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ABSTRACT
The paper deals with the kinematic sensitivity of robotic ma-

nipulators to joint clearances. First, an error prediction model

applicable to both serial and parallel manipulators is devel-

oped. A clearance model associated with axisymmetrical joints,

which are widely used in robotic manipulators, is also proposed.

Then, two nonconvex quadratically constrained quadratic pro-

grams (QCQPs) are formulated in order to find the maximum

reference-point position error and the maximum orientation er-

ror of the moving-platform for given joint clearances. Finally,

the contributions of the paper are highlighted by means of two

illustrative examples.

INTRODUCTION
Accuracy is one of the key features that favor robotic

manipulators for many industrial applications. Superior levels of

accuracy are achieved by controlling or measuring all possible

sources of errors on the pose of the moving platform1 of

a robotic manipulator. Among the most important sources

of errors, we find manufacturing errors, assembly errors,

compliance in the mechanical architecture, resolution of the

servoactuators, backlash in the reductors, and clearances in the

joints. As indicated in refs. [1, 2], the errors due to manufac-

turing, assembly and compliance can be compensated through

1In this paper, the end effector of a serial manipulator is referred to as its

moving platform.

calibration and model-based control. Joint clearances, on the

contrary, exhibit low repeatability, which generally makes their

compensation difficult. For this reason, the focus of this paper

is the impact of joint clearances on the pose errors of serial and

parallel-mechanism moving platforms.

Joint clearances introduce extraneous degrees of freedom

between two connected links. When present, they generally

contribute importantly to the degradation of the performance

of a mechanism. Besides increasing the point-position and

orientation errors of the end effector of a mechanism, they

may cause impacts and faster wear of the joints. Because of

these undesirable effects, machine designers can eliminate

clearances by preloading the pairing elements. However, with

preloaded joints, a parallel mechanism is difficult to assemble,

as it requires high tolerances and manufacturing costs. When

the parallel mechanism is overconstrained, it may even lose

degrees of mobility or be impossible to assemble. As a result,

joint clearances can be essential for proper functioning of certain

mechanisms, but they cannot be neglected when evaluating their

accuracy.

We may file the various approaches that have been proposed

to compute and quantify the errors due to joint clearances into

two categories: stochastic [3] and deterministic [4–9]. In this

paper, we focus on deterministic methods, which generally allow

to draw firm bounds on the pose errors given possible ranges for
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the clearances.

Wang and Roth [4] essentially proposed a model for

clearances in revolute joints embodied as journal bearings.

The effect of these clearances under a given wrench applied

at the moving platform of a robotic manipulator was then

computed by Innocenti [6]. Other researchers attempted to

decouple the effect of clearances from the wrench applied at

the moving platform by computing all its possible displacements.

This is what was done by Voglewede and Ebert-Uphoff [7],

who used workspace generation techniques in order to compute

the boundary of the set of moving-platform displacements

allowed by clearances at the joints. The solution proposed in

ref. [7] is general and very attractive. However, it becomes

computationally intensive when high numbers of joints are

affected by clearances, and the moving-platform displacements

occur in three-dimensional space.

In order to fill this gap, Venanzi and Parenti-Castelli [8]

took advantage of the generally small displacements allowed

by clearances to treat them as small-displacement screws.

The linearized loop-closure equations could then be used to

evaluate the effects of clearances. A method for computing the

maximum values of the moving-platform screw components

due to clearances in a single open kinematic chain was devised.

However, as these authors point out, their method does not

apply to overconstrained parallel mechanisms, since they rely on

the principle of virtual work in order to obtain the relationship

between joint and moving-platform displacements.

Recently, Meng et al. [9] modified the formulation proposed

in ref. [8] and approximated the clearance model proposed

by Wang and Roth [4], which allowed them to formulate the

problem of maximizing the components of the moving-platform

small-displacement screw for any parallel mechanism. The

problems obtained through this reformulation are convex, which

guarantees that any local optimization method will converge to

the global optimum. The results reported by Meng et al. [9] are

very complete, since they provide a fast and efficient method for

computing the effect of clearances on the moving-platform pose

of a robotic manipulator.

