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CYCLICITY IN DIRICHLET TYPE SPACES

K. KELLAY, F. LE MANACH & M. ZARRABI

Dedicated to Thomas Ransford on occasion of his 60th birthday.

Abstract. We study the cyclicity in the Dirichlet type spaces for outer functions with
zeros set is countable.

1. Introduction and main result

Let X be a Banach space of functions holomorphic in the open unit disk D, such that
the shift operator S : f(z)→ zf(z) is a continuous map from X into itself. Given f ∈ X,
we denote by [f ]X the smallest closed S–invariant subspace of X containing f , namely

[f ]X = {pf : p is a polynomial}.

We say that f is cyclic in X if [f ]X = X.

The problem of cyclic vectors in the Dirichlet spaces goes back to the work of Beurling
and Carleson (see [1, 3]). The classical Dirichlet space D consists of holomorphic functions
on the unit disc whose derivatives are square integrable. While Beurling characterizes
cyclic vectors in the Hardy space H2, the problem of characterizing the cyclic vectors
in the Dirichlet space D is much more difficult. Beurling’s theorem says that the cyclic
vectors in H2 are the outer functions. On the other hand we know that there are outer
functions in the Dirichlet space which are not cyclic in D. In fact, the cyclicity of such a
function depends on the distribution of the zeros of the radial limit f ∗ of f on the unit
circle. The Brown–Shields conjecture [11] claims that f ∈ D is cyclic iff f is an outer
function and the set of all zeros of f ∗ is a set of logarithmic capacity zero. A partial
(positive) answer to this conjecture was given in [8, 7]. We mention the results of Beurling
[1] about the boundary behavior for the functions of the Dirichlet spaces: if f ∈ D we
write f ∗(ζ) = limr→1− f(rζ), then the radial limit f ∗ exists –q.e on T, that is f ∗ exists
outside a set of capacity logarithmic zero. As a consequence of weak-type inequality the
invariant subspace DE defined by

DE = {f ∈ D, f ∗|E = 0 q.e.}
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is closed in D. Carleson in [3] proved that for every closed subset E of the unit circle which
has zero logarithmic capacity, there exists a cyclic function in D which vanishes on E.

When the set of zeros of f ∗ is countable, Brown and Shields showed that if f is regular
and outer then f is cyclic. Hedenmalm and Shields showed in [11] that this remains true
when f ∈ D ∩ A(D) where A(D) is the disc algebra. Finally Richter and Sundberg [13]
showed that this is still true when f is only in Dirichlet space. When the set of zeros of f ∗

is not countable see [6, 7, 8] in the case of the classical Dirichlet space D2
0 and [9] in the

case of D2
α, 0 < α < 1.

In this paper we are interested in cyclicity, in more general Dirichlet spaces, of outer
function such that the zero set countable. We now introduce some notations. The Dirichlet
space Dpα with p ≥ 1 and α > −1 is given by

Dpα =

{
f ∈ Hol(D) : ‖f‖pDpα = |f(0)|p +

∫
D
|f ′(z)|pdAα(z) <∞

}
.

where dAα denote the finite measure on the unit disc D given by

dAα(z) := (1 + α)(1− |z|2)αdA(z),

and dA(z) = dxdy/π stands for the normalized area measure on D. If p = 2 and α = 1,
then D2

1 is the Hardy space H2 and the classical Dirichlet space corresponds to p = 2 and
α = 0, D2

0 = D. The following theorem is the main result of this paper.

Theorem. Let p > 1 such that α + 1 < p ≤ α + 2 and let f ∈ Dpα ∩ A(D). If f is outer
and Z(f) is countable then f is cyclic in Dpα.

Notice that when 1 < p < α+1, Hp(D) is continuously embedded in Dpα and every outer
function f ∈ Hp(D) is cyclic for Dpα (Proposition 3.1). On the other hand when p > α+ 2

then every function which vanishes at least at one point is not cyclic in Dpα.

The method used for the proof of Theorem 3.10 is inspired by that of the Hedenmalm
and Shields [11] in the case of the classical Dirichlet space and the paper [8] .

