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Scheduling Framework for Mobile Robots
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Abstract

Inspired by the new achievements in mobile robotics having as a result mobile

robots able to execute different production tasks, we consider a factory producing a

set of distinct products via or with the additional help of mobile robots. This particu-

larly flexible layout requires the definition and the solution of a complex planning and

scheduling problem. In order to minimize production costs, dynamic determination of

the number of robots on each production task and the individual robot allocation are

needed. We propose a solution in terms of a two-level decentralized multi-agent sys-

tem (MAS) framework: at the first, production planning level, agents are tasks which

compete for robots (resources at this level); at the second, scheduling level, agents

are robots which reallocate themselves among different tasks to satisfy the requests

coming from the first level. An iterative auction based negotiation protocol is used

at the first level while the second level solves a Multi-Robot Task Allocation Problem

(MRTA) through a distributed version of the Hungarian Method. A comparison of

the results with a centralized approach is presented.
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1 Introduction

An external demand of a manufacturing system is generally a fluctuating stochastic pro-

cess, usually known with a satisfactory accuracy only over a limited time horizon ahead.

This introduces, at the strategic level, a high degree of uncertainty in the design of a

production system and a supply chain where critical decisions must be taken based on

aggregate and approximate information (see, e.g., Mun, 2002).

In traditional shop-floor planning, establishing a production facility requires the selec-

tion of static production machines and robot manipulators which would be suitable for

long term production plans. With the advances in the development of mobile production

resources, now it is possible for many products, once manufactured only by large pro-

duction machines permanently tied to single locations, to be manufactured with smaller,

mobile robots. One of the first such robots was presented in July 2010 by robotic producer

Kuka (Bischoff et al., 2010). The shop floor layout with mobile robots makes the strategic

decisions less critical with respect to the ones associated to the design of a plant where

machines (i.e., production resources) are located on static positions. A dynamic layout

represents in fact a less constrained facility where design decisions are postponed to the

operative level and become reversible options. A dynamic layout is more effective in re-

sponding to a fluctuating external demand and can be considered, for this reason, in the

same vein as other solutions adopted through the years in the manufacturing domain for

the same purpose, like, among others, Flexible Manufacturing Systems (e.g., Huang and

Chen, 1986), Group Technology (see, e.g., Selim et al., 1998), Holonic Manufacturing (see,

e.g., Christensen, 1994), and Agile Production Systems (see, e.g., Dugnay et al., 1997).

The high degree of flexibility achieved by the proposed dynamic multi-robot layout

leads to a more complex operation management which may render centralized architec-

tures unviable. Centralized architectures in such complex environments are often imprac-

tical because of computational and communication bottleneck and the vulnerability of

system failure. On the other hand, a bottom-up multi-agent modular architecture dis-

tributes computational resources and capabilities among the agents and does not suffer

from the “critical point of failure” problem associated with centralized systems (see, e.g.,

Wooldridge, 2002). Further advantages of a decentralized multi-agent approach are mod-

ularity, decentralized knowledge bases, fault-tolerance, redundancy and extendibility, in
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the sense that new robots can be added to the original system without any change in the

system architecture (see, e.g., Lueth and Laengle, 1994).

For all the above reasons and because mobile robots are autonomous entities with

limited vision and communication capacities, in this paper we propose a decentralized

two-level multi-agent system (MAS) framework for the case where the production is exe-

cuted exclusively or with the additional help of mobile robots, as shown, e.g., by Helms et

al. (2002) and Tan et al. (2009). On the first, production planning level, tasks compete

for the resources (robots) required for their execution. Assuming that the planning time

horizon is subdivided into a finite number of time periods, the objective of the production

planning level is the determination of the assignment of the robots in each time period

to the respective tasks in order to minimize the total production cost for each produc-

tion process (with the products’ demand known over all the time periods in the given

time horizon). The resulting problem is a multiple decision maker multi-item

dynamic lot-sizing problem with limited production capacity. The problem

is NP-hard since it can be shown to generalize the very special case with

single-decision maker, single-item, zero inventory holding cost, convex pro-

duction cost function, unit set-up cost, and no production capacity, that has

been proved to be NP-hard by Florian et al. (1980). Since the problem at

production planning level is NP-hard this level of the MAS framework is coupled

with a heuristic iterative auction based negotiation protocol to coordinate the agents’

decisions (see, e.g.: Kutanoglu and Wu, 2006; Schneider et al., 2005; Roundy et al., 1991).

The resource prices, needed for the iterative auction based protocol, are updated using a

strategy inspired by the subgradient technique used in the Lagrangian relaxation approach

(see, e.g., Chen et al., 1998, and Barahona and Anbil, 2000).

Given the number of robots assigned to the tasks in each time period according to the

decisions made at the first, planning level, on the second, scheduling level, the objective is

to minimize the total distance covered by the robots in the reallocation between consec-

utive periods. Therefore, a Multi-Robot Task Allocation Problem (MRTA) is solved for

each period. The objective of the MRTA problem is to find the assignment of n robots

to a set of n tasks (target positions) based on the optimization of some global objective

function (see, e.g., Gerkey and Mataric, 2003). We assume that the decision making en-
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vironment for this level is decentralized as well, with as many decision makers (agents)

as there are the robots in the system. In particular, we assume robot to be collaborative,

homogeneous, arranged in regular networks and relying on local communication between

neighboring agents. We use a distributed version of the Hungarian Method for this alloca-

tion problem, a distributed combinatorial optimization algorithm which solves

the assignment problem in strongly polynomial time (Giordani et al., 2010).

Note that the problem definition and the proposed modeling framework are

general enough so that the task scheduling problem and the solution model

can be applied also to other types of mobile manufacturing resources and

production operators.

We experiment the proposed model considering a fluctuating demand modeled through

an ARMA process. To measure the effectiveness of the approach, the social welfare (see,

e.g., Chevaleyre et al., 2006) of the task agents in the decentralized scenario is compared

with the performance obtained through a centralized solution. Preliminary results re-

garding the first level of the proposed framework have been presented by Giordani et al.

