
HAL Id: hal-01941987
https://hal.science/hal-01941987v1

Preprint submitted on 2 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Certified Singular Value Decomposition
Joris van der Hoeven, Jean-Claude Yakoubsohn

To cite this version:
Joris van der Hoeven, Jean-Claude Yakoubsohn. Certified Singular Value Decomposition. 2018. �hal-
01941987�

https://hal.science/hal-01941987v1
https://hal.archives-ouvertes.fr


Certified Singular Value Decomposition

JORIS VAN DER HOEVEN

CNRS, Laboratoire LIX
Campus de l'École Polytechnique
1 rue Honoré d'Estienne d'Orves
Bâtiment Alan Turing CS35003

91120 Palaiseau
France

Email: vdhoeven@lix.polytechnique.fr

JEAN-CLAUDE YAKOUBSOHN

Institut de Mathématiques de Toulouse
Université Paul Sabatier
118 route de Narbonne
31062 Toulouse Cedex 9

France
Email: yak@mip.ups-tlse.fr

December 2, 2018

In this paper, we present an efficient algorithm for the certification of numeric singular
value decompositions (SVDs) in the regular case, i.e., in the case when all the singular
values are pairwise distinct. Our algorithm is based on a Newton-like iteration that
can also be used for doubling the precision of an approximate numerical solution.

1. INTRODUCTION

Let 𝔽 be the set of floating point numbers for a fixed precision and a fixed exponent
range. We denote 𝔽⩾={x∈𝔽:x⩾0}. Consider an m×n matrix M ∈𝔽[i]m×n with complex
floating entries, where m⩾n. The problem of computing the numeric singular value decom-
position of M is to compute unitary transformation matrices U ∈ 𝔽[i]m×m, V ∈ 𝔽[i]n×n,
and a diagonal matrix Σ∈(𝔽⩾)m×n such that

M ≈ U ΣV∗. (1)

If m>n, then Σ∈𝔽[i]m×n is understood to be “diagonal” if it is of the form

Σ=(((((((((((( Diag(𝜎1,…,𝜎n)
0 )))))))))))), Diag(𝜎1,…,𝜎n)=(((((((((((((((((

(((((((
(
( 𝜎1

⋱
𝜎n )))))))))))))))))

)))))))
)
)

.

The diagonal entries 𝜎1, …, 𝜎n of Σ are the approximate singular values of the matrix M
and throughout this paper we will assume them to be pairwise distinct and ordered

𝜎1 >𝜎2>⋯>𝜎n>0.

There are several well-known algorithms for the computation of numeric singular value
decompositions [8, 4].

Now (1) is only an approximate equality. It is sometimes important to have a rigorous
bound for the distance between an approximate solution and some exact solution. More
precisely, we may ask for a diagonal matrix Σr ∈ (𝔽⩾)m×n and matrices Ur ∈ 𝔽[i]m×m,
Vr ∈𝔽[i]n×n, such that there exist unitary matrices Ũ ∈ℂm×m, Ṽ ∈ℂn×n, and a diagonal
matrix Σ̃∈ℂm×n for which

M = Ũ Σ̃ Ṽ∗
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and

|Σ̃i,i −Σi,i| ⩽ (Σr)i,i

|Ũi, j −Ui, j| ⩽ (Ur)i, j

|Ṽi, j −Vi, j| ⩽ (Vr)i, j

for all i, j. This task will be called the certification problem for the given numeric singular
value decomposition (1). The matrices Σr, Ur and Vr can be thought of as reliable error
bounds for the matrices Σ, U and V of the numerical solution.

It will be convenient to rely on ball arithmetic [13, 19], which is a systematic tech-
nique for this kind of bound computations. When computing with complex numbers,
ball arithmetic is more accurate than more classical interval arithmetic [22, 1, 23, 18, 21,
24], especially in multiple precision contexts. We will write 𝔹 = ℬ(𝔽[i], 𝔽⩾) for the set
of balls 𝒛 = ℬ(zc,zr) = {z ∈ ℂ: |z − zc| ⩽ zr} with centers zc in 𝔽[i] and radii zr in 𝔽⩾. In
a similar way, we may consider matricial balls 𝑴 = ℬ(Mc, Mr) ∈ ℬ(𝔽[i]m×n, (𝔽⩾)m×n):
given a center matrix Mc∈𝔽[i]m×n and a radius matrix Mr ∈(𝔽⩾)m×n, we have

𝑴 = ℬ(Mc,Mr) = {M ∈ℂm×n :∀i, j, |(Mc)i, j −Mi, j|⩽(Mr)i, j}.

Alternatively, we may regard ℬ(Mc,Mr) as the set of matrices in 𝔹m×n with ball coeffi-
cients:

ℬ(Mc,Mr)i, j = ℬ((Mc)i, j, (Mr)i, j).

Standard arithmetic operations on balls are carried out in a reliable way. For instance,
if 𝒖, 𝒗 ∈ 𝔹, then the computation of the product 𝒘 = 𝒖 𝒗 using ball arithmetic has the
property that uv∈𝒘 for any u∈𝒖 and v∈𝒗.