Throughout the paper, we use the following notations:
• A . B means that there is an absolute constant C such that A ≤ CB.
• A � B if both A . B and B . A hold.

2. Dirichlet space and duality

The Bergman spaces Apα with p ≥ 1, α > −1 is given by

Apα(D) =

{
f ∈ Hol(D), ‖f‖pApα =

∫
D
|f(z)|pdAα(z) <∞

}
.
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We define the Bergman spaces Apα(De) on the exterior disk De = (C∪{∞}) \D with p ≥ 1

and α > −1 by

Apα(De) =

{
g ∈ Hol(De), g(∞) = 0 and ‖g‖pApα =

∫
De
|g(z)|p (|z|2 − 1)α

|z|4−p+2α
dA(z) <∞

}
.

Note that Apα(D) and Apα(De) are isometrically isomorphic via the isometry R : f 7→ Rf

defined on Apα(D) by

(2.1) Rf(z) =
1

z
f

(
1

z

)
, z ∈ De.

Indeed, by the variable change z 7→ 1/z,∫
D
|f(z)|pdAα(z) =

∫
De
|f(1/z)/z|p (|z|2 − 1)α

|z|4−p+2α
dA(z)

Futhermore if f =
∑

n≥0 anz
n ∈ Apα(D) then by (2.1)

(2.2) Rf(z) =
∞∑
n=0

an
zn+1

, z ∈ De.

Denote by S the shift operator on Apα(D) for p ≥ 1 and α > −1, that is the multiplication
by z on Apα(D). Let S∗ denote the backward shift, that is

S∗f(z) =
f(z)− f(0)

z
.

Notice that S∗ is continous on Apα(D) for p ≥ 1 and α > −1. Indeed, for f ∈ Apα(D) we
get by subharmonicity ([12, proposition 1.1]) that∣∣∣∣f(z)− f(0)

z

∣∣∣∣ ≤ sup
|w|≤1/2

|f ′(w)| . ‖f‖Apα(D), |z| < 1/2.

Since f 7→ f(0) is countinuous on Apα(D) ([12, proposition 1.1]), we have

‖S∗f‖pApα ≤
∫
|z|≤1/2

‖f‖pApαdAα(z) + 2p
∫
1/2<|z|<1

|f(z)− f(0)|pdAα(z)

. ‖f‖pApα(D) + ‖f − f(0)‖pApα(D)

. ‖f‖pApα(D).

From now we suppose that p > 1 and we denote by q = p
p−1 .

Lemma 2.1. Suppose that −1 < α < p− 1. Then 〈·, ·〉 defined on Dpα ×A
q
−αq/p(D) by

(2.3) 〈f, g〉 =

∫
D
f ′(z)S∗g(z)dA(z) + f(0)g(0), f ∈ Dpα, g ∈ A

q
−αq/p(D),
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is linear on the left, antilinear on the right and

|〈f, g〉| . ‖f‖Dpα ‖g‖Aq−αq/p(D).

Proof. Since −αq/p > −1, (f, g)→ 〈f, g〉 is well defined. Clearly this map is linear on the
left and antilinear on the right. It is therefore sufficient to show that

|〈f, g〉| . ‖f‖Dpα ‖g‖Aq−αq/p(D).

Using Hölder inequality and the fact that the maps S∗ and f 7→ f(0) are continuous on
the space Aq−αq/p(D), we get

|〈f, g〉| ≤
∫
D
|f ′(z)|(1− |z|

2)α/p

(1− |z|2)α/p
|S∗g(z)|dA(z) + |f(0)g(0)|

≤
(∫

D
|f ′(z)|pdAα(z)

)1/p(∫
D
|S∗g(z)|qdA−αq/p

)1/q

+ |f(0)||g(0)|

≤ ‖f‖Dpα ‖S
∗g‖Aq−αq/p(D) + |f(0)||g(0)|

. ‖f‖Dpα ‖g‖Aq−αq/p(D).

�

The previous lemma shows that 〈·, ·〉 defines a duality between Dpα and Aq−αq/p(D). The
following result shows that Aq−αq/p(D) can be identified as the dual of Dpα.

