
HAL Id: hal-01941876
https://hal.science/hal-01941876

Submitted on 2 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Aggressive Memory Speculation in HW/SW
Co-Designed Machines

Simon Rokicki, Erven Rohou, Steven Derrien

To cite this version:
Simon Rokicki, Erven Rohou, Steven Derrien. Aggressive Memory Speculation in HW/SW Co-
Designed Machines. DATE 2019 - 22nd IEEE/ACM Design, Automation and Test in Europe, Mar
2019, Florence, Italy. pp.332-335, �10.23919/DATE.2019.8715010�. �hal-01941876�

https://hal.science/hal-01941876
https://hal.archives-ouvertes.fr


Aggressive Memory Speculation in HW/SW
Co-Designed Machines

Simon Rokicki Erven Rohou
Univ Rennes, INRIA, CNRS, IRISA

Steven Derrien

Abstract—Single-ISA heterogeneous systems (such as ARM
big.LITTLE) are an attractive solution for embedded platforms
as they expose performance/energy trade-offs directly to the
operating system. Recent works have demonstrated the ability to
increase their efficiency by using VLIW cores, supported through
Dynamic Binary Translation (DBT) to maintain the illusion of a
single-ISA system. However, VLIW cores cannot rival with Out-
of-Order (OoO) cores when it comes to performance, mainly
because they do not use speculative execution. In this work, we
study how it is possible to use memory dependency speculation
during the DBT process. Our approach enables fine-grained
speculation optimizations thanks to a combination of hardware
and software. Our results show that our approach leads to a
geo-mean speed-up of 10% at the price of a 7% area overhead.

I. INTRODUCTION

The need for performance and energy efficiency has led
to hardware platforms where energy/performance trade-off
can be adjusted dynamically (e.g through Dynamic Voltage
and Frequency Scaling (DVFS)). However, with the end of
Dennard’s scaling, the efficiency of DVFS has been de-
creasing, restricting the trade-off spectrum. This has led to
the emergence of single-ISA heterogeneous multi-processor
systems, where the use of different types of core exposes
even more energy/performance trade-offs. For example, the
ARM big.LITTLE architecture features low-power in-order
cores and high-performance Out-of-Order processors [1]. In
such systems, dynamic adaptation is made possible through
a same single instruction set for all cores, enabling quasi-
transparent dynamic code migration between cores.

It is possible to enrich these platforms with VLIW cores,
which offer excellent energy/performance trade-off for certain
types of workloads (compute intensive loops with predictable
control-flow). However because VLIW processors expose
parallelism directly in their instruction set, transparent code
migration is not possible. This restriction can be overcome
through Dynamic Binary Translation (DBT) techniques, which
can be used to maintain the illusion of a single-ISA system.
This approach was followed by Transmeta with the Code Mor-
phing Software (CMS) to allow the execution of x86 binaries
on a VLIW core [2] and more recently with NVidia’s Denver
architecture for the ARM ISA [3]. Because the DBT process
is directly managed by the hardware (and thus transparent to
the user), we will refer to such architecture as codesigned
machines.

In a codesigned machine, the DBT involves additional
computation at run-time to translate and optimize the binaries,
which negatively impacts the performance. In the meantime,

taking advantage of the VLIW core implies costly compiler
optimizations (instruction scheduling, etc.). Because of this,
designing an efficient DBT is very challenging, yet little is
known about existing commercial implementations.

As of today, the performance of codesigned machines falls
behind that of an OoO core. There is empirical evidence
[4] that this performance gap is mostly due to speculative
execution abilities in OoO cores. To close this performance
gap, the DBT process must, therefore, use similar techniques.

