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i-1. bayesian networks

Setting

∙ X = (X1, . . . , Xn): tuple of categorical random variables
∙ D = {(x(m)

1 , . . . , x(m)
n )}1≤m≤M: dataset w/ M i.i.d observations of X

Bayesian network: B = (G,Θ) where

∙ G = (V,A): DAG structure with
∙ V = J1,nK vertices associated to the n variables
∙ A ⊂ V2 set of arcs
∙ π(i) the set of parents of i in G
Factorization of the joint distribution:

P(X1, . . . , Xn) =
n∏
i=1

P(Xi|Xπ(i))

∙ Θ: parameters of the local P(Xi|Xπ(i))
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i-2. bayesian networks: example

B = (G,Θ): two node Bayesian network

G = ({1, 2}, {(1, 2)})

X1

X2

Θ = {Θ1,Θ2}

∙ Θ1 = {θx1}x1 parameters of distribution of X1, i.e.:

∀x1 ∈ Val(X1), θx1 = P(X1 = x1).

∙ Θ2 = {θx2|x1}x1,x2 parameters of conditional dist. X2|X1, i.e.:

∀(x1, x2) ∈ Val(X1)× Val(X2), θx2|x1 = P(X2 = x2|X1 = x1).
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i-3. bayesian network structure learning

Score&search-based BN structrure learning

For a scoring function s : DAGV → R, BNSLs comes down to:

Ĝ ∈ argmax
G∈DAGV

s(G)

Some scoring functions
Most scoring functions are based on the log-likelihood lD(Θ):

lD(Θ) = log(PΘ(D)) =
M∑

m=1

n∑
i=1

log
(
θx(m)

i |x(m)

π(i)

)

As the MaxLogLikelihood score (MLL), (leads to complete graphs):

sMLL
D (G) = max

Θ∈ΘG
lD(Θ).
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lD(Θ) = log(PΘ(D)) =
M∑

m=1

n∑
i=1

log
(
θx(m)

i |x(m)

π(i)

)

As the Bayesian information criterion score (BIC):

sBICD (G) = max
Θ∈ΘG

lD(Θ)︸ ︷︷ ︸
sMLL
D (G)

− log(M)

2 d(G),
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i-3. bayesian network structure learning

Score&search-based BN structrure learning

For a scoring function s : DAGV → R, BNSLs comes down to:

Ĝ ∈ argmax
G∈DAGV

s(G)

Some scoring functions
Most scoring functions are based on the log-likelihood lD(Θ):

lD(Θ) = log(PΘ(D)) =
M∑

m=1

n∑
i=1

log
(
θx(m)

i |x(m)

π(i)

)

As the Bayesian Dirichlet equivalent score (BDe):

sBDeD (G) = log

∝ P(G|D)︷ ︸︸ ︷ P(G)︸︷︷︸
Structure prior

∫
Θ∈ΘG

P(D|Θ,G)︸ ︷︷ ︸
Likelihood

P(Θ|G)︸ ︷︷ ︸
Dirichlet prior

dΘ


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ii-1. entropy and mll score

Conditional Shannon entropy

The conditional Shannon entropy of Xi knowing Xj is defined as

H(Xi|Xj) = −
∑
xi,xj

p(xi, xj) log(p(xi|xj))

H(Xi|Xj) = 0 if and only if the value of Xi is entirely determined by the
value of Xj

Linking the entropy with MLL score

The MLL score can be rewritten as

sMLL
D (G) = −M

n∑
i=1

HD(Xi|Xπ(i))
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ii-2. determinism

Definitions: determinism and quasi-determinism

The relationship Xi → Xj is deterministic wrt D iff

HD(Xi|Xj) = 0

The relationship Xi → Xj is ϵ−quasi deterministic wrt D iff

HD(Xi|Xj) ≤ ϵ

Definition: deterministic DAGs

A DAG G is deterministic wrt D iff for every i ∈ V st π(i) ̸= ∅,

HD(Xi|Xπ(i)) = 0

(analogous definition for quasi-deterministic DAGs)
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ii-3. optimal bn with the maxlikelihood score (1/2)

Proposition 1: Deterministic trees and the MLL score

If T ∈ DAGV is a deterministic tree (single-parented DAG) wrt D then T
is a solution of BNSLMLL:

sMLL
D (T) = max

G∈DAGV
sMLL
D (G)

Proposition 2: Deterministic forests and the MLL score

Let F ∈ DAGV be a deterministic forest, and R(F) ⊂ V its roots. If GR is
a solution of BNSLMLL on {Xj, j ∈ R(F)},
then F ∪ GR is a solution of BNSLMLL on {X1, . . . , Xn}:

sMLL
D (F ∪ GR) = max

G∈DAGV
sMLL
D (G)
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iii-1. (quasi-)deterministic screening: idea

Summary of the theoretical results

∙ If we can relate all variables by a single deterministic tree, then
this tree is a optimal solution to BNSLMLL

∙ If we can relate subsets of the variables by deterministic trees,
solving BNSLMLL narrows down to the roots of the trees

→ Let’s search for deterministic subtrees before solving BNSL!