Proposition 2.2. Let p > 1 and −1 < α < p − 1. The dual of Dpα, noted by Dpα′, is
isomorphic to Aq−αq/p(D).

Proof. We will show that the application g 7→ 〈·, g〉 is an isomorphism of Aq−αq/p(D) in Dpα′
the dual of Dpα. This application is well defined, antilinear, continuous and injective. Let’s
show that it’s surjective. Take L in Dpα′. For all f ∈ Apα(D), we consider F the primitive
of f on D such that F (0) = 0. It’s easy to see that F ∈ Dpα. We define the application L0

on Apα(D) by L0(f) = L(F ). Thus L0 belong to the dual of Apα(D) since

|L0(f)| = |L(F )| ≤ ‖L‖‖F‖Dpα = ‖L‖‖f‖Apα .

By the Hahn-Banach theorem, L0 extends to Lpα(D) = Lp(D, dAα) in a countinous linear
form L̃0. By Riesz representation theorem, there exists ψ0 ∈ Lp−αq/p(D) = Lpα(D)′ such that
for any g ∈ Lpα(D),

L̃0(g) =

∫
D
g(z)ψ0(z)dA(z).

Let P be the linear map defined by

P : f 7→
(
z 7→

∫
D

f(w)

(1− zw)2
dA(w)

)
.
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According to [12, Théorème 1.10], P is a bounded projection from Lsγ(D) onto Asγ(D) for
γ < s− 1 which is the case when (s, γ) = (p, α) and (s, γ) = (q,−αq/p). Set ψ = P (ψ0) ∈
Aq−αq/p(D). So fo f ∈ Apα(D), we get

L0(f) = L̃0(f) =

∫
D
f(z)ψ0(z)dA(z)

=

∫
D

∫
D

f(w)

(1− zw)2
ψ0(z)dA(w)dA(z)

=

∫
D
f(w)

∫
D

ψ0(z)

(1− wz)2
dA(z)dA(w)

=

∫
D
f(w)ψ(w)dA(w).

Thus we showed that there is ψ ∈ Aq−αq/p(D) such that for any F ∈ Dpα with F (0) = 0, we
have

L(F ) =

∫
D
F ′(z)ψ(z)dA(z).

Set ϕ(z) = zψ(z) + L(1) ∈ Aq−αq/p(D). We have S∗ϕ = ψ. Hence for h ∈ Dpα
L(h) = L(h− h(0)) + L(h(0))

=

∫
D
h′(z)ψ(z)dA(z) + h(0)L(1)

=

∫
D
h′(z)S∗ϕ(z)dA(z) + h(0)ϕ(0) = 〈h, ϕ〉.

This shows that the application g 7→ 〈·, g〉 is surjective and defines an isomorphism from
Aq−αq/p(D) onto Dpα′. �

Remarks. If p > 1 and α < p − 1, the dual of Dpα is identified as Aq−αq/p(D). Also the
spaces Aq−αq/p(D) and Aq−αq/p(De) are isomorphic, so we can identify the dual of Dpα with
Aq−αq/p(De) by the duality

〈f, g〉e = 〈f,R−1g〉, f ∈ Dpα, g ∈ A
q
−αq/p(De).

In the following we will introduce the tools to use the Hedenmalm and Shields Theorem
[11, Theorem 1]. For all ϕ ∈ Dpα′, we set

ϕ̃(λ) = 〈fλ, ϕ〉, λ ∈ De

where fλ is given by
fλ(z) = (λ− z)−1, z ∈ D.

We define then as in [11]
Dpα
∗ =

{
ϕ̃, ϕ ∈ Dpα

′} .
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Let ϕ ∈ Dpα′, we have

ϕ̃(λ) =

〈
∞∑
n=0

zn

λn+1
, ϕ

〉
=
∞∑
n=0

〈zn, ϕ〉
λn+1

.

We identify ϕ as an element of Aq−αq/p(D) that we write

ϕ(z) =
∑
n≥0

anz
n, z ∈ D.

