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Abstract

We analytically compute the Renyi entropies for the RSOS models, representing a wide class of ex-

actly solvable models with multicritical conformal points described by unitary minimal models and Zn

parafermions. The exact expressions allow for an explicit comparison of the expansions around the critical

points with the predictions coming from field theory. In this way it is possible to point out the nature of the

so-called “unusual corrections”, clarifying the link with the operator content, the role of the symmetries and

the boundary conditions. By choosing different boundary conditions, we can single out the ground states

as well as certain combinations of high energy states. We find that the entanglement spectrum is given by

operators that are not present in the bulk Hamiltonian, although they belong to the same representation of a

Virasoro Algebra. In the parafermionic case we observe unexpected logarithmic corrections.
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I. INTRODUCTION

Entanglement is the unique feature distinguishing a quantum system from a classical one1,2.

While we still lack a fundamental, general definition of what entanglement is, we can characterize

it well when we consider the mutual entanglement of two complementary components of a system

in a definite state, the so-called bipartite-entanglement3. A popular way to quantify it is given by

the entanglement entropies. In the recent years, it has become increasingly important to be able

to compute them, either numerically or analytically4. Typically, one considers the ground state |0〉

of a quantum Hamiltonian. Once the system has been divided into two parts A,B, it is possible to

introduce the reduced density matrix, tracing out one of the two subsystems

ρA ≡ TrB|0〉〈0| (1)

and then the Renyi entropies are defined as

Sα ≡
1

1− α
ln TrραA , (2)

We notice that, thanks to the free parameter α, the knowledge of the Renyi entropies is equivalent

to the knowledge of the full spectrum of the reduced density matrix5, whose logarithm is known

as the entanglement spectrum6. A particularly important point is the α → 1 limit, known as Von

Neumann entropy

S = lim
α→1
Sα = −TrρA ln ρA , (3)

which provides a good quantification for the entanglement in terms of a single number.

Gapped d + 1-dimensional systems obey the so-called area-law7: at the leading order in the

thermodynamic limit of large subsystem sizes, the entanglement entropy is proportional to the

area of the boundary separating A and B. In d = 1, such law predicts a saturation to a constant

of the entanglement entropy when A is composed of large intervals. For d > 1 the area law

remains true for most gapless systems, with possible logarithmic corrections8. These logarithmic

contributions are a signature of d = 1-dimensional physics. In fact, exploiting the conformal

invariance of gapless 1 + 1 models, it is known that the entropy grows logarithmically with the

length of the A interval `, with a proportionality given by the conformal anomaly9. In10, the sub-

leading contributions were analyzed and the emergence of unusual corrections was linked to the

effect of relevant (and irrelevant) operators of the critical theory:

Sα =
c

6

(
1 + α

α

)
ln `+ c′α + bα`

−2x/α + . . . , (4)
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where c is the central charge of the CFT, c′α and bα are non-universal constants and x = ∆ + ∆̄ is

the dimension of the operator “responsible” for the correction. Marginal operators act differently

(renormalizing the central charge) and give rise to logarithmic corrections of the form (log `)−2n.

Similar results have been observed11–13 close to the critical points, where now the correlation

length ξ, being large but finite, becomes the relevant length scale (that is ` � ξ), and have led to

the conjectured form

Sα =
c

12

(
1 + α

α

)
ln

ξ

a0

+ Aα +Bαξ
−h/α + . . . , (5)

where a0 is a short distance cutoff, Aα and Bα are again non-universal constants and h can be

interpreted as the dimension of a relevant operator1. In general, one should not expect the entropy

to be the same scaling function in ` and in ξ: although the coefficients of the leading term have to

coincide, the operators acting in the two cases can be different and x and h can be different. The

crossover function between the two scaling regime might be accessible using techniques similar

to14–16.

Thus, while the entanglement entropy of a gapped d = 1 system could seem not very interest-

ing, since it saturates to a constant in the thermodynamic limit, its study close to a critical point

could shed light on the scaling theory governing the lattice models and its universal features. More-

over, a recently proposed protocol17,18 would allow the measurement of the Renyi entropies only

for gapped systems, thus rendering the theoretical computation of the limiting value (5) amenable

to cold-atom experimental confirmation.

In this paper we will focus on the analytic computation of the Renyi entropy in this thermody-

namic limit for the quantum systems obtained from a class of integrable lattice models known as

Restricted Solid-on-solid (RSOS)19. These models and their structures have inspired the discus-

sion in the last section of11, on a general relation between the entanglement entropy of quantum

(integrable) models and Virasoro characters. Inspired by these considerations, we expand and

detail the calculation sketched in11, and extend it to the parafermionic case. The importance of

the RSOS models is multifold: first of all, they provided the first lattice realization of the unitary

conformal models20 as pointed out in21,22. In a different phase, they also realize parafermionic

models and thus give access to consistent c > 1 CFT’s23. Moreover, thank to the rich underlying

1 The factors of 2 difference between (4) and (5) is due to the number of boundaries dividing A and B: 2 for an
interval, 1 in the gapped phase, where both A and B are taken semi-infinite.
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mathematical structure, they appeared as a fascinating link between integrable lattice models and

number theory.

While entanglement is associated to a quantum state, here we will take advantage of the well-

known link that allows to derive a quantum Hamiltonian from the row-to-row transfer matrix

of an integrable classical model. In this way, the classical configuration with the lowest free

energy corresponds to the ground state of the quantum model. Moreover, by a proper choice of

the boundary conditions, one can select higher energy configurations, which correspond to the

lowest quantum state within a given sector of the Hilbert space, and is thus a way to investigate

the entanglement entropy of states other than the ground state. Without showing explicitly the

quantum Hamiltonian associated to the RSOS transfer matrix, it is worth saying that it naturally

arises in the context of loop models24. More recently, an explicit realization of these Hamiltonians

has be obtained from a very different perspective as a chain of interacting non-abelian anyons25.

Another possible approach, whose terminology we decide to adopt here, is to interpret the RSOS

models as the lattice realizations of an integrable thermal perturbation of a class of rational CFTs.

This allows to write the action as

A = ACFT + λ

∫
d2x ε(x) (6)

where ε(x) is the operator representing the thermal perturbation and λ is the coupling constant

measuring the distance from criticality.