Nevertheless, we believe that it would be interesting to

define a minimum number of metrics, in order to draw easily

understandable, global pictures of the effect of clearances on

the moving platform. In previous reports, the effect of joint

clearances is measured sequentially over all the displacement

directions of the moving platform. In space, this gives a total of

six metrics, over which the designer is to base his design of a

robotic manipulator. In this paper, we follow an idea proposed

in ref. [10] and elsewhere for measuring the moving-platform

sensitivity to actuator displacements. In clear, we define two

indices: one for reference-point displacements of the moving

platform, and one for its rotations.

The paper is divided as follows. We first recall the error

prediction model proposed by [8]. We then propose a model of

clearances in axisymmetrical joints that is slightly different from

those reported by [4, 9]. Having formally written all required

models, we define the two proposed indices, which take the form

of nonconvex optimization problems. We then explain the strat-

egy adopted for solving this optimization problem. We finish

with two examples, where we compute the indices for given

poses of a spatial serial 3R manipulator and a planar parallel five-

bar manipulator.

ERROR PREDICTION MODEL

A methodology is introduced is this section to obtain the

variations in the moving platform pose as a function of joint

clearances. In this vein, we consider serial and parallel robotic

manipulators consisting of a fixed base and a moving-platform,

which are mutually connected through m legs. Let us assume

that the ith leg is a serial kinematic chain composed of ni links,

the first being connected to the base and the nth
i to the moving-

platform. For a serial robotic manipulator m turns to be equal

to 1. We mathematically describe these open kinematic chains

using the Denavit-Hartenberg parameters.

Parameterization

Let us define frame Fi, j , which is attached to the jth link

of the ith leg. Moreover, Fi,1, i = 1, . . . ,m, are the reference

frames attached to the fixed base and have the same orientation.

Pi = Fi,ni
, i = 1, . . . ,m, are attached to the moving-platform of

the robotic manipulator. Each frame is related to the previous

one by the screw

Si, j =

[

Ri, j ti, j

0T
3 1

]

∈ SE(3), (1)

which takes Fi, j onto Fi, j+1, and where Ri, j ∈ SO(3) is a 3× 3

rotation matrix; ti, j ∈ R
3 points from the origin of Fi, j to that of

Fi, j+1, and 03 is the three-dimensional zero vector. Moreover,

all frames follow the Denavit-Hartenberg convention [11], so that

Si, j may be expressed as

Si, j = Si, j,θ Si, j,bSi, j,aSi, j,α , (2)
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where

Si, j,α ≡









1 0 0 0

0 cosαi, j sinαi, j 0

0 −sinαi, j cosαi, j 0

0 0 0 1









, (3)

Si, j,a ≡









1 0 0 ai, j

0 1 0 0

0 0 1 0

0 0 0 1









, (4)

Si, j,b ≡









1 0 0 0

0 1 0 0

0 0 1 bi, j

0 0 0 1









, (5)

Si, j,θ ≡









cosθi, j sinθi, j 0 0

−sinθi, j cosθi, j 0 0

0 0 1 0

0 0 0 1









, (6)

and where αi, j , ai, j, bi, j and θi, j represent the link twist, the link

length, the link offset, and the joint angle, respectively. In the

case of a revolute joint, θi, j is a variable, whereas in the case of

a prismatic joint, bi, j is a variable.

The Moving-Platform Pose
Thence, the pose of the sixth link with respect to the fixed

frame Fi,1 may be expressed as

Pi =
ni

∏
j=1

Si, j, (7)

for a given leg i. Provided that the joints are perfectly rigid in all

directions but one, that the links are perfectly rigid and that the

geometry of the robotic manipulator is known exactly, we have

P = P1 = P2 = · · ·= Pm. (8)

However, if we consider small clearances in all the joints, we

must include small errors in Eq. (7) of Pi for Eq. (8) to hold true.

Joint-Clearance Errors
Taking into account clearances in the joints, the frame Fi, j

associated with link j of leg i is shifted to F ′
i, j . Provided it is

small, this error on the pose of joint j+ 1 with respect to joint j

may be represented by the small-displacement screw

δ si, j ≡

[

δri, j

δ ti, j

]

∈R
6, (9)

where δri, j ∈ R
3 represents the small rotation taking frame Fi, j

onto F ′
i, j, while δ ti, j ∈ R

3 points from the origin of Fi, j to that

of F ′
i, j. δ si, j can also represented as the 4× 4 matrix

δSi, j =

[

δRi, j δ ti, j

0T
3 0

]

∈ se(3), (10)

where δRi, j ≡ ∂ (δri, j × x)/∂x is the cross-product matrix

of δri, j.