So if n = 0, 〈zn, ϕ〉 = ϕ(0) = a0 and if n ≥ 1,

〈zn, ϕ〉 =

∫
D
nzn−1S∗ϕ(z)dA(z)

=

∫
D
nzn−1

∞∑
m=1

am zm−1dA(z)

=
∞∑
m=1

nam

∫ 1

0

∫ 2π

0

rn+m−2eiθ(n−m)dθ/π rdr

= an

∫ 1

0

2nr2n−1dr = an.(2.4)

Thus for λ ∈ De,

ϕ̃(λ) =
∞∑
n=0

an
λn+1

.

Moreover, according to (2.2), we also have

Rϕ(λ) =
∞∑
n=0

an
λn+1

, λ ∈ De.

So
Dpα
∗ = Aq−αq/p(De).

The following lemma will be useful for expressing duality (voir [11, Lemma 3]).

Lemma 2.3. Let p > 1 and −1 < α < p − 1. Let f ∈ Dpα and g ∈ Aq−αq/p(De). For
0 ≤ r < 1, we set

fr(z) = f(rz), z ∈ D and g1/r(z) = g(z/r), z ∈ De.

Then

〈f, g〉e = lim
r→1−
〈fr, g1/r〉e = lim

r→1−

∞∑
n=0

anbnr
n = lim

r→1−

1

2π

∫ 2π

0

f(reiθ)g(eiθ/r)eiθdθ.

where f(z) =
∑∞

n=0 anz
n and g(1/z) =

∑∞
n=0 bnz

n+1, z ∈ D.
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3. Cyclicity in Dpα
We start this part by comparing the spaces Dpα and the Hardy spacesHp(D). We suppose

p ≥ 1 and α > −1. Let H∞(D) be the algebra of bounded analytic functions on the open
unit disc D and let Hp(D) be the Hardy space of analytic functions f on D such that

‖f‖Hp = sup
r<1

Mp(f, r) <∞,

where

Mp(f, r) =

(
1

2π

∫ 2π

0

|f(reiθ)|pdθ
)1/p

.

Let N be the Nevanlinna class of analytic functions f on D for which

sup
r<1

∫
T

ln+ |f(rζ)||dζ| <∞.

By Fatou’s Theorem, the radial limit f ∗(ζ) = limr→1− f(rζ) exists a.e on T and ln |f ∗| ∈
L1(T). Recal that f ∈ N if and only if f = ϕ/ψ, where ϕ, ψ ∈ H∞(D).

Let N + be the Smirnov class of analytic functions f ∈ N such that

sup
r<1

∫
T

ln+ |f(rζ)||dζ| =
∫
T

ln+ |f ∗(ζ)||dζ|.

The function f ∈ N + if and only if f = ϕ/ψ where ϕ, ψ ∈ H∞(D) and ψ is an outer
function that is ψ has the form

ψ(z) = exp

∫
T

ζ + z

ζ − z
logψ∗(ζ)

|dζ|
2π

, z ∈ D.

A function f ∈ Hp(D) is cyclic for Hp(D) if and only if f is outer [?, 4.8.4]. We then
study the different possible inclusions between the spaces Dpα and Hp(D) to obtain first
conditions on the cyclicity in the Dirichlet spaces.

Proposition 3.1. Let p ≥ 1 and α > −1. If p < α + 1 then Hp(D) is continuously
embedded in Dpα. Consequently, if f ∈ Hp(D) is outer then f is cyclic for Dpα.

Proof. Let f ∈ Hp(D), z = reit ∈ D et r < ρ < 1. By Cauchy formula,

f ′(z) =
1

2π

∫ 2π

0

f(ρei(θ+t))

(ρeiθ − r)2
ρei(θ−t)dθ.
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Now, by Minkowski inequality,

Mp(f
′, r) =

(
1

2π

∫ 2π

0

∣∣∣∣ 1

2π

∫ 2π

0

f(ρei(θ+t))

(ρeiθ − r)2
ρei(θ−t)dθ

∣∣∣∣p dt)1/p

≤ ρ

2π

∫ 2π

0

(
1

2π

∫ 2π

0

|f(ρei(θ+t))|p

|ρeiθ − r|2p
dt

)1/p

dθ

≤ 1

2π

∫ 2π

0

ρ

|ρeiθ − r|2
dθ Mp(f, ρ)

=
ρ

ρ2 − r2
Mp(f, ρ) ≤ 1

ρ− r
Mp(f, ρ).

