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In this paper, we present an efficient algorithm for the certification of numeric singular
value decompositions (SVDs) in the regular case, i.e., in the case when all the singular
values are pairwise distinct. Our algorithm is based on a Newton-like iteration that
can also be used for doubling the precision of an approximate numerical solution.

1. INTRODUCTION

Let F be the set of floating point numbers for a fixed precision and a fixed exponent
range. We denote F? ={xeF:x>0}. Consider an m x n matrix M € F[i]"™*" with complex
floating entries, where m >n. The problem of computing the numeric singular value decom-
position of M is to compute unitary transformation matrices U € F[i]"™", V € F[i]™",
and a diagonal matrix X & (FZ)™" such that

M~ UXV* (1)
If m>n, then £ € F[i]"™*" is understood to be “diagonal” if it is of the form

. %1}
Z: ( Dlag(U'(l);...,U'n) ), Diag(ail,...,a}o —

On

The diagonal entries ¢, ..., 03, of X are the approximate singular values of the matrix M
and throughout this paper we will assume them to be pairwise distinct and ordered

01> 02> >0, >0.

There are several well-known algorithms for the computation of numeric singular value
decompositions [8, 4].

Now (1) is only an approximate equality. It is sometimes important to have a rigorous
bound for the distance between an approximate solution and some exact solution. More
precisely, we may ask for a diagonal matrix X, € (FZ)™*" and matrices U, € F[i]™*™,
V, € F[i]™", such that there exist unitary matrices UeC™™ Ve C™ and a diagonal
matrix £ € C™" for which

M= UxV*

—_
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and
1% -Xid < (T
Ui ;— Uil < (Uyp)ij
Vij=Vijl < (Vi)i;

for all 7,j. This task will be called the certification problem for the given numeric singular
value decomposition (1). The matrices X,, U, and V, can be thought of as reliable error
bounds for the matrices ¥, U and V of the numerical solution.

It will be convenient to rely on ball arithmetic [13, 19], which is a systematic tech-
nique for this kind of bound computations. When computing with complex numbers,
ball arithmetic is more accurate than more classical interval arithmetic [22, 1, 23, 18, 21,
24], especially in multiple precision contexts. We will write B = B3 (F[i], F?) for the set
of balls z= B (z.,z,) = {z € C:|z—2z] < z,} with centers z in F[i] and radii z, in FZ. In
a similar way, we may consider matricial balls M = B (M., M,) € B (F[i]"™*", (FZ)mny.
given a center matrix M, € F[i]"*" and a radius matrix M, € (FZ)™" we have

M = BM,M,) = (MeC"™":Vi,j,|(M)i;j—M; | < (M)}

Alternatively, we may regard B (M., M,) as the set of matrices in B"*" with ball coeffi-
cients:

;B(Mc,Mﬂi,j = Q(B’((M{)i,j/ (M?')l,])

Standard arithmetic operations on balls are carried out in a reliable way. For instance,
if u,v € B, then the computation of the product w =uv using ball arithmetic has the
property that uvew forany uceu and vev.

In the language of ball arithmetic, it is natural to allow for small errors in the input
and replace the numeric input M € F[i]”*" by a ball input B (M., M,) € B"*". Then we
may still compute a numeric singular value decomposition of the center matrix M,:

D. ~ UMV} )

The generalized certification problem now consists of the computation of matrices
U, e (F2)™m v, e (F?)"" and a diagonal matrix X, € (F2)™" guch that, for every
Me B (M,,M,), there exist unitary matrices U, V € B (X, X,), and a diagonal matrix
e B (X, X, with

X =UMV*™

In this paper we propose an efficient solution for this problem in the case when all sin-
gular values are simple. Our algorithm relies on an efficient Newton iteration that is also
useful for doubling the precision of a given numeric singular value decomposition. The
iteration admits a quadratic convergence and only requires matrix sums and products
of size at most m x m. In [13, 15], a similar approach was used for the certification of
eigenvalues and eigenvectors.