The RSOS models being ubiquitous and integrable makes the computation of the Renyi entropy

not only interesting, but also possible analytically by means of the Corner Transfer Matrix (CTM)

approach. In fact, the reduced density matrix of an half-interval in the thermodynamic limit can

be shown to be equal (except for the normalization factor) to the CTM operator26,27

ρ̂A = Z−1
1 ρCTM , Zα ≡ TrραCTM , (7)

and one can therefore compute the Renyi entropy as

Sα =
α

α− 1
lnZ1 +

1

1− α
lnZα . (8)

Even though this procedure looks similar to the replica trick exploited in the conformal case,

here α can be an arbitrary real (or even complex) parameter, thus avoiding all the subtleties of

the analytic continuation from α = n ∈ N, necessary to compute, for instance, the Von Neumann

entropy. Therefore, beyond checking that the conjectured form of Eq.(5) applies for the RSOS, our
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results provide the umpteenth check to the Cardy-Calabrese formula28, both for minimal models,

where the replica trick introduces operators not present in the original Kac table, and also in a

systems with central charges greater than unity. For minimal models, we identify the leading

unusual correction of (5) as coming from the second most relevant operator in the model, that

is ∆3,3, since the most relevant one, ∆2,2, is odd under the Z2 symmetry of the ground state.

However, we find that, by varying the boundary conditions, different sectors can be traced out and

the leading correction to the entropy can come from other operators as well. Let us stress that this

result is different from the correction one could naı̈vely expect taking the anomalous dimension

of the perturbation in (6). For parafermionic models, we find the leading correction to come from

the first thermal field, which is the most relevant only among the Zr−2 neutral fields. In addition,

some boundary conditions at infinity turn on logarithmic corrections, different from those in (5).

It would be tempting to interpret these terms as due to a marginal operator in accordance with10,29;

however these corrections are present even when the theory does not seem to support a marginal

field (which is normally related to the existence of a free boson and present only for certain given

values of r). Thus, the origin of these terms still needs a full explanation and is probably rooted in

a choice of boundary conditions which has no conformal counterpart in the continuum limit.

The paper is organized as follows: in section II we introduce the RSOS models, their phase

diagrams and some details about the exact solution in Regime III and I on which we will focus.

In section III, we will concentrate on the computation of the Renyi entropy for regime III, corre-

sponding to unitary minimal models and in section IV on regime I corresponding to parafermionic

CFT. To better elucidate the meaning of our formulae, we will conclude the analysis with the

specific examples of the Ising and 3-state Potts model in section V. Finally in section VI we will

discuss our results and their meaning. We collect some useful definitions and identities on elliptic

functions in A.

II. THE MODEL

A. Definition

We consider the restricted solid-on-solid (RSOS) on a square lattice, first introduced in19. The

variables on each node are called “heights” and are integer numbers restricted to the interval:

1 ≤ li ≤ (r − 1) (9)
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A local constraints is imposed to every configuration

|li − lj| = 1 (10)

for each pair of nearest-neighbor i, j. The model belongs to the family of interaction round-a-face

(IRF) models, introduced by Baxter30. Each plaquette is given a Boltzmann weight according

to the configuration of the 4 sites enclosing it: W (l1, l2, l3, l4). Here the four sites around the

plaquette are counted clockwise from the northwest l1, l2, l3, l4. The model can be exactly solved

l1 l2

l3l4

W (l1, l2, l3, l4)

for a proper choice of the weights W where it appears as a consistent restriction of the solid-

on-solid (SOS) model and hence with the same Yang-Baxter algebra of an eight-vertex model.

Weights are thus parameterized in terms of elliptic functions and for the details we refer to the

original work19.

At fixed maximum-height r, the phase-space of the model can be characterized by two param-

eters p, v. The requirement of real and positive Boltzmann weights gives the constraints

−1 < p < 1 − η < v < 3η

naturally arranged in four, physically distinct, regimes

I −1 < p < 0 η < v < 3η

II 0 < p < 1 η < v < 3η

III 0 < p < 1 −η < v < η

IV −1 < p < 0 −η < v < η

The parameter η is related to p by

η ≡ K(p)

r

where K(p) is the complete elliptic integral with elliptic “nome” p. The regimes I, II and III, IV

are separated by a line of critical points at p = 0. The parameter v can be considered, roughly
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FIG. 1: The four regimes in the (p, v) plane.

speaking, as the spatial anisotropy of the interactions in the model and does not enter in the order

parameters and the critical behavior. So, for fixed regime we will ignore it. The manifolds of exact

solution will be simply lines parameterized by p ∈ (−1, 1). By comparison with (6), we have that

close to criticality, i.e. when |p| � 1, p ' λ.

B. Exact solution

The exact solution in19 consists of three parts.

AB

C D

FIG. 2: The action of the four CTM generates the full partition function.

1. introduce the corner transfer matrix (CTM) that, once diagonalized, allows reducing the 2D

configuration sum into a 1D sum already at finite size;

2. perform the thermodynamic limit by transforming the finite size expressions into series in-

volving gaussian polynomials and then taking the limit as modular functions;
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3. sum up the partial traces (for fixed value of the central height) of the CTM obtaining the full

partition function.

Here we will briefly review the first two steps, that are functional to our derivation. For the last

step, we will use a slightly different approach with respect to the traditional one, formulated in

terms of the dual variables.

Corner transfer matrix

The method of the corner transfer matrix (CTM), introduced by Baxter30, allows the exact

solution of lattice integrable models, computing both the partition function and the one-point cor-

relation function (e.g. the magnetization). As shown in fig. II B, four operators A,B,C,D are

introduced. A is the partition function of the system restricted to the first quadrant and with fixed

boundary conditions on the positive x and y axis. Similarly the other operators B,C,D are defined

in the other quadrants and it follows that

(ρCTM)
l′1,...,l

′
N

l1...lN
= (ABCD)

l′1,...,l
′
N

l1...lN
⇒ Z = TrρCTM (11)

The local height probability (LHP) for the height l1 at the origin can be written as

Pl ≡ Prob(l1 = l) = Z−1Tr (δl1,lABCD) (12)

The CTM formalism becomes particularly useful in integrable lattice models, where it becomes

possible to fully diagonalize the operator ρCTM, hence computing the exact spectrum and, thus, its

trace. In the RSOS case, the last two sites m+ 1,m+ 2 ≡ N , determine the boundary conditions

and we will take them as fixed. Once in the eigenbasis, the corresponding diagonal operator ρdiag

can be decomposed as

ρdiag = RT (13)

where both R,T are diagonal, but R is a weight that depends only on the height at the origin l1,

while T takes into account the configuration on the whole line l = {l1, . . . , lm, lm+1, lm+2}. They

can be summarized in the four regimes as follows

8



Regime t lnx Rl,l Tl,l

II 2− r
4π2

r ln |p| x(2−t)(2l1−r)2/16rE(xl1 , xr) xtφ[l]

III 2

I 2− r
2π2

r ln |p| x
1/4+(2−t)(2l1−r)2/8rE(xl1 , x−r/2) xtψ[l]

IV 2

where E(z, x) is the elliptic function defined in (A6) and we introduced the CTM Hamiltonians:

φ [l] =
m∑
j=1

j
|lj+2 − lj|

4
, (14)

ψ [l] =
m∑
j=1

jδlj ,lj+2

{
δlj+1,lj+1θ

(
lj −

r

2

)
+ δlj+1,lj−1

[
1− θ

(
lj −

r

2

)]}
,

(15)

where θ(x) is the step-function with θ(x ≤ 0) = 0 and θ(x > 0) = 1.