(2009) where the problem addressed on the second level (the robot movement) was not

considered. The integrated solution of the two levels is a viable solution for the incorpo-

ration of mobile robots on the shop-floor and provides indeed an interesting insight into

the problem. In particular, we show that the decentralized approach of the first level gives

comparable results to the centralized one while the required total movement distance of

the robots’ reallocation is in general inferior.

The remainder of the paper is organized as follows. We introduce related work and

review some of the economic models used in MAS negotiation for resource allocation in

Section 2. In Section 3, the decentralized production scheduling problem is presented. The

two-level solution approach is given in Section 4. In Section 5, we present the simulation

results. We close the paper with the conclusions in Section 6.

2 Related work

There is a vast literature on the scheduling techniques in manufacturing based

on multi-agent systems (see, e.g., Shen et al., 2006, Shen et al., 2007, Wang

et al., 2008). For multi-agent interaction and negotiation, there are several applicable
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economic models which might work well for the production planning level of the presented

framework where tasks compete for resources (robots): commodity market, posted price,

bargaining, tender/contract-net, and auction model (see, e.g., Kraus, 2001, Chevaleyre et

al., 2006, Buyya et al., 2002), which is the approach chosen in this paper.

Regarding the second level, MRTA corresponds to the (linear sum) Assignment prob-

lem for which the first developed algorithm was the Hungarian method (Kuhn, 1955).

The Hungarian method or Kuhn-Munkres algorithm is a well known iterative

algorithm which maintains dual feasibility during calculation and searches for

a primal solution satisfying complementary slackness conditions. If the primal

solution is feasible, the solution is optimal. If the primal solution is not fea-

sible, the method performs a modification of the dual feasible solution after

which a new iteration starts. Hungarian method can be implemented using

the alternating trees so that its worst case time complexity is limited by O(n3)

(see, e.g., Papadimitriou and Steiglitz, 1982).

There are several main approaches to the Assignment problem (see, e.g., Burkard and

Çela, 1999). The classical centralized assignment methods find a solution through the

iterative improvement of some cost function: in primal simplex methods it is a primal

cost, and in Hungarian, dual simplex and relaxation methods it is a dual cost (see, e.g.,

Bertsekas, 1992).

The Auction algorithms can improve as well as worsen both the primal and the dual

cost through the intermediate iterations, although at the end, the optimal assignment

is found (Bertsekas, 1992). Bertsekas in this work introduces the auction algorithm in

which the agents bid for the tasks in iterative manner, and in each iteration, the bidding

increment is always at least equal to ǫ (ǫ-complementary slackness). If ǫ < 1

n
the algorithm

finds the optimal solution, and it runs in O(n3 ·max{cij}) time, where cij is the assignment

cost of robot i to task j, that is in pseudo-polynomial time. Using ǫ-scaling

technique and appropriate data structures a polynomial time version of the

auction algorithm running in O(n3 log(n · max{cij}) time is given by Bertsekas

and Castanon (1989) and Bertsekas (1992).

Zavlanos et al. (2008) provide a distributed version of the auction algorithm proposed

by Bertsekas for the networked systems with the lack of global information due to the
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limited communication capabilities of the agents. Updated prices, necessary for accurate

bidding can be obtained in a multi-hop fashion only by local exchange of information

between adjacent agents. No shared memory is available and the agents are required to

store locally all the pricing information. This approach calculates the optimal solution in

O(∆ · n3 ·max{cij}) time, with ∆ ≤ n − 1 being the maximum network diameter of the

communication network.

There are also many parallel algorithms based on the Hungarian method. For a good

survey see, e.g., Burkard and Çela (1999), and Bertsekas et al. (1995). Among other

parallel algorithms for the assignment problem, one of the most efficient is the

one proposed by Orlin and Stein (1993) that adopting cost scaling technique

solves the problem using Ω(n4) processors in O(log3 n · logC) time.

In the robotic community, there are many heuristic methods developed for the MRTA

problem. Smith and Bullo (2007) describe two algorithms, namely ETSP, and Grid algo-

rithm, for the task assignment in the sparse and dense environments. The agents have a

full knowledge of the tasks in the environment and, in the ETSP algorithm, approach the

closest ones. If the closest task is occupied, they pre-compute an optimal tour through

the n remaining tasks, and search for the first non-occupied task based on certain crite-

ria. Gerkey and Mataric (2003, 2004) describe certain relevant heuristic algorithms for the

MRTA problem through the prism of three important factors: computation and communi-

cation requirements, and the manner in which tasks are considered for (re)assignment, i.e.

whether all or just a part of the tasks are considered for (re)assignment in each iteration.

The problem with these approaches, as the authors state, is that there is no characteriza-

tion of the solution quality that can be expected by the algorithms. Kwok et al. (2002)

apply the classic combinatorial methods, such as Hungarian and Gabow algorithms, to

the assignment problem in the context of a set of mobile robots which need to be moved

to a desired matrix of grid points to have a complete surveillance of the desired area.

3 Problem formulation

A manufacturing system producing P different types of goods is considered. A task

denotes a production process of a particular type of product and all the tasks are assumed

different from one another. The tasks are executed by a set of N identical mobile robots,
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characterized by a hiring cost, defined below.

Given a finite time horizon of T time periods and assuming that the demand for the P

products in the T time periods is known, the discrete time production scheduling problem

addressed in this paper consists of finding how many robots must be assigned to each

task in each time period in order to minimize a total cost composed of backlog, inventory,

manufacturing, and robot hiring costs.

Once the solution to the task scheduling problem has been determined, the robots

decide how to move in order to fulfill the assignment requests by covering the minimum

total distance.

A two-level hierarchical decentralized production scheduling problem can be then for-

mulated, where, at the first level, the tasks are considered as agents which compete for

robots, resources characterized by a hiring price; at the second level, robots are the agents

which autonomously decide upon the way to meet the requests of the first level.

3.1 Production planning level

At the first, production planning level, each task agent requests the task coordinator agent

for robots for each time period, based on product demands and production costs. The

task coordinator agent assigns the robots to the tasks for each unit time period on the

basis of their requests.