In the language of ball arithmetic, it is natural to allow for small errors in the input
and replace the numeric input M ∈𝔽[i]m×n by a ball input ℬ(Mc, Mr) ∈𝔹m×n. Then we
may still compute a numeric singular value decomposition of the center matrix Mc:

Dc ≈ Uc Mc Vc
∗. (2)

The generalized certification problem now consists of the computation of matrices
Ur ∈ (𝔽⩾)m×m, Vr ∈ (𝔽⩾)n×n, and a diagonal matrix Σr ∈ (𝔽⩾)m×n such that, for every
M ∈ℬ(Mc,Mr), there exist unitary matrices U, V ∈ ℬ(Σc, Σr), and a diagonal matrix
Σ∈ℬ(Σc,Σr) with

Σ = UMV ∗.

In this paper we propose an efficient solution for this problem in the case when all sin-
gular values are simple. Our algorithm relies on an efficient Newton iteration that is also
useful for doubling the precision of a given numeric singular value decomposition. The
iteration admits a quadratic convergence and only requires matrix sums and products
of size at most m × m. In [13, 15], a similar approach was used for the certification of
eigenvalues and eigenvectors.

We are not aware of similarly efficient and robust algorithms in the literature. Jacobi-
like methods from Kogbeliantz' SVD algorithm admit quadratic convergence in the pres-
ence of cluster in the Hermitian case [3], but only linear convergence is achieved in
general [5]. Gauss-Newton type methods have also been proposed for the approxima-
tion the regular real SVD in [17, 16].
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From the theoretical bit complexity point of view, our algorithm essentially reduces
the certification problem to a constant number of numeric matrix multiplications. When
using a precision of p bits for numerical computations, it has recently been shown [10]
that two n×n matrices can be multiplied in time

MM(n,p)=O�n2 I(p)+n𝜔p2O(lg ∗p−lg ∗n) I(lg d)/lg d�.

Here I(p) = O�p lg p K lg ∗p� with K ⩽ 4 is the cost of p-bit integer multiplication [11, 9]
and 𝜔<2.3728639 is the exponent of matrix multiplication [7]. If p is large enough with
respect to the log of the condition number, then O(MM(n,p)) yields an asymptotic bound
for the bit complexity of our certification problem.

We have implemented unoptimized versions of the new algorithms in MATH-
EMAGIX [14] and MATLAB. These toy implementations indeed confirmed the quadratic
convergence of our Newton iteration and the efficiency of the new algorithms. We intend
to report more extensively on implementation issues in a forthcoming paper.

2. NOTATIONS

2.1. Matrix norms
Throughout this paper, we will use the max-norm for vectors and the corresponding
matrix norm. More precisely, given positive integers m, n, a vector v∈ℂn, and an m×n
matrix M ∈ℂm×n, we set

‖v‖ = max {|v1|,…, |vn|}
‖M‖ = max

‖v‖=1
‖Mv‖.

For a second matrix N ∈ℂm×n, we clearly have

‖M +N‖ ⩽ ‖M‖+‖N‖
‖MN‖ ⩽ ‖M‖ ‖N‖.

We also define

‖M‖∗ = max (‖M‖, ‖M∗‖). (3)

Explicit machine computation of the matrix norm is easy using the formula

‖M‖ = max {|Mi,1|+⋯+|Mi,n| : 1⩽ i⩽m}. (4)

Given a second matrix N ∈ℂm×n it follows that the coefficientwise product

M ⊙N = (((((((((((((((((
(((((((
(
( M1,1 N1,1 ⋯ M1,nN1,n

⋮ ⋮
Mm,1 Nm,1 ⋯ Mm,nNm,n )))))))))))))))))

)))))))
)
)

satisfies

‖M ⊙N‖ ⩽ ‖M‖max {|Ni, j| : 1⩽ i⩽m, 1⩽ j⩽n}. (5)

In particular, when changing certain entries of a matrix M to zero, its matrix norm ‖M‖
can only decrease. We will write ℬ(0, 1)m×n for the m× n ball matrix whose entries are
all unit balls ℬ(0, 1). This matrix has the property that M ∈‖M‖ℬ(0, 1)m×n for all m×n
matrices M.
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2.2. Miscellaneous notations
In the sequel we consider two integers m⩾n and we introduce the sets of matrices:

𝔻m×n ≔ {{{{{{{{{{{{{{{{{{{{{{{{(((((((((((( diag (𝜎1 ,…,𝜎n )
0 ))))))))))))∈ℝ+

m×n :𝜎1>⋯>𝜎p >0}}}}}}}}}}}}}}}}}}}}}}}} (6)

and
𝔼m×n=ℂm×n×𝔻m×n×ℂm×m ×ℂn×n.

We also write diag:ℂm×n→𝔻m×n for the natural projection that replaces all non-diagonal
entries by zeros. For any integer k we finally define the map Ek:ℂk×k →ℂk×k by

Ek(U)=U∗U − Ik,
where Ik is the identity matrix of size k×k.

