
HAL Id: hal-01942038
https://hal.science/hal-01942038v1

Submitted on 2 Dec 2018 (v1), last revised 8 Sep 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Machine Learning Methods to Perform Pricing
Optimization. A Comparison with Standard GLMs

Giorgio Alfredo Spedicato, Christophe Dutang, Leonardo Petrini

To cite this version:
Giorgio Alfredo Spedicato, Christophe Dutang, Leonardo Petrini. Machine Learning Methods to
Perform Pricing Optimization. A Comparison with Standard GLMs. Variance, 2018, 12 (1), pp.69-
89. �hal-01942038v1�

https://hal.science/hal-01942038v1
https://hal.archives-ouvertes.fr

Machine Learning Methods to Perform Pricing
Optimization. A Comparison with Standard GLMs

by Giorgio Alfredo Spedicato, Christophe Dutang, and Leonardo Petrini

1 Abstract

As the level of competition increases, pricing optimization is gaining a central role in most mature insurance
markets, forcing insurers to optimise their rating and consider customer behaviour; the modeling scene for the
latter is one currently dominated by frameworks based on Generalised Linear Models (GLMs). In this paper,
we explore the applicability of novel machine learning techniques such as tree boosted models to optimise the
proposed premium on prospective policyholders. Given their predictive gain over GLMs, we carefully analyse
both the advantages and disadvatanges induced by their use.

Keywords: Pricing Optimization, Conversion, Machine Learning, Customer Behaviour, Boosted Trees.

2 Introduction

Policyholder retention and conversion has received increasing attention within the actuarial practice in the
last two decades. In particular, the widespread diffusion of web aggregators has eased the comparison of
different insurers’ quotes for customers. Therefore, it is now popular for an insurance company to model not
only the cost of the coverage offered but also the insurance demand. Indeed, the likelihood of a prospective
customer accepting a given quotation and the probability of retaining a current customer are key drivers
of maintaining and enhancing the profitability of an insurer’s p ortfolio. Such probabilities depend not only
on the classical ratemaking variables used to determine expected loss costs, but also on competitive market
variables (e.g. distance between insurer’s quote and best/average market price), customer behavior and
demographics. Actuarial ratemaking, current policyholder retention modeling, and prospective policyholder
conversion probabilities modeling lead to the so-called Pricing Optimization (PO). Specifically, this paper
aims to investigate how machine learning methodologies can improve policyholder retention and conversion
estimation over that of classical GLMs.

Few academic papers have used or compared predictive models different from logistic regression, as far as the
authors know. On the other hand, Telecommunication firm customer retention has been a c lassical topic
of business analytics for at least a decade; see for example (Hung, Yen, and Wang 2006). More precisely
(Milhaud, Loisel, and Maume-Deschamps 2011) focused on the life-insurance context by using Random Forests,
and (Fu and Wang 2014) applied survival analysis techniques to model policyholders’ time to cancellation
in a P&C portfolio. Further, (Guelman, Guillen, and Perez-Marin 2012) used Random Forests to model
lapse probabilities, whilst (Yeo et al. 2001) used Neural Networks to model retention considering premium
variations; (Guillen and Guelman 2014) proposed a causal approach to model price elasticity . Finally, a
survey of classical regression models applied to policyholder behaviour can be found in (Dutang 2012).

From a machine learning perspective, the estimation of retention and conversion represents a supervised
classification problem, traditionally solved in the actuarial practice with a logistic r egression. A key advantage
offered by logistic regression is the easy interpretability of fitted parameters combined with a reasonable
computational speed. Nevertheless, machine learning techniques such as Regression and Classification Trees,
Random Forests, Gradient Boosted Machines, and Deep Learners (Kuhn and Johnson 2013) have recently
acquired increasing popularity in many business applications.

The interest of actuarial practitioners in machine learning models has grown in recent years, e.g. (Frees,
Derrig, and Meyers 2014; Frees, Meyers, and Derrig 2016). (Pozzolo 2011) also used various machine learning

1

algorithms to predict claim frequency in the Kaggle Allstate competition. In addition, (Guelman 2012)
showed the benefits of applying Gradient Boosting Methodologies instead of classical Poisson GLMs for
predicting claim frequency. Whilst machine learning techniques appear to outperform the application of
classical logistic regression in many applications, two issues hamper their widespread adoption in actuarial
science. First, their parameters are often relatively more difficult to interpret (the “black box” issue).
Second, the computational time required can be overwhelming compared to the time required to fit a GLM. To
the authors’ knowledge, a systematic review of machine learning techniques comparing predictive performance
gain on logistic regression, interpretability, and computational time to model policyholders’ retention and
conversion is still lacking in actuarial literature, and shall hence be presented here.

The rest of the paper is organised as follows: Section 3 provides a brief overview of business considerations.
In Section 4, we review predictive models and methodologies for binary classification problems. In Section 5,
the presentation of a dataset is followed by the estimation and the comparison of models previously presented,
along with an example of price optimization. Finally, Section 6 concludes the paper.

In order to achieve these tasks, a real dataset coming from a direct insurer will be used in our study to model
conversion. More precisely, the database used is from two recent months of personal motor liability cover
quotations. Distinct sets of data will be used for the model fitting, performance assessment and pricing
optimization steps mentioned above. We underline that the methodologies used here to model conversions
can be transposed to retention modeling without any difficulty. To allow easy replicability of the analysis,
open source software has been used, such as the R environment (R Core Team 2017), and the H2O data
mining software (H2O.ai team 2017).

3 Business context overview

The Casualty Actuarial Society (CAS) defines PO as “the supplementation of traditional actuarial loss cost
models to include quantitative customer demand models for use in determining customer prices. The end
result is a set of proposed adjustments to the cost models by customer segment for actuarial risk classes”, see
(Ratemaking 2014).

The PO approach includes considerations of both customer behavior and the market environment, making
it depart slightly from traditional loss cost-based rate making. Although the methodology is innovative,
concerns are being raised by Consumers Advocates, and there is some initial scrutiny from Regulators. For
instance (National Association Insurance Commissioners 2015; Baribeau 2015) question to what extent the
explicit inclusion of price elasticity in the process of setting rates makes insurance prices unfair. PO has
been extensively treated by actuarial practitioners in numerous forms; see for example (Duncan and McPhail
2013; Serhat and McPhail 2013; Serhat 2013), and to a lesser extent by academics within insurance science.
Furthermore, PO should be carried out by distribution channel as customers do not behave in the same way
on the web or in front of a tied-agent, see e.g. (Rulliere, Loisel, and Mouminoux 2017).

PO can help increase the profitability of current and prospective business by taking into account both the
policyholders’ loss propension and the business environment in which the insurer operates. In fact, in almost
every country policyholders can compare quotes being offered by multiple competing insurance carriers,
making it crucial for the insurer to maximize the gain associated with current and potential policyholders.
As a consequence, PO should not only model the prospective cost associated with the coverage provided,
but also consider the likelihood of preventing a customer from accepting deals coming from the competition.
More specifically, a conversion analysis should take into account factors such as individual features (including
demographics, characteristics of the insured risk); the proposed premium (in particular their monetary
variation); the relative rank of the premium with respect to what is currently offered on the market. A similar
analysis can be performed in order to estimate the probability of keeping current customers, the retention
analysis, by taking into account similar individual features; the history of premiums and claims.

In practice, performing PO requires four elements: a risk premium model, in order to obtain the expected
burning cost; a competitive market analysis (CMA) to model the competitors’ premiums given the characte-
ristics of a policyholder; a customer price elasticity model to predict the volume of new business and renewals

2

reflecting market competition in business analysis; optimization models to integrate all the aforementioned
models and predict the profit volume given a change in prices, and to identify the best price changes for a
given financial objective. (Santoni and Gomez Alvado 2007) and (Manin and Bayley 2010) provide a general
overview of PO from an insurance perspective.

A review of recent practictioners’ presentations has drawn a few key points to attention. The personal motor
business is one of the markets in which such tecniques have been applied the most, facilitated by policy
portfolio sizes and the large volume of data collected. For instance, (Serhat and McPhail 2013; Serhat 2013)
model retention and conversion in US markets using non-linear GLMs. Another example of PO based on
customer value metrics for direct business can be found in (Bou Nader and Pierron 2014).
(Duncan and McPhail 2013) present four different approaches that can be used to perform pricing optimization:

1. individual policy optimization: the final price proposed to the policyholder is re-calculated at an
individual level.

