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Dirichlet process (DP)

The DP is a central Bayesian nonparametric (BNP) prior1 .

Definition (Dirichlet process)

A Dirichlet process on the space Y is a random process G such that there exist α (concentration parameter) and G 0 (base distribution) such that for any finite partition {A 1 , . . . , A p } of Y, the random vector (P (A 1 ), . . . , P (A p )) will be Dirichlet distributed:

(P (A 1 ), . . . , P (A p )) ∼ Dir(αG 0 (A 1 ), . . . , αG 0 (A p ))

Notation: G ∼ DP(α, G 0 )
The DP is the infinite-dimensional generalization of the Dirichlet distribution.

A DP prior G can be constructed using three methods:

The Blackwell-MacQueen urn scheme

The 

y i = (y i1 , ..., y iD ) ∈ R D i.i.d p(y i |θ * , π) = K k=1 π k F (y i |θ * k )
where θ * = (θ * 1 , ..., θ * K ) and π = (π 1 , ..., π K ) with θ * class parameters and π mixture weights with K i=1 π i = 1. θ * and π can be estimated using EM algorithm.

Equivalently

G = K k=1 π k δ θ * k non random θ i ∼ G and y i |θ i ∼ F (y i |θ i ).

Bayesian finite mixture model

In a Bayesian setting, a prior distribution is placed over θ * and π.

Thus, the posterior distribution of parameters given the observations is

p(θ * , π|y) ∝ p(y|θ * , π)p(θ * , π)
To generate a data point within a Bayesian finite mixture model:

θ * k ∼ G 0 π 1 , ..., π K ∼ Dir(α/K, ..., α/K) G = K k=1 π k δ θ * k is a random measure θ i |G ∼ G, which means θ i = θ * k with probability π k y i |θ i ∼ F (y i |θ i )
Bayesian finite mixture model In a Bayesian setting, a prior distribution is placed over θ * and π.

Thus, the posterior distribution of parameters given the observations is

p(θ * , π|y) ∝ p(y|θ * , π)p(θ * , π)
To generate a data point within a Bayesian finite mixture model:

θ * k ∼ G 0 π 1 , ..., π K ∼ Dir(α/K, ..., α/K) G = K k=1 π k δ θ * k is a random measure θ i |G ∼ G, which means θ i = θ * k with probability π k y i |θ i ∼ F (y i |θ i ) Limitation:
Require specifying the number of components K beforehand.

Solution:

Assume an infinite number of components using BNP priors. Spatial constraints and dependencies are not considered.

DP mixture model

G ∼ DP(α, G 0 ) θ i |G ∼ G y i |θ i ∼ F (y i |θ i )

Solution:

Combine the DP prior with a hidden Markov random field (HMRF).

DP-Potts mixture model

To solve the issue, we introduce a spatial Potts model component:

M (θ) ∝ exp   β i∼j δ z(θi)=z(θj )  
with θ = (θ 1 , ..., θ N ) and β the interaction parameter.

The DP mixture model is thus extended: 

G ∼ DP(α, G 0 ) θ|M , G ∼ M (θ) × i G(θ i ) y i |θ i ∼ F (y i |θ i ) DP-
G ∼ DP (α, G 0 ) θ * k |G 0 ∼ G 0 τ k |α ∼ B(1, α), k = 1, 2, . . . π k (τ ) = τ k k-1 l=1 (1 -τ l ), k = 1, 2, . . . G = ∞ k=1 π k (τ )δ θ * k + θ i |G ∼ G y i |θ i ∼ F (y i |θ i ) = Dirichlet
θ * k |G 0 ∼ G 0 τ k |α ∼ B(1, α), k = 1, 2, . . . π k (τ ) = τ k k-1 l=1 (1 -τ l ), k = 1, . . . G = ∞ k=1 π k (τ )δ θ * k =⇒ θ i |G ∼ G y i |θ i ∼ F (y i |θ i ) Stick breaking construction of DPMM θ * k |G 0 ∼ G 0 τ k |α ∼ B(1, α), k = 1, 2, . . . π k (τ ) = τ k k-1 l=1 (1 -τ l ), k = 1, . . . θ i = θ * k with probability π k (τ ) y i |θ i ∼ F (y i |θ i )
DP-Potts mixture model