3. OVERVIEW OF OUR METHOD

Given M∈ℂm×n, the triple (Σ,U,V) with (M, Σ, U, V)∈𝔼m×n forms an SVD for M if and
only if it satisfies the following system of equations:

F(M,Σ,U,V)=(((((((((((((((((
(((((((
(
( Em(U)

En(V)
Σ−U∗MV )))))))))))))))))

)))))))
)
)

=0. (7)

This is a system of m2 + n2 + m n equations with m2 + n2 + n unknowns. Our efficient
numerical method for solving this system will rely on the following principles:

1. For a well-chosen ansatz U0 close to the unitary group Um, we prove that

X0=U0 (Im −E(U0)/2)
is even closer to the unitary group than U0: see section 4. Similarly, for an ansatz V0
close to Un, we take Y0=V0 (Im −E(V0)/2)

2. From Σ0, X0 and Y0, we prove that is possible to explicitly compute Σ̇0, and two
skew Hermitian matrices Ẋ0 and Ẏ0 such that

X0
∗MY0 −Σ0= Ẋ0Σ0−Σ0 Ẏ0 +Σ̇0,

after which (Im + Ẋ0) (Σ0 + Σ̇0) (In − Ẏ0) is a first-order approximation of Σ0 −
X0

∗MY0: see section 5.
3. Let Σ1 ≔Σ0 + Σ̇0, U1 ≔ X1 �1+ Ẋ0�, and V1 ≔ Y1 �1+ Ẏ0�. If U0 Σ0 V0

∗ is sufficiently
close to M, then we will prove that U1Σ1V1

∗ is a better approximation of the matrix
M than U0Σ0V0

∗:
‖U1Σ1V1

∗−M‖=O(‖U0Σ0V0
∗−M‖2).

More precisely, given Σ0 ∈ 𝔻m×n, U0 ∈ ℂm×m, and V0 ∈ ℂn×n, we define the following
sequence of matrices (Σi,Ui,Vi)i⩾0

Xi = Ui �Im − Em(Ui)
2 � (8)

Yi = Vi �In − En(Vi)
2 � (9)

Σi+1 = Σi +Σ̇i (10)
Ui+1 = Xi (Im + Ẋi) (11)
Vi+1 = Yi (In + Ẏi), (12)
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where Σ̇i is a diagonal matrix and Ẋi, Ẏi are two skew Hermitian matrices such that

Xi
∗MYi −Σi = Ẋi Σi −Σi Ẏi +Σ̇i. (13)

In order to measure the quality of the ansatz, we define

‖F(M,Σ,U,V)‖=max (‖Σ−U∗MV‖, ‖Em(U)‖, ‖En(V)‖).

The main result of the paper is the following theorem that gives explicit conditions for the
quadratic convergence of the sequence (Σi,Ui,Vi)i⩾0, together with explicit error bounds.

THEOREM 1. Let 𝜀⩾0 and (M0,Σ0,U0,V0)∈𝔼m×n be such that ‖F(M0,Σ0,U0,V0)‖⩽𝜀. Denote

𝜅 ≔ 𝜅0 = max ((((((((((((1, 1
𝜎0,n

, max
i< j

1
|𝜎0,i −𝜎0, j|))))))))))))

K ≔ K0 = max �1, max
i

𝜎0,i�,

where 𝜎0,1,…,𝜎0,n stand for the diagonal entries of Σ0. If

K3 𝜅2 𝜀 ⩽ 0.005,

then the sequence (Σ i, Ui, Vi)i⩾0 defined by (10–12) converges quadratically towards
an SVD (Σ,U,V) of the matrix M, i.e. M =U ΣV∗. More precisely, for each i⩾0, we have

‖Ui −U‖ ⩽ 13.5 m√ 𝜅K 𝜀 21−2i

‖Vi −V‖ ⩽ 13.5 n√ 𝜅K 𝜀 21−2i

‖Σi −Σ‖ ⩽ 0.82𝜀21−2i.

The proof of this theorem will be postponed to section 6. Assuming that the theorem
holds, it naturally gives rise to the following algorithm for certifying an approximate SVD:

Algorithm 1
Input: an approximate SVD (Σ0,U0,V0) for the center of a ball matrix 𝑴 ∈𝔹m×n

Output: ball enclosures 𝚺∈𝔹m×n, 𝑼 ∈𝔹m×m and 𝑽 ∈𝔹n×n of Σ0, U0 and V0 such that for
any M ∈𝑴, there exist Σ∈𝚺, U ∈𝑼 and V ∈𝑽 such that M =U ΣV∗ is an exact singular
value decomposition of M

1. Compute 𝑭 ≔F(𝑴,Σ0,U0,V0) using ball arithmetic
2. Let 𝜀 be an upper bound for ‖𝑭‖
3. Let 𝜅 and K̄ be upper bounds for 𝜅 and K (with 𝜅 and K as in Theorem 1)
4. If K̄ �̄�2 �̄�⩾0.005, then set 𝜚Σ ≔∞, 𝜚U ≔∞, 𝜚V ≔∞
5. Else set 𝜚U ≔13.5 m√ �̄� K̄ 𝜀, 𝜚V ≔13.5 n√ �̄� K̄ 𝜀, 𝜚Σ≔0.82 �̄� (using upward rounding)
6. Set 𝚺≔Σ0+𝜚Σ diag(ℬ(0,1)m×n)
7. Set 𝑼 ≔U0+𝜚U ℬ(0,1)m×m
8. Set 𝑽 ≔V0+𝜚V ℬ(0,1)n×n
9. Return (𝚺,𝑼,𝑽)

THEOREM 2. Algorithm 1 is correct.