C. Groundstate structure and critical points

The two functions (14,15), can be considered as Hamiltonians related to the CTM. In fact, they

appear as energies for the 1d configurations in the trace sum of (11). We can therefore use such

expressions to deduce the form of the groundstate in each regime, as the configurations having the

maximum contribution in the trace: since each 2d groundstate is invariant under a southwest to

northeast translation, it will be enough to fix it on a line l1, . . . , lN . Moreover, the constraint (10)

naturally divides the system into two sub-lattices, one with even heights and one with odd ones.

By specifying boundary conditions (at infinity and at the origin, in a consistent way), we assign

a given parity to each sub-lattice. But a translation of the whole system by a lattice site gives an

equivalent configuration, with opposite parity. Thus, we can take the central height l1 and use its

parity to classify each ground state out of this trivial Z2 degeneracy.

In the different regimes we have the following structures2:

I: There is only one groundstate per each parity of l1: (li, li+1) = (n, n + 1) and (li, li+1) =

(n+ 1, n) with n ≡ r−1
2

.

2 To avoid additional spurious degeneracies, in this classification we will assume r to be odd for regimes I and IV.
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II: There are 2r−4 groundstates (r−2 for each parity) of the form of ascending and descending

sequence from 1 to r− 1: e.g. (l1, l2, . . . , lr, lr−1, lr, . . . , l2r−4, l2r−3) = (1, 2, . . . , r− 1, r−

2, . . . , 2, 1) and all its translated.

III: Also in this case we have 2r − 4 groundstates, where all the odd/even sites have the same

height: l2i = X , l2i+1 = Y with |X − Y | = 1.

IV: As for regime III we have a groundstate for each couple of available nearest-neighbor values

except for the regime I groundstate values: thus 2r − 4− 1− 1 = 2r − 6 groundstates.

It is clear that if there is only one groundstate (for each l1 parity), then we expect the system to be

“disordered” and this is true in regime I. Indeed, here the order parameter is independent from the

boundary conditions, within a given parity of sub-lattices. When there is more than one ground

state (per parity), the system is in an “ordered” phase.

The critical points can be understood and identified with an appropriate conformal point21:

• I↔ II critical point: the system passes from a disordered to an ordered phase, where p acts

like a temperature; the critical point has the conformal structure of parafermion.

• III↔ IV critical point: here both phases are ordered and the groundstate degeneracy passes

from r− 2 to r− 3; the critical point has the conformal structure of (r− 1)-unitary minimal

model.

D. Thermodynamic limit

It is easier to approach the critical points starting from region III and I, thus, from now on, we

will focus just on these regimes. We are interested in the thermodynamic limit of the replicated

partition function, introduced in (7). The details of the calculation for α = 1 can be found in

the original work19, thus here we can concentrate only on the main points and the few modifica-

tions needed. For convenience, we collect some definitions and the relevant properties of elliptic

functions in A.
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1. Regime III

The finite-size partition function for α replicas is easily obtained from (13), by summing over

the value of the central height

Zα =
∑

1≤a<r

[E(xa, xr)]αXm(a, b, c;x2α) , (16)

where we singled out the boundary conditions as a = l1, b = lm+1, c = lm+2 and

Xm(a, b, c; q) ≡
∑
l2,...,lm

qφ[l] .

The thermodynamic limit can be computed exactly once this expression is rewritten in terms of

gaussian polynomials19, resulting in

X(a, b, c; q) ≡ lim
m→∞

Xm(a, b, c; q) = (q)−1
∞ qbc/4 Γ

(
a,
b+ c− 1

2
; q

)
, (17)

where the q-Pochhammer symbol (q)∞ is defined in (A3) and

Γ(a, d; q) ≡ q
a(a−1)

4

{
q−

ad
2 E[−q(r−a)(r−1)+rd, q2r(r−1)]

−q
ad
2 E[−q(r+a)(r−1)+rd, q2r(r−1)]

}
. (18)

The partition function can thus be written as

Zα = lim
m→∞

∑
1≤a<r

[E(xa, xr)]αXm(a, b, c;x2α)

= x
αbc
2 (x2α)−1

∞

∑
1≤a<r

[E(xa, xr)]α Γ

(
a,
b+ c− 1

2
;x2α

)
. (19)

2. Regime I

In this regime, using the table in section II B, the finite-size, α-replicated partition function is

given by

Zα =
∑

1≤a<r

xaα(1+a−r)/2 [E(xa,−xr/2)
]α
Ym(a, b, c;xα(r−2)) (20)

where we introduced

Ym(a, b, c; q) ≡
∑
l2,...,lm

qψ(l) (21)

As before the thermodynamic limit is computed taking the limit m → ∞ in (21). Unlike the

regime III, here the sum is not convergent, due to the non-zero energy density of the groundstate.
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Thus, we factor out the diverging contribution (which amounts to an irrelevant redefinition of the

partition function normalization), obtaining

lim
m→∞

q−mYm(a, b, c; q) = (q)−1
∞ fb,c(q) E(qa, qr) , (22)

where the boundary conditions enter only in the function fb,c(q), defined as

fb,b+1(q) =

 εb(q) 1 ≤ b < n ,

1 n ≤ b ≤ r − 2
(23)

fb,b−1(q) =

 1 2 ≤ b ≤ n+ 1

εr−b(q) n+ 1 < n ≤ r − 1
(24)

where n is the integer part of r/2 and we defined

εb(q) ≡
q1−b(1− qb)

1− q
.

III. ENTROPY AND PARTITION FUNCTION: REGIME III

Now that we have introduced the model and the replicated partition functions, it is straightfor-

ward to proceed with the calculation of the Renyi entropy, using (8). However, before we take on

the full computation, following11, we would like to exploit the known relation between the parti-

tion function with fixed boundary conditions (both at infinity and at the origin) and the characters

of primary fields in minimal models31. This link will drive the expansion of the entropy around

the critical point, as we will show in section III B. Let us discuss this point in some detail.

A. Characters of the minimal models

It was noticed in32–36 that the quantity in (17) can be identified with a minimal model character.

This can be shown by simply rewriting (17), using the sum expansion in (A6), yielding

X(a, b, c; q) = q
1
4

(a−d)(a−d−1)+ cr
24
−∆d,a χ

(r−1)
d,a (q) , (25)

which is the character in the minimal model (r, r − 1) of the primary with conformal dimension

∆d,a =
[d r − a(r − 1)]2 − 1

4r(r − 1)
, (26)
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and central charge

cr = 1− 6

r(r − 1)
. (27)

Here the boundary conditions at infinity are accounted just by the combination

d ≡ b+ c− 1

2
,

Therefore, X(a, b, c; q) is equivalent to a generating function of the Verma module degeneracy for

the representation fixed by the boundary conditions a, b, c. We stress here that this equality is valid

only at a formal level: indeed, in the one-dimensional configurational sums, the elliptic nome q

is a measure of the departure from criticality while in the conformal characters q is the modular

nome related to the geometry on the torus at criticality. Even though they are both usually denoted

by q, these are two very different objects.