For all time periods k = 1, . . . , T , the agent representing task i, related to product

i, knows product demand rate di(k), robot maximum production rate ri(k) (production

capacity), unitary manufacturing cost ci(k), unitary holding cost hi(k), unitary backlog

cost bi(k), and unitary robot hiring cost ρi(k), all nonnegative. It is reasonable to assume

that the robots’ displacement time is negligible in respect to the length of the time period,

∆t. For each time period k, the decision variables controlled by the agent representing

task i are:

• ni(k) ≥ 0: required number of robots (robot request);

• ui(k) ≥ 0: production rate.

Production can be anticipated or delayed in respect to the product demands, resulting

in holding and backlog costs, respectively. Each task i is associated with a buffer whose
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content xi(k) at the end of time period k can be positive (if a stock of completed product

items is present in the buffer) or negative (if a backlog of demands for the product realized

with task i is in the queue). Using a standard notation, we denote x+i (k) := max{xi(k), 0}

as the stock level, and x−i (k) := max{−xi(k), 0} as the backlog level at the end of time

period k. Notice that, for each time period k, and task (product) i, only one of x+i (k) and

x−i (k) can be different from 0 (i.e., x+i (k) · x
−
i (k) = 0 for k = 1, . . . , T and i = 1, . . . , P ).

The local optimization problem addressed by every task agent i includes x+i (k) and

x−i (k) as additional variables, for each time period k. Those variables, together with the

production rates ui(k), are assumed to be continuous according to a fluid approximation.

Given the above parameters and variables, the local optimization problem, Pi, addressed

by each task agent i can be formulated as follows.

(Pi) :

min zi =
T
∑

k=1

[

hi(k)x
+
i (k) + bi(k)x

−
i (k) + ci(k)ui(k) + ρi(k)ni(k)

]

(1)

s.t.

x+i (k)− x−i (k) = x+i (k − 1)− x−i (k − 1) + ∆t[ui(k)− di(k)], k = 1, ..., T (2)

ui(k) ≤ ri(k)ni(k), k = 1, ..., T ; (3)

ui(k), x
+
i (k), x

−
i (k),≥ 0, k = 1, ..., T ; (4)

0 ≤ ni(k) ≤ N and integer, k = 1, ..., T. (5)

The values of x+i (0), x
−
i (0), and ni(0) represent the initial conditions, i.e. the stock

level, the backlog level, and the number of preassigned robots to task i respectively, at

the beginning of the planning time horizon. For simplicity, but w.l.o.g., these values are

assumed to be equal to zero. Constraints (2) are the mass balance constraints among

product demand ∆t · di(k), stock level x+i (k), backlog level x−i (k), and production level

∆t · ui(k), for each time period k. W.l.o.g., assuming that, for each time period k and for

each task i, the values of hi(k) and bi(k) are positive, the constraint x+i (k) · x
−
i (k) = 0,

is implicitly satisfied by the optimal solution, and, hence, omitted in the formulation.

Constraints (3) limit the production rate ui(k) to be not greater than the production
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capacity ri(k) ·ni(k). Problem (Pi) belongs to the class of deterministic dynamic

lot-sizing problems well known in the inventory management literature (see,

e.g., Florian et al., 1980).

For each task agent i, let n∗i (k) be the number of required robots at time period k, in

the optimal solution of problem Pi, and let z∗i be the optimal solution of Pi. Each task

agent (decision maker) finds such a solution taking into account only its local objective

and constraints, but shares with the other task agents limited amount of available robots

(resources). Therefore, these local decisions can be implemented only if the following

global constraints are satisfied.

P
∑

i=1

n∗i (k) ≤ N, k = 1, ..., T. (6)

In general, this is not the case and, hence, a negotiation process must be implemented

among the task agents to come up with a set of local solutions that together satisfy also

constraints (6). We assume that this process is supervised by another decision maker, i.e.,

a coordinator agent, which can be an arbitrary preassigned task agent that assigns the

robots to the tasks for each time period on the basis of their requests, guaranteeing the

fulfillment of the constraint on the limited robot amount. In Section 4.2, we provide a

model for such a negotiation.

3.2 Production scheduling level

On the second, production scheduling level, which represents robots’ allocation to task

locations, the scope is to assign individual robots to tasks so as to minimize total movement

cost (i.e., total distance traveled by robots among task locations) during the planning time

horizon, given the number ni(k) of robots required by task i (with i = 1, . . . , P ) in period

k (with k = 1, . . . , T ) according to the decisions made at the first level.

Let ℓi be the location where task i is executed. We assume that at the beginning of

the planning time horizon the robots are located at a depot whose location is ℓ0, and that

at the end of the planning time horizon, all the used robots must leave the task locations

and go back to the depot. Let d(ℓi, ℓj) be the distance that a robot has to travel to go

from location ℓi to location ℓj , with i, j = 0, 1, . . . , P . The distances among locations are

assumed to satisfy the triangle inequality, with the assumption, for simplicity and w.l.o.g.,
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that the depot is located at an equidistant point from the task locations.

Therefore, at the beginning of the first time period, ni(1) robots leave the depot and

move to location ℓi of task i, for each task i = 1, . . . , P . Successively, for each k = 2, . . . , T ,

at the beginning of period k, the robots should be reallocated among the task locations

with possibly some additional robots leaving the depot and going to the required task

locations, such that at the beginning of period k (at least) ni(k) robots are located at

location ℓi of task i.

Let N(k) ≤ N be the maximum number of robots used during the first k periods, i.e.,

N(k) = maxh=1,...,k{
∑P

i=1 ni(h)}, with k = 1, . . . , T , and let N(0) = 0. Since the locations’

distances satisfy the triangle inequality, we may assume that only if N(k) > N(k − 1),

we have that N(k) − N(k − 1) additional robots leave the depot and reach some target

(task) locations exactly at the beginning of period k. On the contrary, if N(k) = N(k−1)

and
∑P

i=1 ni(k) < N(k − 1), (at least) N(k) −
∑P

i=1 ni(k) robots will remain at their

current (task) locations also during period k, assuming that at each task location there is

sufficient room to park also unused robots. Therefore, let us denote with n′i(k) ≥ ni(k)

the number of robots located at location ℓi during period k, where n′i(k) − ni(k) is the

number of robots parked at that location but not used by task i during period k. Clearly
∑P

i=1 n
′
i(k) = N(k). Finally, we may therefore assume that only at the end of the planning

time horizon the robots return to the depot.