Proof. If K̄ �̄�2 �̄�⩾0.005, then we return matrix balls with infinite radii for which the result
is trivially correct. If K̄ �̄�2 �̄�⩽0.005, then for any M0 ∈𝑴, the actual values of 𝜀, 𝜅 and K
are bounded by �̄�, �̄� and K̄, so Theorem 1 applies for the ansatz (M0, Σ0, U0, V0) ∈𝔼m×n.
As a consequence, we obtain an SVD (Σ,U, V) for M0 with the property that ‖U −U0‖⩽
13.5 m√ 𝜅K 𝜀⩽𝜚U, ‖V −V0‖⩽13.5 n√ 𝜅K 𝜀⩽𝜌V, and ‖Σ−Σ0‖⩽0.82𝜀⩽𝜌Σ. We conclude that
U ∈𝑼, V ∈𝑽 , Σ∈𝚺, as desired. □
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Remark 3. Notice that the algorithm does not use our Newton iteration in order to
improve the quality of the approximate input SVD (in particular, the output is worthless
whenever K̄ 𝜅2 �̄� ⩾0.005). The idea is that Algorithm 1 is only used for the certification,
and not for numerical approximation. The user is free to use any preferred algorithm
for computing the initial approximate SVD. Of course, our Newton iteration can be of
great use to increase the precision of a rough approximate SVD that was computed by
other means.

4. POLAR PROJECTION

Since we are doing approximate computations, the unitary matrices in an SVD are not
given exactly, so we may wish to estimate the distance between an approximate unitary
matrix and the closest actual unitary matrix. This is related to the following problem:
given an approximately unitary n×n matrix U, find a good approximation U + U̇ for its
projection on the group U(m) of unitary m×m matrices. We recall a Newton iteration for
this problem [20, 2, 12] and provide a detailed analysis of its (quadratic) convergence.

4.1. The Newton iteration
The tangent space to U(m) at U is

TU U(m) = {UX : X∗=−X}. (14)

Consider the Riemannian metric inherited from the embedding space ℂm×m

⟨X,Y⟩U ≔ Tr(X∗ Y).

Then the normal space is

TU
⊥ U(m) = {U Δ:Δ∗ =Δ}.

We wish to compute U̇ using an appropriate Newton iteration. From the characteriza-
tion of the normal space, it turns out that it is more convenient to write U +U̇ =U (1+Δ),
where Δ is Hermitian. With Em(U)=U∗U − Im and U̇ =U Δ, we have

Em (U + U̇) = (Im +Δ∗)(Im +Em(U))(Im +Δ)− Im

= Em(U)+2Δ+Δ Em(U)+Em(U)Δ+Δ2+Δ Em(U)Δ.

Taking

Δ = −Em(U)
2 , (15)

it follows that

Em (U + U̇) = �−3
4 Im + 1

4 Em(U)�Em(U)2. (16)

We are thus lead to the following Newton iteration that we will further study below:

Ui+1 = Ui �Im − Em(Ui)
2 �, i⩾0. (17)

Remark 4. Another way to construct the previous iteration is to remark that the deriv-
ative DEm(U) is onto from ℂm×m on the subset ℍm×m ⊆ ℂm×m of Hermitian matrices.
Then it is easy to see that for given H ∈ℍm×m and U ∈U(m), the matrix 1

2 U H satisfies
the equation DEm(U)X =H, i.e,

X∗ U +U∗ X =H.
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Consequently DEm(U)−1 Em(U) = 1
2 UEm(U). In this context the classical Newton oper-

ator thus becomes
NEm(U)=U − 1

2 UEm(U).

4.2. Error analysis

PROPOSITION 5. Let U be an m × m matrix with 𝜀 ≔ ‖Em(U)‖ < 1. Let U1 = U (1 + Δ), where
Δ=−Em(U)/2 and write 𝜀1 ≔‖Em(U1)‖. Then ‖Δ‖⩽ 𝜀

2 and

𝜀1 ⩽ 𝜀2. (18)

Proof. The conclusion follows from (16), since ‖E(U1)‖⩽ 3
4 𝜀2+ 1

4 𝜀3 ⩽𝜀2. □

LEMMA 6. Given 𝜀⩽1/2, u⩽1, and i⩾0, we have

�
j⩾0

�1+ u
2 𝜀2j+i

�⩽1+0.91u𝜀2i. (19)

Proof. Modulo taking 𝜀2i instead of 𝜀, it suffices to consider the case when i=0. Now

𝜑(𝜀,u)≔
∏j⩾0 �1+ u

2 𝜀2j+i
�−1

𝜀u
is an increasing function in 𝜀 and u, since its power series expansion in 𝜀 and u admits
only positive coefficients. Consequently, 𝜑(𝜀,u)⩽𝜑(1/2,1)≈0.90607762222<0.91. □

We recall that any invertible matrix U ∈ℂm×m admits a unique polar decomposition

U = 𝜋(U)P,

where 𝜋(U)∈U(m) and P∈ℂm×m is a positive-definite Hermitian matrix. We call 𝜋(U)
the polar projection of U on U(m). The matrix P can uniquely be written as the exponen-
tial of another Hermitian matrix. It is also well known that 𝜋(U) is indeed the closest
element in U(m) to U for the Riemannian metric [6, Theorem 1].