Similarly, one should not confuse the formal identification of fields in the Renyi entropy ex-

pansion, with the operator actually responsible for opening the gap. We recall that regime III can

be described as (6), that is as a lattice deformation of a minimal model by means of a perturbation

given by ε(x) ' φ1,3(x), which is known to be both thermal and integrable37. As we shall see, this

operator does not appear among the most relevant ones in the Renyi expansion in regime III.

B. Fixed central height

We can now compute the Renyi entropy in a sector where the height at the origin is kept fixed.

As already pointed out in11, we stress that this is done at the level of the corner transfer matrix,

and so, of the reduced density matrix: if such degree of freedom was fixed at the level of the

Hamiltonian, it would indeed affect the interaction between the two parts of the system. Rather,

fixing the height at the origin of the CTM corresponds to selecting a sector out of the whole Hilbert

space of the model, and taking the groundstate within this projection. Thus, we are measuring the

entanglement of the lowest energy state within this subspace. In general, these states will be a

superposition of high energy states and thus the calculation of their Renyi entropy can shed some

light on their properties.

In approaching the gapless point, the elliptic nome q = x2α, in (19), tends to unity. As this is

not the best parameterization to extract the leading contributions, we perform the customary dual

transformation of the elliptic nome, granting us an expansion in the original parameter p, which

13



tends to zero at criticality. Using (A8) and (A10) for one term in the sum of Eq. (16), we obtain

Z(a)
α ≡

θ3

(
πd

2r−2
− πa

2r
, p

1
8α(r−1)

)
− θ3

(
πd

2r−2
+ πa

2r
, p

1
8α(r−1)

)
θ4

(
−ir ln p

8α
, p

3r
4α

)
p

r
48α

√
2r(r − 1)

, (28)

where the index a refers to the fixed value of the height at the origin. As stated in11, the corre-

spondence with a conformal character, allows to reinterpret this duality, at the very end grounded

on the Poisson resummation formula, as the invariance of the torus under the modular group. In

a CFT, every character can then be expressed as a linear combinations of characters of the dual

theory31

χ
(r−1)
t,s

(
q̃ ≡ e−iπ/τ

)
=
∑
t′,s′

St
′,s′

t,s χ
(r−1)
t′,s′

(
q = eiπτ

)
, (29)

where

St
′,s′

t,s = 2

√
2

r(r − 1)
(−1)(t+s)(t′+s′) sin

(
π

tt′

r − 1

)
sin

(
π
ss′

r

)
(30)

is the so-called modular matrix.

To reproduce this result in our setting, we can expand (28) using (A1) and

ln (q)−1
∞ =

∞∑
n=1

∞∑
k=1

qnk

k
=
∞∑
n=1

σ−1(n)qn = q +
3

2
q2 +

4

3
q3 +

7

4
q4 +O

(
q10
)
, (31)

where σκ(n) is the sum of the κ-th powers of the divisors of n

σκ(n) ≡
∞∑

j<i=1
j·i=n

(jκ + iκ) +
∞∑
j=1
j2=n

iκ . (32)

To compare the expansion of (28) and (29), it is convenient to use the parameter truly dual to

the one used in (25), that is

q̃ ≡ p
r
2 = p2ν (33)

where ν = (2 − 2∆1,3)−1 = r/4 is the correlation length critical exponent in Regime III38.

Collecting everything we obtain

lnZ(a)
α = − cr

24α
ln q̃ + C ′adr + 4γadrq̃

3
4αr(r−1) − 8γ2

adrq̃
3

2αr(r−1) +O
(
q̃

2
αr(r−1)

)
, (34)

where

γadr ≡ cos

(
πd

r − 1

)
cos
(πa
r

)
(35)
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and

C ′adr ≡ ln

(
4√

2r(r − 1)
sin

πd

r − 1
sin

πa

r

)
. (36)

is the zeroth-order correction, corresponding to the boundary entropy of39.

Using (8), we can obtain the expansion for the Renyi entropy in q̃, while still keeping the central

height fixed:

S(a)
α = − cr

24

(
1 +

1

α

)
ln q̃ + C ′adr +

4γadr
1− α

(
q̃

3
4αr(r−1) − αq̃

3
4r(r−1)

)
− 8γ2

adr

1− α

(
q̃

3
2αr(r−1) − αq̃

3
2r(r−1)

)
+O

(
q̃

2
r(r−1)

)
. (37)

It is well known9 that one can read off the central charge of the model from the coefficient of

leading term of the entropy, as in (37). Let us remark, however, that it is a pleasant check to

notice that the standard conformal result, obtained using the replica trick, remains valid also for

the minimal models, where the twist operator introduced in the computation does not belong to

the Kac table of the CFT.

As suggested in11, the sub-leading corrections contain information on the operatorial content

of the theory and their characters. In fact, from (37) and comparing (36) with (30) we recognize,

consistently with11,

C ′adr = lnSd,a1,1 . (38)

Indeed, the zero-order term is related to the modular matrix between the primary field chosen

by the boundary condition and the identity, which is giving the dominant contribution. The first

correction in (37) is coming, as expected, from the most relevant field. Indeed, we see that:

γadr =
Sd,a2,2

4Sd,a1,1

and, coherently, from (26) we recognize that the exponent of the correction is ∆2,2 = 3
4r(r−1)

.

The identification with the operators of a Virasoro algebra can continue to higher orders, but one

should notice that the expansion of the logarithm generates additional terms which do not appear

in the Kac table, such as the second sub-dominant correction in (37), which is just a 2∆2,2. This

correction is always dominant over the ∆3,3 = 2
r(r−1)

.

It should be noted here, that the parameter q̃ is microscopical in nature and the entropy is

usually measured as a function of a thermodynamical parameter, such as the correlation length ξ.

From40 we know that

ξ = − 1

ln k′(|p|ν)
= − 1

ln k′(|q̃| 12 )
, (39)
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where

k′(q) =
∞∏
n=1

(
1− q2n−1

1 + q2n−1

)4

=
θ2

4(0)

θ2
3(0)

, (40)

From these expressions we get the expansion:

q̃ =
1

64ξ2
− 1

1536ξ4
+

113

2949120ξ6
+O

(
ξ−8
)
, (41)

which should be substituted order by order in (37). At the leading order, this substitution correctly

fixes the usual normalization in front of the leading logarithm in terms of the central charge cr

and the exponents of the corrections as h = 2∆ in (5). The rest of the terms, however, which

strictly vanish in the scaling limit, spoil the possibility of reading and reconstructing the operator

content of the characters appearing in the entropy in any study at finite lattice spacing. This effect

is completely analogous to the one discussed in13 for the XY Z chain.