2. individual policy optimization re-expressed in ratebook form: individually fitted prices are modeled as
target variables within a standard predictive model (e.g. GLM). A traditional ratebook structure is
therefore obtained.

3. direct ratebook optimization: very similar to the above method.
4. real time optimization: this method stresses the importance of continuously “refreshing” the consumer

behaviour and loss models with real - time updated data.

Although individual policy optimization provides the best performance by revenue maximization, it is worth
noting that regulation or operational constraints could lead one to choose less refined approaches.

The current paper focuses its attention on applying predictive modeling to perform conversion modeling as
an alternative to standard GLMs. To illustrate, a conversion model targets the dicotomic variable “Convert”,
which can take two values: Convert (Yes), Reject (No). A logistic regression within the generalized linear
model family has been traditionally used to address such analysis (Anderson et al. 2007), and it is currently
easily applied by taking advantage of actuarial pricing software (e.g. Emblem, Pretium, Earnix, . . .).

4 Predictive modeling for binary classification

4.1 Modeling steps

In this section, a brief overview of predictive models based on the books (Kuhn and Johnson 2013), (Breiman
2001) and (Bett 2014) is presented. Predictive modeling involves the application of various mathematical
techniques to a dataset composed of a response variable and a set of predictors. This process aims to find
the best model in terms of predictive performance, where the performance needs to be measured differently
from the methods suggested by classical statistics. Specifically, while in classical statistics a model is defined
in order to better explain a phenomenon, in predictive modelling a strong emphasis is set on how well a
prediction can be done on unseen data. Moreover, the importance of assessing predictive performance on a
subsample of data different from the one used to calibrate the model is always emphasized.

Regarding the model building process, (Kuhn and Johnson 2013) list the following steps:

1. Data pre-processing: this task consists of cleaning the data, possibly transforming predictors (feature
engineering) and selecting those that will be used in the modeling stage (feature selection).

2. Data splitting: the dataset is divided into a training, a validation, and a test set, thereby reducing the
“overfitting” that occurs when a model appears to be extremely performant on the same data used for
finding the underlying structure (e.g. training set), whilst showing significantly less performance on
unseen data.

3. Fitting the selected models on the training set: most families of models need one or more tuning
parameters to be set in advance to uniquely define a model; these parameters cannot be derived
analytically and their class is also known as “hyper-parameters”. A grid search (or an optimized variant)
can be employed to find the optimal combination of parameters with respect to a specific performance

3

metric. For binary classification, performance metrics include the Area Under the Curve (AUC), the
Gini index, the logarithmic loss, and the Kappa statistic.

4. Model selection: an assessment of which model among the ones tested performs best on a test set,
making the results generalizable to unused data.

4.2 Data pre-processing

Data pre-processing techniques generally refer to the addition, deletion, and transformation of the data. This
part of the process is crucial for determining the success or failure of the entire analysis, since most Machine
Learning techniques are sensitive to the format and scale of the predictors.

Firstly, several modeling techniques require predictors to have a common scale of measure. Center scaling
is the most commonly used transformation for achieving this objective, helping improve the stability of
numerical calculations at the expense of reduced interpretability. In some cases it can also be useful for
removing the skewness of the predictors, attained by taking advatange of methods such as the Box and Cox
transformation (Box and Cox 1964).

Secondly, a proper analysis of outliers is required in many instances. Outliers are observations that appear
exceptionally far from the rest of the data, and can impact the final performance of the model by introducing
a global bias. Usually, a visual inspection of a variable’s distribution is the first step for dealing with this
issue, and once the suspect points have been identified, their values should be questioned with care in order to
ensure that they indeed belong to the data generating process. With the exception of some predictive models
that are naturally insensitive to outliers (e.g. tree based models, and Support Vector Machines), in all other
instances outliers should be removed. In this regard, special techniques like the spatial sign transformation
(Serneels, De Nolf, and Van Espen 2006) can help.

Thirdly, missing values, or observations with no value for some or all variables, should be treated appropariately.
As for outliers, a careful exploration into potential structural reasons for such phenomena may be needed. The
intuition is that missing data can be caused by a different process underlying data creation, and the simple
removal of these data points may negatively affect overall performance. Nevertheless, whenever the proportion
of missing values is too high to be ignored, methods such as imputation (e.g. the k-nearest neighbour model
imputation or regression with auxiliary variables) can be used.

Increasing the number of variables is not always beneficial. Thus, an initial selection of predictors might be
useful. For example, highly correlated predictors may be removed to help interpretability without loss of
predictive performance. Many predictive models already contain intrinsic measures of variables’ predictive
importance, so they perform an implicit feature selection. Models without feature selection may be negatively
affected by uninformative predictors. To avoid this, specific methodologies have been built in to perform
an initial screening of predictors: “wrapper methods” and “filter methods”. “Wrapper methods” conduct a
search of the predictors to determine which, when entered into the model, produce the best result. “Filter
methods” perform a bivariate assessment of the strength of the relationship between each predictor and the
target.

Further, degenerate or “near-zero-variance” variables (predictors characterized by few distinct values whose
frequencies are severely disproportionate) may create computational issues in some models. Principal
Component Analysis (PCA) and Independent Component Analysis (ICA) transformations can be used to
reduce the number of input variables, i.e. a smaller set of generated variables seeks to capture the majority of
the information, leading to more parsimonious models. Such approaches also prevent multicollinearity, at the
cost of less interpretable variables.

Finally, some predictors require recoding in order to be conveniently handled. For example, encoding nominal
or categorical variables into multiple dummy variables is always a necessary step before fitting any model.
Manual binning of continuous variables is a widely used approach to overcome marginal non-linearity between
the outcome and any continuous variable. However, (Kuhn and Johnson 2013) identifies three drawbacks
of this approach: loss of performance (since many predictive models are able to find complex non-linear

4

relationships between predictors and binning may reduce this feature); loss of precision; increase of the false
positive rate.

4.3 Model Training, Tuning and Performance Assessment

Model training consists of fitting a model through an iterative update of variables and/or parameters. Through
this, the modeler should be mindful of overfitting which can appear when a model is excessively complex.
This is due to a modeling strategy that over-emphasizes patterns unique to the specific dataset on which the
model has been fitted. Overfitted models have poor predictive performance. Thus, it is necessary to obtain a
reliable way for estimating models’ predictive performance.

Hence, subdividing the dataset between a training part, where models are fit and tuned, and a test part, used
to estimate the models’ performance is fundamental. As further detailed in (Kuhn and Johnson 2013), the
use of resampling techniques can help obtain a less biased estimate of model performance. For instance, one
approach commonly used is the k-fold cross validation, e.g. the training dataset is split into k roughly equally
sized sub-samples during the estimation process. Once the k models are estimated, the out of fold observations
are used as a validation set on which the performance metrics figures are computed. Consequently, the overall
model fit is obtained by averaging the k cross validated performance fit estimates.

In addition, when estimating models within a given model family , it must be noted that the vast majority
of current machine learning techniques identify models by specifying one or several hyper-parameters. As
introduced in the previous section, the optimal values of hyper-parameters cannot be directly estimated from
data, hence requiring a grid search to tune the final model. Comparing the performance metrics obtained
on several models with different sets of hyper-parameters cannot be (generally) performed on the cartesian
product of all possible combinations. As the computation time or dimensionality increases, a random search
becomes more appealing. Recently, Bayesian Optimization has been gaining popularity as an alternative
(Kuhn 2016). Specifically, the Bayesian approach includes a first cycle of random search to explore the space
of the hyper-parameters, with a consequent second cycle of numerical optimisation based on a Gaussian
process. The advantage of this approach is that every step relies neither on a random step, nor on a subjective
discrete list of hyper-parameters, but upon a probabilistic model.