THEOREM 7. Let U be such that ‖E(U)‖⩽𝜀 ⩽ /1 2. Then the Newton sequence (17) defined from
U0 = U converges quadratically to the polar projection 𝜋(U) ∈U(m) of U. More precisely, for
all i⩾0, we have

‖Ui −𝜋(U)‖∗ ⩽ 1.67 m√ 𝜀21−2i.

Proof. The Newton sequence (17) defined from U0 =U gives

Ui+1 = U0(Im +Δ0)⋯(Im +Δi)

with Δi = −Em(Ui)/2. An obvious induction using Proposition 5 yields ‖Δi‖ ⩽ /1 2 𝜀2i
and

‖Em(Ui)‖⩽𝜀2i. Therefore this sequence converges to a limit U∞ ∈U(m) that is given by

U∞ = U0 Z0, Z0 = �
j⩾0

(Im +Δj).

Lemma 6 implies

‖Z0− Im‖ ⩽ �
j⩾0

((((((((((((((1+ 𝜀2j

2 ))))))))))))))−1 ⩽ 0.91𝜀. (20)
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More generally, we have

U∞ = Ui Zi, Zi = �
j⩾i

(Im +Δj), ‖Zi − Im‖ ⩽ 0.91𝜀2i.

Since U∞ is unitary, we have ‖U∞‖⩽ m√ . Neumann's lemma also implies that Zi is invert-
ible with

‖Ui −U∞‖ = ‖U∞ (Zi
−1− Im)‖ ⩽ m√ 0.91𝜀2i

1−0.91𝜀2i ⩽ 1.67 m√ 𝜀2i ⩽ 1.67 m√ 𝜀21−2i.

By induction on i, it can also be checked that Δi ∈ ℚ[U0
∗ U0] for all i. This means that

the Δi all commute, whence Z0 and Z0
−1 are actually Hermitian matrices. Since ‖Z0

−1− Im‖⩽
0.91 𝜀/(1 − 0.91 𝜀) < 1, the logarithm log Z0

−1 is well defined. We conclude that Z0
−1 is

the exponential of a Hermitian matrix, whence it is positive-definite. □

5. SVDS FOR PERTURBED DIAGONAL MATRICES

5.1. Approximate solutions at order one
Let Σ∈𝔻m×n be a matrix with diagonal entries 𝜎1>⋯>𝜎n. Consider a perturbation

Δ = Σ+Δ̇.

We wish to compute an approximate SVD

Σ+Δ̇ ≈ (Im + Ẋ) (Σ+Σ̇)(In + Ẏ)∗,

where Σ̇ ∈𝔻m×n, Ẋ ∈ℂm×m, and Ẏ ∈ℂn×n. Discarding higher order terms, this leads to
the linear equation

Δ̇ = Ẋ Σ−Σ Ẏ +Σ̇,

with Ẋ ∈TIm(U(m)) and Ẏ ∈TIn(U(n)). In view of (14), this means that Ẋ and Ẏ are skew
Hermitian. The following proposition shows how to solve the linear equation explicitly
under these constraints.

PROPOSITION 8. Let Σ∈𝔻m×n and Δ̇=(𝛿i, j)∈ℂm×n. Consider the diagonal matrix Σ̇∈ℝm×n

and the two skew Hermitian matrices Ẋ= (xi, j) ∈ℂm×m and Ẏ = (yi, j) ∈ℂn×n that are defined
by the following formulas:

• For 1⩽ i⩽n, we take

Σ̇i,i = Re 𝛿i,i (21)

xi,i = −yi,i = Im 𝛿i,i
2𝜎i

i. (22)

• For 1⩽ i< j⩽n, we take

Re xi, j = 1
2 ((((((((((((Re 𝛿i, j +Re 𝛿j,i

𝜎j −𝜎i
+ Re 𝛿i, j −Re 𝛿j,i

𝜎j +𝜎i )))))))))))) (23)

Re yi, j = 1
2 ((((((((((((Re 𝛿i, j +Re 𝛿j,i

𝜎j −𝜎i
− Re 𝛿i, j −Re 𝛿j,i

𝜎j +𝜎i )))))))))))) (24)

Im xi, j = 1
2 ((((((((((((Im 𝛿i, j − Im 𝛿j,i

𝜎j −𝜎i
+ Im 𝛿i, j +Im 𝛿j,i

𝜎j +𝜎i )))))))))))) (25)

Im yi, j = 1
2 ((((((((((((Im 𝛿i, j − Im 𝛿j,i

𝜎j −𝜎i
− Im 𝛿i, j +Im 𝛿j,i

𝜎j +𝜎i )))))))))))). (26)
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• For n+1⩽ i⩽m and 1⩽ j⩽n, we take

xi, j = 1
𝜎j

𝛿i, j. (27)

• For n+1⩽ i⩽m and n+1⩽ j⩽m, we take

xi, j = 0. (28)

Then we have

Δ̇ = Ẋ Σ−Σ Ẏ +Σ̇. (29)

Proof. Since Ẋ and Ẏ are skew Hermitian, we have diag(Re(Ẋ Σ − Σ Ẏ)) = 0. In view
of (21), we thus get

diag(Re Δ̇) = diag Re(Ẋ Σ−Σ Ẏ +Σ̇) = Σ̇.