We are not aware of similarly efficient and robust algorithms in the literature. Jacobi-
like methods from Kogbeliantz' SVD algorithm admit quadratic convergence in the pres-
ence of cluster in the Hermitian case [3], but only linear convergence is achieved in
general [5]. Gauss-Newton type methods have also been proposed for the approxima-
tion the regular real SVD in [17, 16].
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From the theoretical bit complexity point of view, our algorithm essentially reduces
the certification problem to a constant number of numeric matrix multiplications. When
using a precision of p bits for numerical computations, it has recently been shown [10]
that two n xn matrices can be multiplied in time

MM(n,p) = O(n2 l(p) + n“’pzo(lg*p—lg*n) (g d) /1gd).

Here I(p) = O(plg pK'8'P) with K <4 is the cost of p-bit integer multiplication [11, 9]
and w <2.3728639 is the exponent of matrix multiplication [7]. If p is large enough with
respect to the log of the condition number, then O(MM(n,p)) yields an asymptotic bound
for the bit complexity of our certification problem.

We have implemented unoptimized versions of the new algorithms in MATH-
EMAGIX [14] and MATLAB. These toy implementations indeed confirmed the quadratic
convergence of our Newton iteration and the efficiency of the new algorithms. We intend
to report more extensively on implementation issues in a forthcoming paper.

2. NOTATIONS

2.1. Matrix norms

Throughout this paper, we will use the max-norm for vectors and the corresponding
matrix norm. More precisely, given positive integers m,n, a vector v e C", and an mxn
matrix M € C"™", we set

ol = max {|v1l, ..., [val}
IM| = max||Muol.
loll=1

For a second matrix N € C"*", we clearly have

IM+NIl < [IM]l+ [N
IMNI < IMIIINII.

We also define
IMIl. = max (IMI, IM]). (©)
Explicit machine computation of the matrix norm is easy using the formula
IMIl = max {IM1l + -+ + Ml : 1<i<m}. (4)
Given a second matrix N € C"*" it follows that the coefficientwise product

Mi1Ny1 -+ MyuNiy
MON = : :
Mm,le,l Mm,nNm,n

satisfies
IMONI < [IMllmax{IN;:1<i<m,1<j<n}. 5)

In particular, when changing certain entries of a matrix M to zero, its matrix norm || M|
can only decrease. We will write $3.(0,1),x, for the m x n ball matrix whose entries are
all unit balls 43(0,1). This matrix has the property that M € |IM|| B (0,1)x, for all mxn
matrices M.
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2.2. Miscellaneous notations

In the sequel we consider two integers m >n and we introduce the sets of matrices:

DN .= {( dlag (0}),...,0';1) )ERrixn:0-1>...>0'p>O} (6)

and
IEmX‘rl = Cmxn Dmxn x Cmxm o Chxn,
We also write diag: C"™*" — D" for the natural projection that replaces all non-diagonal
entries by zeros. For any integer k we finally define the map Ey: CF* > C** by
Ex()=U"U-I,

where [ is the identity matrix of size k x k.

3. OVERVIEW OF OUR METHOD

Given M € C"™" the triple (£,U, V) with (M, X, U, V) € E™*" forms an SVD for M if and
only if it satisfies the following system of equations:

En(U)
FM, =, U V)=| E.V) |=o0. )
S-U*MV

This is a system of m?+ n” + mn equations with m?+ n*+n unknowns. Our efficient
numerical method for solving this system will rely on the following principles:
1. For a well-chosen ansatz Uy close to the unitary group U, we prove that
Xo=Uo(I;m—E(Uo)/2)
is even closer to the unitary group than Uyp: see section 4. Similarly, for an ansatz V
close to U, we take Yo=Vy(,,—E(Vy)/2)
2. From Xy, Xp and Y, we prove that is possible to explicitly compute %, and two
skew Hermitian matrices X, and Y such that
XGMY()—Z(): ono— 20Y0+ 20,
after which (I, + Xo) (Zo+ Zo) (I, = Yp) is a first-order approximation of Xg—
X3 M Yp: see section 5.
3. Let Z1:=Xo+ X, U:=X3 (1+ Xo), and Vi:=Y; (1+ Yo). If UpXo VG is sufficiently
close to M, then we will prove that U; 21 V7' is a better approximation of the matrix
M than Uy 2o V{§:
UL 21 Vi =M= O(IUo o Vi — MI1%).
More precisely, given Ly D", Uye C™", and V€ C™", we define the following
sequence of matrices (X, U;, Vi)i>o