C. Full entropy

To calculate the bipartite Renyi entropy of the model in its true ground state we should sum

over the central height. Using the dual transformation in the full partition function (16), we have

Zα =
r−1∑
a=1

θα1

(aπ
r
,
√
p
)
Z(a)
α , (42)

where Z(a)
α is given by (28). We remark that, while Z(a)

α has a simple interpretation in terms of a

character, the coefficients in the sum over the central height in (42) do not. In the previous section,

since a was kept fixed, the value of the coefficient could be absorbed in the normalization of the

partition function, but now we cannot ignore these contributions anymore.

For integer values of α this expression can be handled using the infinite sum representation of

θ1 in (A1b), giving3

lnZn = − r

48n
cr ln p+

n

8
ln p+ ln

22+n√
2r(r − 1)

−
∞∑
j=1

ln
(

1− p
r j
2n

)
(43)

+ ln
∞∑
j=1

p
j2−1

8n(r−1) sin

(
πdj

r − 1

) r−1∑
a=1

sin
πaj

r

[
∞∑
k=0

(−1)kp
k(k+1)

2 sin
(

(2k + 1)
aπ

r

)]n
.

3 For arbitrary values of α, we find the infinite product representation of the θ-functions to be more convenient,
although completely equivalent.
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Take, for instance, α = 1: the sum over a can be computed immediately using the orthogonality

condition
r−1∑
a=1

sin
πan

r
sin

amπ

r
=
r

2
δn,m (44)

recovering the partition function of the RSOS model with fixed boundary conditions at infinity19

already in the dual formulation, that once expressed in q̃ = p
r
2 gives

Z1 =

√
2r

r − 1

θ1

(
πd
r−1

, q̃
1

(r−1)

)
q̃

1
24

∏∞
j=1 (1− q̃j)

, (45)

For general values of α, at our knowledge the sum in (42) can not be computed analytically.

However, it is possible to obtain its expansion order by order close to the critical point introducing

the coefficients

sα(n, k) ≡
r−1∑
a=1

sinα
πa

r
sin

πan

r
cosk

2πa

r
,

The first few terms give

Sα =
cr
24

1 + α

α
ln q̃ + ln

[√
2r

r − 1
sin

πd

r − 1

]
+

1

1− α
ln

[
2

r
sα(1, 0)

]
− 1

1− α
sα(3, 0)

sα(1, 0)

(
4 cos2 πd

r − 1
− 1

)
q̃

2
αr(r−1) +O

(
q̃

4
αr(r−1)

)
, (46)

Some observations about this expression are in order

• it remains finite as it should, in the α → 1 limit due to the properties of sα→1(n, k): e.g.

s1(3, 0) = 0, s1(1, 0) = r
2
; note that this is a different mechanism w.r.t. (37), where terms

with and without α at the exponent appear in pairs and together render the Von Neumann

limit finite;

• the leading term remains the same as (37) being dictated by the CFT central charge;

• since sα(2n, k) = 0 for all integers n, k, every correction coming from the operator ∆2,2

and its descendants disappear and the first sub-leading term is now related to the primary

field of dimension ∆3,3. We interpret this cancellation as due to the Z2 symmetry

l→ r − l

under which the full partition function (42) is invariant, while the most relevant field, being

identifiable with the order parameter41, is indeed odd. Of course, this implies that all odd-

operators identically vanish in the expansion of the entropy. In any case, as we already
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pointed out, these corrections are not directly ascribable to the operator opening the gap in

(6), since in general ∆1,3 6= ∆2,2,∆3,3. This will not be the case in regime I: as we are going

to show in the next section, in the disordered phase the leading correction seems to be given

by the same operator opening the gap.

IV. REGIME I

We can now turn back to regime I and its bipartite entanglement entropy. As we saw in section

II C, this regime corresponds to a disordered phase, where local expectation values are independent

from the boundary conditions. Indeed, the structure of the entanglement entropy is different from

before. As can be seen from (20, 22), the contribution to the partition functions of boundary

conditions at infinity factorizes out in the term fb,c(q). However, this contribution does not cancel

out in the entanglement entropy (8) and can bring a finite and interesting contribution. In the

analysis, we will separate the bulk and boundary contribution and consider them separately:

Sα = S(bulk)
α + S(bc)

α . (47)

Moreover, looking at (22), we notice that, due to the Z2 symmetry, the fixed central height par-

titions function for a and r − a are equal and additional relations can be established for certain

values of r and a for their coefficients in (20).

In approaching the transition toward regime IV the system undergoes a second order phase

transition described by the parafermionic conformal field theory23. Here we summarize the main

features of these conformal points.

A. Conformal content of parafermions

The critical point can be described as the coset

ŝl(2)r−2

û(1)
,

with central charge

cpf
r =

2(r − 3)

r
. (48)

Beyond the conformal one, these theories enjoy an additional Zr−2 × Z̃r−2 symmetry (which is

actually enlarged to a Wr−2). This structure allows to reduce the number of allowed anomalous
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dimensions to a finite set, even for r > 6, i.e. c > 1. These dimensions are determined by the

charges (Q, Q̃) under the two Zr−2 symmetries, since each of them is defined modulus r − 2.

Following42, we introduce the two indexes

l = Q− Q̃ , (49)

m = Q+ Q̃ ,

in terms of which the conformal dimension of the most relevant field in each sector can be param-

eterized as

∆pf
l,m =

l(l + 2)

4r
− m2

4(r − 2)
,

0 ≤ l ≤ r − 2 ,

0 ≤ |m| ≤ l ,

l −m = 0 mod 2 .

(50)

As a matter of fact, each combination (∆pf
l,m, ∆̄

pf
l′,m′) of dimensions for the holomorphic and

anti-holomorphic part can correspond to more than one primary field. To resolve this degeneracy,

one need to look into their representation under the W -algebra43. In particular, within the sector

neutral under the two Zr−2’s, i.e. with (Q, Q̃) = (0, 0), we have the following allowed dimensions

∆
(ε)
k =

k(k + 1)

r
. (51)

These fields εk, often called energy or thermal fields, are spin-less, that is ∆
(ε)
k = ∆

(ε)

k and the

identity is ε0. We recognize that they are degenerate with the parafermionic operators with (l,m) =

(2k, 0), i.e. ∆pf
l=2k,0 = ∆

(ε)
k .

In regime III we showed the exact mapping existing between the partition function at fixed

boundary conditions and a conformal character, see (25). A similar relation can be established

regime I as well, but it is less explicit since the mapping is no more one-to-one: we refer to42 for

the precise construction.

