naturwiss.

1267 Abt., N.F. 31, 1–64.

1268 Tribouillard, N.-P., Stephan, J.-F., Manivit, H., Reyre, Y., Cotillon, P., Jautée, E., 1991. Cretaceous black

1269 shales of Venezuelan Andes: preliminary results on stratigraphy and paleoenvironmental

1270 interpretations. *Palaeogeography, Palaeoclimatology, Palaeoecology* 81, 313–321.

1271 doi:10.1016/0031-0182(91)90152-H

1272 Underwood, C., Ward, D., Guinot, G., 2016. Development of understanding of the Mesozoic and

1273 Cenozoic chondrichthyan fossil record. *Geological Society, London, Special Publications* 430,

1274 155–164. doi:10.1144/SP430.4

1275 Underwood, C.J., 2006. Diversification of the Neoselachii (Chondrichthyes) during the Jurassic and

1276 Cretaceous. *Paleobiology* 32, 215–235.

1277 Underwood, C.J., Cumbaa, S.L., 2010. Chondrichthyans from a Cenomanian (Late Cretaceous)

1278 bonebed, Saskatchewan, Canada. *Palaeontology* 53, 903–944.

1279 Underwood, C.J., Goswami, A., Prasad, G.V.R., Verma, O., Flynn, J.J., 2011. Marine vertebrates from

1280 the middle Cretaceous (early Cenomanian) of South India. *Journal of Vertebrate Paleontology*

1281 31, 539–552.

1282 Vullo, R., 2015. Les poissons, in: Morel, N. (Ed.), *Stratotype Cénomanien*. pp. 237–244.

1283 Vullo, R., Cappetta, H., Neraudeau, D., 2007. New sharks and rays from the Cenomanian and

1284 Turonian of Charentes, France. *Acta Palaeontol. Pol.* 52, 99–116.

1285 Vullo, R., Guinot, G., Barbe, G., 2016. The first articulated specimen of the Cretaceous mackerel shark

1286 *Haimirichia amonensis* gen. nov. (Haimirichiidae fam. nov.) reveals a novel ecomorphological

1287 adaptation within the Lamniformes (Elasmobranchii). *Journal of Systematic Palaeontology*

1288 14, 1003–1024. doi:10.1080/14772019.2015.1137983

1289 Wanner, J., 1902. I. Die Fauna der obersten weissen Kreide der libyschen Wüste. *Palaeontographica*

1290 30, 91–152.

1291 Weigmann, S., 2016. Annotated checklist of the living sharks, batoids and chimaeras
 1292 (Chondrichthyes) of the world, with a focus on biogeographical diversity. *J Fish Biol* 88, 837–
 1293 1037. doi:10.1111/jfb.12874

1294 Welton, B.J., Farish, R.F., 1993. The Collector's Guide to Fossil Sharks and Rays from the Cretaceous
 1295 of Texas. Before Time, Lewisville, Texas, 204 p.

1296 Werner, C., 1989. Die Elasmobranchier-Fauna des Gebel Dist Member der Bahariya Formation
 1297 (Obercenoman) der Oase Bahariya, Ägypten. *Palaeo Ichthyologica* 5, 5–112.

1298 Whitley, G.P., 1939. Taxonomic notes on sharks and rays. *Australian Zoologist* 9, 227–262.

1299 Williston, S.W., 1900. Cretaceous fishes. Selachians and Pycnodonts. *University Geological Survey of
 1300 Kansas* 6, 237–256.

1301 Zapata, E., Padron, V., Madrid, I., Kertznus, V., Truskowski, I., Lorente, M.A., 2003. Biostratigraphic,
 1302 Sedimentologic, and Chemostratigraphic Study of the La Luna Formation (Late Turonian–
 1303 Campanian) in the San Miguel and Las Hernández Sections, Western Venezuela. *PALAIOS* 18,
 1304 367–377. doi:10.1669/0883-1351(2003)018<367:BSACSO>2.0.CO;2

1305 Zhelezko, V.I., 1990. Pisces (Selachii). Upper Cretaceous deposits of southern post-Urals (region of
 1306 the upper Tobol River. Uralian Branch of the Academy of Sciences of USSR, Sverdlovsk 122–
 1307 133.