Since our work dedicates most of its efforts to the analysis of a binary response, a special note on how to
assess the predictive performance of competing models in such environments is given. As a preliminary step,
defining a threshold for the probabilities given as predictive ouputs by a model in order to determine whether
an observation is to be considered as an “event” or “non-event” is needed. The default threshold is 1/2 as
for a totally random classification. The resulting cross tabulation of actual and predicted events/non-events
after the cut-off has been applied generates a Confusion Matrix (CM), which becomes the starting point for
assessing binary classifier performance.

Table 1: Confusion Matrix notation

Predicted Observed: Event Observer: Non-Event
Event True Positive (TP) False Positive (FP)
Non-Event False Negative (FN) True Negative (FP)

The structure of a generic CM is given in Table 1. Let the total sample size be N = TP + TN + FP + FN .
A first measure of classifier precision is the accuracy O = T P +T N

N . Nevertheless, alternative measures are
generally more appropriate when the outcome distribution is severely unbalanced like in the Conversion
dataset treated in this work. For example, the Kappa statistic, K = O−E

1−E can be used, where E is the
accuracy of the uninformative classifier (the relative frequency of the greatest class), and O is the assessed
predictive model accuracy.

From the confusion matrix, two additional statistics for assessing binary classification problems can be derived:
sensitivity and specificity. Sensitivity is the probability that a sample is correctly classified, given that it

5

is a true “event” sample: Se = T P
T P +F N . Conversely, specificity is the probability that a true non-event is

correctly classified Sp = T N
F P +T N and the specificity’s complement to one is known as the false classification

rate. For a given predictive precision, increasing the sensitivity (i.e. lowering the cut-off probability to identify
new samples as events) lowers the specifity.

It is possible to graphically display the trade off between the two measures by the so-called ROC curve, which
displays the relation between sensitivity (y-axis) and the false classification rate (x-axis). A model with no
discriminatory power has a ROC curve along the 45-degree line in the unit square, whilst a better performing
model exhibits a curve moving towards the top-left corner. The ROC curve allows one to obtain a synthetic
measure of classification power for a given predictive model. The Area under the Curve (AUC) for the ROC
curve is a measure bounded between 0.5 (uninformative of the 45-degree line) and 1 (perfect discriminatory
capability of the heavyside curve). Finally, the Gini index is a commonly used linear transformation of the
AUC: (Gini = 2 ∗AUC − 1).

In practice, AUC and Gini are certainly the most used metrics to solve binary classification problems. However,
while they stress the discriminating power of a predictive model, they are not able to measure how correct
the predicted probabilities are. Since we want to assess the prediction power, it is also worth exploring
different metrics. The log-loss metric, logloss = − 1

N

∑N
i=1(yi log(pi) + (1− yi) log(1− pi)) which targets the

discrepancy between actual and estimated probabilities, and will be thus jointly used with AUC/Gini in our
analysis.

In most cases, a graphical representation can also help interpret the results, both within and between models.
In order to do so, calibration charts and lift charts are used. Calibration charts help in assessing the predictive
performance of different models. Once observations are scored, estimated event probabilities are assigned to
buckets of estimated probability ranges, i.e. by dividing the probability domain (0-1) into numerous buckets.
Calibration charts display the midpoint of the probability bucket in the x-axis and the observed empirical
event rate on the y-axis. Given a well performing model, the resulting points would lie on the midline. Lift
charts are created by sorting estimated event probabilities in decreasing order. Then, on the x-axis the
cumulative percentage of samples is plotted, while on the y-axis the cumulative percentage of true “events” is
shown. Lift charts are specifically tailored to compare the discriminating performance of binary classifiers,
and allow one to answer questions like: “what is the expected percentage of total events considering the top
% observation scored by probability?”. Being close to the 45-degree line indicates absence of discriminating
advantage, while a perfect classifier would be represented by the hinge function.

Finally, one can decide to apply resampling techniques to mitigate instances in which the frequency of
binary classes is not even. For example, “downsampling” reduces the frequency of the most represented class,
whilst “upsampling” randomly draws additional samples from the minority class. Both downsampling and
upsampling (and other derived methods) aim to even the frequency of classes as much as possible.

4.4 Common predictive models for binary classification

(Kuhn and Johnson 2013) organizes classification algorithms into three main categories. Linear Classification
Models are based on a scoring function that can be expressed as a linear combination of predictors. In
addition to the classical GLMs introduced by (McCullagh and Nelder 1989), the following algorithms should
be mentioned: the Penalized Logistic Regression (Elastic Net) and the Linear Discriminant Analysis (LDA).
The Elastic Net introduces two forms of penalties into the GLM formula, namely the Ridge and Lasso ones.
They permit better handling of feature selection, overfitting and multi-collinearity, see e.g. (Zou and Hastie
2005). The LDA finds a linear combination of features characterizing or separating two or more classes of
objects or events, see e.g. (Fisher 1940).

Non Linear Classification Models are composed of a heterogeneous group of techniques. Below we list some
relevant elements. Neural Networks (and, in particular, Deep Learning (DL)): a DL model consists of multiple
strata of “neurons” that collect inputs, transform a linear combination of such inputs into a non-linear
transformation through the so-called activation functions, and return the output to the subsequent stratum.
DLs have been successfully applied in a myriad of applications including image recognition and natural

6

language processing. Flexible Discriminant Analysis (FDA): FDA combines ideas from LDA and regression
splines. The classification function of FDA is based on a scoring function that combines linear hinge functions,
see e.g. (Hastie, Buja, and Tibshirani 1995). K-Nearest Neighbors (KNN): a KNN model classifies each new
observation according to the most frequent class of its k-nearest neighbors according to a specified distance
metric. KNN is one of the oldest and most important classifiers found in statistical literature, see e.g. (Fix
and Jr 1951). Naive Bayes Classifier (NB): NB is based on the Bayes rule of Probability Calculus assuming
independence among predictors, that is Pr (Ck|x1, |x2, . . .) ∝ pr (Ck)

∏n
i=1 Pr (xi|Ck). Despite the strong

assumption, predictive performance is often high and computational resources are relatively low, see e.g.
(Rish 2001). Support Vector Machines (SVM): a SVM performs classification tasks by creating hyperplanes
defined by linear or non-linear functions, see e.g. (Cortes and Vapnik 1995).

Tree-Based Approaches consist of tree-like nested if-then statements for the predictors that partition the
data. This approach generates a structure of “nodes” and terminal “leaves”, within which a model is used
to predict the outcome. The following tree based models will be explored. The C5.0 algorithm is one of
the most significant representatives of a classical tree based approach for performing classification, see e.g.
(Quinlan 2004). Random Forest blends tree-based logic with the bootstrap aggregation approach (“bagging”)
by creating a so-called “forest” of trees, rather than a single tree. Each of these trees is a weak learner built
on a subset of rows and columns. The classification from each tree can be seen as a vote and the most
votes determine the classification, see e.g. (Liaw and Wiener 2002). This endeavour successfully reduces
variance in the final set of predictions. Gradient Boosted Machines applies the boosting concept on either
regression or classification tree models. Similarly to bagging, the boosting approach combines the results of
multiple models. The key difference is that each subsequent model is recursively applied on the results of
the previous one. In particular, as the previous model misclassifies the sample more frequently, more weight
starts being given to the subsequent model, see e.g. (Friedman 2001). A notable extension of classical GBM
is the eXtreme Gradient Boosting (XGBoost), see e.g. (Chen and Guestrin 2016) which has been chosen as
the preferred algorithm by winners of many Kaggle competitions.

Finally, ensembling models of different families often provides higher predictive accuracy than can be obtained
by any of the original models. Such a technique can be based on a SuperLearner, a machine learning algorithm
that finds the optimal combination of predictions generated by the original constituents, see e.g. (LeDell,
Sapp, and van der Laan 2014). In our numerical experiments, we fitted all the models previously listed. In
this paper, we only keep the most common and best predictive models, for which we give a brief outline
below.

4.5 GLMs and their Elastic Net extension

The following section is based on (Hussami et al. 2015) to which the interested reader is directed for details.
GLMs extend the standard linear model by relaxing the normality and the constant variance assumptions.
The components of a GLM are a random component (from the exponential family and in our case the
Bernoulli distribution), a systematic component (that is a linear combination of explanatory variables and
the regression coefficients β) called the linear predictors and a link function between the mean of the response
variable and the linear predictors. GLM are fit by maximizing log-likelihood, as (Anderson et al. 2007) shows,
using iterative numerical methods. The variable selection task is performed by a chi - square based test, as in
classical GLMs.