DP-Potts: Stick breaking construction

Using assignment variables z i DPMM view

θ * k |G 0 ∼ G 0 τ k |α ∼ B(1, α), k = 1, 2, . . . π k (τ ) = τ k k-1 l=1 (1 -τ l ), k = 1, . . . θ i = θ * k with probability π k (τ ) y i |θ i ∼ F (y i |θ i ) =⇒ Mixture/Clustering view θ * k |G 0 ∼ G 0 τ k |α ∼ B(1, α), k = 1, 2, . . . π k (τ ) = τ k k-1 l=1 (1 -τ l ), k = 1, . . . p(z i = k|τ ) = π k (τ ) with z i = z(θ i ) = k when θ i = θ * k y i |z i , θ * ∼ F (y i |θ * zi )

DP-Potts: Stick breaking construction

Using assignment variables z i

Stick breaking of DPMM

θ * k |G 0 ∼ G 0 τ k |α ∼ B(1, α), k = 1, 2, . . . π k (τ ) = τ k k-1 l=1 (1 -τ l ) p(z i = k|τ ) = π k (τ ) y i |z i , θ * ∼ F (y i |θ * zi )
Stick breaking of DP-Potts

θ * k |G 0 ∼ G 0 τ k |α ∼ B(1, α), k = 1, 2, . . . π k (τ ) = τ k k-1 l=1 (1 -τ l ) p(z|τ, β) ∝ i π zi (τ ) exp(β i∼j δ zi=zj ) z = {z1, . . . , z N } y i |z i , θ * ∼ F (y i |θ * zi )
NB: Well defined for every stick breaking construction ( Access the intractable p(Z, Θ|y, Φ) approximate as q(z, Θ) = q z (z)q θ (Θ)

Variational Expectation-Maximization

Alternate maximization in q z and q θ (φ are hyperparameters) of the Free Energy: Quantitative evaluation of the segmentations A general DP-Potts model and the associated VB algorithm were built.

F(q z , q θ , φ) = E qzq θ log p(y, Z, Θ|φ) q z (z)q θ (Θ) = log p(y|φ) -KL(q z q θ , p(Z, Θ|y, φ)) DP-Potts Variational EM procedure Joint DP-Potts (Gaussian) Mixture distribution p(y, z, τ , α, θ * |φ) = N j=1 p(yj|zj, θ * ) p(z|τ , β) ∞ k=1 p(τ k |α) ∞ k=1 p(θ * k |ρ k ) p(α|s1, s2) p(yj |zj , θ * ) = N (yj |µz j , Σz j ) is Gaussian p(z|τ , β) is a DP-Potts model p(τ k |α) is Beta B(1, α) p(θ * k |ρ k ) = N IW(µ k , Σ k |m k , λ k , Ψ k , ν k ) is Normal-inverse-Wishart p(α|s1, s2) = G(α|s1, s2) is Gamma Usual truncated variational posterior, qτ k = δ1 for k ≥ K (eg. K = 40) q(z, Θ) = N j=1 qz j (zj) qα(α) K-1 k=1 qτ k (τ k ) K k=1 q θ * k (µ k , Σ k ) E-steps: VE-Z, VE-α,
The DP-Potts model was applied to image segmentation and tested on different types of datasets.

Impact of the interaction parameter β on the final results is significant.

An estimation procedure was proposed for β

A general DP-Potts model and the associated VB algorithm were built.

The DP-Potts model was applied to image segmentation and tested on different types of datasets.

Impact of the interaction parameter β on the final results is significant.

An estimation procedure was proposed for β How does β influence the number of components?