_ ' Em(ul)
X; = Uy(1n-=25"2) ®)
En(Vi
Yi =V (1;1— (2 )> )
Sip1 = Zit+ . (10
U1 = X (1m+Xi) (11)
Vier = Yilu+Y)), (12)
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where ¥, is a diagonal matrix and X;, Y; are two skew Hermitian matrices such that
XiMYi-2;=XZi-%; Y+ 3. (13)
In order to measure the quality of the ansatz, we define
IF(M,Z, U, V)ll=max (IZ-U*M VI, IEu I, IE.(V)I).
The main result of the paper is the following theorem that gives explicit conditions for the
quadratic convergence of the sequence (2;, U;, V;) >0, together with explicit error bounds.
THEOREM 1. Let € 20 and (Mo, X, Up, Vo) € E™*" be such that |F (Mg, Zo, Up, Vo) | < €. Denote
(7 T
K= Ko = max |1, —, max —
0o i<j 100,i—00,j
K := Ky = max (1, max (70,1-),
1
where 0y 1, ..., 00, Stand for the diagonal entries of Xo. If
K*x%e < 0.005,
then the sequence (X;, U;, V;)iso defined by (10-12) converges quadratically towards
an SVD (X,U, V) of the matrix M, i.e. M=UZX V*. More precisely, for each i >0, we have
IU;—-U) < 135 yiikKe 2!~
IV;i=VI < 135 ynxKe 2!~
IZ:-2l < 0.82e2'72.

The proof of this theorem will be postponed to section 6. Assuming that the theorem
holds, it naturally gives rise to the following algorithm for certifying an approximate SVD:

Algorithm 1

Input: an approximate SVD (X, Uy, Vj) for the center of a ball matrix M € B"™*"
Output: ball enclosures X € B™*", U B"*"™ and V € B"*" of ¥, Uy and V| such that for
any M €M, there exist Z€ X, Uc U and V €V such that M =U X V" is an exact singular
value decomposition of M

1. Compute F:=F(M, X, Uo, Vp) using ball arithmetic

2. Let € be an upper bound for ||F||

3. Let i and K be upper bounds for x and K (with x and K as in Theorem 1)

4. If Kic?2>0.005, then set gy := 0o, 017:= o0, 0y =00

5. Else set 0(;:=13.5 /i kK¢, ov:=13.5 /i kK¢, 05 := 0.82 (using upward rounding)
6. Set X:=Xo+ oxdiag(B(0,1)nxn)

7. Set U:=Uy+ Quﬁ(o,l)mxm

8. Set V:=Vy+ Qvﬁ(o,l)nxn

9. Return (X, U, V)

THEOREM 2. Algorithm 1 is correct.

Proof. If K%2£>0.005, then we return matrix balls with infinite radii for which the result
is trivially correct. If K ©%£<0.005, then for any Mo& M, the actual values of ¢, x and K
are bounded by ¢, k¥ and K, so Theorem 1 applies for the ansatz (M, X, U, Vo) € E™".
As a consequence, we obtain an SVD (2, U, V) for My with the property that |U — Ul <
13.5 ymxKe<oy, IV-Voll<13.5 ynxkKe<py, and |2 -2l <0.82e < px. We conclude that
Uel,VeV,Xek, as desired. a
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Remark 3. Notice that the algorithm does not use our Newton iteration in order to
improve the quality of the approximate input SVD (in particular, the output is worthless
whenever K 2> 0.005). The idea is that Algorithm 1 is only used for the certification,
and not for numerical approximation. The user is free to use any preferred algorithm
for computing the initial approximate SVD. Of course, our Newton iteration can be of
great use to increase the precision of a rough approximate SVD that was computed by
other means.