Nevertheless the extension of GLMs, the elastic net penalty approach, has achieved widespread use in machine
learning for variable selection and regularization. Here the function to be optimized is max (LogLik − Pen),
the penalty1 being λ ∗

(
α ∗ ‖β‖1 + (1− α) ∗ 1

2 ‖β‖2
)
. In particular, λ > 0 controls the penalty strength while

α represents the relative weight of the ridge and lasso components (Nykodym et al. 2016) within the elastic
net penalty. The elastic net regularization reduces the variance in the predictions and makes the model more
interpretable. In fact, imposing a penalty on coefficient size leads to a sparse solution (throwing off non -
significant variables) and shrinks coefficients.

1‖β‖1 =
∑p

k=1 |βk| and ‖β‖2 =
√∑p

k=1 β2
k

.

7

The α parameter controls the penalty weight between the l1 (the lasso, least absolute shrinkage and selection
operator) and l2 (the ridge regression) penalties. If the λ tuning parameter is sufficiently large, it brings
coefficient values toward zero, starting from the less relevant ones. As a consequence, lasso has proven to be
a good selection tool in many empirical applications. The l2 term is the ridge penalty component , which
controls the coefficients’ sum of squares. Is is easier and faster to compute than lasso, but instead of leading
to null coefficients, it yields shrinked values. Its advantage is that it increases numerical stability and that it
has a grouping effect on correlated predictors. The λ value expresses the overall amount of regularization in
the model and its optimal value is usually estimated by grid search.

Finally, regarding model interpretation, the linear relationship of the explanatory variables underlying GLMs
allow one to quickly assess the importance of any terms within the model. The standardized coefficient (the
raw coefficient estimate divided by the standard error of estimate) represents a raw measure of the relative
importance associated to that variable. The standardized coefficient also serves to determine the p-values of
test statistics.

4.6 Random Forest

Tree models consist in a series of (possibly nested) if-then statements that partition the data into subsets.
The “if-then” statements define splits that eventually define terminal nodes depending on predictors’ values,
also known as children or leaves. Given a tree, any new observation has a unique route from the root to a
specific terminal node. Trees can either be used for classification or regression problems, and are hence also
known as Classification And Regression Tree (CART), see e.g. (Breiman 2001). Regression trees are used to
predict continuous responses whilst classification ones are used to predict class probabilities. Furthermore, it
is possible to convert binary trees into “rules” that are independent sets of if-then statements; this practice
can often be advantageous, as pointed out by (Kuhn and Johnson 2013). Both tree and rule based approaches
belong to the family of general partitioning-based classification algorithms.

A number of reasons explain their popularity: (1) they are very interpretable and communicable to a non-
technical audience, (2) they can handle both numeric and categorical predictors without any pre-processing,
(3) they perform feature selection and can handle missing values explicitly, and any missing value is used
as another level/numeric value. However, there are known drawbacks worth mentioning, such as model
instability leading to possibly big changes in the tree structure given a small change in the data, and the
suboptimal performance due to their naturally defined rectangular regions. Further, standard trees are prone
to overfitting, since they may find splits in the data that are peculiar to the specific sample being analyzed.
Tree pruning techniques have been developed to overcome this specific drawback.

In order to overcome the remaining deficiencies and increase model performance, the endevaour of combining
many trees into one model (model ensembling) has become the best practice. Specifically, two main algorithms
can be used: “bootstrap aggregation” (bagging), and “boosting”. Broadly speaking, the bagging approach
refers to fitting different trees on bootstrapped data samples, while boosting consists of sequentially fitting
trees and giving more weight to the observations misclassified at the previous step. In this paper, both
standard and advanced tree based models will be employed. C5.0 model (Kuhn et al. 2015) is probably the
most prominent example of a standard CART model but another relevant method known in the literature is
the “Conditional Inference Tree” (Zeileis, Hothorn, and Hornik 2008).

The Random Forest model (Breiman 2001) takes advantage of the bagging methodology and can be used for
both classification and regression problems. Further, it is computationally attractive since a high number of
independent decision trees on different bootstrapped data samples can be built at the same time during the
training phase and the final predictions are obtained by averaging the individual scores of each tree. The
trees are ideal for Bagging, since they can capture the complex structures of interaction in the data and if
developed sufficiently in depth, they have a relatively low distortion and, as the trees are notoriously noisy,
benefit greatly from averaging.

Our analysis made use of the H2O implementation of Random Forest, which introduces some methodological
additions to the original algorithm, as well as a computational optimization achieved by parallelized calculation.
Specifically, the main tuning parameters used in this paper for the Random Forest algorithm are the following:

8

1. Predictors’ random sample (“mtries”): each tree uses predictors of m-sized random samples of all
available predictors in order to achieve independence among trees; this parameter controls for overfitting.
Suggested values for this parameter are the square root of predictors for classification problems and one
third of predictors for regression problems.

2. Number of independent trees to fit (“ntrees”): by increasing this value more trees are built, making
the set of predictions more accurate, but yielding diminishing returns and higher training time. A
suggested starting value for this parameter is 1000.

3. Minimum rows (“min_rows”): this represents the minimum number of rows to assign to terminal nodes,
and can help against overfitting. The default value for this parameter is 10.

4. Maximum depth of a tree (“max_depth”): this specifies the complexity of interactions for each tree.
Increasing the value of this parameter will make the model pick up higher order interactions and hence
can lead to overfitting. A reasonable range for this parameter is [4,14], and the default value is 6.

5. Histogram type (“histogram_type”): this parameter determines which type of histogram should be
used for finding the optimal split of points in the trees.

6. Row subsample rate (“sample_rate”): the ratio of rows that should be randomly collected by the
algorithm at every step. A lower value makes the algorithm faster and less prone to overfitting. A
reasonable range for this parameter is (0,1], and the default value is 0.632.

Although ensemble methods return an better performing algorithm overall, they are often considered less
interpretable than that of a standard CART. In order to deal with this issue, it is possible to estimate the
relative importance of each variable in the regression/classification process.

4.7 The boosting approach: GBM and XGBoost

A Gradient Boosting Machine (GBM) is an ensemble (combination) of regression or classification trees. Unlike
Random Forest models ,in which all trees are built independently from one another, in a GBM the setting of
a sequential learning procedure to improve accuracy is employed, in which every new tree tries to correct the
errors of previously built trees.

Formally, this endevaour is known as “Boosting”, in which weak learners (usually CARTs) are sequentially
combined into a strong learner using an additive approach, ŷ(t)

i =
∑t

k=1 fk(xi) = ŷ
(t−1)
i + ft(xi), where each

ft(xi) is a tree based prediction. The peculiarity of the boosting approach is that at every step the objective
function to be optimized aims to reduce the discrepancy between the outcome and the prediction at the
previous step, obj(t) =

∑n
i=1 l(yi, ŷ

(t)
i) +

∑t
i=1 Ω(fi) =

∑n
i=1 l(yi, ŷ

(t−1)
i + ft(xi)) + Ω(ft) + constant, being

Ω a regularization function. The loss function can be any generic loss function, and does not have to only
be the classical Mean Square Error. The above formula gives more weight to samples badly predicted at
previous steps. A gradient-based numerical optimization is used to obtain the model loss. Furthermore, GBM
algorithms can be parallelised to deliver computationally attractive methods.

Currently, two main variants of classical tree boosting have been proposed, namely Friedman’s GBM (Friedman
2001) and the eXtreme Gradient Boosting (XGBoost) (Chen and Guestrin 2016) approach. Recently, XGBoost
has gained popularity among data scientists for its faster and better performing boosting algorithm. In
particular, the function to be optimized allows for regularization, algorithms can be naturally parallelized,
and cross validation can be performed at each step.