Error on the Moving-Platform Pose
Because of joint clearances, the frame Pi is shifted to P ′

i .

In SE(3), the displacement taking frame Fi, j onto F ′
i, j is given

by the matrix exponential of δSi, j, eδSi, j . As a result, the screw

that represents the pose of the shifted moving-platform may be

computed through the ith leg as

P′
i =

ni

∏
j=1

eδSi, j Si, j, (11)

where screw P′
i takes frame Fi,1 onto P ′

i when taking errors into

account.

In order to obtain the moving-platform pose error, the screw

∆Pi|Pi
that takes the nominal moving-platform pose Pi onto the

shifted one P ′
i through the ith leg is expressed in frame Pi as

∆Pi|Pi
= P−1

i P′
i, (12)

=
1

∏
j=ni

S−1
i, j

ni

∏
j=1

(

eδSi, j Si, j

)

, (13)

= S−1
i,ni

· · ·S−1
i,1 eδSi,1Si,1eδSi,2Si,2 · · ·e

δSi,ni Si,ni
,

≈
1

∏
j=ni

S−1
i, j

ni

∏
j=1

(

(14×4 + δSi, j)Si, j

)

, (14)

=
1

∏
j=ni

S−1
i, j

ni

∏
j=1

(

Si, j + δSi, jSi, j

)

, (15)

≈
1

∏
j=ni

S−1
i, j

( ni

∏
j=1

Si, j + δSi,1Si,1Si,2 · · ·Si,ni

+Si,1δSi,2Si,2 · · ·Si,ni
+Si,1Si,2δSi,3Si,3 · · ·Si,ni

+ · · ·+Si,1Si,2 · · ·Si,ni−1δSi,ni
Si,ni

)

, (16)

= 14×4 +S−1
i,ni

· · ·S−1
i,1 δSi,1Si,1Si,2 · · ·Si,ni

+S−1
i,ni

· · ·S−1
i,2 δSi,2Si,2Si,3 · · ·Si,ni

+ · · ·+S−1
i,ni

δSi,ni
Si,ni

, (17)

= 14×4 +
ni

∑
j=1

( j

∏
k=ni

S−1
i,k δSi, j

ni

∏
l= j

Si,l

)

. (18)
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From Eq. (17), we see that end-effector displacement ∆Pi|Pi
is

small, since it is composed of the identity matrix plus a finite

sum of small-displacement screws. Therefore, ∆Pi|Pi
may be as

well represented with the small displacement screw

δPi|Pi
=

ni

∑
j=1

( j

∏
k=ni

S−1
i,k δSi, j

ni

∏
l= j

Si,l

)

. (19)

Alternatively, the small-displacement screw taking frame

Pi onto frame P ′
i may be computed as a vector in R

6, namely,

δpi|Pi
. To this end, let us recall that the adjoint map of screw Si, j

is

adj(Si, j)≡

[

Ri, j O3×3

Ti, jRi, j Ri, j

]

, (20)

where Ti, j ≡ ∂ (ti, j × x)/∂x is the cross-product matrix of ti, j.

Then, we may express δ si, j in frame Fi, j+1 by simply computing

adj(S−1
i, j )δ si, j. As a result, δ si, j may be expressed in frame Pi

through the product

(

j

∏
k=ni

adj(S−1
i,k )

)

δ si, j , (21)

and the small-displacement screw taking Pi onto P ′
i simply be-

comes

δpi|Pi
=

ni

∑
j=1

j

∏
k=ni

adj(S−1
i,k )δ si, j (22)

≡
ni

∑
j=1

j

∏
k=ni

(adj(Si,k))
−1δ si, j (23)

It is noteworthy that δpi|Pi
is expressed in the frame at-

tached to the moving platform, i.e., Pi. For the evaluation of

the pose errors on the moving-platform, the small-displacement

screw taking Pi onto P ′
i has to be expressed in the reference

attached to the fixed base, i.e., Fi,1. Let δpi|Fi,1
be this small-

displacement screw expressed in Fi,1:

δpi|Fi,1
=

ni

∏
j=1

(Ni, j)δpi|Pi
, (24)

where

Ni, j ≡

[

Ri, j O3×3

O3×3 Ri, j

]

. (25)