Now letting ρ→ 1, we get

1

2π

∫ 2π

0

|f ′(reiθ)|pdθ ≤ 1

(1− r)p
‖f‖pHp ,

Since p < α + 1,∫
D
|f ′(z)|pdAα(z) =

∫ 1

0

∫ 2π

0

|f ′(reiθ)|pdθ(1− r2)αrdr/π

≤ 2α+1

∫ 1

0

(1− r)α

(1− r)p
dr‖f‖pHp

=
2α+1

α + 1− p
‖f‖pHp .

So Hp(D) is continuously embedded in Dpα. Now the result follows from the fact that an
outer function is cyclic in Hp(D). �

Remark. If p < α + 1, the Dirichlet space Dpα = Apα−p(D), see [16]. Therefore, in this
case, there exists an inner function which is cyclic in Dpα, see [14]. If p > α + 1 we have
the following result.

Proposition 3.2. Let p > 1 and p > α + 1. The Dirichlet space Dpα is continuously
embedded in Hp(D). Therefore if f ∈ Dpα is cyclic in Dpα then f is an outer function.

Proof. Let f ∈ Dpα and r ∈ [1/2, 1[. We have

f(reiθ) =

∫ r

0

f ′(seiθ)eiθds+ f(0).

Note that |f(0)| ≤ ‖f‖Dpα and by subharmonicity, there exists C > 0 such that |f ′(seiθ)| ≤
C‖f‖Dpα , 0 ≤ s ≤ 1/2. So

|f(reiθ)| ≤
∫ r

1/2

|f ′(seiθ)|ds+ (C/2 + 1)‖f‖Dpα .
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By Hölder inequality, and since αq/p = α/(p− 1) < 1,(∫ 2π

0

|f(reiθ)|pdθ
)1/p

.

(∫ 2π

0

(∫ r

1/2

|f ′(seiθ)|ds
)p

dθ

)1/p

+ ‖f‖Dpα

.

(∫ 2π

0

(∫ r

1/2

|f ′(seiθ)|p(1− s2)αds
)(∫ r

1/2

(1− s2)−αq/pds
)p/q

dθ

)1/p

+ ‖f‖Dpα

.

(∫ 2π

0

∫ 1

1/2

|f ′(seiθ)|p(1− s2)α2sdsdθ

)1/p(∫ 1

1/2

(1− s2)−αq/pds
)1/q

+ ‖f‖Dpα

.
(

1− αq

p

)
‖f‖Dpα + ‖f‖Dpα

So ‖f‖Hp . ‖f‖Dpα . Hence if f is cyclic for Dpα then f is also cyclic for Hp(D) and f is
then an outer function. �

Remark. We have D2
1 (D) = H2(D) and D2

0 (D) = D. So if 1 ≤ p ≤ 2 and p = α + 1, we
obtain by interpolation theorem [16, (3.8)]), that Dpα is continuously embedded in Hp(D).
Futhermore if p > α + 2, then Dpα is continuously embedded in H∞(D) (see the prove of
[16, Theorem 4.2]).

We can summarize here all the inclusions obtained:

p < α + 1 =⇒ Hp(D) ⊂ Dpα = Apα−p(D)

1 ≤ p ≤ 2 et p = α + 1 =⇒ Dpα ⊂ Hp(D)

p > α + 1 =⇒ Dpα ⊂ Hp(D)

p > α + 2 =⇒ Dpα ⊂ H∞(D).