In this work, we study how memory speculation can be
implemented in codesigned machines. The proposed system
dynamically identifies speculation groups and generates spec-
ulative code, along with support for rollback. Misspeculations
are dynamically detected through a light-weight hardware
mechanism which shares similarity with OoO Load-Store
Queues (LSQ). Because the speculation process is managed
by the DBT engine, it offers a fine grain control, enabling
iterative continuous optimization. Our flow was implemented
within Hybrid-DBT [5], an open-source codesigned machine
aimed at supporting research on the topic. More specifically,
our contributions are the following:

• An complete open-source implementation of memory de-
pendence speculation in a codesigned machine, including
modifications to the host VLIW core and to the hardware
accelerated DBT.

• A quantitative analysis of the performance benefits and
area overhead of the approach, along with a comparison
against reference RISC-V implementations.

The remaining of this document is organized as follows :
section II presents the hardware and software modifications on
Hybrid-DBT and Section III presents the experimental study
we conducted.

II. PROPOSED APPROACH

In this section, we describe how we support speculative
memory accesses in the Hybrid-DBT framework. Our ap-
proach builds on the notion of memory instruction groups,
which consists of a set of load/store operations where load
instruction can be speculatively executed before stores. In the
following, we summarize how misspeculated operations are
detected and corrected by our modified DBT flow depicted in
Figure 1.

• The whole speculation process is managed by the soft-
ware optimizer, running on the DBT processor. It is
in charge of building speculation groups and deciding



whether speculation should be activated (or not). A more
detailed description of this stage is provided in Section
II-A.

• We extended our current processor design with a Par-
titioned Load-Store Queue (PLSQ), which we use to
dynamically detect misspeculations. The PLSQ is also
used to profile memory operations and detect frequently
aliasing accesses. More details on the PLSQ are provided
in Section II-B.

Scheduler

DBT 

processor masks

ld
ld

x
+
+

br st

binaries

VLIW Binaries

Decode

mask

PLSQ
Spec 

info
#spec

#miss

Fig. 1. Overview of the HW/SW co-designed system. It is composed
of the DBT processor assisted by a hardware scheduler, the VLIW core
with additional support for speculation: Partitioned Load/Store Queue and
execution mask.

A. Overview of the speculation process

The speculation process is executed during the second op-
timization level in Hybrid-DBT. At this stage, the CFG of hot
procedures has been built and inter-block optimizations have
been applied. The first step consists of building speculation
groups on frequently executed blocks. A speculation group is a
set of store and load operations, where the loads are scheduled
after the stores in the original machine code. We allow a given
store instruction to be present in only one speculation group,
as the group ID is explicitly encoded in the instruction. While
building the speculation groups, we have to handle the limited
size of the PLSQ: if the DBT finds more memory accesses than
what can be stored in a single bank of the PLSQ, it creates
another speculation group, which is assigned to another bank.
The number of speculation groups inside a single block of
binaries cannot be greater than the number of bank in the
PLSQ.

Once speculation groups have been built by software DBT,
instructions are scheduled without speculation, and profiling
is activated. During profiling, the PLSQ keep tracks of how
many time memory operations were executed, but also how
often they alias with other accesses. This profiling information
is stored within the spec Info memory.

In the meantime, the software DBT regularly checks all
active speculation groups, and based on the profiling in-
formation, decides whether speculation (for a given group)
should be triggered or not. When speculation is activated, the
store to load dependencies in the target speculation group are
removed from the Intermediate Representation. The block is
then re-scheduled. In this version, speculative loads are flagged
with a rollback mask (stored within the spec Info memory),
which specifies the ID of the speculation group to which it

is associated (these instructions will have to be re-executed
when misspeculating).

During execution, addresses are checked by the PLSQ.
Whenever aliasing is detected, the PC is reset back to the
faulty load operation and the basic block is re-executed using
the speculation mask. This ensures a coherent machine state
when reaching the speculative store.

A key issue is how to choose the threshold that controls
the activation/deactivation of the speculation process. In our
implementation, speculation is activated when a speculation
group has been used more than 70 times with an alias-
ing rate below 10%. In contrast, speculation is deactivated
whenever the aliasing rate increases above 15%. Deactivat-
ing/reactivating speculation for the same group too frequently
would trigger the scheduling process too often. Similarly,
using a higher aliasing rate threshold would increase the cost
of rollbacks. It is to note that to obtain the best possible
performance this aliasing rate threshold should be chosen on a
per-application basis, as rollback cost is not always the same.