A number of hyperparameters that need to be tuned are required for the model to be fully specified. Specifically,
XGBoost has four possible types of boosters (in our case trees), and each one comes with dedicated parameters.
Since in our study we are taking advantage of the Tree booster, the connected employed hyperparameters are
briefly outlined:

1. The number of trees (“nround”): the maximum number of trees to be built during the iterative boosting
process.

2. Learning rate (“eta”): controls how much each tree influences the improvement of prediction. It is a
form of regularization for the process. For a lower learning rate more trees are required to reach the

9

same overall error rate (nround and learning rate are inversely related). A reasonable range for this
parameter is [0.1,0.01], and the default value is 0.03.

3. Maximum depth of a tree (“max_depth”): same as random forest.
4. Minimum child weight (“min_child_weight”): the minimum sum of instance weight (hessian) needed

to create a final leaf (child). A larger value corresponds to a more conservative model, and it hence
helps against overfitting. A reasonable range for this parameter is [1,20], and the default value is 1.

5. Row/column subsample ratio (“subsample”/“colsample_bytree”): the ratio of rows/columns that should
be randomly collected/selected by the algorithm at every step. A lower value makes the algorithm faster
and less prone to overfitting. A reasonable range for this parameter is (0,1], and the default value is 0.5.

6. Gamma (“gamma”): this represents the minimum loss reduction for creating a further partition in
a given tree. This is a very important parameter that can ease problems related to overfitting. A
reasonable range is [0,1], and the default value is 0.

7. Alpha (“alpha”): it is the L1 regularization term for weights, and can be used to make a model less
aggressive, similarly to Gamma. A reasonable range is [0,1], and the default value is 0.

8. Maximum delta step (“max_delta_step”): in a binary class setting with unbalanced classes (as in our
study), it is important to include a constraint in the weight estimation, in order to control every update
in a more conservative way. In such instances, a reasonable range is [1,10], and the default value is 0.

For simplicity, since the XGBoost parameters outlined above are very similar to those included in the H2O
GBM routine (see for detail XGBOOST Parameters), we are not going to re-list them in detail for the
GBM implementation. Nevertheless, one can refer to the H2O booklet for more details (Nykodym et al.
2016). Finally, a grid search approach is necessary to obtain the best configuration of the parameters GBM
HyperParameters Optimization.

4.8 Deep Learning

Neural networks belong to machine learning algorithms used both for classification and regression problems.
Lately, they have been successfully attracting attention in image recognition and natural language processing
for their competitive results, see e.g. (Wiley 2016). Neural networks are generally used for detecting recurring
patterns and regularities. Those that are characterized by more than one hidden layer are known as “Deep
Neural Networks” (DNN). We will focus our attention on feed forward deep neural networks, in which signals
go from the input layer to the output layer flowing through the hidden ones without any feedback loop.

Such a model has a logical structure based on interconnected processing units (neurons) structured in one
input layer, one or more hidden layers, and an ouput layer. Outputs (signals) from one layer’s neurons to the
subsequent layer’s neurons are linearly weighted, and then passed to an activation function that can take
several forms. Specifically, α =

∑n
i=1 wi × xi + b is the weighted combination of input signals in a generic

neuron that is passed to an activation function f (α), where wi is the weight for the xi observation, while b
represents the bias node, which behaves in a way similar to the intercept within a linear regression setting.

Given a network structure, the model is fitted by finding the optimal combination of weights w and bias b that
minimizes a specified loss function, and the resulting performance is extremely sensitive to the hyper-parameter
configuration. Specifically, the main parameters to be tuned are described in more detail by (Arora et al.
2015) in the framework are:

1. Network architecture (“hidden”): the number and size of the hidden layers.
2. Activation function (“activation”): common choices include the Rectifier, Tahn, and Maxout functions.
3. Regularization Parameters: it is possible to apply regularization techniques that resemble the lasso and

ridge approaches.
4. Loss function (“stopping_metric”): the chosen loss function to be optimised by the model.
5. Adaptive learning parameters (“Adaptive Rate”): when set to True, the following parameters control

the process of weight updating, and are useful for avoiding local minima. ρ, controls how the memory
of prior weights updates, and is usually set between 0.9 and 0.999; ε takes into account the learning
rate annealing and momentum allowing forward progress, and is usually set between 10−10 and 10−4.

6. Number of iterations (“Epochs”): the number of passes over the complete training dataset to be iterated.

10

https://www.analyticsvidhya.com/blog/2016/03/complete-guide-parameter-tuning-xgboost-with-codes-python/
http://blog.h2o.ai/2016/06/hyperparameter-optimization-in-h2o-grid-search-random-search-and-the-future/
http://blog.h2o.ai/2016/06/hyperparameter-optimization-in-h2o-grid-search-random-search-and-the-future/

7. Input dropout rate (“input_dropout_ratio”): this determines what percentage of the features for each
training row is to be omitted from training in order to improve generalization.

8. Hidden layers’ dropout rate (“hidden_dropout_ratios”): the fraction (default set to 0.5) of the inputs
for each hidden layer to be omitted from training in order to improve generalization.

9. Maximum sum of the squared weights into neurons (“max_w2”): this parameter is helpful whenever
the chosen activation function is not bounded, which can occur with Maxout and Rectifier.

5 Numerical evidence

In this section, we present the dataset used for the numerical illustration. Then, we fit a standard GLM to
model policy conversion, which will serve as a benchmark against the competing machine learning algorithms.
Secondly, we apply non-linear and tree based machine learning techniques to predict policy conversion, and
we compare all the methods by accuracy and discriminating power. Finally, we perform a price optimization
in order to assess the benefits of machine learning techniques compared to the standard approach.

5.1 Brief description of the dataset

In our study of conversion, we use a database of 1.2 million quotes for fitting and model selection. 80 percent
of the database is used for fitting models (the training dataset) whereas the remaining 20 percent of the
database is used for testing the performance (the test dataset). Furthermore, an additional 100 thousand
records (optimization dataset) are used for the PO exercise one. More precisely, models have been fit on the
train data set and compared in terms of predictive performance on the test set. The relevant models have
been applied on the PO data set to perform the optimization exercise. Table 2 shows models’ performance
on the training dataset, while Table 3 gives PO performance on the optimization dataset. Tables 4-7 display
descriptive statistics of the training dataset.

The available variables used for predictors are listed below:

• Id & conversion status: quoteId (db key) and converted (binary variable).
• Premium & competitive position related variables: premiumCompany, premiumMarket and

burningCost represent the company’s premium, the market best price (average of the three lowest
premiums) and the pure premium (loss cost) respectively. ratioCompanyMkt and deltaCompanyMkt
have been calculated as the ratio and the difference between the company premium and market premium
respectively. The currency is euro.

• Vehicle characteristics: vehicleMake, vehicleModel, vehiclePower, vehicleFuelType, vehicleAge, vehi-
clePurchaseAge, vehicleKm, vehicleUsage are brand, model, engine characteristics, age and usage style
variables. In addition, vehicleMakeandModel groups the most frequent combinations of vehicles makes
and models.

• Demographics: policyholderTerritory and territoryBigCity indicate the policyholder living region and
whether the policyholder’s town is a high density city. Policyholder’s age, gender, marital status and
occupation are recorded into the policyholderAge, policyholderGender, policyholderMaritalStatus, and
policyholderOccupation variables respectively.

• Insurance and claim history variables: bonus malus and policyholderPreviousClaims indicate
attained bonus malus level and whether any previous claims has been filled within five years before.
quoteTimeToPolicy indicate the difference (in years) between the quote and the effective date. Finally,
the previousCompany variable indicates whether the previous company was a direct company or a
traditional one.

Our analysis focuses on the key variables (conversion rate and premium variables), as well as other variables.
A classical bivariate analysis representing the relationship between conversion rate and selected predictor
variables is reported in the Appendix.

11

5.2 Model Comparison and Selection

The previously fitted models have been used to predict the conversion probability on the test dataset. They
have been ranked according to performance metrics and the better performing one is going to be selected to
predict prospects’ conversion on the test dataset and on the PO one. Finally, the obtained results will be
compared against a GLM model.

Table 2 shows the total predicted converted policies on the test data set, the log-loss and the AUC measures
for each model, while the actual total number of converted policies is shown on top. The total estimated
converted policies is calculated as the sum of quote - level estimated conversion probabilities. Clearly, the
best model is the one that is able to predict the number of converted policies with the highest degree of
accuracy, such that the the log-loss is minimized and the AUC is maximized.