According to the above considerations, in order to minimize the total distance traveled

by the robots during the planning time horizon, we can independently minimize the total

distance traveled by the robots for their reallocation to task locations between each two

consecutive time periods k − 1 and k, with k = 2, . . . , T ; let us denote with D(k) the

minimum total distance covered by the robots during reallocation k. The minimum total

distance traveled by the robots is D =
∑T+1

k=1
D(k), where D(1) is the total distance

traveled by ni(1) robots from the depot location ℓ0 to the task location ℓi, for each task

i, at the beginning of time period 1, and D(T + 1) is the total distance traveled by the

robots to go back to the depot location from their last locations at the end of the planning

time horizon. Clearly, D(1) does not depend on the (successive) robot reallocations. The

same applies also to D(T +1), since it is assumed that ℓ0 is located at equidistant position

from ℓi.
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Let us therefore consider the robots’ reallocation problem between two consecutive

periods k − 1 and k, with k = 2, . . . , T . We model this problem considering a set R of

N(k) collaborative mobile robots, a set T of N(k) targets (tasks), and a given N(k)×N(k)

matrix of costs γrt for allocating robot r to target t. The problem faced by the robots is

determining the allocation of robots to targets such that each robot is allocated exactly

to one target, each target is allocated to exactly one robot, and the total allocation cost

is minimized.

The cost γrt for allocating robot r to target t depends on the (current) location of

robot r and the location of target t.

Since the robots are assumed to be of the same type, without loss of generality, we can

re-index them such that robot r ∈ {1 +
∑i−1

h=1
n′h(k − 1), . . . ,

∑i
h=1 n

′
h(k − 1)}, is assumed

to be located at location ℓi of task i (with i = 1, . . . , P ), and robot r ∈ {1 +
∑P

h=1 n
′
h(k −

1), . . . , N(k)}, is a (new) robot that starts to be used for the first time in period k and

therefore is assumed to be located at the depot location ℓ0, and has to go to a certain

task location at the beginning of period k. Similarly, the targets are indexed so that

target t ∈ {1 +
∑i−1

h=1
nh(k), . . . ,

∑i
h=1 nh(k)}, is located at location ℓi, with i = 1, . . . , P ,

and target t ∈ {1 +
∑P

h=1 nh(k), . . . , N(k)}, is a dummy (fictitious) target assumed to be

located at the dummy (fictitious) location ℓ̄. Finally, cost γrt is assumed as the distance

between the location of robot r and the location of target t if the latter is non-dummy,

otherwise such cost is assumed to be equal to zero since allocating a robot to the dummy

target means that this robot will be unused in period k and hence it will remain parked

at its previous location during that period.

The mathematical formulation of the problem is

min
∑

r∈R

∑

t∈T

γrt · xrt (7)

s.t.
∑

r∈R

xrt = 1, ∀ t ∈ T , (8)

∑

t∈T

xrt = 1, ∀ r ∈ R, (9)

xrt ≥ 0, ∀ r ∈ R, ∀ t ∈ T , (10)

and it corresponds to the well known Assignment problem. Although fractional solutions

may exist, there always exists an optimal integer solution which corresponds to a real
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assignment, since no fractional solution is a basic feasible solution of the above linear

program (see, e.g., Papadimitriou and Steiglitz, 1982). In particular, xrt = 1 if the robot

r is assigned to target t; otherwise xrt = 0.

Denoting the above problem formulation as the primal problem, it is possible to define

the dual problem as follows. Let αt be the dual variable related to target t, and βr the

same related to robot r. Both dual variables are real and unrestricted in sign. The dual

problem is

max{
∑

r∈R

βr −
∑

t∈T

αt} (11)

s.t.

βr − αt ≤ γrt, ∀ r ∈ R, ∀ t ∈ T . (12)

It is possible to give an economic interpretation to the dual problem and the dual variables:

αt is the price that each robot r will pay if it gets assigned to target t, while βr is the

robot r’s utility for being assigned to a certain target. Constraint (12) of the dual problem

states that the utility βr of robot r cannot be greater than the total cost (γrt+αt) faced by

robot r for being assigned to target t. The dual objective function (11) to be maximized

is the difference between the sum of the utilities of the robots and the sum of the prices

of the targets, i.e., the total net profit of the robots. On the basis of the duality in linear

programming,
∑

r βr −
∑

t αt ≤
∑

r

∑

t γrt ·xrt; therefore, the total net profit of the robots

cannot be greater than the total assignment (displacement) cost that the robots have to

pay for being assigned to the targets, and only at the optimum, those two are equal.

Obviously, at the optimum, each robot r will be assigned to target t for which the utility

of the robot is βr = γrt + αt, i.e., exactly equal to the total cost that the robot r would

pay for being assigned to target t.

4 Solution approach

The problems associated with the production planning and scheduling level are solved

by two different and decentralized algorithms, the first one consisting of a negotiation

among the tasks, and the second one amounting to a distributed version of the Hungarian

algorithm, executed collaboratively by the robots.
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4.1 Two-level MAS planning and scheduling framework

The two-level multi-agent system framework for planning and scheduling of production

with mobile robots is shown in Figure 1.

[Insert Figure 1 around here]

At the first, planning level, the negotiation among the tasks is modeled by an iterative

auction process controlled by the coordinator agent which is in charge of coordination of

the negotiation. The details regarding the auction process are found in Section 4.2. Once

when, at the planning level, the number of robots assigned to each task for each time

period k ∈ {1 . . . T} is known, the planning level ends and the scheduling level begins

its performance with the aim to find for each robot exact movements on the shop-floor

through the whole time horizon subdivided in T time periods.

4.2 First level: negotiation process among the tasks

In the iterative auction process among tasks, at each iteration:

Step 1 The coordinator (auctioneer) communicates to all the task agents (bidders) current

prices of the robots in the T time periods;

Step 2 Each task agent, based on the local utility function of its local objective, the

constraints, and the current robot prices, determines the robot requests (a bid)

for the T time periods maximizing its utility function and communicates its robot

requests to the coordinator;

Step 3 Based on the bids received from the task agents, the coordinator allocates the

robots to the tasks for each time period, maximizing the robots’ total utility func-

tion;

Step 4 In order to reduce possible conflicts among tasks generated by their bids (i.e., the

violation of constraints (6)), or to stimulate usage of the robots, the coordinator

updates the robot prices.

