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 Abstract— Surface acoustic wave (SAW) sensors find their 

application in a growing number of fields. This interest stems 

in particular from their passive nature and the possibility of 

remote interrogation. Still, the sensor package, due to its size, 

remains an obstacle for some applications. In this regard, 

packageless solutions are very promising. This paper describes 

the potential of the AlN/ZnO/LiNbO3 structure for packageless 

acoustic wave sensors. This structure, based on the waveguided 

acoustic wave principle, is studied numerically and 

experimentally. According to the COMSOL simulations, a 

wave, whose particle displacement is similar to a Rayleigh 

wave, is confined within the structure when the AlN film is 

thick enough. This result is confirmed by comprehensive 

experimental tests, thus proving the potential of this structure 

for packageless applications, notably temperature sensing. 

 
Index Terms— Surface acoustic wave SAW, temperature 

sensor, waveguiding layer acoustic wave WLAW, packageless, 

low-profile. 

I. INTRODUCTION 

his paper is an extended version of the conference paper [1] 

presented at the IEEE International Ultrasonics 

Symposium 2017 in Washington, USA. 

 

Surface Acoustic Wave (SAW) devices are widely used in 

communication systems as filters or resonators [2]. Thanks to 

the sensitivity of the resonance frequency to some physical 

parameters of the environment (for example the temperature), 

the devices can be also used as sensors. Because SAW sensors 

can be remotely interrogated (wirelessly) and because they are 

passive (batteryless), this allows them to be used in a wide range 

of Radio Frequency (RF) applications [3-7] in various areas, 

including medicine and sports. Indeed, there is a need for 

monitoring the data or the parameters of the human body. A 

limitation to this growing trend remains the presence of the 

package. The package is useful to protect the device from 
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external perturbations (such as humidity) and for the stress 

isolation but it is also expensive and bulky. Consequently, the 

package prevents close contact between the sensor and the 

target, i.e. the human body. To eliminate this bottleneck, some 

authors have suggested a bilayer structure with AlN and 

LiNbO3 128° Y-cut [8]. The confinement of the energy is 

possible due to the use of heavy metal electrodes (Pt) and occurs 

mostly owing to specific properties of LiNbO3 128° Y-cut 

which shows a decoupling between Rayleigh modes and Shear 

Horizontal modes. The Waveguiding Layer Acoustic Wave 

(WLAW) principle is another way to overcome this limitation 

and to develop a new generation of wireless on-skin sensors [9-

11]. In this structure, the acoustic wave is confined in a low 

velocity film placed inbetween two high velocity materials (see 

Fig.1). This paper investigates the AlN/ZnO/LiNbO3 (128° Y-

cut) structure as a candidate for a WLAW temperature sensor. 

The ultimate goal is to realize several multifunction sensors and 

thus to use a reflective delay-line including an ID-Tag. This 

configuration requires the use of a piezoelectric substrate that 

has a large electromechanical coupling coefficient (K2) and low 

propagation losses. Thus, in this work we will try to maximize 

the K2 value of the entire structure. However, for practical 

considerations, a resonator structure will be considered in this 

paper. Indeed, the design and manufacturing are easier and the 

theoretical study can be done considering a single cell of the 

IDT. This makes the calculations for the structure optimization 

less time consuming, while enabling the investigation of the 

wave confinement in this structure, which is the sine qua non 

feature for packageless applications. 

 

The LiNbO3 128° Y-cut was chosen for its high 

electromechanical coupling coefficient K2 (K2=5.4 %) and its 

relatively high acoustic velocity to play the role of the 

piezoelectric substrate used to generate the acoustic wave 

[12,13]. The ZnO and the AlN layers are used as a low and a 

fast velocity layer respectively, in order to build the packageless 

structure [14-16]. 
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Fig. 1. Principle of the WLAW structure (adapted from [9]). One of the 

layers needs to be piezoelectric. 

II. MATERIALS AND METHODS 

A. FEM Modeling 

The structure was studied by a 3D-FEM modeling (COMSOL 

Multiphysics®), using anti-periodic boundary conditions along 

the X-axis. Physical constants of considered materials were 

extracted from the literature for AlN and LiNbO3 [17,18] and by 

using Comsol Multiphysics® library for ZnO and gold. LiNbO3 

is considered as a piezoelectric material to generate the SAW 

response. AlN and ZnO have also been considered as 

piezoelectric materials insofar as it has been verified that this 

feature generates negligible orders of magnitude compared to 

those due to the elastic constants of the layers. Firstly, only the 

structure with LiNbO3 and the gold electrodes was calculated and 

the results were compared to experimental ones. ZnO and AlN 

layers were then added in the model and their thicknesses were 

adjusted in order to provide a good electromechanical coupling 

coefficient (K2). The maximization of the K2 value to a certain 

level is usually appreciable because it reflects the efficiency of 

conversion between the electrical and the acoustic energy in the 

piezoelectric material. The minimum AlN thickness required for 

the wave confinement was finally predicted by the simulations. 