Table 2: Models’s performance metrics comparison

Model Quote Nb Log-loss AUC
observed 6800 NA NA
XGBoost 6826 0.0890 0.9064
GBM 6314 0.0896 0.9050

Random Forest 6817 0.0923 0.8955
Deep Learning 7438 0.0936 0.8925

GLM 6831 0.0940 0.8896

One can observe that all model predictions are quite close the observed one in terms of quote number, with
the exception of deep learning. Conversion modeling requires precise assessment of underlying conversion
probabilities, which is measured by log-loss. By ranking the models according to increasing log-loss, it is clear
that boosted models (GBM and XGBoost) show the highest performance in terms of predictive accuracy.

0

25

50

75

100

0 25 50 75 100

Bin Midpoint

O
bs

er
ve

d
E

ve
nt

 P
er

ce
nt

ag
e

Model

probGlmFinal

probGbm

probXGBoost

Calibration chart

12

Lift chart

% Samples Tested

%
 S

am
pl

es
 F

ou
nd

0

20

40

60

80

100

0 20 40 60 80 100

probGlmFinal
probGbm

probXGBoost

Interestingly, GBM and XGBoost show higher precision in terms of estimated probability when compared
to a GLM model, even though the underlying conversion probability of most quotes is very low. Also, they
keep estimating the conversion rate unbiasely at levels of expected outcome higher than the GLM model.
The lift chart shows that there is not much difference between the three predictive models (GLM, GBM and
Ensemble-GBM) even if the last two are slightly superior in terms of lift.

It is indeed difficult to compare the models in term of computational requirements. Using the H2O package
infrastructure, fitting a GLM (even using an elasticnet approach) takes a fraction of the time needed to select
a model within the cited ML approaches. The subjectivity of hyper - parameter search (grid depth, use of
Bayesian Optimization, . . .) in addition to the time required to fit a hyperparameter-definite ML model
explains the difficulty of such comparisons.

5.3 Application to Pricing Optimization

The pricing optimization process considers knowledge of consumer behaviour vital to maximizing expected
profit. In our application, the company’s knowledge of consumer behaviour is represented by a risk premium
model that estimates the expected cost of the insurance cover that will be provided, as well as by a conversion
model, which estimates the probability of a prospect entering the portfolio. Also, information on the
competitive environment such as the distance between market price and the company’s premium should be
taken into account.

From a mathematical point of view, we assume that the insurer sets the best premium π for each prospect
that maximizes the expected underwriting result weigthed by the conversion probability. That is uw(π) =
p(π)× (π − L), where p(π) is the conversion probability given the π proposed premium and L the expected
cost. In the subsequent part of the analysis, we will assume that the insurer can modify the proposed premium
without any restriction.

The following hyphotheses were used to perform the pricing optimization exercise:

• the insurer follows an individual optimization approach;

13

• the individual quoted premium can vary between -10% and + 10% (ε) around the baseline;
• the company is able to estimate the expected cost of providing coverage at policy level, Li, thanks to a

risk premium model.
• the company calculates the expected underwriting result uw(πi) = πi − Li.

We use the notation pi(πi), πi, Li to refer to the i-th quote’s conversion probability, premium and burning cost
respectively. Therefore, the expected number of conversions is simply E (Q) =

∑
i pi(πi), the expected gross

premium volume is E (PR) =
∑

i pi(πi)πi, and the expected underwriting margin is E (UW) =
∑

i uwi(πi).
The Li expected cost per quote is considered known and given by the risk premium model.

The individual PO is carried out as follows:

• the insurer calculates an initial technical premium π0
i for the ith prospect, without competitive marketing

considerations, e.g., adding a fixed loading to the estimated cost Li.
• on a discretized grid ranging in [π0

i (1− ε), π0
i (1 + ε)]

– it computes the conversion probability pi(πi), and the expected underwriting result uwi(πi). This
also re - evaluates the competitive position for each scenario.

– it chooses the individual customer’s premium variation to maximize the underwriting result from
within the grid.

This approach is known as individual optimization, since it assumes that the insurer is able to target any
single prospect with an individual quote. The presence of any marketing and regulatory restrictions would
hence lead the insurer to less refined strategies as previously discussed. In addition , this deterministic
analysis on one period does not take into account any solvency considerations, as well as the renewals of
prospects beyond the first period. Also, it assumes no structural changes in the market (e.g. no reactions
from competitors) during the process of its implementation.

Thus, it is possible to compare the actual quote number and observed margin (computed on converted quotes)
with the amount predicted by each predictive model, as shown in the table below for the selected elastic-net
GLM, GBM, and XGBoost models. The final “PO Gain” column, calculated as the difference of the optimized
margin and the baseline one, shows the gain of using an individual PO approach. As previously anticipated,
the PO exercise has been carried out on a data set (the optimization dataset) that contains quotes used
neither to train nor to test the ML models.

Table 3: Pricing optimization exercise, summary of results

Model Conversion Nb Baseline margin Optimized margin PO gain
observed 2522 -88203 NA NA
GLM 2409 -73000 749.5 73749
GBM 2492 -76341 2384.8 78726
XGB 2654 -86815 2298.3 89114

In Table 3, we observe that all boosted models are closer than GLM in terms of estimated conversions. In
particular, the GBM figure is the closest one. On the other hand, the estimated margin shows that the
XGBoost estimate is very close to the actual figure. It is worth pointing out that the margin figure should
be compared to the total gross premium of around 600K. After the individual optimization exercise has
been performed, the “PO gain” column shows that the difference between the baseline and the optimized
underwriting margin varies between 74K (GLM figure) and 89K (XGBoost one).

6 Conclusion

Our work has applied recent predictive modeling methodologies with the dual goals of taking into account
customers’ behavior and of optimizing underwriting margins. The size of the considered dataset is relatively

14

large compared to the market size, leading to reasonably generalizable results other personal lines in non-life
insurance.

We observed that machine learning models may offer higher accuracy and discriminating power when compared
to classical GLM models. Our exercise also confirmed the excellent performance of boosted tree based models.
It is still an open question whether the predictive performance gain of machine learning methods is enough
to suggest their widespread adoption. Interestingly, we found that both GLM and XGBoost approaches
produced very similar results in terms of optimized premium volume. Nevertheless, competitive results of the
logistic regression can be explained by the fact that the marginal conversion rate observed for variables that
have been found to be extremely important, such as premiums distance and time to policy, seem monotonic
and can be approximately linear (e.g. in the log scale).

Furthermore, we noted that the performance difference between ML approaches and classical GLM is relatively
higher on the AUC scale than on the log-loss scale. This can also be visually seen by observing the lift curve.
Therefore, it is suggesed that machine learning models can offer a competitive advantage when used for
actively marketing to prospective customers, rather than when optimizing the premium amount.

Regarding the computational resources, it is clear that fitting a GLM takes a very small fraction of the
computational time required by most machine learning models. This is due to the fact that a GLM approach
does not require any hyperparameter tuning, unlike the vast majority of machine learning algorithms. Precisely,
since it is not generally possible to find a priori the optimal configuration of the hyperparameters space, a
grid search approach is necessary. The subjectivity of defining the grid space and depth adds another level
of complexity when comparing the tuning process and the timing requirements across different families of
models.

7 Acknowledgements

This work has been sponsored by the Casualty Actuarial Society (CAS), the Actuarial Foundation’s research
committee, and the Commitee on Knowledge Extension Research (CKER) of the Society of Actuaries (SOA).
The authors wish to give a special thanks to David Core, Director of Professional Education and Research
(CAS), and Erika Schulty, Research Associate (SOA) for their support.

Finally, the opinions expressed in this paper are solely those of the presenters. Their employers neither
guarantee the accuracy nor reliability of the contents provided herein nor take position on them.

8 Appendix

8.1 Infrastructure

The R software (R Core Team 2017) has been used for this analysis, taking advantage of packages tidyverse
and data.table, as well as the H2O (H2O.ai team 2017), and caret (Jed Wing et al. 2016) machine learning
infrastructures.