1308 Zumberge, J.E., 1984. Source Rocks of the La Luna Formation (Upper Cretaceous) in the Middle
 1309 Magdalena Valley, Colombia 30, 127–133.

1310

1311 **Figure Captions**

1312 Figure 1. Location map of the Cementos Andinos and La Luna quarries, Venezuela.
 1313

1314 Figure 2. Cretaceous lithostratigraphic units and stratigraphic sections of La Luna and Cementos
 1315 Andinos quarries. The Sierra de Perijá section is based on Renz (1982) and Erlich et al. (1999). The

1316 fossiliferous horizon in La Luna Quarry is based on Moody and Maisey (1994, p. 2). The Chejendé
1317 region section is based on Renz (1959) and González de Juana et al. (1980). Stratigraphic section of
1318 the Aguada Member in the Cementos Andinos quarry is modified after Albino et al. (2016).

1319

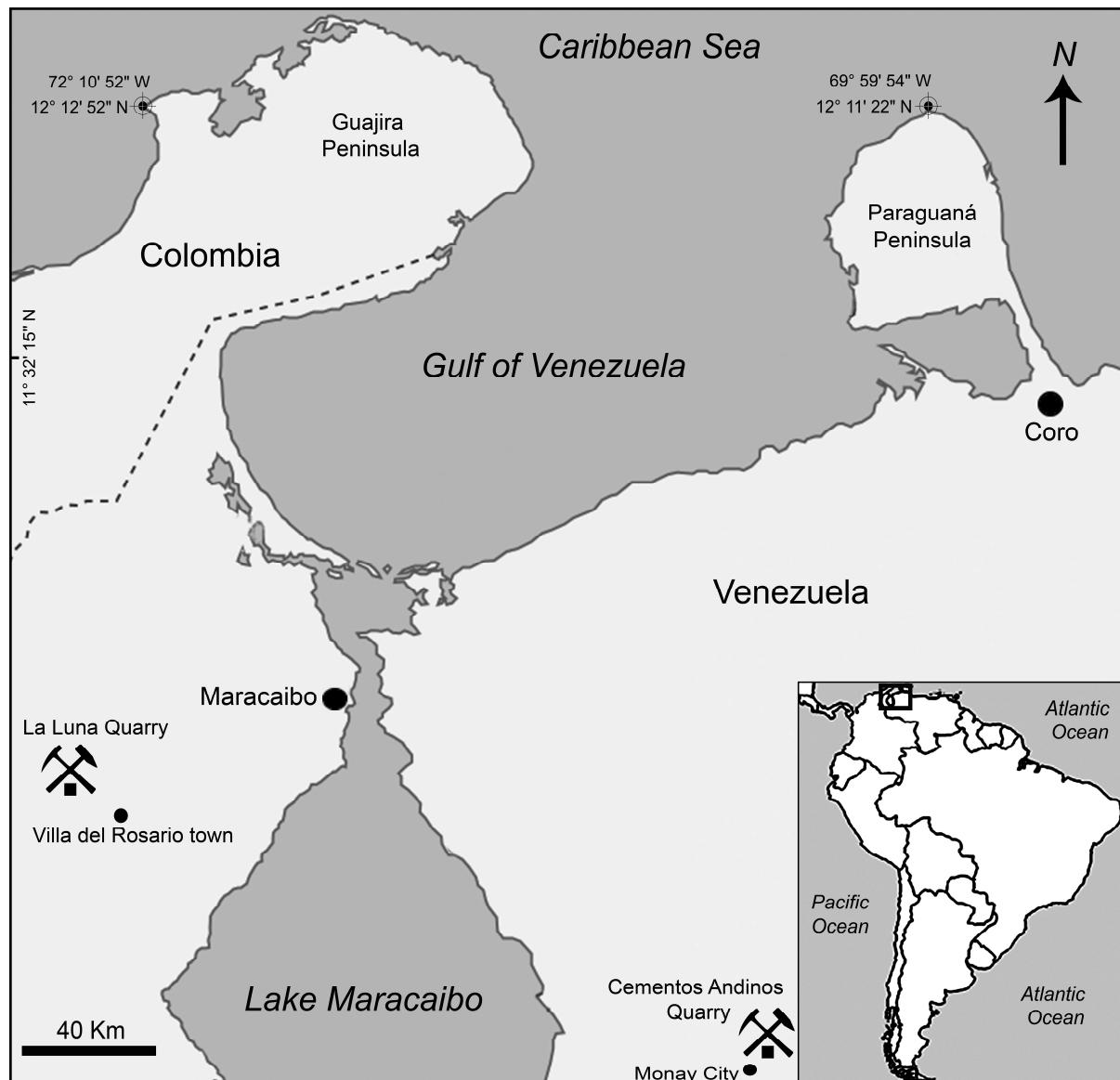
1320 Figure 3. **A-B**, *Nanocorax* sp., anterolateral tooth (AMU-CURS-906) in **A**, lingual and **B**, labial views. **C-**
1321 **H**, *Squalicorax moodyi* sp. nov. **C-D**, anterior tooth (MBLUZ P-430) in **C**, lingual and **D**, labial views. **E-**
1322 **F**, lateral tooth (MBLUZ P-432-C) in **E**, lingual and **F**, labial views, **holotype**. **G-H**, anterolateral tooth
1323 (MBLUZ P-432-D) in **G**, lingual and **H**, labial views. All scale bars equal 2 mm.