4. POLAR PROJECTION

Since we are doing approximate computations, the unitary matrices in an SVD are not
given exactly, so we may wish to estimate the distance between an approximate unitary
matrix and the closest actual unitary matrix. This is related to the following problem:

given an approximately unitary 1 x n matrix U, find a good approximation U + U for its
projection on the group U(m) of unitary m xm matrices. We recall a Newton iteration for
this problem [20, 2, 12] and provide a detailed analysis of its (quadratic) convergence.

4.1. The Newton iteration
The tangent space to U(m) at U is

TyU(m) = {UX: X*=-X]}. (14)
Consider the Riemannian metric inherited from the embedding space C"™*™
(X, )y :== Tr(X*Y).
Then the normal space is
TgU@m) = {UA:A*=A).

We wish to compute u using an appropriate Newton iteration. From the characteriza-
tion of the normal space, it turns out that it is more convenient to write U+ U =U (1+A),
where A is Hermitian. With E,,(U) =U*U -1, and U=UA, we have

En(U+U) = (Ly+A") (Ly+Epn(U)) Ty +A) =1,y
= E,(U)+2A+AE,(U)+E,,(U)A+A*+AE,,(U)A.

Taking
A= —E’”éu) , (15)
it follows that
En(U+1D) = (—%Im+%Em(U)>Em(LI)2. (16)
We are thus lead to the following Newton iteration that we will further study below:
U1 = U <1m—E’”g_ui>), i>0. (17)

Remark 4. Another way to construct the previous iteration is to remark that the deriv-
ative DE,,(U) is onto from C"™*™ on the subset H"*" C C"*" of Hermitian matrices.
Then it is easy to see that for given He H"*" and U € U(m), the matrix % U H satisfies
the equation DE,,(U) X=H, i.e,

X*U+U*X=H.
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Consequently DE,,(U)YE,(U) = % UE,,(U). In this context the classical Newton oper-
ator thus becomes
1
Ng,,(U) = U—EUEm(U).

4.2. Error analysis

PROPOSITION 5. Let U be an m x m matrix with €:=||E,,(U)||<1. Let Uy =U (1+A), where
A=-Ey(U) /2 and write £1:= | Eyu(Un)|l. Then |Al <5 and

g1 < €% (18)

Proof. The conclusion follows from (16), since ||E(U7)|| < % €2+ % e3< e O
LEMMA 6. Given e<1/2, u<1, and i >0, we have

[1(1 +352f“) <14+091ue?’ (19)

! 2
j20

Proof. Modulo taking 2 instead of ¢, it suffices to consider the case when i =0. Now

[Ts0(1+3e2)-1
EU

@(g,u):=

is an increasing function in ¢ and u, since its power series expansion in ¢ and u admits
only positive coefficients. Consequently, ¢ (e, u) <¢(1/2,1) 20.90607762222<091. O

We recall that any invertible matrix U € C"*™ admits a unique polar decomposition
U= nPp,

where 77(U) € U(m) and P € C"™™ is a positive-definite Hermitian matrix. We call 7r(U)
the polar projection of U on U(m). The matrix P can uniquely be written as the exponen-
tial of another Hermitian matrix. It is also well known that 7tr(U) is indeed the closest
element in U(m) to U for the Riemannian metric [6, Theorem 1].