We assume in the following that p > α + 1. We will prove that any outer function of
A(D) ∩ Dpα whose set of zeros is reduced to a single point is cyclic in Dpα. For that we will
use a Hedenmalm-Shields Theorem [11, Theorem 1]. We first need to define the following
notions. Let’s say X ⊂ Hol(D) a Banach space. The multiplier of X, noted M(X), is
defined by

M(X) = {ϕ ∈ Hol(D), ϕf ∈ X, ∀f ∈ X}.
If X ⊂ Hol(De) we define in a similar way M(X).
As in [11] we identify the dual X ′ of X with a space X∗ of holomorphic functions on De.
Finally for E ⊂ T a closed set of zero Lebesgue measure, we set

HE(N +, X∗) =
{
ϕ ∈ Hol(C ∪ {∞} \ E), ϕ|D ∈ N +(D), ϕ|De ∈ X∗

}
.
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We note Hol(D), respectively Hol(De), the space of all holomorphic functions in a neigh-
bourhood of D, respectively De.

Theorem 3.3 (Hedenmalm-Shields [11]). Let X ⊂ Hol(D) be a Banach space. Assume
that

(1) The embedding map of X into Hol(D) is continuous and X contains Hol(D) as a
dense subspace

(2) X ∩ A(D) is a Banach algebra, containing Hol(D) as a dense algebra.
(3) Hol(D) ⊂M(X).
(4) Hol(De) ⊂M(X∗) = H∞(De).

If f ∈ X ∩ A(D) is an outer function and if

HZ(f)(N
+, X∗) = {0}

then f is cyclic in X.

Hedenmalm and Shields show that iff ∈ A(D)∩D2
0 (D) is an outer function and Z(f) =

{1} then HZ(f)(N
+,D2

0 (D)∗) = {0} and so f is cyclic (see also aso [8, 6]). We will prove
a similar result for Dpα where α + 1 < p ≤ α + 2.

Theorem 3.4. Let p > 1 and p > α + 1. If f ∈ A(D) ∩ Dpα is outer and if

HZ(f)(N
+,Dpα

∗) = {0}

then f is cyclic on Dpα.

To prove this result, we will use Theorem 3.3. For that we need only to show the following
lemma (see the proof of [5, lemma 11]).

Lemma 3.5. Let p > 1 and α > −1. Then M(Apα(De)) = H∞(De).

Proof. Let f ∈ Apα(De) and g ∈ H∞(De). We have∫
De
|f(z)g(z)|p (|z|2 − 1)α

|z|4−p+2α
dA(z) ≤ ‖g‖p∞‖f‖

p
Apα

So fg ∈ Apα(De) and H∞(De) ⊂M(Apα(De)).

Now let g ∈ M(Apα(De)) and let Mg : Apα(De) → Apα(De) be the operator given by
Mg(f) = fg. By the closed graph theorem, Mg is bounded. For z ∈ De, the linear
functional Λz : Apα(De)→ C defined by Λz(f) = f(z), is continuous ([12, proposition 1.1]).
So for f ∈ Apα(De) and z ∈ De,

|f(z)g(z)| = |Λz(Mgf)| ≤ ‖Λz‖‖Mg‖‖f‖Apα .

Hence
‖Λz‖|g(z)| ≤ ‖Λz‖‖Mg‖



CYCLICITY IN DIRICHLET TYPE SPACES 11

and g ∈ H∞(De). So M(Apα(De)) ⊂ H∞(De). On the other hand the inclusion H∞(De) ⊂
M(Apα(De)) is obvious. �

By identifying the dual of Dpα with Aq−αq/p(De), we have for f ∈ Dpα and ϕ ∈ Aq−αq/p(De),

ϕ ∈
(

[f ]D
p
α

N

)⊥
⇐⇒ 〈znf, ϕ〉e = 0, ∀n ∈ N.

Lemma 3.6. Let p > 1and p > α + 1. Let E ⊂ T a closed set of Lebesgue measure,
ϕ ∈HE(N +,Dpα∗) and f ∈ Dpα. If the family of functions

z ∈ T 7→ f(rz)ϕ(z/r), 1/2 < r < 1,

is uniformly integrable on T. Then ϕ ∈
(

[f ]D
p
α

N

)⊥
.