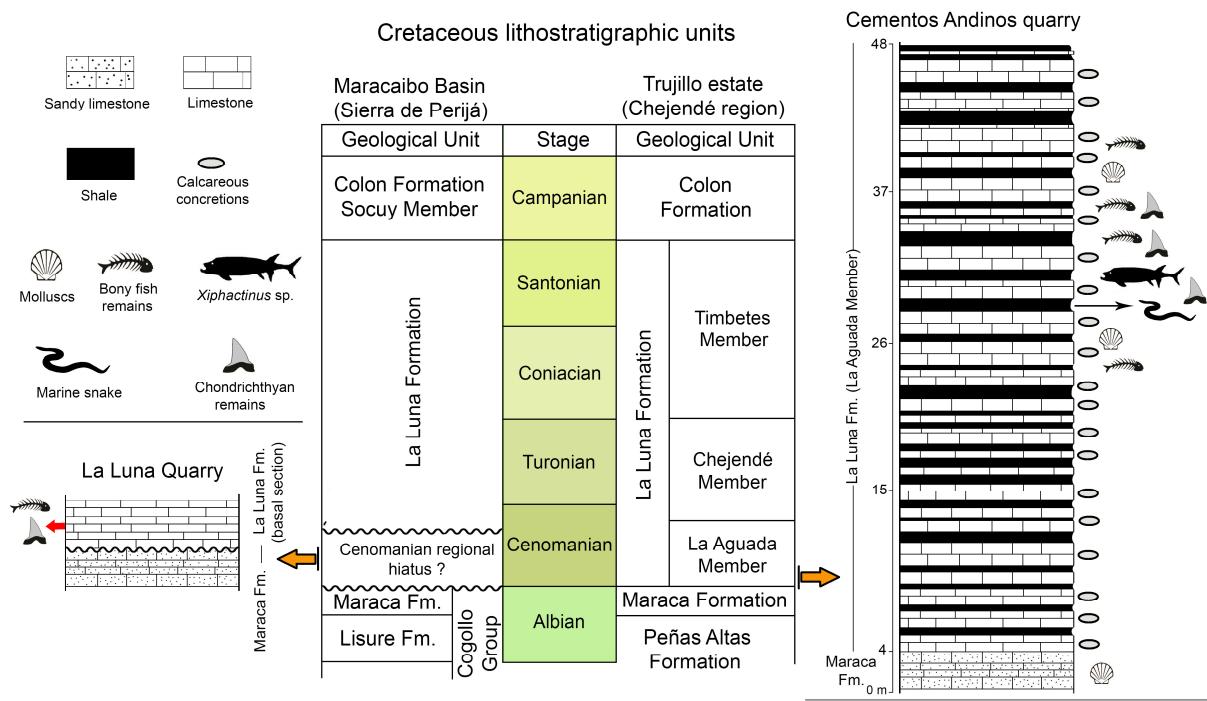
1324

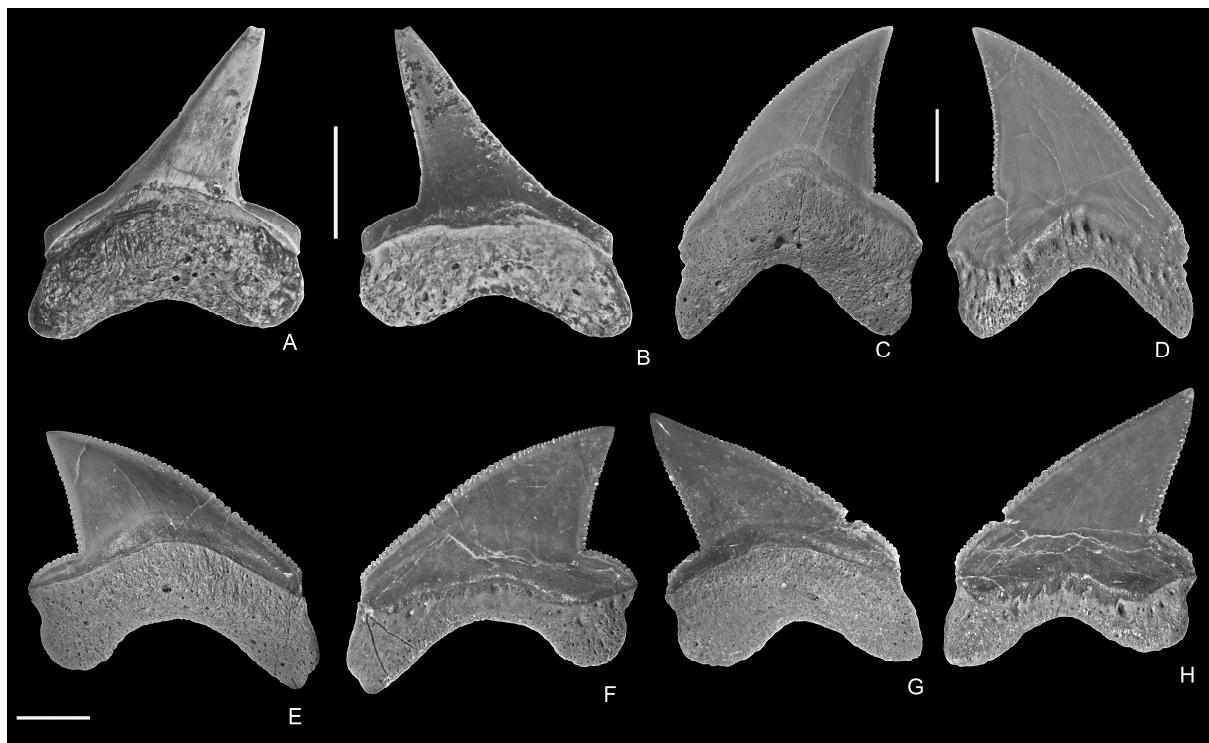
1325 Figure 4. **A-S**, *Squalicorax lalunaensis* sp. nov. **A-B**, anterior tooth (AMU-CURS-894) in **A**, lingual and
1326 **B**, labial views. **C-D**, anterolateral tooth (AMU-CURS-895) in **C**, lingual and **D**, labial views. **E-F**,
1327 anterolateral tooth (AMU-CURS-896) in **E**, lingual and **F**, labial views. **G-H**, lateral tooth (AMU-CURS-
1328 897) in **G**, lingual and **H**, labial views, **holotype**. **I-J**, anterolateral tooth (AMU-CURS-898) in **I**, lingual
1329 and **J**, labial views. **K-L**, lateral tooth (AMU-CURS-899) in **K**, lingual and **L**, labial views. **M-N**,
1330 lateroposterior tooth (AMU-CURS-900) in **M**, lingual and **N**, labial views. **O-P**, lateroposterior tooth
1331 (AMU-CURS-901) in **O**, lingual and **P**, labial views. **Q-R**, posterior tooth (AMU-CURS-902) in **Q**, lingual
1332 view, **R**, labial view and **S**, close-up on the labial ornament. All scale bar equal 2 mm except **S** (1 mm).