Parallelization of computing tasks is available for both infrastructures, either on multicore processors or on
clusters of computers. Furthermore, the H2O infrastructure permits an easy interface to the Apache Spark
(Zaharia et al. 2016) framework specifically devoted to perform parallel processing on big data. Finally, all
the software used in the project is open source, making our analysis easily replicable.

8.2 Tables and graphics for the descriptive section

The table and the plot indicate that the portfolios’ loss ratio is slightly above 80%, while the histograms
show a clearly skewed distribution of premium and losses, as expected. In addition, the overall conversion

15

rate (actual conversions divided by number of quotes) is around 2.5%. Bivariate tables display the conversion
rate by each level of key predictors.

Table 4: Conversion Rate Summary

converted Num Freq

N 103027 0.9761
Y 2522 0.0239

Table 5: Conversion by competitiveness (ratio)

ratioCompanyMktBin num conversions ratio
[0.476,0.900) 104876 13106 0.1250
[0.900,0.969) 94077 5813 0.0618
[0.969,1.027) 99795 3624 0.0363
[1.027,1.084) 101219 2146 0.0212
[1.084,1.142) 101721 1249 0.0123
[1.142,1.209) 102093 734 0.0072
[1.209,1.292) 102538 396 0.0039
[1.292,1.405) 101433 211 0.0021
[1.405,1.603) 99236 97 0.0010
[1.603,8.502] 74727 24 0.0003

0

25000

50000

75000

100000

[0.476,0.900)

[0.900,0.969)

[0.969,1.027)

[1.027,1.084)

[1.084,1.142)

[1.142,1.209)

[1.209,1.292)

[1.292,1.405)

[1.405,1.603)

[1.603,8.502]

ratioCompanyMktBin

fr
eq

ue
nc

y

ratioCompanyMktBin vs conversion rate

0%

4%

8%

12%

Table 6: Conversion by policy effective date delay

quoteTimeToPolicyBin num conversions ratio
[0.00000,0.00822) 119750 4253 0.0355
[0.00822,0.02466) 122738 5826 0.0475
[0.02466,0.04658) 153243 5510 0.0360
[0.04658,0.06575) 136130 3310 0.0243
[0.06575,0.08767) 153873 3322 0.0216
[0.08767,0.10959) 176746 3175 0.0180
[0.10959,0.37260] 119235 2004 0.0168

16

0

50000

100000

150000

[0.00000,0.00822)

[0.00822,0.02466)

[0.02466,0.04658)

[0.04658,0.06575)

[0.06575,0.08767)

[0.08767,0.10959)

[0.10959,0.37260]

quoteTimeToPolicyBin

fr
eq

ue
nc

y

quoteTimeToPolicyBin vs conversion rate

2%

3%

4%

Table 7: Conversion by policyholder’s age

policyholderAgeBin num conversions ratio
[17,32) 111121 1436 0.0129
[32,36) 101780 1384 0.0136
[36,39) 96184 1652 0.0172
[39,42) 102495 2240 0.0219
[42,45) 91612 2667 0.0291
[45,49) 110358 3780 0.0343
[49,52) 76675 2818 0.0368
[52,57) 94735 3526 0.0372
[57,66) 107900 4314 0.0400
[66,99] 88855 3583 0.0403

0

30000

60000

90000

[17,32)
[32,36)

[36,39)
[39,42)

[42,45)
[45,49)

[49,52)
[52,57)

[57,66)
[66,99]

policyholderAgeBin

fr
eq

ue
nc

y

policyholderAgeBin vs conversion rate

2%

3%

4%

17

8.3 Models’ specific implementation notes

8.3.1 GLM

The elastic net approach has been used in this analysis, since it allows one to perform variable selection and
prevent overfitting and collinearity among predictors, with no dramatic increase of computational time.

Two models have been tested:

1. A model with an unbinned coefficient (thus assuming marginal linearity of categorical predictors).
2. A model with a binned one. Bins were constructed on continuous covariates based on deciles.

The log - loss criterion identified the unbinned model to be the most performing one.

8.3.2 Random Forest

H2O Distributed Random Forest (DRF) can be initialized using the code snippet shown in the corresponding
appendix section. The model has been tuned using a random discrete grid search approach and log-loss
as criteria. Two sets of grids have been used: the first one runs over a relatively wide range set of each
parameter, while the second one on a narrower one. The second grid ranges have been defined on the basis of
the best models found at the previous step.

Precisely, each grid has been set to run for both a maximum number of models (200 models), and a maximum
amount of time (4 hours). In addition, we have judiciously selected the ranges of the tuning parameters. In
the second grid we have: max depth (8-12), min rows (10-20), sample rate (60% - 80%) and ntrees (100 - 300).

8.3.3 Boosting (GBM and XGBOOST)

Regarding GBM, the H2O infrastructure has been adopted to perform the required pre-processing, as well as
training and prediction. In terms of hyper-parameter tuning, a grid search has been carried out, by adopting
the random discrete strategy included in H2O, by training up to 100 models for a maximum of 4 hours during
the first cycle. Further, a second and finer grid search on the same parameters has been performed. On
other other hand, the dedicated library has been used to implement XGBoost models: as a preliminary step,
categorical variables have been one-hot encoded, and simultaneously a sparse matrix has been created to
help computational efficiency. Next, an initial cartesian grid search has been performed on parameters of
main importance. Then, a more refined tuning grid search has been performed on some parameters, and
“max_delta_step” has been included to take into account the presence of unbalanced classes. Finally, the
learning rate and the number of rounds were optimised jointly.

8.3.4 Deep Learning

Generally there are no definite rules for optimal architecture design, in particular regarding the layering of
the network (number and individual size of hidden layers). Some tips can be found in H2odeepLearning. We
decided to perform a random discrete search across a hypherparameter space assuming:

1. No more than three hidden layers.
2. The size has been calculated as the number of continuous predictors plus the number of distinct values

per each categorical predictor.
3. Scoring of the model during training: (1%, 10000) samples.
4. The activation function in each node. All available activation functions were tested (Rectified, Tanh,

Maxout and the corresponding “with dropout”)
5. ρ and ε as well as l1 - l2 ranges chosen according to the suggestion of the (Arora et al. 2015).

A first grid has been launched to find a more narrow combination of tuning parameters, while a second one
has been defined using a more narrow parameter range defined on the basis of previous results.

18

http://blog.h2o.ai/2015/02/deep-learning-performance/

References

Anderson, D., S. Feldblum, C. Modlin, D. Schirmacher, E. Schirmacher, and N. Thandic. 2007. A Practitio-
ner’s Guide to Generalized Linear Models. Arlington: Casualty Actuarial Society.

Arora, A., A. Candel, J. Lanford, E. LeDell, and V. Parmar. 2015. Deep Learning with H2o. http:
//h2o.ai/resources.

Baribeau, A.G. 2015. “Price Optimization and the Descending Confusion.” Actuarial Review.

Bett, L. 2014. Machine Learning with R. Packt Publishing.

Bou Nader, R., and E. Pierron. 2014. “Sustainable Value: When and How to Grow?” In Proceeding of the
30th International Congress of Actuaries.

Box, G.E.P., and D.R. Cox. 1964. “An Analysis of Transformations.” Journal of the Royal Statistical Society.
Series B (Methodological). JSTOR, 211–52.

Breiman, L. 2001. “Random Forests.” Machine Learning 45 (1). Springer: 5–32.

Chen, T., and C. Guestrin. 2016. “Xgboost: A Scalable Tree Boosting System.” arXiv Preprint
arXiv:1603.02754.

Cortes, C., and V. Vapnik. 1995. “Support-Vector Networks.” Machine Learning 20 (3). Springer: 273–97.

Duncan, A., and M. McPhail. 2013. “Price Optimization for the U.S. Market. Techniques and Implementation
Strategies.”

Dutang, Christophe. 2012. “The Customer, the Insurer and the Market.” Bulletin Français d’Actuariat 12
(24).

Fisher, R.A. 1940. “The Precision of Discriminant Functions.” Annals of Eugenics 10 (1). Wiley Online
Library: 422–29.

Fix, E., and J.L. Hodges Jr. 1951. “Discriminatory Analysis-Nonparametric Discrimination: Consistency
Properties.” Defense Technical Information Center Document.