Extend the model with other priors (Pitman-Yor process, Gibbs-type priors, etc.). 

p(z|τ , β) = K(β, τ ) -1 exp(V (z; τ , β)) with V (z; τ , β) = i log πz i (τ ) + β i∼j δ (z i =z j ) β = arg max β Eq z qτ log p(z|τ ; β) = arg max β Eq z qτ V (z; τ , β) -Eq τ log K(β, τ )
Two difficulties

(1) p(z|τ , β) is intractable (normalizing constant K(β, τ ), typical of MRF)

(2) it depends on τ (typical of DP) Two approximations

(1) "standard" Mean Field like approximation a exp(log π l (τ ) + β i∈N (j) q zi (l))

and τ = E qτ [τ ]
β is estimated at each iteration by setting the approximate gradient to 0

E qzqτ ∇ β V (z; τ , β) = K k=1 i∼j
q zj (k) q zi (k)

∇ β E qτ log K(β, τ ) = E p(z|τ ,β)qτ ∇ β V (z; τ , β) ≈ 

∼

  Chinese Restaurant Process The Stick-Breaking construction Dirichlet process (DP) construction A DP prior G can be constructed using three methods: The Blackwell-MacQueen urn scheme The Chinese Restaurant Process The Stick-Breaking construction The DP has almost surely discrete realizations 2 : G 0 and π k = πk l<k (1 -πl ) with πk iid ∼ Beta(1, α).

  mixture model: DP-Potts mixture Clustering/segmentation: Finite mixture models assume data are generated by a finite sum of probability distributions: y = (y 1 , ..., y N ) with

Froma

  Bayesian finite mixture model to a DP mixture model To establish a DP mixture model, let G be a DP prior (K → ∞), namely G ∼ DP(α, G 0 ) and complement it with a likelihood associated to each θ i To generate a data point within a DP mixture model:

  . Pitman-Yor (τ k |α, σ) ∼ B(1 -σ, α + kσ) Inference using variational approximation Clustering/ segmentation task: Estimating Z while parameters Θ unknown , eg. Θ = {τ , α, θ * } Bayesian setting

  VE-τ and VE-θ * M-step: φ updating straightforward except for β Model validation and verification: Segmented image using DP-Potts model with β = 2.5. Segmentation with estimated β = 1

( 2 )

 2 Replace the random τ by a fixed τ = E qτ [τ ] a Forbes & Peyrard 2003 Approximation of p(z|τ ; β) p(z|τ , β) ≈ qz (z|β) = N j=1 qzj (z j |β)qzj (z j = k|β) = exp(log π k (τ ) + β i∈N (j) q zi (k)) ∞ l=1
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  Probabilistic Rand Index on 154 color (RGB) images with ground truth (several) from Berkeley dataset (1000 superpixels). But Manual ground truth segmentations are subjective !

	PRI results with DP-Potts model
		Mean	Median	St.D.
	K=10	71.48	72.54	0.1040
	K=20	73.64	73.42	0.0935
	K=40	75.33	76.47	0.0853
	K=50	75.81	76.31	0.0873
	K=60	76.55	77.12	0.0848
	K=80	77.06	78.30	0.0835
	PRI results from Chatzis 2013

Computation time : Berkeley 321x481 image reduced to 1000 superpixels takes 10-30 s on a PC with CPU Intel(R) Core(TM) i7-5500U CPU 2.40GHz and 8GB RAM
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[START_REF] Lü | [END_REF] 

2D point clustering (unsupervised learning) based on the DP mixture model: Let the data speak for themselves! H. Lü et al. JSM 2018 July 2018

DP-Potts mixture model

[START_REF] Orbanz | Nonparametric Bayesian image segmentation[END_REF];[START_REF] Xu | Bayesian nonparametric image segmentation using a generalized Swendsen-Wang algorithm[END_REF];[START_REF] Sodjo | A generalized Swendsen-Wang algorithm for Bayesian nonparametric joint segmentation of multiple images[END_REF] 

[START_REF] Albughdadi | A Bayesian non-parametric hidden Markov random model for hemodynamic brain parcellation[END_REF] 

Chatzis & Tsechpenakis (2010); Chatzis (2013) H. Lü et al. JSM 2018 July 2018

Segmentation results for SAR images: Original image Segmentation by DP-Potts (K=40, β = 0) Segmentation by DP-Potts (K=40, β = 2) Segmentation by DP-Potts (K=40, β = 10) Original image Segmentation by DP-Potts (K=40, β = 0) Segmentation by DP-Potts (K=40, β = 2) Segmentation by DP-Potts (K=40, β = 10)

The segmentation results obtained by DP-Potts model with β = 0, 1, 5.
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