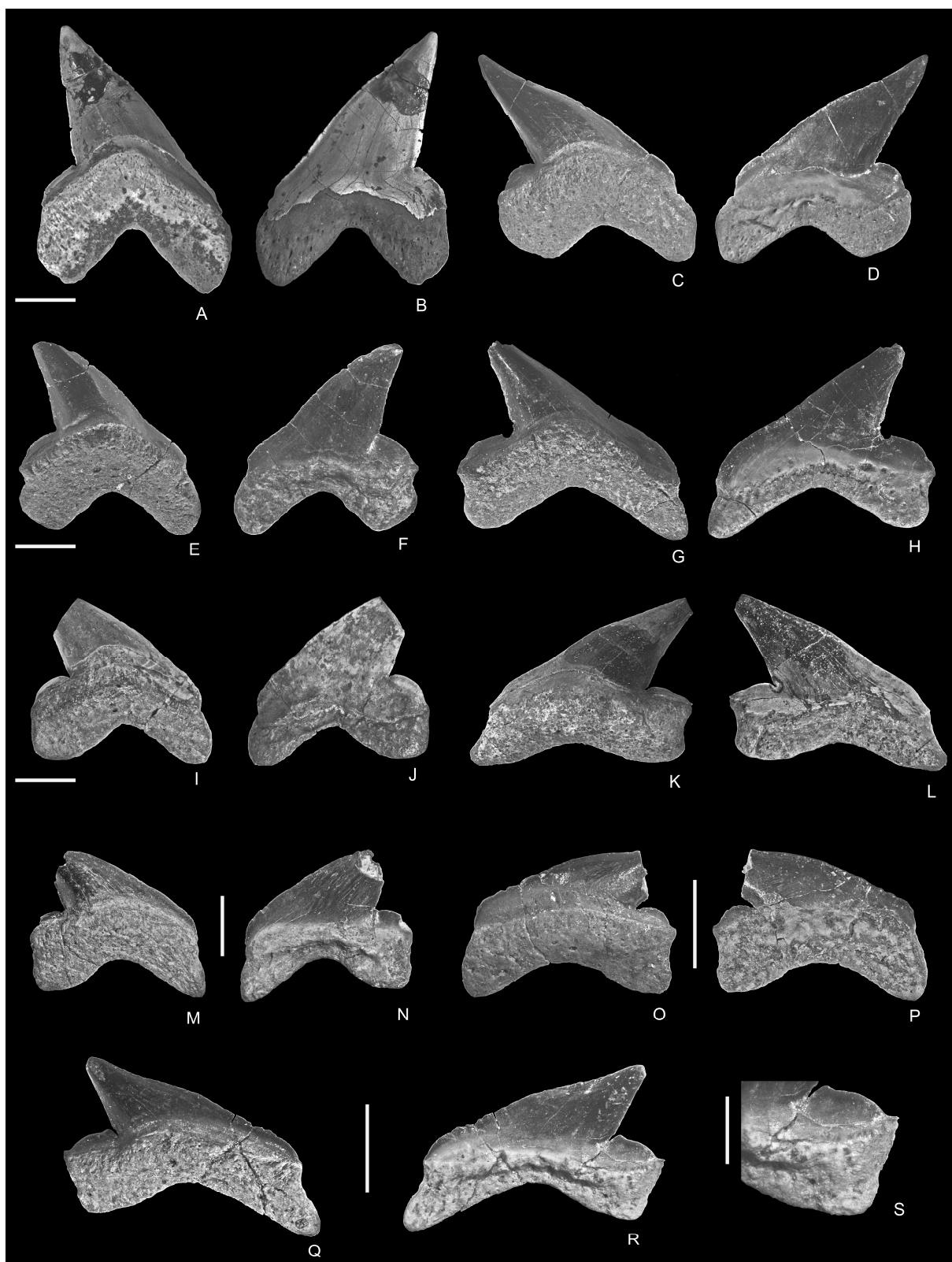
1333

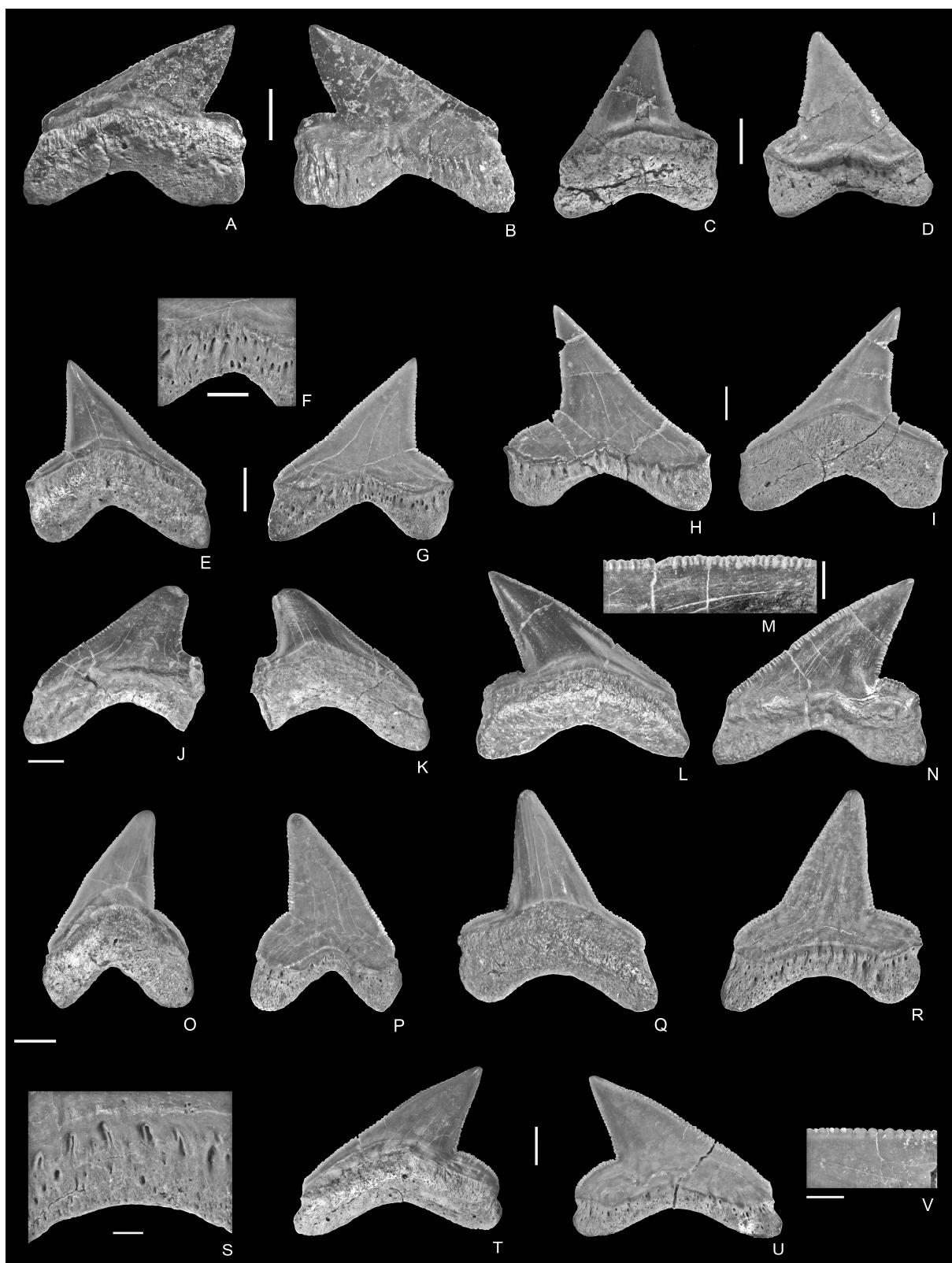
1334 Figure 5. **A-B**, *Squalicorax* aff. *lalunaensis* sp. nov., lateral tooth (AMU-CURS-907) in **A**, lingual and **B**,
1335 labial views. **C-I**, *Squalicorax* sp. 1. **C-D**, anterior tooth (MBLUZ P-430-B) in **C**, lingual and **D**, labial
1336 views. **E-G**, lateroposterior tooth (MBLUZ P-430-C) in **E**, lingual view, **F**, close-up on the labial
1337 foramina and **G**, labial view. **H-I**, lateral tooth (MBLUZ P-15) in **H**, labial and **I**, lingual views. **J-N**,
1338 *Squalicorax* sp. 2. **J-K**, lateroposterior tooth (AMU-CURS-892) in **J**, labial and **K**, lingual views. **L-N**,
1339 lateral tooth (AMU-CURS-893) in **L**, lingual, **M**, close-up on serrations of the median area of the