Proof. This result holds by using the analogue arguments like those in [8, Lemma 3.4] for
the classical Dirichlet space. For the sake of completeness, we put it here. Let f ∈ Dpα and
ϕ|De ∈ Dpα∗ = Aq−αq/p(De). By Proposition 2.3, we have

〈f, ϕ〉 = lim
r→1−

1

2π

∫ 2π

0

f(reiθ)ϕ(eiθ/r)eiθdθ.

By Proposition 3.2, Dpα ⊂ Hp(D) and so f ∗, the radial limite of f , exists a.e on T. Since
ϕ ∈ Hol(C \E) and E is a closed set of Lebesgue measure zero, ϕ(z/r) −→ ϕ(z) exists a.e
on T when r → 1−. So the family of the functions z 7→ f(rz)ϕ(z/r) converges a.e to f ∗ϕ
when r → 1−. By the uniform integrability, this family of functions converges in L1(T)

norm. Then

〈f, ϕ〉 =
1

2π

∫ 2π

0

f ∗(eiθ)ϕ(eiθ)eiθdθ.

Futhermore ϕ ∈ N + and f ∈ Hp(D) ⊂ N +, then fϕ ∈ N +. By Smirnov’s generalized
maximum principl f̂ ∗ϕ(n) = 0

f̂ ∗ϕ(n) = 〈f, ϕ〉 =
1

2π

∫ 2π

0

f ∗(eiθ)ϕ(eiθ)eiθdθ = 0.

Repeating the same argument with f replaced by znf , we get 〈znf, ϕ〉 = 0 for all n ∈ N. �

We have the following classical Lemma

Lemma 3.7. Let p > 1 and p > α + 1. Let E ⊂ T be a closed set of Lebesgue measure
zero and ϕ ∈HE(N +,Dpα∗). Then there exists a constant C > 0 such that

|ϕ(z)| ≤ C

dist(z, E)4
, 1 < |z| < 2.
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Proof. Let ϕ ∈ HE(N +,Dpα∗). Since ϕ|D ∈ N +, ϕ|D = ϕiϕo, where ϕi is an inner
function and ϕo is an outer function in N (see [4, p. 25]). Futhermore, since E has
Lebesgue measure zero , ϕ(z) = ϕ∗(z) = limr→1− ϕ(rz) exists a.e on T. The function
log |ϕ| being in L1(T), we get

|ϕ(z)| ≤ |ϕo(z)| =
∣∣∣∣exp

(
1

2π

∫ 2π

0

eit + z

eit − z
log |ϕ(eit)|dt

)∣∣∣∣
≤ exp

(
1

2π

∫ 2π

0

1− |z|2

|eit − z|2
log |ϕ(eit)|dt

)
≤ exp

(
1− |z|2

(1− |z|)2

∫ 2π

0

∣∣log |ϕ(eit)|
∣∣ dt)

≤ exp

(
2

1− |z|
‖ log |ϕ|‖L1(T)

)
.

≤ exp

(
C1

1− |z|

)
,

for some constant C1 > 0. Let z ∈ De with |z| ≤ 2. The disc of radius (|z| − 1)/2 centered
at z, D(z, (|z| − 1)/2) is contained in De. Since ϕ|De ∈ A

q
−αq/p(De), by subharmonicity of

|ϕ| and for q = p/(p− 1) ≥ 1, we obtain

(|z| − 1)2

4
|ϕ(z)|q ≤ 1

π

∫
D(z,(|z|−1)/2)

|ϕ(w)|qdA(w)

≤ 1

π

∫
D(z,(|z|−1)/2)

|ϕ(w)|q (|w|2 − 1)−αq/p

|w|4−q−2αq/p
|w|4−q−2αq/p

(|w|2 − 1)−αq/p
dA(w)

≤ max(22αq/p, 24−q)

∫
De
|ϕ(w)|q (|w|2 − 1)−αq/p

|w|4−q−2αq/p
dA(w)

≤ max(22αq/p, 24−q)‖ϕ|De‖Bq−αq/p .