Iteration process repeats until a certain (halting) condition is reached (e.g., a maximum

number of iterations have been performed, or the best robot allocation found is sufficiently

good from the agents’ point of view). At the end, the best robot allocation is retrieved.
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Let Bi = {ni(k) : k = 1, . . . , T} be the bid of task agent i, and let Λ = {λ(k) : k =

1, . . . , T} be the (current) set of the robot prices fixed by the coordinator (each one for

each time period). The utility function Ui(Bi,Λ) of agent i is the opposite of the total

production cost during the planning time horizon:

Ui(Bi,Λ) = −z∗i (Bi)− p(Bi,Λ). (13)

In this expression, z∗i (Bi) is the (minimum) production cost for task i with fixed num-

bers of assigned robots ni(k), with k = 1, . . . , T , according to bid Bi, and p(Bi,Λ) =
∑T

k=1 λ(k)ni(k) is the (additional) robot cost. Note that, z∗i (Bi) is the optimal solution

of the local optimization problem Pi with fixed values of ni(k).

In Step 2, agent i finds the best bid B∗
i = {n∗i (k) : k = 1, . . . , T}, i.e., the bid that

maximizes its utility function Ui(Bi,Λ). Let U∗
i (Λ) be its maximum value for a given

set Λ of robot prices. Finding B∗
i , and hence determining U∗

i (Λ), corresponds to solving

problem Pi with λ(k) added to the robot hiring cost ρi(k) in the objective function of Pi.

In Step 3, the coordinator receives bid B∗
i from each task i, and assigns robots to

tasks maximizing resources’ (robots’) utility function taking into account received bids.

Denoting with νi(k) the number of robots assigned to task i in time period k, robots’

utility function R(ν,Λ) is the total profit obtained from the robot assignment, and, hence,

R(ν,Λ) =
T
∑

k=1

λ(k)
P
∑

i=1

νi(k). (14)

Since νi(k) cannot be greater than robot request (bid) n∗i (k) of task agent i and
∑P

i=1 νi(k)

cannot be greater than N , for each k = 1, ..., T , the maximization of R(ν,Λ) can be easily

obtained by (heuristically) assigning robots to tasks on the basis of the values of n∗i (k),

for example adopting one of the following rules and taking the best related solution.

• Rule 1. For each time period k, order the tasks according to non-increasing robot

requests n∗i (k), and, following this task order, assign νi(k) = min{n∗i (k), N
′(k)}

robots to task i, where N ′(k) (with 0 ≤ N ′(k) ≤ N) is the number of non-assigned

(yet available) robots in time period k.

• Rule 2. For each time period k, assign proportionally robots to tasks according

to the robot requests n∗i (k), that is, denoting with w(k) = min{1, (N/
∑

i n
∗
i (k))},
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assign νi(k) = w(k) · n∗i (k) (approximating the value to the closest integer) robots

to task i in time period k, and such that
∑

i νi(k) ≤ N .

Quality of robot assignment is evaluated from the task agents’ point of view, measuring

the social welfare w(ν) of the tasks related to a given robot assignment ν = {νi(k)|i =

1, . . . , P, k = 1, . . . , T} as the (minimum) total production cost of the tasks with that

robot assignment, that is,

w(ν) =
P
∑

i=1

z∗i (νi), (15)

where z∗i (νi) is the optimal solution of Pi with a given number of robots ni(k) = νi(k)

assigned to task i, for each time period k. Let w∗ be the best (minimum) value of the social

welfare found so far during iterative auction process. It can be proved that expression

wL(Λ) = −
P
∑

i=1

U∗
i (Λ)−N

T
∑

k=1

λ(k), (16)

is a valid lower bound on the best value of the task agents’ social welfare, for any vector

Λ of non-negative robot prices λ(k).

In Step 4, the coordinator updates the robot prices λ(k), with k = 1, ..., T . This is

done, considering the deviation dev(k) =
∑P

i=1 n
∗
i (k) −N of the total number of requested

robots from the number N of available robots, and by increasing the current value of

λ(k) if dev(k) is positive (i.e., dev(k) is the excess of robot requirements), or decreasing

it (at most to 0) if dev(k) is negative (in this latter case −dev(k) is the deficit of robot

requirements). The value of the increase (decrease) of λ(k) should be a non-decreasing

function of the excess (deficit); moreover, it is a good practice that the auctioneer is more

aggressive in the early iterations to get very quickly a good robot assignment, while smaller

adjustments can be made in later iterations to refine the quality of the same. A possible

choice for the price updating that goes in this direction is that of using an algorithm

inspired by the subgradient technique used in Lagrangean relaxation, that experimentally

guarantees the convergence of the Lagrangean dual (see, e.g., Held et al., 1974).

At iteration h of the auction process, let devh(k) be the deviation of the robot require-

ments, and Λh be the vector of the robot prices λh(k), with k = 1, . . . , T . The new value

of the robot price in time period k at iteration h+ 1 is:

λh+1(k) = max

{

0, λh(k) + ψh w∗ − wL(Λ
h)

∑T
k=1(dev

h(k))2
devh(k)

}

, (17)
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where ψh is a scalar controlling the aggressiveness of the auctioneer. Following analog

practice in Lagrangean relaxation (see, e.g., Held et al., 1974) we start with value ψ0 = 2,

and halve its value if the best task social welfare value found so far is not improved within

a certain number of iterations.

In Step 1, the amount of information going from the coordinator to task agents is

O(P · T · log(λmax)) bits, where λmax is the maximum robot price. In Step 2, the amount

of information sent by task agents to the robot owner is O(P · T · log(N)) bits. Step 3 is

done in O((P log P ) · T ) time. Finally, in Step 4, price update is done in O(P · T ) time.

4.3 Distributed robot allocation algorithm

This section provides a distributed robot allocation algorithm for the problem of robots’

reallocation among task locations, i.e., targets, between two consecutive periods k−1 and

k of the planning time horizon. As discussed above, this corresponds to the well known

Assignment problem where n robots have to be assigned to n targets, with n = N(k).