THEOREM 7. Let U be such that |[E(U)| < & <Y,. Then the Newton sequence (17) defined from
U= U converges quadratically to the polar projection t(U) € U(m) of U. More precisely, for
all i>0, we have

U= (W), < 1.67 yime2l~2,

Proof. The Newton sequence (17) defined from Up=U gives
Uiv1 = UoUm+A0) -+ Um+A0)

with A; = —En(Ui) /2. An obvious induction using Proposition 5 yields [|Aill <, ¢2 and
IIE,,,(UH| < ¢2'. Therefore this sequence converges to a limit U, € U(m) that is given by

Uo = UoZo,  Zo =[] Tu+n).
L5
Lemma 6 implies !
€2j
1Zo=Tull < ] (1 +7)—1 < 091e. (20)

j>0
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More generally, we have

U = UiZi,  Zi=[]Au+d),  1Zi~Lul < 0912
i

Since U is unitary, we have U< /7. Neumann's lemma also implies that Z; is invert-
ible with

0.91¢2
1-0.91¢2

By induction on i, it can also be checked that A; € Q[Ug Up] for all i. This means that
the A; all commute, whence Zgand Z; Lare actually Hermitian matrices. Since [|Zg 1<

091e/(1-091¢) <1, the logarithm log Zal is well defined. We conclude that Zal is
the exponential of a Hermitian matrix, whence it is positive-definite. O

U= Usll = U (Z7 =Ll < Vil < 1.67 yme? < 1.67 yme2! 2.

5. SVDS FOR PERTURBED DIAGONAL MATRICES

5.1. Approximate solutions at order one
Let ¥ € D" be a matrix with diagonal entries 01> -:- > 0. Consider a perturbation
A = Z+A
We wish to compute an approximate SVD
YH+A x~ ([u+X) (Z+2) U, +Y)*,
where 2 € D", X € C"™™ and Y € C™". Discarding higher order terms, this leads to
the linear equation
A=XZ-TY+3,
with X € T;,(U(m)) and Ye T1,(U(n)). In view of (14), this means that X and Y are skew

Hermitian. The following proposition shows how to solve the linear equation explicitly
under these constraints.

PROPOSITION 8. Let &€ D" and A = (6;,)) € C™". Consider the diagonal matrix Y. € R"xn
and the two skew Hermitian matrices X = (x; ;) € C"™ ™ and Y = (y; ;) € C"*" that are defined
by the following formulas:

e For1<i<n, we take

Z..,',l‘ = Re 51',,' (21)
Im é;;
Xii = —VYi;i = ~ 1. 22
1,1 yl,l 20_1 ( )
o For1<i<j<n, we take
Rex;; = l Re di,j+ Re 5j,i+Re5i,j—Re5]',i (23)
2 0j—0i 0j+ 0
_ 1 (Reéij+Red;i Red;ij—Redj,;
Reyi; = 5 A (24)
Imx;; = 1 Im 4;,j—Im (5j,i+Im5i,j+Im 0j,i (25)
Y2 0j—0; 0j+ 0
1 (Imdi;j—Imdj; Imdi;+Imyé;,
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o Forn+1<i<mand1<j<n, we take
1

Xij = Fj(si’j' (27)
o Forn+1<i<mandn+1<j<m, we take
x;; = 0. (28)
Then we have
A=XZ-ZY+3. (29)

Proof. Since X and Y are skew Hermitian, we have diag(Re(X Y-%Y))=0. In view
of (21), we thus get

diag(ReA) = diagRe(XZ—ZY+Z) = 3.
By skew symmetry, for the equation
XT-YY = A—diag(ReA) = A=Y

to hold, it is sufficient to have

Oixii—07Yi; = ilmé;; 1<ign (30)

GiXii Op¥ij ) _( O oiyij) _ (1Mo i 1<i<j<n 31)
—0i%ij 0jXj; )\ ~0iij 0jYj, o1 1lmJ;;

OjXij = 51',]' n+1<ism, 1<]<1’l (32)

The formulas (22) clearly imply (30). The x;; from (27) clearly satisfy (32) as well. For
1<i<j<n, the formulas (31) can be rewritten as

0}' —0; Re xi,j . Re (51"]'
—0; 0} Re yi,j - Re (5]',1'

0}' —0; Im xi,j . Im 51',]'

J; —0}' Im yi,j o Im 5]',1' ’
Since ;> 0}, the formulas (23-26) indeed provide us with a solution. The entries x; ; with
n+1<i,j<m do not affect the product XY, so they can be chosen as in (28). In view of

the skew symmetry constraints x;; =—X;; and y;; = —¥; , we notice that the matrices X
and Y are completely defined. O