B. Experimental part 

To yield sensors operating in the 868 MHz ISM band, (Ti 

10nm/Au 90nm) SAW devices with a wavelength of 4.4 µm 

were patterned on the piezoelectric LiNbO3 128° Y-cut 

substrate (MTI Corporation) using e-beam lithography (see 

Fig.2b and 2c). This synchronous resonator has 100 finger pairs 

and 200 reflectors on each side. Ion beam etching (IBE) was 

used to etch the (Ti 10nm/Au 90nm) layers, followed by O2-

plasma treatment to remove the negative resist. Fig.2a, gives a 

first idea of the future wireless structure. The WLAW structure, 

based on the resonator configuration, in the center is attached 

to flexible antennas made of Kapton sheets. 

 

 

 

 

 

 

 

 

 

    (a)                       (b)                                       (c) 

 

Fig. 2. Top view of finale structure, including the sensor and a flexible 

antenna (a), and the fabricated SAW device (b and c)  

The ZnO and AlN layers were then successively deposited 

on the top of the electrodes using reactive magnetron sputtering 

with the following parameters: 

 
TABLE I 

SUMMARY OF DEPOSITION PARAMETERS 

 ZnO AlN 

Target ZnO (Ø 4-inch) Al (Ø 4-inch) 

Gases 6 sccm* O2 

6 sccm* Ar 

16 sccm* N2
 

Temperature 

 

Target power 
Total pressure 

170°C 

 

150 W 
6x10-3 mbar 

No intentional 

heating 

200 W 
8x10-3 mbar 

*sccm: standard cubic centimeters per minute (flow unit) 

 

The AlN deposition was performed in several steps with 

intermediate measurements of the resonator frequency response 

in order to observe the evolution of the confinement of the wave 

with respect to the thickness of AlN. To keep the contact with 

pads for the measurements, a physical shadow masking was 

used during the deposition steps. SAW devices were 

characterized using a probe station (Suss Microtech PM5) and 

a network analyzer (VNA Agilent-N5230A). The probe station 

is equipped with a thermal chuck allowing the control of the 

temperature between 20 and 100°C with a precision of 0.1°C. 

In order to verify experimentally the confinement of the 

wave in the WLAW device, we investigated the effect of 

addition of a soft elastomeric matter on top of it: if no change 

in the S-parameters is observed, then it proves that the wave is 

confined (see Fig.3). 
 

 

Fig. 3. Measurement of S-parameters with the silicone elastomer Solaris on 

top of the device after ZnO and AlN depositions. 

SAW 

devices 

Solaris 

elastomer 

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TUFFC.2018.2839262

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

3 

 

Fig. 4. SEM cross-sectional image of the AlN/ZnO/LiNbO3 structure. 

To remain as close as possible to the intended application, an  

absorber with almost the same properties as the skin such as the 

Solaris elastomer (Smooth-on, USA, EYoung=172 kPa) has been 

chosen. Finally, scanning electron microscopy (SEM) was used 

to check the thickness of the deposited films (see Fig.4). 

III. RESULTS 

A. FEM Modeling 

Initial calculations were performed using a top and a bottom 

layer with a thickness large enough to ensure the confinement 

of the wave on each side. In this configuration it has thus been 

found that 2 µm provides a good value for the ZnO layer 

thickness. Indeed, with this thickness, the K2 value remains 

high enough (more than 4%) to achieve future reflective delay-

lines while the wave propagation is mainly confined around the 

ZnO/LiNbO3 interface. Moreover, we show that the required 

thickness of AlN to ensure the wave isolation is limited to 

several microns. The model used for the resonator description 

will serve as a basis for the delay-lines modeling and design, 

after experimental verification and parameters extraction. 

The numerical criterion we used to assess the wave 

confinement is the following: a wave is considered confined 

when the surface displacement is less than 1% of the waves’ 

maximum displacement. 

With the fixed value of 2 µm of ZnO, 7.5 µm of AlN, or 

more, are required to fully confine all the waves between 580 

and 1100 MHz. Focusing on the wave at 837 MHz, the 

simulations even predicts that an AlN thickness of 5 µm is 

sufficient to confine this particular wave. In order to maintain a 

security margin for the manufacturing process, the value of 6 

µm has been selected.  

 

 

Fig. 5. Total particle displacement evolution as a function of the AlN 

thickness (1D display on the left, 2D on the right). 

Fig.5 shows, for three different AlN thicknesses, the particle 

displacement along the Z-axis (normal to the surface structure) 

when a voltage is applied on the Inter-Digital Transducers 

(IDTs). Compared to the cases with 0 or 2.5 μm of AlN, the 

displacement at the surface of the structure is much more 

limited when the AlN thickness is 6 µm (less than 1% of the 

maximum displacement). 