B. Partitioned Load Store Queue

In order to dynamically check that the memory dependency
speculation is correct, the VLIW core is extended with a
Partitioned Load Store Queue (PLSQ). Whereas traditional
Load Store Queues check and record every memory operation,
our PLSQ is used in a software controlled environment.
Consequently, we opted for a partitioned load/store queue,
where smaller banks are built to handle a single speculation
group. This design reduces the area cost of the PLSQ. The
list of memory operations to check is built by the software
optimizer and is finely controlled to fit into one bank. The
number of bank in the PLSQ defines the number of concurrent
speculation groups.

Spec info

#use

#fail

mask

Bank 1

init

specId

specInfo

[256]

mask

Bank 2

mask

Bank 3

mask

#failures
#uses

#failures
#uses

#failures
#uses

@
d

a
ta

w
ri

te

clear

Fig. 2. Global view of the Partitioned Load Store Queue with three banks

The organization of the PLSQ is depicted in Figure 2 with
three banks. It embeds a small memory block specInfo which
contains information on speculation groups: the number of use,
of aliasing and the rollback mask. When a specInit instruction
is executed, the 8-bit address contained in the instruction is
used to load this information from the memory and initialize
the bank identified by specId. The software controlled PLSQ
interacts with the VLIW processor through different custom
instructions:

• Instruction specInit is used to bind a given bank of the
PLSQ with a speculation group. It uses an 8-bit address to
refer to the correct speculation group in spec Info memory
and a specId field to identify the bank to use.



• Instruction specClear resets a bank of the PLSQ, iden-
tified by the specId field and increments the number of
use of the associated speculation group.

• Speculative loads and stores have a field specId to iden-
tify the speculation bank to use and a bit set to specify
if the incoming address should be added in the PLSQ or
if the address should be checked.

Address & ages

==

==

==

==

==

==

rollback
incr

incr

==
specId

address

clear

#failures

#uses

add

Fig. 3. Organization of a single bank of the PLSQ.

The internal organization of a given bank is shown in
Figure 3. Each bank contains (i) two counters (for the number
of aliasing and the number of uses), (ii) a set of registers to
store the hashed addresses along with the ages of previous
speculative instructions and (iii) parallel compare units to
check if a given address conflicts with a stored address.

When a speculative memory operation occurs, the add bit is
used to indicate if the new address has to be added to the queue
or if it has to be checked. If this add bit is set, the hashed
address is pushed to the queue. Note that we use the PLSQ
for two purposes: detecting aliasing during speculation but
also monitor addresses to detect speculation group candidates.
During the speculation phase, memory loads are kept in the
PLSQ and verified against the store instructions. During the
profiling step, memory stores are kept in the PLSQ and verified
against memory loads. Its age bit is then set. If the add bit
is unset, the hashed address is compared with all the hashed
addresses stored in the queue, whose age bit is equal to one.
If any of these hashes matches, the rollback signal is set to
one. On a clear instruction, all ages stored in the queue are set
to zero. The bank also uses two registers to count the number
of time a speculation area is used (i.e. the number of clear
instruction on the bank) and the number of times rollback is
triggered.

III. EXPERIMENTAL RESULTS

This section provides a quantitative and comparative analy-
sis of the benefit for our memory speculation technique. Our
aim is to evaluate both performance gain and area overhead,
but also to compare our results against other types of micro-
architectures.

These benchmarks have been compiled using the RISC-V
GCC tool-chain, with the O3 optimization flag. The generated
binaries have been used for all the experiments, with different
cycle accurate models. To measure the hardware area, we
synthesized the different components with Design Compiler,
targeting STMicroelectronics 28 nm technology.