As a result,

δpi|Fi,1
=

ni

∏
j=1

Ni, j

ni

∑
j=1

j

∏
k=ni

(

adj(Si,k)
)−1δ si, j (26)

=
ni

∑
j=1

( ni

∏
l=1

Ni,l

j

∏
k=ni

(adj(Si,k))
−1δ si, j

)

(27)

The following compact form may be used:

δpi|Fi,1
= Miδ si, (28)

where

Mi ≡
[

Mi,1 Mi,2 · · · Mi,ni

]

, (29)

Mi, j ≡
ni

∏
l=1

(Ni,l)
j

∏
k=ni

(adj(Si,k))
−1, (30)

δ si ≡
[

δ sT
i,1 δ sT

i,2 · · · δ sT
i,ni

]T
. (31)

MODELING THE CLEARANCES IN AN AXISYMMETRI-
CAL JOINT

Intuitively, clearances in a joint are best modeled by

bounding its associated errors below and above. Assuming

that the lower and upper bounds are the same, this generally

yields six parameters that bound the error screw δ si, j. In the

case of a revolute joint, however, we can take advantage of the

axisymmetry to reduce the number of parameters. In the case

of a prismatic joint, we assume that the prismatic joints are

also axisymmetrical, which encompasses most hydraulic and

pneumatic cylinders, as well as ball screws.

Recall that frame Fi, j is attached to joint j of leg i according

to the Denavit-Hartenberg convention. As a result, its Z-axis is

aligned with the revolute-joint axis. Moreover, the origin of Fi, j

may be chosen to lie at the centroid of the revolute joint as shown

in Fig. 1. In this case, the Z components of δri, j and δ ti, j—both

defined in Eq. (9)—are axial components, while the X and Y

components are radial. Accordingly, the error bounds are written

as

δ r2
i, j,X + δ r2

i, j,Y ≤ ∆β 2
i, j,XY , (32)

δ r2
i, j,Z ≤ ∆β 2

i, j,Z, (33)

δ t2
i, j,X + δ t2

i, j,Y ≤ ∆b2
i, j,XY , (34)

δ t2
i, j,Z ≤ ∆b2

i, j,Z, (35)
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where δri, j ≡ [δ ri, j,X δ ri, j,Y δ ri, j,Z ]
T and δ ti, j ≡

[δ ti, j,X δ ti, j,Y δ ti, j,Z ]
T . Notice that previous works [4, 8, 9]

have proposed geometric models of the embodiments and

clearances of several types of revolute and prismatic joints based

on bushings. Since many robotic mechanical systems rely on

ball bearings, and not bushings, to allow motion of their joints,

these geometrical analyzes are not always applicable. Therefore,

we prefer using the generic mathematical inequalities (32–35),

which are suitable for any axisymmetrical joint.

∆bi, j,Z

∆βi, j,XY

∆βi, j,Z

∆bi, j,XY

x

y

z

x

y

z

x′

y′

z′

Fi, jFi, j

F ′
i, j

FIGURE 1. CLEARANCE-AFFECTED REVOLUTE JOINT

THE MAXIMUM MOVING-PLATFORM POSE ERRORS

This section aims at finding the maximum reference-point

position error and the maximum orientation error of the moving-

platform for given joint clearances and to identify the joints that

need the tightest tolerances. Let us begin with the general case,

where one seeks to identify the maximum errors due to joint

clearances in the complete mechanism. For that matter, it would

be interesting to compute the maximum rotation and maximum

reference-point displacement due to joint clearances.

Formally, the maximum moving-platform rotation rmax due

to joint clearances is obtained by solving the problem

−r2
max ≡ minimize − ∑

k=1,2,3

(eT
6,kδp)2, (36)

over δp, δ si, j, j = 1, . . . ,ni, i = 1, . . . ,m,

subject to (eT
6,1δ si, j)

2 +(eT
6,2δ si, j)

2 − δβ 2
XY,i, j ≤ 0,

(eT
6,3δ si, j)

2 − δβ 2
Z,i, j ≤ 0,

(eT
6,4δ si, j)

2 +(eT
6,5δ si, j)

2 − δb2
XY,i, j ≤ 0,

(eT
6,6δ si, j)

2 − δb2
Z,i, j ≤ 0,

δp = Miδ si,

j = 1, . . . ,ni, i = 1, . . . ,m,

where e j,k ∈ R
6 is defined such that 1 j× j ≡

[e j,1 e j,2 · · · e j, j].