Frees, E.W., R.A. Derrig, and G. Meyers. 2014. Predictive Modeling Applications in Actuarial Science. Vol.
1. Cambridge University Press.

Frees, E.W., G. Meyers, and R.A. Derrig. 2016. Predictive Modeling Applications in Actuarial Science:
Volume 2, Case Studies in Insurance. International Series on Actuarial Science. Cambridge University Press.
https://books.google.it/books?id=5/_a7DAAAQBAJ.

Friedman, J.H. 2001. “Greedy Function Approximation: A Gradient Boosting Machine.” Annals of Statistics.
JSTOR, 1189–1232.

Fu, L., and H. Wang. 2014. “Estimating Insurance Attrition Using Survival Analysis.” Variance 8 (1): 55–72.

Guelman, L. 2012. “Gradient Boosting Trees for Auto Insurance Loss Cost Modeling and Prediction.” Expert
Systems with Applications 39 (3). Elsevier: 3659–67.

Guelman, L., M. Guillen, and A.M. Perez-Marin. 2012. “Random Forests for Uplift Modeling: An Insurance
Customer Retention Case.” In Modeling and Simulation in Engineering, Economics and Management, edited
by K.J. Engemann and A.M. Gil-Lafuente, 115:123–33. Lecture Notes in Business Information Processing.
Springer Berlin Heidelberg. doi:10.1007/978-3-642-30433-0_13.

Guillen, M., and L. Guelman. 2014. “A Causal Inference Approach to Measure Price Elasticity in Automobile
Insurance.” Expert Systems with Applications.

H2O.ai team. 2017. H2O: Scalable Machine Learning. http://www.h2o.ai.

Hastie, T., A. Buja, and R. Tibshirani. 1995. “Penalized Discriminant Analysis.” The Annals of Statistics.

19

http://h2o.ai/resources
http://h2o.ai/resources
https://books.google.it/books?id=5/_a7DAAAQBAJ
https://doi.org/10.1007/978-3-642-30433-0_13
http://www.h2o.ai

JSTOR, 73–102.

Hung, S.-Y., D.C. Yen, and H.-Y. Wang. 2006. “Applying Data Mining to Telecom Churn Management.”
Expert Systems with Applications 31 (3). Elsevier: 515–24.

Hussami, N., T. Kraljevic, J. Lanford, T. Nykodym, A. Rao, and W. Wang. 2015. Generalized Linear
Modeling with H2o. http://h2o.ai/resources.

Jed Wing, Max Kuhn. Contributions from, Steve Weston, Andre Williams, Chris Keefer, Allan Engelhardt,
Tony Cooper, Zachary Mayer, et al. 2016. Caret: Classification and Regression Training. http://CRAN.
R-project.org/package=caret.

Kuhn, M. 2016. “Optimization Methods for Tuning Predictive Models.” In Cambridge R User Group.

Kuhn, M., and K. Johnson. 2013. Applied Predictive Modeling. Springer.

Kuhn, M., S. Weston, N. Coulter, and M. Culp. 2015. C50: C5.0 Decision Trees and Rule-Based Models.
http://CRAN.R-project.org/package=C50.

LeDell, E., S. Sapp, and M. van der Laan. 2014. “Subsemble: An Ensemble Method for Combining
Subset-Specific Algorithm Fits.” R package version 0.0.

Liaw, A., and M. Wiener. 2002. “Classification and Regression by randomForest.” R News 2 (3): 18–22.

Manin, A., and T. Bayley. 2010. “Price Optimization: For New Business Profit and Growth.” Emphasis 1.
Towers Watson: 18–22.

McCullagh, P., and J.A. Nelder. 1989. Generalized Linear Models. 2nd ed. Chapman; Hall.

Milhaud, X., S. Loisel, and V. Maume-Deschamps. 2011. “Surrender Trigger in Life Insurance: What Main
Features Affect the Surrender Behavious in an Economic Context.” Bullettin Francais d’Actuariat, no. 11.

National Association Insurance Commissioners. 2015. “Price Optimization White Paper.”

Nykodym, T., T. Kraljevic, N. Hussami, A. Rao, and A. Wang. 2016. “Generalized Linear Modeling with
H2o.”

Pozzolo, A. dal. 2011. “Comparison of Data Mining Techniques for Insurance Claim Prediction.” Master’s
thesis, University of Bologna.

Quinlan, R. 2004. “Data Mining Tools See5 and C5.0.”

R Core Team. 2017. R: A Language and Environment for Statistical Computing. Vienna, Austria: R
Foundation for Statistical Computing. https://www.R-project.org/.

Ratemaking, Casualty Actuarial Society Committee on. 2014. “Price Optimization Overview.” Casualty
Actuarial Society. Casualty Actuarial Society. http://www.casact.org/area/rate/price-optimization-overview.
pdf.

Rish, I. 2001. “An Empirical Study of the Naive Bayes Classifier.” In IJCAI 2001 Workshop on Empirical
Methods in Artificial Intelligence, 3:41–46. 22. IBM New York.

Rulliere, J.L., S. Loisel, and C. Mouminoux. 2017. “Obfuscation and Trust: Experimental Evidence on
Insurance Demand with Multiple Distribution Channels.” In 8th International Conference of the French
Association of Experimental Economics - Asfee.

Santoni, A., and F. Gomez Alvado. 2007. “Sophisticated Price Optimization Methods.”

Serhat, G. 2013. “II-4: Intelligent Use of Competitive Analysis.”

Serhat, G., and M. McPhail. 2013. “Beyond the Cost Model: Understanding Price Elasticity and Its
Applications.” CAS E-Forum 2. Casact.

Serneels, S., E. De Nolf, and P.J. Van Espen. 2006. “Spatial Sign Preprocessing: A Simple Way to Impart
Moderate Robustness to Multivariate Estimators.” Journal of Chemical Information and Modeling 46 (3).

20

http://h2o.ai/resources
http://CRAN.R-project.org/package=caret
http://CRAN.R-project.org/package=caret
http://CRAN.R-project.org/package=C50
https://www.R-project.org/
http://www.casact.org/area/rate/price-optimization-overview.pdf
http://www.casact.org/area/rate/price-optimization-overview.pdf

ACS Publications: 1402–9.

Wiley, J.F. 2016. R Deep Learning Essentials. Packt Publishing Ltd.

Yeo, A., K.A. Smith, R.J. Willis, and M. Brooks. 2001. “Modeling the Effect of Premium Changes on Motor
Insurance Customer Retention Rates Using Neural Networks.” In Computational Science - Iccs 2001, edited
by VassilN. Alexandrov, JackJ. Dongarra, BenjoeA. Juliano, and C.J.Kenneth Renner Tan, 2074:390–99.
Lecture Notes in Computer Science. Springer Berlin Heidelberg. doi:10.1007/3-540-45718-6_43.

Zaharia, M., R.S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J. Rosen, S. Venkataraman, and
M.J. Franklin. 2016. “Apache Spark: A Unified Engine for Big Data Processing.” Communications of the
ACM 59 (11). ACM: 56–65.

Zeileis, A., T. Hothorn, and K. Hornik. 2008. “Model-Based Recursive Partitioning.” Journal of Computational
and Graphical Statistics 17 (2): 492–514.

Zou, H., and T. Hastie. 2005. “Regularization and Variable Selection via the Elastic Net.” Journal of the
Royal Statistical Society: Series B (Statistical Methodology) 67 (2). Wiley Online Library: 301–20.

21

https://doi.org/10.1007/3-540-45718-6_43

	Abstract
	Introduction
	Business context overview
	Predictive modeling for binary classification
	Modeling steps
	Data pre-processing
	Model Training, Tuning and Performance Assessment
	Common predictive models for binary classification
	GLMs and their Elastic Net extension
	Random Forest
	The boosting approach: GBM and XGBoost
	Deep Learning

	Numerical evidence
	Brief description of the dataset
	Model Comparison and Selection
	Application to Pricing Optimization

	Conclusion
	Acknowledgements
	Appendix
	Infrastructure
	Tables and graphics for the descriptive section
	Models' specific implementation notes
	GLM
	Random Forest
	Boosting (GBM and XGBOOST)
	Deep Learning

	References