A. Performance results
The first experiment conducted is focused on the perfor-

mance of our system. We try to highlight i) the performance

improvement of our system coming from the new speculation
process, ii) how the system compares to a platform similar to
the big.LITTLE. To answer those two questions, we measured
the performance of all benchmarks using the different simu-
lators. For Hybrid-DBT results, we made the first experiment
without the speculation process and another with it.

Figure 4 shows the results obtained during this experiment.
Our results show that our memory speculation leads to a
geomean speed-up of 10% compared with the Hybrid-DBT
framework without speculation. We can observe that our
approach brings speed-up from most of Polybench applica-
tions. Indeed, the speculation was correctly applied to the
most critical loops of the system. However, we notice several
applications where no improvements were observed (from
deriche to seidel). Figure 4 also provide a comparison with
other micro-architectures. It is interesting to note that, for
several kernels, Hybrid-DBT can outperform an OoO core.

B. Area overhead

The first experiment demonstrated that the speculation pro-
cess brought a speed-up in the execution of benchmark appli-
cations. However, our approach also has a cost in hardware.
We measured the size of the different hardware components
added or modified in the system.

As a baseline, we provide the size of the VLIW core as
well as the size of in-order and out-of-order cores. We also
synthesized BOOM load/store queue alone.

Area results are displayed in Figure 5. The first observation
to do is the difference between the LSQ and the PLSQ, which
is around 7× smaller. This is mainly because we do not use
store and data queue and because our queue is partitioned,
which reduces the number of address comparisons address to
do in parallel. We can also observe that the combination of
the PLSQ, the extra memory Spec Info and the IR Scheduler
only represents 17% of the VLIW size and the combination is
smaller than the BOOM LSQ. It is important to remind that
an LSQ in an OoO core cannot work properly without the re-
order buffer. As a comparison, OoO core is around 5× larger
than the VLIW core, with comparable execution units.

IV. RELATED WORK

In this section, we discuss prior work on memory depen-
dency speculation in the context of DBT toolchains.

A. Dynamic Binary Translation

Previous work on Dynamic Binary Translation mainly fo-
cused on executing legacy binaries on an in-order VLIW pro-
cessor [2], [3]. Transmeta Code Morphing Software (CMS) is
used to execute x86 binaries on custom VLIW cores, which are
called Crusoe and Efficeon [2]. NVidia’s Denver architecture
is a 7-issue in-order core capable of translating and executing
ARM instructions [3]. Those two processors claim a form of
memory dependency speculation. Transmeta’s Crusoe proces-
sor has access to special load and store operations, which
check if an aliasing occurred. However, there is no detailed
information on the actual organization of the table used to
keep these addresses. Crusoe and Efficeon architectures both



0

0,5

1

1,5

Speed-up
inO core Hybrid-DBT w/o spec Hybrid-DBT with spec OoO core

Polybench Mediabench

Fig. 4. Speed-up for the different applications, using the non-speculative Hybrid-DBT as a baseline (higher is better)

0

50000

100000

150000

Rocket VLIW BOOM Hybrid-DBT

450000

500000

550000 LSQ/PLSQ

Spec Info

IR Scheduler

Core

Area cost

(µm2)

Fig. 5. Area cost of the different components.

have access to a shadow register file with special commit
and rollback instructions, which facilitate rollback in case
of misspeculation [2]. NVidia’s Denver architecture would use
mechanisms similar to those done for the EPIC architecture,
that is a mechanism similar to the memory conflict buffer
[6], [7]. Again, there is no detailed information on the actual
implementation and its effectiveness.

The only open codesign machine framework we are aware
of is Hybrid-DBT [5], which does not support speculative ex-
ecution. In addition to being open-source, we provide precise
result on performance and area overhead.