Notice that rmax is independent of δ ti, j, j = 1, . . . ,ni, i =
1, . . . ,m, i.e., the errors on the positions of the joint centroids.

This may be verified by noticing that the point-displacement

component of the errors on the joints in the ith leg, δ si, al-

ways lies in the nullspace of the first three rows of Mi. Accord-

ingly, their contribution to the objective (through the equality of

Eq. (36)) is null. Furthermore, for the proposed error model, the

rotation and point-displacement errors, δri, j and δ ti, j, are com-

pletely decoupled in the inequality constraints. In conclusion,

since δ ti, j does not affect the objective and is decoupled from

the optimization variables that affect the objective, its associated

constraints may be removed from Eq. (36). This leaves us with

the simpler equivalent form

−r2
max ≡ minimize − ∑

k=1,2,3

(eT
6,kδp)2, (37)

over δp, δ si, j, j = 1, . . . ,ni, i = 1, . . . ,m,

subject to (eT
6,1δ si, j)

2 +(eT
6,2δ si, j)

2 − δβ 2
XY,i, j ≤ 0,

(eT
6,3δ si, j)

2 − δβ 2
Z,i, j ≤ 0,

δp = Miδ si,

j = 1, . . . ,ni, i = 1, . . . ,m.

The expression of the maximum point-displacement pmax

due to joint clearances is the same as that of rmax, except for

5



the objective function, namely,

−p2
max ≡ minimize − ∑

k=4,5,6

(eT
6,kδp)2, (38)

over δp, δ si, j , j = 1, . . . ,ni, i = 1, . . . ,m,

subject to (eT
6,1δ si, j)

2 +(eT
6,2δ si, j)

2 − δβ 2
XY,i, j ≤ 0,

(eT
6,3δ si, j)

2 − δβ 2
Z,i, j ≤ 0,

(eT
6,4δ si, j)

2 +(eT
6,5δ si, j)

2 − δb2
XY,i, j ≤ 0,

(eT
6,6δ si, j)

2 − δb2
Z,i, j ≤ 0,

δp = Miδ si,

j = 1, . . . ,ni, i = 1, . . . ,m,

In the case of pmax, the objective depends on both the rotation

and the point-displacement errors. Therefore, Eq. (38) cannot be

simplified as was Eq. (36).

Computing the Maximum Moving-Platform Pose Errors

The problems of Eqs. (37) and (38) are nonconvex quadrat-

ically constrained quadratic programs (QCQPs). Although their

feasible sets are convex—all the constraints of both problems

are convex—their objectives are concave, making the compu-

tation of their global minima −r2
max and −p2

max non-trivial, at

least in general. Notice that some specific instances of non-

convex QCQPs were proven to have equivalent convex formula-

tions [12–14], and hence, allow for the computation of solutions

in polynomial time. However, the problems of Eqs. (37) and (38)

do not correspond to any of these classes of QCQPs. This calls

for an additional effort in order to reliably and efficiently com-

pute the global optima rmax and pmax.

We begin by rewriting Eq. (38) in a form that is similar to the

original problem in ref. [15]. This requires the elimination of the

equality constraints, which may be achieved through a change of

variables. To this end, let us resort to QR factorizations of MT
i ,

MT
i = ViUi, (39)

=
[

Vi,1 Vi,2

]

[

Ui,1

0(6n−6)×6

]

,

= Vi,1Ui,1, (40)

i = 1, . . . ,m, where Vi ∈ R
6ni×6ni is orthogonal, Ui ∈ R

6ni×6i is

upper-triangular, Vi,1 ∈R
6×6, Vi,2 ∈R

6×(6ni−6), and Ui,1 ∈R
6×6

is an upper-triangular matrix. This QR factorization may be com-

puted using the Householder method. Notice that, from its struc-

ture, Mi is bound to bear its full row rank of six. As a result, Ui,1

is also of full rank, i.e., it is invertible. Moreover, we define

δqi ≡

[

δqi,1

δqi,2

]

= VT
i δ si, (41)

where δqi,1 ∈ R
6 and δqi,2 ∈R

6ni−6, so that

δ si = Vi,1δqi,1 +Vi,2δqi,2. (42)