 

 

Fig. 6. Theoretical evolution of the admittance Y11 magnitude as a function 

of the frequency, for different configurations. 

 

Fig.6 depicts the evolution of the calculated admittance 

magnitude for the different structures, as well as the identified 

modes. This figure also highlights the frequency shifts due to 

the presence of additional layers. 

From the 3D simulations, 2D projections of the 

displacements in the X, Y and Z directions were created to 

identify those different waves (Table II). It was also possible to 

track the evolution of each mode when layers of different 

thicknesses were added to the model. 

Table II shows some of those modes: Rayleigh modes are 

characterized by the absence of Y displacement and a large Z 

displacement, whereas Shear Horizontal (SH) modes display 

large Y displacement. For growing AlN thicknesses (6 µm), we 

observe a confined wave with a displacement similar to a 

Rayleigh wave (noted WLAW), as well as a confined SH-type 

wave. 

LiNbO3 

ZnO  

(2 µm) 

AlN 

(6 µm) 

Rayleigh 

WLAW 

SH 

SH 

SH 

Rayleigh Sezawa 

2nd order 
WLAW 
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B. Impedance measurements and discussion 

Impedance measurements confirm the change in frequency 

due to additional layers. LiNbO3 is characterized as a material 

with a high propagation velocity with respect to ZnO [12,13]. 

Therefore, the ZnO/LiNbO3 bilayer structure shows lower 

acoustic velocities than those of the substrate alone, and thus 

lower operating frequencies as shown by the impedance 

measurements (see Fig.7). The AlN layer has also a high 

propagation velocity [14], so according to the same principle, 

the average velocity of the AlN/ZnO/LiNbO3 structure is higher 

than that of the ZnO/LiNbO3 bilayer structure. 

 

 

 

 
 

TABLE II: NUMERICAL EVALUATION OF THE PARTICLE DISPLACEMENT IN THE STRUCTURE FOR SOME RELEVANT MODES 

 

Structure 

Wave type 
Total displacement 

Displacement along 

X-axis 

Displacement along 

Y-axis 

Displacement along 

Z-axis 

ZnO(2μm)/LNY128 

Rayleigh wave at 643 MHz 

 

 
 

 

 

 

 

 

 

AlN(2.5μm)/ZnO(2μm)/LNY128 
Similar to a Rayleigh wave at 

835 MHz 

 

 
 

 

 

 

 

 

 

AlN(6μm)/ZnO(2μm)/LNY128 

Similar to a Rayleigh wave at 

837 MHz 

(WLAW) 

 
 

      

AlN(6μm)/ZnO(2μm)/LNY128 

Similar to a SH wave at 753 

MHz 
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Fig. 7. Evolution of the measured admittance Y11 magnitude as a function of 

the frequency, for different configurations. 

The K2 values can be evaluated with the approximation: 

𝐾2 =
2(𝑓𝑟 − 𝑓𝑎)

𝑓𝑟
 

where fr and fa are the resonance and anti-resonance 

frequencies, respectively extracted from Fig.6 or 7. In the 

theoretical case the estimated value is around 4%. In the 

experimental case, it is unfortunately difficult to determine the 

fr value for the K2 calculation. The K2 approximation with a 

rough value for fr is nevertheless promising because greater 

than 6%. Future achievements are needed to confirm this value 

and to explain the difference with the theoretical value. 

 

Fig.8, shows the measured conductance of the resonator 

(G=Real(Y)) versus the frequency of the AlN/ZnO/LiNbO3 

structure. The experimental value of the Q factor is estimated 

by the inverse of fractional bandwidth between frequencies 

where the conductance value becomes the half of the peak [19]. 

The unloaded Q-factor achieved is close to 450 which is low to 

ensure a high sensitivity needed for a wireless sensor. This low 

value is in part due to the quality of the polycrystalline ZnO thin 

film that should be improved. Still, to allow wireless 

measurement, not only the Q value is important, but also the K2. 

Indeed, following [20] the efficiency of energy re-radiation 

requires that the product Q·KC be over 4, where KC = CS/C, C 

being the motional capacitance and CS being the static 

capacitance in the resonator equivalent circuit; their ratio 

strongly depends on K2. 

 

 

Fig. 8.  Measured resonator conductance versus the frequency. 

In addition, tests with the silicone-based Solaris elastomer 

(see II.B) were carried out to prove the wave confinement. For 

practical purposes, devices with longer access pads were used 

as shown in Fig.3. Indeed, without AlN top layer, the Solaris 

slab, placed on top of the structure disturbs the S11 signal (see 

Fig.9, top). On the opposite, in the structure with 6 µm of AlN, 

the wave at 790 MHz do not experience any change in 

impedance when the absorber is placed on top of it. This proves 

the confinement for this particular wave, noted WLAW (see 

Fig.9, middle). To push the analysis further, it can be noticed 

that the wave around 950 MHz is still disturbed by the Solaris 

elastomer in this configuration. This higher order mode is only 

confined with a thicker AlN film, e.g. with 8 µm of AlN no 

more changes occur (see Fig.9, bottom). In conclusion, the 

proposed structure is validated for packageless applications. 