B. Memory dependency speculation

The emergence of EPIC architectures (e.g. Itanium) in the
late 90’s raised the issue of efficient speculative execution
for in-order processors [7], [8]. For example, Gallagher et
al. proposed to use a Memory Conflict Buffer (MCB) to
record the address of speculative load in order to check for an
potential aliasing. This approach has strong similarities with
our approach, but with a few key differences. MCB is based
on a set-associative structure that assigns load to a given bank.
If this bank is full when a load is executed, a previous one
has to be removed. This triggers the rollback process to ensure
that the execution is safe. Of course, the table has to be large
enough to reduce the number of unnecessary rollbacks, which
is not the case in our approach. The second difference lies
in the way rollback is handled: the MCB approach relies on
compiler generated correction code to handle these situations,
leading to an increased binary size. In their experimental study,
the geometric mean of this augmentation is 10%. On the
contrary, our approach is based on rollback masks, which are
generated by the IR Scheduler without code size overhead.

The most obvious difference lies in their use of a static
compilation. Indeed, the MCB approach relies on the static

compiler to detect eligible load instructions, to schedule in-
structions and to generate correction code [6]. Relying on
the compiler implies that the technique cannot be applied to
legacy code. In contrast, our technique is based on DBT and,
consequently, is totally transparent to the end-user.

V. CONCLUSION

In this work, we proposed a technique to support speculative
memory access in a codesigned machine framework. Our
approach uses a mix of software and hardware to enable ag-
gressive speculation while minimizing overheads. Our results
show that performance improvements of 10% can be achieved
on compute intensive kernels with regular control flow for an
area overhead below 7%. They also suggest that the impact of
memory speculation on performance is severely limited by the
lack of support for traces/hyperblocks [9]. As a future work,
we will investigate the possibility of building traces based on
dynamic information, as in [10].

REFERENCES

[1] P. Greenhalgh, “Big.LITTLE Processing with ARM Cortex-A15 &
Cortex-A7,” ARM White Paper, 2011.

[2] J. C. Dehnert, B. K. Grant, J. P. Banning, R. Johnson, T. Kistler,
A. Klaiber, and J. Mattson, “The Transmeta Code MorphingTM Soft-
ware: Using Speculation, Recovery, and Adaptive Retranslation to
Address Real-Life Challenges,” in CGO’03, IEEE Computer Society.

[3] D. Boggs, G. Brown, N. Tuck, and K. S. Venkatraman, “Denver: Nvidia’s
First 64-bit ARM Processor,” in IEEE Micro 2015, vol. 35, pp. 46–55.

[4] D. S. McFarlin, C. Tucker, and C. Zilles, “Discerning the Dominant
Out-of-order Performance Advantage: Is It Speculation or Dynamism?,”
ASPLOS ’13, pp. 241–252, ACM.

[5] S. Rokicki, E. Rohou, and S. Derrien, “Hybrid-DBT: Hardware/Software
Dynamic Binary Translation Targeting VLIW,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, pp. 1–1.

[6] A. S. Huang, G. Slavenburg, and J. P. Shen, “Speculative Disambigua-
tion: A Compilation Technique for Dynamic Memory Disambiguation,”
in ISCA’94, pp. 200–210, IEEE Computer Society Press.

[7] D. I. August, D. A. Connors, S. A. Mahlke, J. W. Sias, K. M.
Crozier, B.-C. Cheng, P. R. Eaton, Q. B. Olaniran, and W.-m. W. Hwu,
“Integrated Predicated and Speculative Execution in the IMPACT EPIC
Architecture,” in ISCA ’98, pp. 227–237, IEEE Computer Society.

[8] H. Sharangpani and H. Arora, “Itanium Processor Microarchitecture,”
in IEEE Micro 2000, vol. 20, pp. 24–43.

[9] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A.
Bringmann, “Effective Compiler Support for Predicated Execution Using
the Hyperblock,” in IEEE Micro 1992, MICRO 25, pp. 45–54.

[10] M. T. Yourst and K. Ghose, “Incremental Commit Groups for Non-
Atomic Trace Processing,” in IEEE Micro 2005, pp. 12 pp.–80.