So

|ϕ(z)| ≤ C2

(|z| − 1)2
, 1 < |z| ≤ 2,

for some constant C2 > 0. Since log |ϕ| is subharmonic function, By Taylor-Williams
estimates [15, lemma 5.8 and 5.9] and [6, Lemma 9.6.5], we get the lemma. �

The following result allows us to reduce the study of cyclic vectors vanishing on a closed
set E to the study of cyclicity of a particular specific functions. More precisely we have

Theorem 3.8. Let p > 1 and p > α+1. Let f ∈ Dpα and E ⊂ T be a closed set of Lebesgue
measure zero. If there exists a constant C1 > 0 such that,

|f(z)| ≤ C1 dist(z, E)4, z ∈ D,
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then
HE(N +,Dpα

∗) ⊂
(

[f ]D
p
α

N

)⊥
.

This means that for all g ∈HE(N +,Dpα∗), g|De ∈
(

[f ]D
p
α

N

)⊥
i.e.

〈znf, g|De〉e = 0, ∀n ∈ N.

Proof. Let ϕ ∈HE(N +,Dpα∗). By lemma 3.7, there exists a constant C2 > 0 such that

|ϕ(z)| ≤ C2

dist(z, E)4
, 1 < |z| < 2.

So for 1/2 < r < 1 and z ∈ T, we have

|f(rz)ϕ(z/r)| ≤ C1C2
dist(rz, E)4

dist(z/r, E)4
≤ C1C2.

The familly of the functions z 7→ f(rz)ϕ(z/r) is uniformly integrable on T pour 1/2 < r <

1, thus by Lemma 3.6, ϕ ∈
(

[f ]D
p
α

N

)⊥
, which finishes the proof. �

Corollary 3.9. Let p > 1 such that α + 1 < p ≤ α + 2. We have

H{1}(N
+,Dpα

∗) = {0}.

Proof. Let f(z) := (z − 1)4. We have f ∈ Dpα and |f(z)| ≤ |z − 1|4. By Theorem 3.8 ,

H{1}(N
+,Dpα

∗) ⊂
(

[f ]D
p
α

N

)⊥
.

It suffices to prove that f is cyclic. Let ϕ ∈ Aq−αq/p(D) such that

〈zn(z − 1), ϕ〉 = 0, ∀n ∈ N.

Write ϕ(z) =
∑

n≥0 anz
n, we get by (2.4),

an = 〈zn, ϕ〉 = 〈zn+1, ϕ〉 = an+1.

Then

ϕ(z) =
∞∑
n=0

anz
n =

a0
1− z

, z ∈ D.

Suppose that ϕ 6= 0. Since ϕ ∈ Aq−αq/p(D), we have

(3.1)
∫
D

(1− |z|2)−αq/p

|1− z|q
dA(z) <∞,

and so q+ αq/p < 2 (see [12, Theorem 1.7]), which contradicts the assuptions on p and α.
So ϕ = 0 and [z − 1]D

p
α

N = Dpα. In particular z − 1 ∈ [(z − 1)2]D
p
α

N and then

[(z − 1)2]D
p
α

N = [z − 1]D
p
α

N = Dpα.
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With the same argument we obtain

[(z − 1)4]D
p
α

N = Dpα,

and f(z) = (z − 1)4 is cyclic in Dpα. �

Remark. The proof of the previous result also gives us that for p > α + 2, the function
f(z) = z − 1 is not cyclic in Dpα. Indeed by (3.1), ϕ(z) = 1/(1 − z) ∈ Aq−αq/p(D) and
ϕ ⊥ znf , n ∈ N. More generally if f ∈ A(D) ∩ Dpα with f(1) = 0, then f is not cyclic in
Dpα. Indeed for p > α + 2, we have Dpα ⊂ H∞(D) with ‖ · ‖H∞ . ‖ · ‖Dpα which implies

[f ]D
p
α

N ⊂ {g ∈ A(D), g(1) = 0}.

Theorem 3.10. Let p > 1 such that α+ 1 < p ≤ α+ 2 and let f ∈ A(D)∩Dpα. If f is an
outer function and Z(f) is countable then f is cyclic in Dpα.

Proof. Since Z(f) is countable, by [2, Theorem 3] it suffices to prove the theorem when the
zero set is reduced to a single point. The result now follows by Theorem 3.4 and Corollary
3.9. �
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