This allows us to rewrite the equality constraints as

δp = Miδ si = UT
i,1VT

i,1δ si = UT
i,1δqi,1, (43)

or,

δqi,1 = U−T
i,1 δp, (44)

where U−T
i,1 is the inverse of the transpose of Ui,1. Upon substi-

tuting Eq. (44) into Eq. (42), we obtain

δ si = Vi,1U−T
i,1 δp+Vi,2δqi,2. (45)

Let us regroup all remaining optimization variables into the array

δu ≡
[

δpT δqT
1,2 δqT

2,2 · · · δqT
m,2

]T
∈ R

ν ,

where ν = 6+ 6∑m
k=1(nk − 1), so that δ si may be expressed as

δ si ≡ ϒiδu, (46)

where

ϒi ≡
[

Vi,1U−T
i,1 Vi,2 06ni×6∑m

k=i+1(nk−1)

]

∈R
6ni×ν , (47)

for i = 1

ϒi ≡
[

Vi,1U−T
i,1 0

6ni×6∑i−1
k=1

(nk−1) Vi,2

06ni×6∑m
k=i+1

(nk−1)

]

∈R
6ni×ν , (48)
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for i = 2, . . . ,m− 1 and

ϒi ≡
[

Vi,1U−T
i,1 0

6ni×6∑i−1
k=1

(nk−1) Vi,2

]

∈R
6ni×ν (49)

for i = m.

Finally, we substitute Eq. (46) into Eq. (38) in order to come

up with an optimization problem that contains only inequality

constraints, namely,

−p2
max ≡ minimize f0 ≡ − δuT F0δu, (50)

over δu,

subject to fi, j,k(δu)≡ δuT Fi, j,kδu− 1 ≤ 0,

k = 1, . . . ,4, j = 1, . . . ,ni,

i = 1, . . . ,m,

where

F0 ≡ ∑
l=4,5,6

eν,le
T
ν,l , (51)

Fi, j,1 ≡ (1/δβ 2
XY,i, j)ϒ

T
i

(

e6ni,6 j−5eT
6ni,6 j−5

+e6ni,6 j−4eT
6ni,6 j−4

)

ϒi, (52)

Fi, j,2 ≡ (1/δβ 2
Z,i, j)ϒ

T
i e6ni,6 j−3eT

6ni,6 j−3ϒi, (53)

Fi, j,3 ≡ (1/δb2
XY,i, j)ϒ

T
i

(

e6ni,6 j−2eT
6ni,6 j−2

+e6ni,6 j−1eT
6ni,6 j−1

)

ϒi, (54)

Fi, j,4 ≡ (1/δb2
Z,i, j)ϒ

T
i e6ni,6 je

T
6ni,6 jϒi. (55)

In the scope of this paper, optimization problem (50) is

solved with ModeFrontier software [16] in order to find the max-

imum reference-point position error and the maximum orienta-

tion error of the moving-platform for given joint clearances and

for any robot configuration. This optimization problem could be

also solved by means of Interval Analysis [17] or with the algo-

rithm proposed in [15].

ILLUSTRATIVE EXAMPLES
The kinematic sensitivities of a 3R serial manipulator and a

five-bar parallel manipulator to joint clearances are analyzed in

this section in order to highlight the contributions of the paper.

The lengths are expressed in meter, while the angles are given in

radian in these examples.

3R Serial Manipulator
Figure 2 illustrates the 3R serial manipulator under study. It

is composed of one leg, i.e., m = 1, that contains three revolute

joints, i.e., n1 = 3. The first and the second joints axes are or-

thogonal, while the second and the third ones are parallel. As a

consequence, the Denavit-Hartenberg parameters of the manipu-

lator take the form:

{α1,1,a1,1,b1,1,θ1,1} = −π/2, 0, 10, θ1,1 (56)

{α1,2,a1,2,b1,2,θ1,2} = 0, 5, 0, θ1,2 (57)

{α1,3,a1,3,b1,3,θ1,3} = 0, 5, 0, θ1,3 (58)

θ1, j, j = 1, . . . ,3 being the revolute joint angles. The er-

b1,1

a1,2

a1,3

X1,1

Y1,1

Z1,1

F1,1

X1,2

Y1,2

Z1,2

X1,3

Y1,3

Z1,3

Xp

Yp

Zp

P1
P

FIGURE 2. 3R SERIAL MANIPULATOR

ror bounds characterizing the joint clearances and defined in

Eqs.(32–35) are assumed to be:

∆β1, j,XY = 0.01 (59)

∆β1, j,Z = 0.01 (60)

∆b1, j,XY = 0.01 (61)

∆b1, j,Z = 0.01 (62)

Figure 3 shows the end-effector reference-point position error

due to the joint clearances, the nominal Cartesian coordinates of

the end-effector P in base frame F1,1 being equal to

p
|F1,1

≡
[

px py pz

]T
=
[

5 0 6
]T

(63)

As a matter of fact, Fig. 3 illustrates the range of end-effector

reference-point position errors in frame P1, the latter being at-

tached to the end-effector of the manipulator in its nominal con-
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XpYp

Z
p

-0.1
0

0.1

-0.1
0

0.1

-0.3

-0.2

-0.1

0

0.1

0.2

FIGURE 3. THE RANGE OF END-EFFECTOR REFERENCE-

POINT POSITION ERRORS IN FRAME P1 FOR THE NOMINAL

END-EFFECTOR POSITION DEFINED WITH EQ. (63)

figuration. It turns out that the maximum reference-point posi-

tion errors of P along Xp, Yp and Zp are equal to 0.12, 0.19 and

0.22, respectively.

ρ

p
z

0.2

0.25

0.30

0.35

0.40

0.45

0 5 10
0

2

4

6

8

10

12

14

16

18

20

FIGURE 4. ISOCONTOURS OF pmax THROUGHOUT Ws

Figure 4 shows the isocontours of the maximum point-

displacement pmax throughout the manipulator workspace Ws,

which is defined with respect to ρ and pz, ρ ≡
√

p2
x + p2

y. pmax

is evaluated at each grid-point by means of optimization prob-

lem (50). It appears that pmax varies between 0.2 and 0.54

throughout Ws.

0.1 2.7 5.4 8 10.7 13.3 15.9 18.6
0.20

0.25

0.30

0.35

0.40

0.45

0.50

pz

p
m

ax

(a)

0.10 1.4 2.7 4.0 5.3 6.5 7.9 9.2
0.20

0.25

0.30

0.35

0.40

0.45

0.50

ρ

p
m

ax

(b)

FIGURE 5. THE MAXIMUM POINT-DISPLACEMENT pmax OF

THE END-EFFECTOR AS A FUNCTION OF: (a) pz; (b) ρ

Notice that the maximum orientation error on the end-

effector is constant throughout Ws and is equal to 0.043 rad.

Figures 5(a)-(b) show the trend in the maximum point-

displacement pmax of the end-effector as a function of the Z-

coordinate of the end-effector in frame F1,1 and ρ , respectively.

From Fig. 5(a), pmax is a minimum when pz is equal to 5.8. From

Fig. 5(b), the higher ρ , the higher pmax.

Five-bar Parallel Manipulator
Figure 6 illustrates the five-bar parallel manipulator under

study. It is composed of two legs, i.e., m = 2, that contain two

revolute joints, i.e., n1 = n2 = 2. All revolute joints axes are

parallel. As a consequence, the Denavit-Hartenberg parameters

of the manipulator take the form:

{α1,1,a1,1,b1,1,θ1,1} = 0, 5, 0, θ1,1 (64)

{α1,2,a1,2,b1,2,θ1,2} = 0, 10, 0, θ1,2 (65)

{α2,1,a2,1,b2,1,θ2,1} = 0, 5, 0, θ2,1 (66)

{α2,2,a2,2,b2,2,θ2,2} = 0, 10, 0, θ2,2 (67)

θi, j, i = 1, . . . ,2, j = 1, . . . ,2, is the angle of the jth revolute joint

of the ith leg. The distance c between the axes of the revolute

joints attached to the base is equal to 5. The error bounds char-

acterizing the joint clearances and defined in Eqs.(32–35) are as-

sumed to be:

∆βi, j,XY = 0.01 (68)

∆βi, j,Z = 0.01 (69)

∆bi, j,XY = 0.1 (70)

∆bi, j,Z = 0.1 (71)