By skew symmetry, for the equation

Ẋ Σ−Σ Ẏ = Δ̇−diag(Re Δ̇) = Δ̇− Σ̇
to hold, it is sufficient to have

𝜎i xi,i −𝜎i yi,i = i Im 𝛿i,i 1⩽ i⩽n (30)

(((((((((((( 𝜎i xi,i 𝜎j xi, j
−𝜎i xi, j 𝜎j xj, j ))))))))))))−(((((((((((( 𝜎i yi,i 𝜎i yi, j

−𝜎j yi, j 𝜎j yj, j )))))))))))) = (((((((((((( i Im 𝛿i,i 𝛿i, j
𝛿j,i i Im 𝛿j, j )))))))))))) 1⩽ i< j⩽n (31)

𝜎j xi, j = 𝛿i, j n+1⩽ i⩽m, 1⩽ j⩽n. (32)

The formulas (22) clearly imply (30). The xi, j from (27) clearly satisfy (32) as well. For
1⩽ i< j⩽n, the formulas (31) can be rewritten as

(((((((((((( 𝜎j −𝜎i
−𝜎i 𝜎j ))))))))))))(((((((((((( Re xi, j

Re yi, j )))))))))))) = (((((((((((( Re 𝛿i, j
Re 𝛿j,i ))))))))))))

(((((((((((( 𝜎j −𝜎i
𝜎i −𝜎j ))))))))))))(((((((((((( Im xi, j

Im yi, j )))))))))))) = (((((((((((( Im 𝛿i, j
Im 𝛿j,i )))))))))))).

Since 𝜎i >𝜎j, the formulas (23–26) indeed provide us with a solution. The entries xi, j with
n +1⩽ i, j⩽m do not affect the product Ẋ Σ, so they can be chosen as in (28). In view of
the skew symmetry constraints xj,i = −xi, j and yj,i = −yi, j, we notice that the matrices Ẋ
and Ẏ are completely defined. □

5.2. Error analysis

PROPOSITION 9. Let Σ∈𝔻m×n. Assume that Σ̇, Ẋ and Ẏ are computed using (21–28). Denote

𝜅 = max ((((((((((((1, 1
𝜎n

,max
i< j

1
|𝜎i −𝜎j|))))))))))))

K = 𝜎1.

Given 𝜀 with ‖Δ̇‖∗⩽𝜀, we have

‖Σ̇‖ ⩽ 𝜀 (33)
‖Ẋ‖∗ ⩽ 2 2� 𝜅 𝜀 (34)
‖Ẏ‖∗ ⩽ 2 2� 𝜅 𝜀. (35)
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Setting

Δ̇1 ≔ (Im + Ẋ) (Σ+Σ̇)(In+ Ẏ)∗− (Σ+Δ̇)

and 𝜀1=‖Δ̇1‖∗, we also have

𝜀1 ⩽ ( 2� +2𝜅 (K +𝜀))4𝜅 𝜀2.

Proof. From the formula (21) we clearly have ‖Σ̇‖ ⩽ ‖Δ̇‖ ⩽ 𝜀. The formula (22) implies
|xi,i|= |yi,i|⩽𝜅 |𝛿i,i|/2 for all i⩽n. For 1⩽ i< j⩽n, the formulas (23–26) imply

|Re xi, j +Re yi, j| ⩽ 𝜅 (|Re 𝛿i, j|+ |Re 𝛿j,i|)
|Re xi, j −Re yi, j| ⩽ 𝜅 (|Re 𝛿i, j|+ |Re 𝛿j,i|),

whence

|Re xi, j| ⩽ 𝜅 (|Re 𝛿i, j|+ |Re 𝛿j,i|)
|Re yi, j| ⩽ 𝜅 (|Re 𝛿i, j|+ |Re 𝛿j,i|).

Similarly,

|Im xi, j| ⩽ 𝜅 (|Im 𝛿i, j|+ |Im 𝛿j,i|)
|Im yi, j| ⩽ 𝜅 (|Im 𝛿i, j|+ |Im 𝛿j,i|).

It follows that

|xi, j| ⩽ 2� 𝜅 (|𝛿i, j|+ |𝛿j,i|)
|yi, j| ⩽ 2� 𝜅 (|𝛿i, j|+ |𝛿j,i|).

From (27), and using (4), we also deduce that |xi, j| ⩽𝜅 |𝛿i, j|, for n +1 ⩽ i⩽m and 1⩽ j⩽n.
Combined with the fact that ‖Δ̇‖∗⩽𝜀, we get

‖Ẋ‖∗ ⩽ 2 2� 𝜅 𝜀
‖Ẏ‖∗ ⩽ 2 2� 𝜅 𝜀.

Since Δ̇1≔(Im+ Ẋ)(Σ+Σ̇)(In+ Ẏ)∗−(Σ+Δ̇) and Δ̇=ẊΣ+ΣẎ∗+Σ̇, we now observe that

‖Δ̇1‖ ⩽ (‖Ẋ‖+‖Ẏ‖) ‖Σ̇‖+‖Ẋ‖ ‖Ẏ‖(‖Σ‖+‖Σ̇‖).