It is assumed that each robot r has the information of the distances (assignment

costs) between its current location and the locations of all the targets. The inter-robot

communication is performed over a connected dynamic communication network and the

solution to the assignment problem is reached without any common coordinator or a shared

memory of the system.

To solve the problem in this context, we developed a distributed version of a Hungarian

method for the assignment problem, based on the concept of augmenting paths from the

graph theory that we recall briefly in the following.

We refer to the centralized version of the Hungarian method implemented by means

of so-called alternating trees and running in O(n3) time (see, e.g., Burkard and Çela,

1999). The algorithm is iterative and, maintaining a feasible dual solution, considers the

admissible bipartite graph Ḡ = (R
⋃

T , Ē) where Ē = {(r, t) : γrt + αt − βr = 0}. The

algorithm searches for a matching of maximum cardinality in the graph Ḡ. If the matching

is perfect, i.e., if every robot is matched with a target, then the matching represents an

optimal solution of the robot allocation and the algorithm stops. If the matching is not

perfect, the algorithm updates the dual variables so as to increase the dual objective

function such that at least one new admissible edge is added to Ḡ, and continues with a
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new iteration.

Given Ḡ, let M ⊆ Ē be the current maximal matching in Ḡ. The edges belonging

to M are called matched edges, and the ones in Ē\M are free edges. Given Ḡ and the

current maximal matching M ⊆ Ē, the algorithm iteratively improves the matching along

augmenting paths over alternating trees in Ḡ, rooted at free target vertices. An alternating

tree is a subgraph of Ḡ with each target vertex connected to all its adjacent robot vertices

through free edges of Ē, and with each robot vertex connected to a target vertex through

a matched edge. When an alternating tree rooted at free target vertex reaches a target

leaf vertex which is adjacent to some free robot vertex, an augmenting path is found, i.e., a

path that lets the augmentation of the cardinality of the matching, by exchanging the free

and matched edges. When all the possible augmentation steps are performed, and hence

the resulting matching in Ḡ is of maximum cardinality, the dual variables are updated

and the new admissible edges are added. Then a new iteration begins searching for the

maximum matching on the new admissible graph (see, e.g., Burkard and Çela, 1999).

In our distributed implementation of the Hungarian method, we maintain the forest F 1

of all the alternating trees rooted at free target vertices. Moreover, we maintain the forest

F 2 of the alternating trees in Ḡ rooted at robot vertices containing all the robot/target

vertices not contained in F 1. Clearly, the alternating trees in F 2 are not connected with

vertices in F 1.

Initially, all the vertices of Ḡ are assumed isolated (i.e., Ē = ∅), and hence forests F 1

and F 2 are set up in the following way. Forest F 1 is composed of n isolated target vertices.

Forest F 2, in the similar way, is made of n isolated robot vertices. Dual variables are

initially assumed to be αt = 0, for all the targets t, and βr = mint{γrt}, for all the robots r,

and are updated as follows. For each robot vertex r ∈ F 2, let σr = mint∈F 1{γrt+αt−βr}

be the minimum slack value of the dual constraints (12) associated to robot r among

target vertices t in F 1, and let tr be the target corresponding to the arg-min; moreover,

let δ = minr∈F 2{σr} be the minimum value among the minimum slack values of the robot

vertices r in F 2. The new (feasible) values of the dual variables are:

αt := αt − δ ,∀ target vertex t ∈ F 1

βr := βr − δ ,∀ robot vertex r ∈ F 1

After updating the dual variables, new admissible edges (r∗, t∗) with r∗ ∈ F 2 and
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t∗ ∈ F 1 appear. Even though there might be more than one new admissible edge, w.l.o.g.,

we can add the new edges one at a time to Ḡ, and after adding each (r∗, t∗), a new matching

on the augmented admissible graph can be searched for. New edge (r∗, t∗) connects the

two forests F 1 and F 2. There are two cases:

• robot vertex r∗ is free (unmatched). In this case there is an augmenting path

(t, . . . , t∗, r∗) starting from a (free) root target vertex t of F 1, connected with t∗

through an alternating path of F 1, and ending in r∗ through edge (t∗, r∗). Figure 2

shows this case, where white dots are target vertices, black dots are robot vertices,

plain line segments are free edges, double line segments are matched edges, and the

bold line segment is the new admissible edge (t∗, r∗); triangles represent subtrees

rooted at target vertices. By exchanging the free and matched edges in the aug-

menting path we get the augmented matching. Since target vertex t is not free any

more, the whole tree of F 1 rooted in t moves to F 2 and is connected to root r∗ over

t∗ (see Figure 3).

[Insert Figure 2 around here]

[Insert Figure 3 around here]

• robot vertex r∗ is not free, i.e., it is matched. In this case there is no new augmenting

path (see Figure 4); the two forests of alternating trees are updated by disconnecting

robot vertex r∗, along with the whole subtree rooted in r∗, from forest F 2, and

connecting this subtree (rooted in robot vertex r∗) to the target vertex t∗ in forest

F 1 through the new admissible edge (t∗, r∗) (see Figure 5).

[Insert Figure 4 around here]

[Insert Figure 5 around here]

Note that at the end, when we have a perfect matching of Ḡ, all target vertices are matched

and therefore forest F 1 is empty.

4.3.1 Implementation details

The robots interactively execute the steps of the algorithm based on the local information

and the one received through the messages from their neighbors in a communication graph.
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The structure of the communication graph is made of the forests F 1 and F 2 restricted to

robots. The interconnected robots recalculate the structure of the forests each time the

forests change. Therefore, the connection graph is updated each time the update of the

forests F 1 and F 2 occurs.

Each robot r keeps in its memory 4 pointers relating to the robots on its neighboring

positions in the forests, i.e., the father robot, the oldest son robot, the next older brother

robot, and the next younger brother robot, as seen from Figure 6. The first two pointers

are used to move upwards and downwards in the forest while the two latter ones are used

to explore the branch.

[Insert Figure 6 around here]

Each robot r in its memory also keeps the data about its position (whether it is in F 1

or F 2), its matched target mr (if there is none, i.e., if r is free, mr = 0), and the father

target vertex in the forest. Each robot r memorizes also the vector of the distances γrt

from the location of robot r to the targets’ locations, the value of the dual variable βr,

and the minimum slack value σr along with the target tr which obtains the σr.