In passing, let us point out that the transition between regime I and II can be described as (6)

where the gap-opening perturbation is due to the most relevant thermal field ε1(x).

B. Fixed central height

In order to extract the behavior around criticality, we express each term of the sum in (20) using

the parameter p, through a duality transformation, as we did in (28) and (42). We recall that in this

regime−1 < p < 0. However, following19, the formulae for the partition function and the entropy
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are to be understood as depending only on the absolute value of p. Thus, in the following we will

intend the substitution

p −→ |p| = −p .

The partition function at fixed height at the origin can be written as

Z(a)
α =

θ1

(
aπ
r
, p

1
α(r−2)

)
θ4

(
ir log p

2α(r−2)
, p

3r
α(r−2)

)
p

r
12α(r−2)

√
r
, (52)

where, for the moment, we dropped the term fbc(q), as discussed.

The computation of the Renyi entropy is quite similar to what we did in section III B. Introduc-

ing again q̃ following (33), with νpf =
(

2− 2∆
(ε)
1

)−1

= r
2(r−2)

in this regime, we obtain

S(a)
α = −c

pf
r

24

(
1 +

1

α

)
log q̃ + C ′a −

γa
1− α

(
q̃

2
αr − αq̃

2
r

)
, (53)

where we defined

γa = 1 + cos
2πa

r
, (54)

C ′a = log

(
2 sin πa

r√
r

)
. (55)

We recognize that, regardless of the boundary conditions, the exponent of the leading correction

corresponds to ∆pf
2,0 in (50), which is not the smallest one. Since this phase is disordered and

we do not break it explicitly in the computation of the entanglement entropy, we expect only

neutral fields under the Zr−2 symmetries to enter in (53). Thus, we find it natural to interpret

the leading correction in (53) as due to the most relevant thermal operator ε1, see (51), which,

coincidentally, is also the gap-opening operator. This interpretation is further corroborated by the

observation that, expressing (53) in terms of the correlation length ξ ' q̃−1/2, the dimension of the

leading correction becomes 2∆
(ε)
1 , which seems to be due to a spin-less operator. Moreover, as we

observed in the introduction of section IV, by changing a we can generate only [r/2] independent

combinations of primary fields and their characters, which coincides with the number of allowed

thermal operators in (51).
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C. Full entropy

We consider the full partition function, that is obtained with the dual transformation of the full

sum in (20). One gets

Zα =
r−1∑
a=1

[
e−

iπ
8 θ1

(aπ
r
, i
√
p
)]α
Z(a)
α . (56)

Also in this case, the series expansion of the θ1 function (A1) is useful for integer α = n

lnZn = − νpf

12n
cpf
r ln p+

n

8
ln p+ ln

21+n

√
r
−
∞∑
j=1

ln
(

1− p
2r j

(r−2)n

)
+ ln

∞∑
j=0

p
j(j+1)
n(r−2) (−1)j

r−1∑
a=1

sin
πa(2j + 1)

r

[
∞∑
k=0

(−1)k(−p)
k(k+1)

2 sin
(

(2k + 1)
aπ

r

)]n
,

and again the partition function can be reproduced exactly with (44)

Z1 =
√
r
e−

iπ
8 θ2

(
0, i
√
q̃
)

q̃
1
12

∏∞
j=1(1− q̃2j)

. (57)

For general α we can expand the Renyi entropy at desired order

S(bulk)
α = −c

pf
r

24

(
1 +

1

α

)
log q̃ +

log r

2
+

1

1− α
log

2sα(1, 0)

r

− 1

1− α
sα(3, 0)

sα(1, 0)
q̃

2
rα +O

(
p

4
(r−2)α

)
, (58)

where we see that the leading correction comes from the same ∆
(ε)
1 operator as in (53).

Thus, we see that, unlike for regime III, in the disordered phase the leading correction is less

sensitive to the boundary condition at the origin and coincide with the scaling dimension of the

gap-opening field.

D. The boundary contribution

Now we turn to the term related to the boundary heights fbc(q): from its definition in (23), we

see that for the set of values of b, c that makes it non-trivial, it gives rise to a peculiar set of terms

appearing in the expansion of the Renyi entropy

S(bc)
α =

1

1− α
ln

[
εb
(
xα(r−2)

)
εb (xr−2)α

]
= ln b+

(b2 − 1)π4α

6(ln q̃)2
+O

(
1

ln q̃

)4

. (59)

We see that the boundary contribution modifies the constant term (boundary term39) and generates

sub-leading logarithmic corrections. This result may appear surprising: when local quantities are
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computed as in (12), such term cancels out, as expected since we are in a disordered phase. But

in the Renyi entropies, being a highly non-local object, also the boundary appears. Of course,

in considering the entropy of an actual state, one might need to sum over different boundary

conditions, possibly with different weights, and the boundary contribution to the entropy might

change significantly. Thus, it might be pointless to try to provide a CFT interpretation of (59), as

these boundary conditions might not have any conformal counterpart. However, it should be noted

that, once expressed in terms of the correlation length, the logarithmic corrections in (59) have the

same form as those predicted in a CFT with a (bulk) marginal field10,29. This is peculiar, since

Zr−2 parafermions present such a marginal field only for certain given values of r. One can check

that a massless flow in the theory, essentially due to a free boson, is present, for example, for the

series

r = m(m+ 1) ⇒ cpf
r = 1 +

(
1− 6

m(m+ 1)

)
(60)

where the central charge takes the form of a free boson plus a unitary minimal model. Since, the

logarithmic corrections in the entanglement entropy (59) typically appear for every r > 5, as we

will see in the next section, these terms must have a different origin.

V. SOME EXAMPLES

To better elucidate our results, it is instructive to specialize and consider two particular exam-

ples: the Ising model (c = 1/2) and the 3-state Potts model (c = 4/5). In fact, within the RSOS,

we have two possible realizations of these models: one in Regime III (respectively r = 4 and

r = 6) as unitary minimal models and one in Regime I (r = 4 and r = 5) as parafermions. The

comparison between the two realizations of the same theory can shed some light on the two phases

and the nature of the corrections.

A. Ising model

The Ising model is arguably the simplest CFT, since it consists of only three operators: 1, σ, ε.