Notice that the revolute joint connecting the two legs is supposed

to be perfect, i.e., without any clearance.
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a1,1

a1,2

a2,1

a2,2

c

X1,1

Y1,1

Z1,1

X2,1
Y2,1

Z2,1

X2,2
Y2,2

Z2,2

X1,2

Y1,2

Z1,2

Z1,p,Z2,p

X1,p

Y1,p

X2,p

Y2,p

P

FIGURE 6. FIVE-BAR PARALLEL MANIPULATOR

a1,1

a1,2
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a2,2

c

py

px

P
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-2
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12

14

16

RW

FIGURE 7. THE WORKSPACE AND REGULAR WORKSPACE

RW OF THE FIVE-BAR PARALLEL MANIPULATOR UNDER

STUDY

Figure 7 illustrates the workspace of the five-bar parallel ma-

nipulator under study and its regular workspace RW . The regu-

lar workspace of a manipulator is a regular-shaped part of its

workspace. The regular workspace shape is up to the designer.

It may be a cube, a parallelepiped, a cylinder or another regular

shape [18]. A reasonable choice is a shape that “fits well” the

one of the singular surfaces. It turns out that a rectangle suits

well for the five-bar parallel manipulator. The regular workspace

RW of the manipulator under study is obtained by means of a

Tabu search Hooke and Jeeves algorithm [19].

Figure 8 shows the isocontours of the maximum point-

displacement, pmax, of point P throughout RW . Likewise, Fig. 9

shows the isocontours of the maximum orientation error, rmax,

of the moving-platform throughout RW . Notice that pmax and

rmax are evaluated at each grid-point of RW by means of opti-

mization problem (50). It is apparent that pmax varies between

−8 −6 −4 −2 0 2 4 6 8
px

5.1
6.1

7.1

8.1

9.1

10.1

7.22

7.52

7.82

8.13
8.45

8.76

9.07

py

×10−2

FIGURE 8. ISOCONTOURS OF pmax THROUGHOUT RW

−8 −6 −4 −2 0 2 4 6 8
px

5.1
6.1

7.1

8.1

9.1

10.1

3.58
3.71

3.83

3.94
4.06

4.18
4.30

4.30
4.18

4.06 3.94
3.83 3.71

py

×10−4

FIGURE 9. ISOCONTOURS OF rmax THROUGHOUT RW

7.15× 10−2 and 9.12× 10−2, while rmax varies 3.49× 10−4 rad

and 4.41× 10−4 rad throughout RW .

a1,1

a1,2

X1,1

Y1,1

Z1,1

X1,2

Y1,2

Z1,2

Z1,p

X1,p

Y1,p

P

FIGURE 10. 2R SERIAL MANIPULATOR

Figure 10 depicts one leg of the five-bar parallel manipulator

under study, namely, a 2R serial manipulator. Figure 11 shows

the isocontours of the maximum point-displacement, pmax, of its

end-effector P throughout RW . It appears that pmax varies be-

tween 3.58× 10−1 and 5.19× 10−1. Moreover, the maximum

orientation error of its moving-platform is constant throughout

RW and is equal 2.28× 10−2 rad.

It is noteworthy the maximum orientation error of the end-

effector of any serial manipulator due to joint clearances is con-

stant throughout its workspace.
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FIGURE 11. ISOCONTOURS OF pmax THROUGHOUT RW

As a result, the maximum point-displacement of the moving-

platform of the serial manipulator is about five times larger than

the one of its parallel counterpart. Similarly, the maximum ori-

entation error of the moving-platform of the serial manipulator is

about fifty times larger than the one of the parallel manipulator.

As a matter fact, the parallel manipulator turns to be quite more

accurate than its serial counterpart as the revolute joint that con-

nects the legs is assumed to be perfect and the link lengths are

relatively large in comparison with joint clearances.

CONCLUSIONS
The paper dealt with the kinematic sensitivity of robotic ma-

nipulators to joint clearances. First, an error prediction model

applicable to both serial and parallel manipulators was devel-

oped. A clearance model associated with axisymmetrical joints,

which are widely used in robotic manipulators, was also pro-

posed. Then, two nonconvex quadratically constrained quadratic

programs (QCQPs) were formulated in order to find the maxi-

mum reference-point position error and the maximum orienta-

tion error of the moving-platform for given joint clearances. Fi-

nally, the contributions of the paper were highlighted by means

of serial and parallel manipulators. It turns out that 2R serial

manipulators are more sensitive to joint clearances than five-bar

parallel manipulators. This result makes sense as joint clearances

are compensated in parallel manipulators.
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