Through autonomous calculations and the communication with the (robot) neighbors,

robots get and share the information about the position of each target (whether in F 1 or

F 2), the values of dual variables αt of all the targets t, the value of δ for the dual variables’

update, the new admissible edge (r∗,t∗) between a robot r∗ in F 2 and a target t∗ in F 1

due to the dual variables’ update, and the root robots r(F 1) and r(F 2) of forests F 1 and

F 2 respectively (the first robot vertex in a depth-first search of the forest). All these data

are locally stored by each robot. In this way, there is no common coordinator or a shared

memory of the robots’ system.

In detail, the robots, depending on their positions in the forests, (e.g., whether they are

in the augmenting path, in forest F 1 or F 2, etc.) change their roles, and accordingly do

some of the steps of the distributed Hungarian algorithm. In the following we describe

the robots actions according to their roles.

Initialization (done by each robot r):

• Let mr := 0 (robot r is initially free, i.e., unmatched); let αt := 0 for all the targets
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t, and βr := mint{γrt}.

• Initialize the pointers in such a way that robot r is connected only with its next

older brother robot (r−1) and next younger brother robot (r+1) and has no father

and no sons. This means that the forests are initialized as described in Section 4.3.

• Each robot positioned in F 2 determines [σr, tr] without exchanging any message

with the others.

Root robots r(F 1) and r(F 2) start the message exchange based on depth-first search (DFS)

along the forests F 1 and F 2, respectively, asking if there is a free robot. In the contact

with the first free robot, the same informs r(F 2) to start a new iteration. In the following

we describe the actions of the robots in respect to their roles during each iteration.

• Calculating [δ, (r∗, t∗)]. All the robots r ∈ F 2 participate in calculating [δ, (r∗, t∗)].

The calculation of δ starts from the root robot r(F 2) and follows via the exchange

of messages through DFS of F 2. When the values of [δ, (r∗, t∗)] are found, the

information is transmitted to all the robots in F 2 through message exchange based

on DFS starting from the root robot of F 2. The same DFS message passing applies

to inform the robots in F 1.

• Dual variables updating. All the robots r do the following: for each target t ∈ F 1

set αt := αt − δ; moreover, if robot r belongs to F 1, set βr := βr − δ. No messages

are exchanged in this phase.

• The father robot of t∗ (if any), returns the information about himself and about his

oldest son to all the robots through the DFS message passing.

• Root robot r(F 2) informs r∗ in F 2 to start the next phase of augmenting or non

augmenting the path.

• Augmentation. If r∗ is free (see Figure 2), then it initiates the augmentation of the

matching. Over the message passing from r∗ and the robots in the augmenting path,

robot r∗ orders the swapping of the free and the matched edges along the augmenting

path. It sends the messages to the robots in F 2 (through DFS message passing in

F 2, starting from robot r(F 2)) with the information about the new connection with
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the subtree of target t∗ in F 1. The information contains t∗, and all the objects in

the tree going backwards in F 1 up to the first target t without robot father along

the augmenting path (t, . . . , t∗, r∗). The robots simultaneously update the matching

in respect to the messages received from r∗ and update the pointers to the adjacent

robots so that the tree of t∗ in F 1 rooted in t moves to F 2 and gets connected to

root r∗ over t∗ (see Figure 3). The robots through the DFS message passing get the

updated information regarding the position of the targets in respect to the forests.

Each robot r positioned in F 2 calculates the new [σr, tr] without exchanging any

messages with the others.

• No Augmentation. If r∗ is already matched (see Figure 4), then it does not augment

the matching. It sends the message to r(F 2) to inform, through the DFS message

passing, all the robots r in F 2 to decrease minimum slack values σr by δ; r∗ dis-

connects from forest F 2 attaching itself together with its subtree to F 1 over t∗ (see

Figure 5). Each robot r in F 2 updates the new [σr, tr] data comparing the old value

of minimum slack σr with the slack value (γrt + αt − βr) for each target t in the

subtree routed at r∗ in F 1, which results in O(n2) exchanged messages.

The total computational time is O(n3) as well as the total number of messages ex-

changed by the robots; nonetheless, the computational time required to perform the lo-

cal calculation by each robot is O(n2). Therefore, differently from other known

distributed algorithms for the assignment problem recalled in Section 2, the

proposed algorithm runs in strongly polynomial time.

Regarding the robustness of the proposed method, if the robot during the execution

of the algorithm stops responding, it is considered erroneous and is eliminated from the

further calculations. In the case where the robot was unmatched in the forest F 2, the cal-

culation continues without any modifications, ignoring the robot in question. Otherwise,

the algorithm starts from the beginning excluding the same.

5 Simulation results

The robotic Multi-Agent System was simulated in the C language using the CPLEX 8.0

callable library for the solution of problems Pi of the upper level and was run on a PC
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with a 2.2 GHz dual-core duo CPU and 4 GB of RAM.

The production system instances on which the simulation is demonstrated has P = 50

tasks (products). The number of time periods of the planning horizon is T = 100, with

the duration of each period ∆t = 1. The external demand rate of product i is modeled

as di(k) = d̄i · [1 + δdi(k)], for k = 1, . . . , T , where d̄i is the average demand rate of the

product produced by task i in the planning horizon and δdi(k) are values generated by an

ARMA(2,2) as in Example 2 of Gaalman (2006). In our numerical example, the average

demand is d̄i = 5, for each product i.

The production system is simulated with the production executed by different number

of robots, N . In order to cover a wide range of cases (from very highly congested to

very low-congested), we consider the number N of robots in the range from 10 to 300.

N̄ = 250 is the number of robots for which the average production rate of the system

N̄ 1

P ·T

∑P
i=1

∑T
k=1 ri(k) (approximately) equals the total average demand rate

∑P
i=1 d̄i.

The values of the unitary production costs are given for the whole planning horizon.