Characters of the Ising model are known to arise in the study of the CTM’s of eight-vertex models44

, which has the same Yang-Baxter algebra as the RSOS. Depending on the choice of parameters,

the 1-D quantum system corresponding to the eight-vertex model is either an anisotropic XY

model in a transverse magnetic field, or an XY Z chain in zero field. The entanglement entropies
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of both models have been calculated analytically in the thermodynamic, bipartite limit we are also

considering here. The first has both an ordered and a disordered phase45–47, while the XY Z model

presents only the ordered phase12,13,27 . In the direct parameter x of section II B, the generalized

partition function in the ordered phase has been observed to be proportional to the character of the

spin operator, while in the disordered it is a combination of the identity and energy:

ZOrd
α ∝

∞∏
n=1

(
1 + x2n

)
= 2 x−1/12χσ

(
x2
)
, (61)

ZDis
α ∝

∞∏
n=1

(
1 + x2n−1

)
= x1/24

[
χ1

(
x2
)

+ χε
(
x2
)]

. (62)

The Kac table for the Ising minimal and parafermionic model can be summarized as
∆1 ≡ ∆1,1 = ∆pf

0,0 = 1 ,

∆σ ≡ ∆2,2 = ∆pf
1,1 = 1

16
,

∆ε ≡ ∆1,3 = ∆pf
2,0 = 1

2
.

(63)

In regime III, as explained in section III A, tuning the boundary conditions at the origin and

at infinity, we generate each individual character. The entropy at fixed origin height then reflects

the operator content of the theory under the duality transformation. Thus, looking at the modular

matrix (30), we see that if we start with the identity or the energy field, the first correction to the

entropy (37) comes from the most relevant operator, i.e. the spin operator σ. However, if the height

at the origin is set to a = 2, the coefficients of the σ contributions vanishes (as the modular matrix

has zero element for the (σ, σ) entry) and the most relevant correction is given by the energy, as

in13,47.

As we explained in section III C for the general case, the ∆2,2 field is odd under Z2 and therefore

disappears in the full entropy (46), and only the energy and identity appear. Of course, the field

∆3,3, which in general would give most relevant correction in (46), does not appear in the Kac

table of the Ising model and indeed its coefficients are vanishing.

In regime I, things are a bit different. By direct inspection of (22), we see that for a = 2 (62)

is realized and both a = 1 and a = 3 give (61). Thus, as we conjectured at the end of section

IV B, not every combination of operators and their characters appear. In this case it seems that

fields with the same parity under Z2 appear together. It is then straightforward to see that after

the modular transformation the character of the spin operator is never generated and the leading

correction to the entropy is always given by the energy ε, both when fixing the central height at
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any value as in (53) and by summing over it (58) . Indeed, the identity and the energy are the fields

in (51).

Moreover, it is easy to check that the entropy contribution (59) due to the boundary condition at

infinity is always vanishing since for all the allowed values of b, c in (23, 24) we have fbc(q) = 1.

As a final remark, we notice that for the Ising model, through the identities collected in the

appendix and some manipulations, the partition functions (19, 20) can be written in a relatively

explicit way. One simplification arises because, due to the Z2 symmetry, it is sufficient to fix the

boundary conditions to b = 1, c = 2. For regime III we have

Z(III)
α = x

α
24

[
χ1

(
x2α
)

+ χε
(
x2α
) ] ∞∏

n=1

(1− xn)α
(
1 + x2n

)α
+ x−

α
12 χσ

(
x2α
) ∞∏
n=1

(1− xn)α
(
1 + x2n−1

)α
, (64)

and for regime I

Z(I)
α = x

1
12
α
[
χ1

(
x4α
)

+ χε
(
x4α
) ]
x−α

∞∏
n=1

(
1− x2n

)α (
1 + x4n

)α
+ x−

α
6 χσ

(
x4α
)

[1 + (−1)α]x−α
∞∏
n=1

(
1− x2n

)α (
1 + x4n−2

)α
. (65)

In regime I, the coefficients of the a = 1 and a = 3 terms are equal and opposite and we see that

for α = 2m − 1 the partition function is simply proportional to the one found in the disordered

phase of the XY model (62), consistently with the fact that this regime is also disordered. We

also notice that for α = 1, the coefficients in (64, 65) have the same form as (61, 62). Thus,

the partition function can be formally written as a bilinear in the characters of the model. This

reminds us of what observed in13 and we take it as further indication that the character structure of

the CTM in integrable models is mostly due to the analytical structure that permeates this beautiful

construction, and not on some underlying Virasoro algebra.

B. 3-state Potts model

The operator content of the minimal model in this case is given by:

∆ =

{
0,

1

40
,

1

15
,
1

8
,
2

5
,
21

40
,
2

3
,
7

5
,
13

8
, 3

}
. (66)
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The most relevant is ∆2,2 = 1
40

, which is the one appearing in (37), except for a = 3. As usual,

this field cannot enter in the full entropy obtained summing over the central height, and the leading

correction comes from the next relevant operator with ∆3,3 = 1
15

.

In the parafermionic realization, we only have four allowed conformal anomalies

∆pf =

{
0,

1

15
,
2

5
,
2

3

}
. (67)

The leading correction in the entropies (53, 58) is coming from ∆
(ε)
1 = ∆pf

2,0 = 2
5
, as we found in

(53). We notice that in this case, as it was for the Ising model, only two thermal operators (51)

exist (k = 0, 1) and the boundary corrections again disappears for any allowed choice of b, c.

We see that, contrary to the Ising example, here the two different (minimal ordered and

parafermionic disordered) realizations of the 3-state Potts model have different corrections in the

entanglement entropy.

The CTM’s spectra of the 3- and 5-state Potts model have been calculated numerically in48 with

a DMRG approach and an impressive agreement with the analytical expectations was found, also

in the presence of integrability breaking terms, sufficiently close to criticality. This indicates that

our results for the entanglement entropy should also remain valid under the same conditions.

It is worth to recall here that this parafermionic realization of the 3-state Potts model appears as

the ferromagnetic phase in the Fibonacci chain49. As stressed in25, due to the topological symmetry

present in the quantum realization, all the relevant perturbations are forced to vanish, and the

critical point is topologically protected. It means that, in the RSOS, the topological symmetry is

restored only at the gapless points. Therefore it would be interesting to compare our predictions

with the numerical data for the entanglement entropy coming from the anyonic chain, once a

perturbation breaking the topological charge is turned on.

VI. CONCLUSIONS

Following the suggestion put forward in11, we show how to calculated the bipartite Renyi en-

tropy in the thermodynamic limit of a set of models known as RSOS. The method we employed is

quite general and powerful and requires just the knowledge of the structure of the Corner Transfer

Matrix eigenvalues of the system under consideration. In our case, the model being exactly solv-

able, the CTM spectrum is fully known analytically, thanks to19. However, generic systems close

to criticality are expected to organize their CTM eigenvalues according to the CFT reached at crit-
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icality, as seen, for instance, in48. If one was able to determine the coefficients in the expansion

of the CTM in terms of characters of the CFT, the approach we used in this work would apply

directly.

Beside it feasibility, this study of the RSOS was motivated by the fact that this model provides

a lattice realization of all minimal and parafermionic conformal models. It is remarkable that a

single system can realize such a variety of phase transitions and thus its entropy provides a unique

case study for the approach to criticality in 1 + 1 dimensions. The different CFT’s are realized

by varying an integer parameter r, while the continuous parameter p (or its dual x) measures the

departure from criticality. Furthermore, the boundary conditions play an important role in fixing

the phase under consideration.