5.2. Error analysis

PROPOSITION 9. Let ¥ € D™, Assume that 3., X and Y are computed using (21-28). Denote

1
¥ = max |1, —, max
On i<j loi—ajl

K = 1.
Given ¢ with |All. < &, we have

12 < e (33)
Xl < 2y2xe (34)
Yl < 2y2xke. (35)
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Setting
Ay = Iy +X) (Z+E) T+ Y)* = (Z+A)
and e1=||A1]l,., we also have
e1 < (V242K (K+eg))dxe?
Proof. From the formula (21) we clearly have IZI <A< e. The formula (22) implies
Ixiil =1yl <x16;:/2 for all i<n. For 1<i<j<n, the formulas (23-26) imply

IRe x;j+Rey; | < x(Red; l+[Red;l)
IRe x;j—Rey; | < x(IRedj;l+IRed;l),

whence

Rex; ;I < x(IRed;jl+IRed;l)

IRey;| < x(IRed; |+ [Redjl).
Similarly,

Tmx; | < x(Imd;;l + Tm ;i)

Mmy; | < x(Imé; |+ Imd;l).
It follows that

i il < 2K (167,51 +107,D)

il < 2518, 11416,40).

From (27), and using (4), we also deduce that |x; ;| <x[d; jl, forn+1<i<mand 1<j<n.
Combined with the fact that [|A]l. <&, we get

Xl < 2y2xe
Yl < 2y2xe.

Since A1:=(In+X) (T4 ) I+ Y)* = (Z+A) and A=XZ + XY * +3, we now observe that
WA < QX+ YA I+ IXTIY I+ DD
Plugging in the above norm bounds, we deduce that
1Al < 4\2xe*+8Kk%e* (K+e) = (J2+2x(K+e))dxe?,

In a similar way, one proves that 1A% < (\/7 +2x(K+e))dre |

6. PROOF OF THEOREM 1

Let us denote
u = K3x%¢ < 0.005

and, for each i >0,

& = € & = ”F(MO/ZZ'/ ui/Vi>”
1 1

Ko = K K, = max|1l, —, max——
Tin’ j<k 10i;=0ixl

Ky = K K; = max (1, maxai,j>,
J
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where 01, ..., 01, denote the diagonal entries of ;. Let us show by induction on i that

g < 21-2'¢ (36)

12— Zoll < (2-2%%)e (37)
K K

i S Toire S Todu (38)

Ki < K+2e < (1+2u)K. (39)

These inequalities clearly hold for i =0. Assuming that the induction hypothesis holds
for a given i and let us prove it for i + 1.
By the definition of ¢;, we have ||E,,(U)|. <¢&; and [|IE, (V)] < €;. Setting
Ai :
Wi

X:MYi-X%;
u; MV,

we have

. 1 1 1
A = Wi—Zi—fEm(ui) Wi—fwiEn(Vz’) +ZEm(ui) W E,.(V)).

It follows that

Wi

| < IWi=2Zill+ 1240 < Ki+¢;
A

2
&+ <€j + %) (K;+¢;)

NN

N

(2 +%si) (Ki+¢€;) &
(2+%u) (1+3u)Keg;
2.04Ke;.

N IN

Let e;=2.04K ¢;. Applying Proposition 9 to A;:= X/ M Y;—%;, we get

1%l < e
IXil < 242 xe;
IYill < 2y2x;e;.

Since X} =-X;, we have

Ui U1 —Ly = Ly=X) XF X Ly +Xi) =Ly
(Im_Xi) Em(Xl) (Im+Xi) + (Im_Xi) (Im+Xi) _Im
(In=X1) Em(X3) (I + X;) - X7

Using (18), we obtain

L+ 1) 2UE i (X N+ 111

L+ 1) 2 NE i (U 1P + 111
(1+22xe)%e?+ (2 \/?Kl-)zeiz
(1+5.77k;Ku)2e? + (5.77 k;K)% €?