Plugging in the above norm bounds, we deduce that

‖Δ̇1‖ ⩽ 4 2� 𝜅 𝜀2 +8𝜅2 𝜀2 (K +𝜀) = ( 2� +2𝜅 (K +𝜀))4𝜅 𝜀2.

In a similar way, one proves that ‖Δ̇1
∗‖⩽( 2� +2𝜅 (K +𝜀))4𝜅 𝜀2. □

6. PROOF OF THEOREM 1
Let us denote

u = K3 𝜅2 𝜀 ⩽ 0.005
and, for each i⩾0,

𝜀0 = 𝜀 𝜀i = ‖F(M0,Σi,Ui,Vi)‖

𝜅0 = 𝜅 𝜅i = max ((((((((((((1, 1
𝜎i,n

, max
j<k

1
|𝜎i, j −𝜎i,k|))))))))))))

K0 = K Ki = max �1, max
j

𝜎i, j�,
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where 𝜎i,1,…,𝜎1,n denote the diagonal entries of Σi. Let us show by induction on i that

𝜀i ⩽ 21−2i 𝜀 (36)
‖Σi −Σ0‖ ⩽ (2−22−2i) 𝜀 (37)

𝜅i ⩽ 𝜅
1−4 𝜅 𝜀 ⩽ 𝜅

1−4u (38)

Ki ⩽ K +2𝜀 ⩽ (1+2u)K. (39)

These inequalities clearly hold for i = 0. Assuming that the induction hypothesis holds
for a given i and let us prove it for i+1.

By the definition of 𝜀i, we have ‖Em(Ui)‖∗⩽𝜀i and ‖En(Vi)‖∗⩽𝜀i. Setting

Δ̇i ≔ Xi
∗MYi −Σi

Wi ≔ Ui
∗MVi,

we have

Δ̇i = Wi −Σi −
1
2 Em(Ui)Wi −

1
2 Wi En(Vi)+ 1

4 Em(Ui)Wi En(Vi).

It follows that

‖Wi‖ ⩽ ‖Wi −Σi‖+‖Σi‖ ⩽ Ki +𝜀i

�Δ̇i� ⩽ 𝜀i +�𝜀i +
𝜀i

2

4 �(Ki +𝜀i)

⩽ �2+ 1
4 𝜀i�(Ki +𝜀i)𝜀i

⩽ �2+ 1
4 u�(1+3u)K 𝜀i

⩽ 2.04K 𝜀i.

Let ei =2.04K 𝜀i. Applying Proposition 9 to Δ̇i ≔Xi
∗ MYi −Σi, we get

‖Σ̇i‖ ⩽ ei

‖Ẋi‖ ⩽ 2 2� 𝜅i ei

‖Ẏi‖ ⩽ 2 2� 𝜅i ei.

Since Ẋi
∗=−Xi˙ , we have

Ui+1
∗ Ui+1 − Im = (Im −Xi˙ )Xi

∗Xi (Im +Xi˙ )− Im

= (Im −Xi˙ )Em(Xi)(Im +Xi˙ )+(Im −Xi˙ ) (Im +Xi˙ )− Im

= (Im −Xi˙ )Em(Xi)(Im +Xi˙ )− Ẋi
2

Using (18), we obtain

‖Ui+1
∗ Ui+1− Im‖ ⩽ (1+‖Xi˙ ‖)2 ‖Em(Xi)‖+‖Xi˙ ‖2

⩽ (1+‖Xi˙ ‖)2 ‖Em(Ui)‖2+‖Xi˙ ‖2

⩽ (1+2 2� 𝜅i ei)2𝜀i
2+�2 2� 𝜅i�2 ei

2

⩽ (1+5.77𝜅i Ku)2𝜀i
2+(5.77𝜅i K)2 𝜀i

2

⩽ 35𝜅i
2 K2𝜀i

2

⩽ 35
(1−4 u)2 22−2i+1 𝜀2 ⩽ 70u

(1−4 u)2 21−2i+1 𝜀

⩽ 21−2i+1 𝜀.
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Similarly,
‖Vi+1

∗ Vi+1 − Im‖⩽21−2i+1 𝜀.

Using Xi˙
∗=−Xi˙ and (13), we next have

Σi+1 −Ui+1
∗ MVi+1 = Σi +Σ̇i − (Im − Ẋi)Xi

∗ MYi (In + Ẏi)
= Xi

∗ MYi − Ẋi Σi +Σi Ẏi −(Im − Ẋi)Xi
∗MYi (In + Ẏi)

= Σi +Δ̇i − Ẋi Σi +Σi Ẏi −(Im − Ẋi)�Σi +Δ̇i�(In+ Ẏi)
= Ẋi Δ̇i − Δ̇i Ẏi + Ẋi �Σi +Δ̇i� Ẏi

It follows that

‖Σi+1 −Ui+1
∗ MVi+1‖ ⩽ 4 2� 𝜅i ei

2+8𝜅i
2(K +2𝜀+ ei) ei

2

⩽ (23.6𝜅i +33.3𝜅i
2 K (1+3u))K2 𝜀i

2

⩽ 57.4𝜅i
2 K3𝜀i

2 ⩽ 57.4
(1−4 u)2 𝜅2 K3𝜀i

2

⩽ 59.8𝜅2 K3𝜀i
2

⩽ 120𝜅2 K321−2i+1 𝜀2 ⩽ 120u21−2i+1 𝜀
⩽ 21−2i+1 𝜀.