We were thus able to compute the dependence of the Renyi entropy on p and to study its

behavior. The expansion of the entropy in regime III is given by (37), if we project the Hilbert

space on a subset specified by fixing the central height in the CTM, and by (46) for the absolute

ground state. In regime I, we have (53) for the projected case and (58) for the whole case, with the

addition of the boundary term (59), when present.

Our results confirm the expectation in (5), according to which, approaching the critical points,

we have a leading logarithmic term with a universal prefactor (set by the conformal anomaly), a

non universal constant term, and power-law corrections with non-universal coefficients. We related

the exponents of the corrections to the conformal dimensions of one of the critical fields. The

leading correction always has the form of an unusual correction, using the terminology of10, and

its dimension is that of the most relevant field allowed. By changing the boundary conditions on

the RSOS, we can select different states for which we calculate the bipartite Renyi entropy, and we

noticed that certain corrections can be suppressed and thus the leading term can be determined by

different operators. In particular, we found that symmetry considerations prevent the appearance

of the most relevant field in the Renyi entropy of the the absolute ground state. In the case of the

minimal models, where the most relevant field ∆2,2 is the order parameter, the leading contribution

is given by the next most relevant operator, that is ∆3,3. For parafermionic model, the effect is even

more dramatic, because the ZN symmetry seems to select only certain fields and the first correction

generally comes from the most relevant operator neutral under the symmetry, that is ∆
(ε)
1 in (51).

In our opinion, these sort of effects due to the boundary conditions could represent an interest-

ing possibility for numerical studies in this and other models, where the operator content of the

theory can be in principle read out, by a proper turning of the boundary conditions.
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In the parafermionic phase, we also observed the emergence of non power-law corrections, of

the same logarithmic form (log ξ)−2n expected in the presence of a primary marginal field in the

theory. These types of terms were already found in13 and would be in agreement with a naı̈ve

scaling argument applied to the (log `)−2 terms of10, where the expansion is computed for a finite

interval of length `. However, we already pointed out that these logarithmic corrections are present

even when the parafermionic theory does not support a marginal field, and thus we should conclude

that the origin of these terms is not so simple and might be a lattice effect due to non-conformal

boundary conditions.

Another possible interpretation is that in general the relation between the corner transfer ma-

trices and the Virasoro characters is “accidental”, in the sense that is purely due to the analytical

structure of both quantities. Both are elliptic functions: the latter bi-periodic in real space, while

the former in parameter space (we remind that the elliptic nome q has a different physical interpre-

tation in the two cases). When expanded close to the critical point, for consistency the CTM has to

give the correct central charge of the gapless CFT, and this constraints the structure of the elliptic

series defining the CTM. Since the same constraint applies to the Virasoro characters, this might

explain why in general one can write the CTM as a sum of characters and why in the RSOS we did

not find any connection between the dimension of the operator opening the gap and the dimension

of the most relevant correction in the Renyi entropy. And it might explain why, playing with the

boundary condition, one can turn on logarithmic corrections with no counterpart in the CFT.

Finally, let us remark that the original work19 on the RSOS spent a considerable effort in devel-

oping advanced mathematical identities (known has generalized Rogers-Ramanujan identities) to

access the partition functions of the model. In our calculations, we overcome some difficulties in-

volved with summing up Gaussian polynomials, by performing first a duality transformation that,

in our cases, turned a product of Gaussian polynomials into a sum over exponential one, which are

easy to handle. We do not know how general and applicable this approach is, but it revealed to be

quite powerful for us.
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Appendix A: Elliptic functions and q-series

In this appendix we recall standard definitions and useful identities for elliptic functions and

q-series, used in the derivations in the text. For a more detailed treatment and for the derivations

of the various equalities, we refer the reader to one of the standard textbooks on the topic, e.g.50,51.

First of all, the Jacobi Elliptic θ functions are defined as

θ1(z, q) = 2
∞∑
n=0

(−1)nq(n+1/2)2 sin[(2n+ 1)z] , (A1a)

θ2(z, q) = 2
∞∑
n=0

q(n+1/2)2 cos[(2n+ 1)z] , (A1b)

θ3(z, q) = 1 + 2
∞∑
n=1

qn
2

cos(2nz) , (A1c)

θ4(z, q) = 1 + 2
∞∑
n=1

(−1)nqn
2

cos(2nz) . (A1d)

Employing the Jacobi triple product identity

(
x2;x2

)
∞

(
xy2;x2

)
∞

(
xy−2;x2

)
∞ =

∞∑
n=−∞

xn
2

y2n , (A2)

where we introduced the q-Pochhammer symbol

(a; q)∞ =
∞∏
k=0

(
1− aqk

)
, (A3)

(q)∞ = (q; q)∞ , (A4)
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one can derive the product representations for the θ functions:

θ1(z, q) = 2
(
q2; q2

)
∞ q

1
4 sin z

∞∏
n=1

[1− 2q2n cos(2z) + q4n] , (A5a)

θ2(z, q) = 2
(
q2; q2

)
∞ q

1
4 cos z

∞∏
n=1

[1 + 2q2n cos(2z) + q4n] , (A5b)

θ3(z, q) =
(
q2; q2

)
∞

∞∏
n=1

[1 + 2q2n−1 cos(2z) + q4n−2] , (A5c)

θ4(z, q) =
(
q2; q2

)
∞

∞∏
n=1

[1− 2q2n−1 cos(2z) + q4n−2] . (A5d)

In the text we also used the function

E(z, x) ≡ (z;x)∞
(
xz−1;x

)
∞ (x;x)∞ =

∞∑
n=−∞

(−1)nx
n(n−1)

2 zn , (A6)

where the second equality follows again from (A2).

The duality transformation for θ functions can be derived using the Poisson summation formula,

obtaining the so called Jacobi identities. Once we define q and q̃ such that

q = eiπτ , q̃ = e−
iπ
τ , =τ > 0 , (A7)

they take the form

θ1(z, q̃) = −i(iτ)
1
2 e

iτz2

π θ1(τz, q) (A8a)

θ2(z, q̃) = (−iτ)
1
2 e

iτz2

π θ4(τz, q) (A8b)

θ3(z, q̃) = (−iτ)
1
2 e

iτz2

π θ3(τz, q) (A8c)

θ4(z, q̃) = (−iτ)
1
2 e

iτz2

π θ2(τz, q) (A8d)

Finally, it is possible to rexpress the function E(z, x) in (A6) by means of the θ functions

E
(
e2iz, q2

)
= iq−1/4eizθ1(z, q) , (A9)

E
(
−e2iz, q2

)
= q−1/4eizθ2(z, q), (A10)

Combining these expression with (A8), it is possible to obtain the expression of the partition

functions in the dual variables.
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