What if the target BNSL score is not MLL score ?

Intuition: trees have very small complexity and are therefore also
interesting wrt scores such as BIC or BDe.

What about quasi-determinism ?

Empirical determinism is rare, however very strong relationships (i.e.
very low conditional entropies) are common
→ Let’s search for quasi-deterministic subtrees before solving BNSL!
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iii-2. bnsl with qd-screening: algorithm

Algorithm 1 Bayesian network structure learning with quasi deter-
ministic screening (qds-BNSL)

Input: D, ϵ, sota-BNSL
1: Compute Fϵ by running qd-screening with D and ϵ

2: Identify R(Fϵ) = {i ∈ J1,nK | πFϵ(i) = ∅}, the set of Fϵ’s roots.
3: Compute G∗

R(Fϵ) by running sota-BNSL on XR(Fϵ)
4: G∗

ϵ ← Fϵ ∪ G∗
R(Fϵ)

Output: G∗
ϵ
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iii-2. bnsl with qd-screening: algorithm

Algorithm 3 Bayesian network structure learning with quasi deter-
ministic screening (qds-BNSL)

Input: D, ϵ, sota-BNSL
1: Compute Fϵ by running qd-screening with D and ϵ

2: Identify R(Fϵ) = {i ∈ J1,nK | πFϵ(i) = ∅}, the set of Fϵ’s roots.
3: Compute G∗

R(Fϵ) by running sota-BNSL on XR(Fϵ)
4: G∗

ϵ ← Fϵ ∪ G∗
R(Fϵ)

Output: G∗
ϵ

Complexity
∙ qd-screening: O(n2)

∙ qds-BNSL: calls sota-BNSL on |R(Fϵ)| ≤ n variables (exact BNSL:
O(2p), heuristics are very time-intensive as well)

We expect qds-BNSL to be faster than sota-BNSL when |R(Fϵ)| < n
(Rahier et al., 2018)
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iv-1. bayesian networks learnt on the msnbc dataset: baseline
BN learnt on dataset 'msnbc' with sota−BNSL
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iv-1. bayesian networks learnt on the msnbc dataset: qds
BN learnt on dataset 'msnbc' with qds−BNSL (eps_0.5)
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iv-2. performance/readability tradeoff - msnbc dataset
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iv-3. performance/computation time tradeoff - msnbc dataset
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iv-4. performance/readability tradeoff - piu dataset
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iv-5. performance/computation time tradeoff - piu dataset
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v-1. discussion and perspectives

Summary
∙ Deterministic screening is consistent wrt the MLL score
∙ BN learnt via qds-BNSL have often have a very interesting
performance-vs-readability tradeoff, and are consistently faster
to compute for a given performance score than with usual
methods

However these properties depend highly on the dataset

Perspectives

In the future we plan to

∙ Search for guarantees of qds-BNSL wrt scores as BIC, BDe or
CVLL

∙ Look for a criteria that enables us to choose ϵ in a principled way
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Thank you
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More results
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v-2. candidate criterion for choice of ϵ - msnbc dataset
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v-3. candidate criterion for choice of ϵ - piu dataset
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app 1. performance/readability tradeoff - msnbc dataset (1/2)
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app 1. performance/readability tradeoff - msnbc dataset (2/2)
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app 2. performance/time tradeoff - msnbc dataset
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app 3. performance/readability tradeoff - piu dataset
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app 4. performance/time tradeoff - piu dataset
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app 5. (quasi-)deterministic screening: algorithm

Algorithm 4 Quasi-determinism screening (qds)
Input: D , ϵ

1: Compute empirical cond. entropy matrix HD =
(
HD(Xi|Xj)

)
1≤i,j≤n

2: for i = 1 to n do
3: compute πϵ(i) = {j ∈ J1,nK \ {i} | HD

ij ≤ ϵ}

4: for i = 1 to n do
5: if ∃j ∈ πϵ(i) s.t. i ∈ πϵ(j) then
6: if HD

ij ≤ HD
ji then πϵ(j)← πϵ(j) \ {i}

7: else πϵ(i)← πϵ(i) \ {j}
8: for i = 1 to n do
9: π∗

ϵ (i)← argmin
j∈πϵ(i)

|Val(Xj)|

10: Compute forest Fϵ = (VFϵ ,AFϵ), where
VFϵ = J1,nK
AFϵ = {(π∗

ϵ (i), i) | i ∈ J1,nK s.t. π∗
ϵ (i) ̸= ∅}

Output: Fϵ
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app 6. performance/readability tradeoff - book dataset
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app 7. performance/computation time tradeoff - book dataset
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app 8.. candidate criterion for choice of ϵ - book dataset
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