35x7K2e?
35 2_2i+1 2 < 70u 1_2i+1
(1-4u)? N (1-4u)?
i+1
21-27" ¢

||uz'*+1 uz’+1 —Im”

N CINCINCIN NN

&

N
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Similarly,
Vi Vier =Ll <2172 e,
Using X;"==X; and (13), we next have
S =UfaMVigr = i+ Xi= (= X) XF MY (L + Vi)
XiMYi-X;Zi+ 2 Yi— (Ly—X) Xi MY; (I, +Y))
= L+ A= X Zi+ 5 Y= L= Xi) (Zi+ A7) I+ V)
Xl'Ai—AZ'YZ'-l-XZ'(Zi-i-Ai) Yi

It follows that

IZir1— Ui M Vil < 442k 67 +8x7 (K+2¢e+e)ef

(23.6k;+333k?K (14+3u))K?¢?
57.4

57.4x?K3¢? < i K2K3e?

59.8x2K3¢?

120x2K3212"e2 < 1204212

21_2i+l€‘

INCINCININ O IN N

This completes the proof that ;11 <2 e. We also have
ISic1-Zoll < ISH+IZi—Soll € 20 e+ (2-222) e < 2-222) ¢

We deduce that [|Z; 1] <[IZoll +2¢ and K;1 <K +2e. Let us finally prove that Ki+1<TiK€.
From xe<u<0.005, we get

Oit1,j 2 00,j— 2e > 0'0,]'(1—21(8) > 0,
so that

Similarly, using

2 00,j— 00,k —10i+1,j— 00,1 —10i+1,k— 00 il
2 |00,j— 0ol (1—x10741,j— 00,jl — K10i+1,k— O0,kl)
2 |00,j— 0okl (1-4xe) >0,

|i41,j— Ot 1,

we get

ian Oy ) jo0,j— oo !
i+1,j —Vi+1,k N T 1 4dke

Hence xj 41 <+—— - 4

at order i+ 1.
From the continuity of the maps E,;, E,,, and (£, U, V)~ X -U*MYV, we deduce that

the sequence (X;, U;, Vi) i>o converges. Let (X, U, V) be the limit. By continuity, we have

E(U)=E(V)=2-U"MYV =0. The unitary matrix U is of the form U = UpZ with

z=1] (Im E(u’))(1m+X]) (40)

j20

—, which completes the proof of the four induction hypotheses (36-39)

From above we know that

4.08 2K

— 27 <118kKe27?,

Xl < 408 2ZxKe; <
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whence

H(Im E(uf))(l +X) L < ((1+e2?)11.8xKe+e)2?

2

< 129xKe2? ¢ 2042 ]

2]
> 22 .

Lemma 6 now implies

26u 0.91-26u
IZ =Ll < ]—[ (1 =2 ) 1 < =5~ < 0.06.
j20
This shows that Z is invertible, with
1

Z Y < ———— < 1.07.

L 7
Hence

IUoll < IUINIZ7Y < 1.07 .

From the definition of U; we also have

u-u; uoﬂ(l —E(uf))(l +X))
j=0

1 (n E<2uj>) <1m+5<]->—1m),

j>i

Using Lemma 6, this yields

-l < ||uo||]"[(1+26—”2 )[]‘[(1+Z6’;K82—2")_1}

j>i

< ||u0||1.06-0.91-26;<I<sz—2" < 269 yimkKe2 ™2,

Similar bounds can be computed for ||U;— U7, |IV;- V||, and [|V;* - V*||. Altogether, this
leads to

Ul < 1.07 ym (41)
IVolle < 1.07 v . (42)
IU;=Ul. < 13.5ym x Ke 2172 (43)
IVi= V. < 1357 k Ke 2172, (44)

We finally have

k+i k i i
IZi-Z1 < ) IS -Zdl < ) 277 e < ) 277217 < 0.82:217,
k=i k=0 k=0

since }°;- 2-2<0.82. This completes the proof.
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