1340 mesial cutting edge of main cusp in labial view and **N**, labial views. **O-S**, *Squalicorax* sp. 3. **O-P**,
1341 anterior tooth (MBLUZ P-881) in **O**, lingual and **P**, labial views. **Q-S**, lateral tooth (MBLUZ P-430-D) in
1342 **Q**, lingual view, **R**, labial view and **S**, close-up on the labial foramina. **T-V**, *Squalicorax* sp. 4, lateral
1343 tooth (MBLUZ P-432-B) in **T**, lingual and **U**, labial views and **V**, close-up on serrations of the median
1344 area of the mesial cutting edge of main cusp in labial view. All scale bars equal 2 mm except F, M and
1345 V (1 mm), and R (500 μ m).


1346


1347 Figure 6. **A-B**, *Cretoxyrhina mantelli*, lateral tooth (MBLUZ P-41) in **A**, lingual and **B**, labial views. **C-O**,
1348 *Microcarcharias saskatchewanensis*. **C-D**, anterolateral tooth (MBLUZ P-14) in **C**, lingual and **D**, labial
1349 views. **E-H**, anterior tooth (AMU-CURS-890) in **E**, lingual, **F**, labial, **G**, profile and **H**, labial views. **I-L**,
1350 anterior tooth (AMU-CURS-891) in **I**, lingual, **J**, labial, **K**, profile and **L**, labial views. **M-O**, lateral tooth
1351 (MBLUZ P-14-B) in **M**, lingual, **N**, labial and **O**, labial views. **P**, *Cretalamna* sp., lateral tooth (MBLUZ P-
1352 86) in labial view. All scale bars equal 1 mm except A-B (5 mm) and P (2 mm).


1353


1354 Figure 7. **A-M**, *Acutalamna karsteni* gen. et sp. nov. **A-C**, anterior tooth (AMU-CURS-908) in **A**, lingual,
1355 **B**, profile and **C**, labial views, **holotype**. **D-E**, anterolateral tooth (AMU-CURS-909) in **D**, lingual and **E**,
1356 labial views. **F-J**, lateral tooth (AMU-CURS-910) in **F**, lingual, **G**, basal, **H**, labial/occlusal, **I**, profile and
1357 **J**, labial views. **K-L**, anterolateral tooth (AMU-CURS-911) in **K**, lingual and **L**, labial views. **M**, anterior
1358 tooth (MBLUZ P-431) embedded in sediment, in lingual view. All scale bars equal 2 mm.