This completes the proof that 𝜀i+1 ⩽21−2i+1 𝜀. We also have

‖Σi+1 −Σ0‖ ⩽ ‖Σ̇i‖+‖Σi −Σ0‖ ⩽ 21−2i 𝜀+(2−22−2i) 𝜀 ⩽ (2−22−2i+1) 𝜀.

We deduce that ‖Σi+1‖⩽‖Σ0‖+2𝜀 and Ki+1⩽K +2𝜀. Let us finally prove that 𝜅i+1⩽ 𝜅
1−4𝜅𝜀 .

From 𝜅 𝜀⩽u⩽0.005, we get

𝜎i+1, j ⩾ 𝜎0, j −2𝜀 ⩾ 𝜎0, j (1−2𝜅 𝜀) > 0,
so that

𝜎i, j
−1 ⩽

𝜎0, j
−1

1−2𝜅 𝜀.
Similarly, using

|𝜎i+1, j −𝜎i+1,k| ⩾ |𝜎0, j −𝜎0,k|− |𝜎i+1, j −𝜎0, j|− |𝜎i+1,k −𝜎0,k|
⩾ |𝜎0, j −𝜎0,k| (1−𝜅 |𝜎i+1, j −𝜎0, j|−𝜅 |𝜎i+1,k −𝜎0,k|)
⩾ |𝜎0, j −𝜎0,k| (1−4𝜅 𝜀) > 0,

we get

|𝜎i+1, j −𝜎i+1,k|−1 ⩽ |𝜎0, j −𝜎0,k|−1

1−4𝜅 𝜀 .

Hence 𝜅i+1 ⩽ 𝜅
1−4𝜅 𝜀 , which completes the proof of the four induction hypotheses (36–39)

at order i+1.
From the continuity of the maps Em, En, and (Σ, U,V) ↦Σ− U∗ MV, we deduce that

the sequence (Σi,Ui,Vi)i⩾0 converges. Let (Σ,U,V) be the limit. By continuity, we have
E(U)=E(V)=Σ−U∗MV =0. The unitary matrix U is of the form U =U0Z with

Z = �
j⩾0

(((((((Im − E(Uj)
2 ))))))) (Im + Ẋj). (40)

From above we know that

‖Ẋj‖ ⩽ 4.08 2� 𝜅i K 𝜀i ⩽
4.08 2� 𝜅K

1−4u 21−2j
𝜀 ⩽ 11.8𝜅K 𝜀2−2j

,
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whence

�(((((((Im − E(Uj)
2 ))))))) (Im + Ẋj)− Im� ⩽ ��1+𝜀2−2j

�11.8𝜅K 𝜀+𝜀�2−2j

⩽ 12.9𝜅K 𝜀2−2j
⩽ 26u

2 2−2j
⩽ 1

2 2−2j
.

Lemma 6 now implies

‖Z− Im‖ ⩽ �
j⩾0

�1+ 26u
2 2−2j

�−1 ⩽ 0.91 ⋅26u
2 ⩽ 0.06.

This shows that Z is invertible, with

‖Z−1‖ ⩽ 1
1− ‖Z− Im‖ ⩽ 1.07.

Hence
‖U0‖ ⩽ ‖U‖ ‖Z−1‖ ⩽ 1.07 m√ .

From the definition of Ui we also have

U −Ui = U0�
j=0

i−1

(((((((Im − E(Uj)
2 ))))))) (Im + Ẋj)(((((((((((((((((((�

j⩾i
(((((((Im − E(Uj)

2 ))))))) (Im + Ẋj)− Im))))))))))))))))))),

Using Lemma 6, this yields

‖Ui −U‖ ⩽ ‖U0‖�
j=0

i−1

�1+ 26u
2 2−2j

�((((((((((((((((((
(�

j⩾i
�1+ 26𝜅K 𝜀

2 2−2j
�−1))))))))))))))))))

)
⩽ ‖U0‖1.06 ⋅ 0.91 ⋅ 26𝜅K 𝜀2−2i ⩽ 26.9 m√ 𝜅K 𝜀2−2i.

Similar bounds can be computed for ‖Ui
∗ − U∗‖, ‖Vi −V‖, and ‖Vi

∗ − V∗‖. Altogether, this
leads to

‖U0‖∗ ⩽ 1.07 m√ (41)
‖V0‖∗ ⩽ 1.07 n√ (42)

‖Ui −U‖∗ ⩽ 13.5 m√ 𝜅 K 𝜀 21−2i
(43)

‖Vi −V‖∗ ⩽ 13.5 n√ 𝜅 K 𝜀 21−2i. (44)

We finally have

‖Σi −Σ‖ ⩽ �
k⩾i

‖Σk+1−Σk‖ ⩽ �
k⩾0

21−2k+i 𝜀 ⩽ �
k⩾0

2−2k 21−2i 𝜀 ⩽ 0.82 ⋅ 21−2i 𝜀,

since ∑k⩾0 2−2k ⩽0.82. This completes the proof.
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