The ZnO and AlN layers act as a package and protect the wave 

from external perturbations such as moisture.  

 

 

Fig. 9. Experimental evolution of the S11 magnitude as a function of 

frequency. 

The structure with 6 μm of AlN, where only the WLAW 

wave at 790 MHz is confined, is still of interest because it could 

be used as a compensated sensor. On the one hand, the isolated 

wave is independent of the surface perturbation and can 

therefore be used as a reference, for example as a temperature 

SH SH 

Rayleigh 

Sezawa 

WLAW 
Rayleigh 
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sensor. On the other hand, the non-isolated wave is sensitive to 

a perturbation on the surface and can thus serve as a gas or 

humidity sensor while removing the temperature influence.  

C. Temperature sensing potential of the structure 

The temperature coefficient of frequency (TCF) of some 

modes was determined from the evolution of the operating 

frequency as a function of temperature (see Fig.10). The TCF 

is calculated using the equation:  

𝑇𝐶𝐹 =
1

𝑓0

∆𝑓

∆𝑇
 

 

where f0 is the operating frequency of the device at room 

temperature.  

TCF measurements show, as expected from the literature 

[13], a value of -78 ppm/°C when only the substrate 

(LiNbO3 128° Y-cut) and the gold IDTs are measured. For the 

WLAW structure AlN(6m)/ZnO(2m)/LiNbO3, a noticeably 

high value of -106 ppm/°C was measured. Thus, a high 

sensitivity is expected for temperature sensors based on the 

WLAW structure. Indeed, for devices operating in the 868 MHz 

ISM band and assuming that the electronic reader has a 

detection limit of 10 kHz, the sensor precision is expected to be 

around 0.1°C.  

The frequency shift in the S11 curves due to the temperature 

increase illustrate the experimental method used (see Fig.11). 

From those measurements we also extracted the TCF of the first 

peak corresponding to SH wave around 700 MHz and to those 

of the higher modes recorded around 900 and 950 MHz. Their 

respective TCF values are: -90.8; -92.4 and -102.3 ppm/°C. 

 

 

Fig. 10.  Relative frequency shifts with respect to the temperature. 

 

Fig. 11.  Experimental S11 signal measurements at 20 and 60°C. 

IV. CONCLUSION AND PERSPECTIVES 

The numerical and experimental measurements have 

allowed to obtain a better understanding of the 

AlN/ZnO/LiNbO3 (128° Y-cut) acoustic waves structure: the 

different modes and the changes in velocities (and thus in the 

resonance frequencies) with each layer addition as a function of 

the relative hardnesses. 

Impedance measurements, insensitive to the presence of an 

elastomeric absorber, led to the demonstration of the 

confinement of a WLAW wave, in the configuration with 2 μm 

of ZnO and 6 μm of AlN. 

This result is in agreement with the COMSOL simulations 

that predicted a sufficient value of 5 μm (or 6 μm with some 

reasonable margin) of AlN to observe the confinement of the 

WLAW wave.  

Hence, the AlN/ZnO/LiNbO3 (128° Y-cut) structure has 

been validated for packageless applications. Moreover, TCF 

measurements show promises for on-body temperature sensing 

applications. 

 

As a short term perspective, the aim is to improve the quality 

factor Q of the devices, which requires to reduce the acoustic 

losses. In the present case the wave propagation takes place 

mainly in the ZnO layer which has been deposited by 

magnetron sputtering. By forcing the wave to propagate in the 

single crystal lithium niobate substrate rather than in the ZnO 

layer, losses can be reduced. Diamond, which is harder than 

AlN may then be considered for the upper layer [21]. 

Comparison between the two structures AlN/ZnO/LiNbO3 and 

Diamond/ZnO/LiNbO3 are in progress [22]. In order to obtain 

low-profile sensors, the manufacturing of SAW devices on 

thinned substrates is also interesting. 

Additionally, the manufacturing of flexible antennas will be 

performed in order to yield complete wireless sensors based on 

the WLAW structure. The final sensor will be fixed on the 

human body for temperature measurements, and the elastic 

property of the antennas will compensate the strain due to the 

skin deformation. For the first experiment, antennas were made 

with Kapton sheets with a thickness of 25 µm. Fig.2a gives an 
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overview of the final structure where the AlN/ZnO/LiNbO3 

(128° Y-cut) WLAW structure is placed in the center and fixed 

to the antennas. 
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