Notice that when the unitary backlog cost bi(k) is not large enough in respect to the

unitary manufacturing cost ci(k) and the robot hiring cost ρi(k), it may happen that,

even if the system has enough capacity to clear all the demand, a positive backlog is found

at the end of the planning horizon. For this reason, in the numerical case considered here,

we assume for each task (product) i the following relation among the parameters of the

cost function:

hi(k) ≤ ci(k) +
ρi(k)

ri(k)
≤ bi(k) (18)

According to (18), the demand is fulfilled if there are enough production resources avail-

able, and, therefore, backlog at the end of the planning horizon can be used as a mea-

surement of congestion. For simplicity we assume that the unitary costs of backlog, bi(k),

inventory, hi(k), manufacturing, ci(k), and robot rental, ρi(k), are constant and equal

for all the tasks in all the time periods. In particular we assume hi(k) = 4, ρi(k) = 4,

ci(k) = 1, and bi(k) = 5 ∀i, ∀k.

Finally, the robot production capacity ri(k) is also assumed to be constant and equal

for all the tasks and time periods. In particular, we assume ri(k) = 1 for each task i and

time period k. In this way, all the considered mixed integer problems are solved within a

fraction of one second by CPLEX, and, hence, we are able to execute each simulation in

22



less than two minutes; notice, however, that providing a CPU time efficient approach for

the considered scheduling problem is out of the scope of this paper.

For the analysis of the results, notice that the stopping criteria of the upper level

decentralized algorithm are a maximum number of iterations, in our problem instance

equal to 1000, and an error between the best upper and lower bound found, equal to 0.01

(whichever of those two is satisfied first). The performance of the decentralized model

is evaluated with respect to that of the centralized optimization model with objective

function being the sum of the objective functions (1) of problems Pi, subject to constraints

(2)–(5) for each i ∈ {1, . . . , P}, and constraint
∑P

i=1 ni(k) ≤ N , for each k ∈ {1, . . . , T}.

Let cD be the best solution value of the total production cost (social welfare) ob-

tained for the decentralized model by applying the proposed approach, and let cC be the

optimal solution value of the centralized one. Performance of the decentralized model

in respect to the centralized one is evaluated measuring the relative gap (in percentage)

g = [(cD − cC)/cC ] · 100, that provides an estimation of the relative extra-cost incurred in

the decentralized model in respect to the centralized one for not having at disposal all the

system information to optimally reconfigure and distribute the available robots.

In the simulation of the MRTA problem on the lower level of the pro-

posed approach, we assume that the robots move within a convex regular

decagon with a circumscribed circle of radius rc = 100 with 10 production cen-

ters positioned on the vertices of the same, and with the given P = 50 (fixed)

production machines (each one for each task) equally distributed on the 10

production centers, whose locations corresponds therefore to the task loca-

tions ℓi (i = 1, . . . , 50). It is assumed that the robot depot is placed in the center of the

decagon, and all the robots are placed in the depot at the beginning, and have to turn back

to the depot at the end of the production horizon, all traveling equal distances rc = 100

from the depot to their allocated task positions and vice versa. The time of the robots’

rearrangement and their traveling times from one position to another are negligible in

respect to the duration ∆t of each period. When changing the production position from

one task to another, the robots choose the shortest distance path. We do not enter here

in the details of collision avoidance since it is not a subject of this paper.

Figure 7 shows the trend of costs cD, cC , and gap g on the upper level, and Figure 8
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presents the solution of the lower level in terms of the total distance traveled by robots in

correlation to the varying number of robots in the system.

[Insert Figure 7 around here]

[Insert Figure 8 around here]

Since the total mean demand rate in each time period equals 250, the system with up

to approximately N = 230 robots is very highly congested, and, as a result, by increasing

the number of robots N from 0 up to 230, the total production costs linearly decrease

since the prevailing are the costs due to the accumulated backlog and are of the same

order for the centralized and decentralized model. In the range from 230 to 280 robots,

the decentralized model sustains higher costs of production due to the lack of complete

system’s information for the reconfiguration of the production resources. At N = 230,

the relative gap between the decentralized and centralized model is 1%, after which it

increases and has a peak value at N = 250, where the total robot production rate equals

the total mean demand rate per period. This gap between decentralized and centralized

model decreases with the less congested instances up to N = 270, where the gap falls to

3%. By further increasing the number of robots, at N = 288 the gap equals zero. Indeed,

the maximum number of robots needed for both the centralized and decentralized model

is N = 288. Increasing N beyond this number does not affect the solution value, as can

be seen in Figures 7 and 8.

In fact, when the total number of robots in the system is significantly lower than N̄ ,

the system is highly constrained, and both the decentralized and the centralized approach

are characterized by very high and comparable backlog costs. The total costs of the

two approaches differ in practice in the values of the other cost components, that are

indeed negligible in respect to the backlog cost. Oppositely, when the total number of

robots in the system is significantly larger than N̄ , the local optimal solutions of the

task agents’ subproblems are likely to satisfy (resource) constraints (6), and then the set

of local solutions of the decentralized approach is equivalent to the centralized solution.

Moreover, in this case, there is no backlog cost and the total cost of both approaches is

low. In the intermediate case, i.e., when N approaches N̄ , the gap g among the total

costs of the decentralized and the centralized approach increases. This is due to the fact
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that the latter approach can take full advantage of having at disposal all the information,

which allows it to satisfy the resource constraint with a lower backlog cost in respect to

the one payed in the decentralized case.

On the second level, total distance traveled by the robots varies with N and follows

approximately a bell shaped curve (as can be seen in Figure 8). Initially, the centralized

model has a lower translocation cost for up to N = 30, after which the traveled distance

of the centralized model increases much more rapidly than the one of the decentralized

model. In the congested instances where 230 < N < 280, robots in the centralized model

travel up to 3 times more than the ones in the decentralized case. This is where the

centralized model seeks to diminish the total production cost by better reallocating the

robots having all the system’s information at disposal.

Since, on the upper level, the decentralized model is more costly and gives no better

results than the centralized one due to the lack of complete system’s information in the

decision processes of individual agents, and because of the additional cost λ which each

task has to pay in the negotiation for acquiring the robots, the system is not as flexible and

the robots do not change production positions as frequently as in the centralized system.

On the second level, this lack of flexibility results, in general, in inferior required total

movement distance of the robots’ reallocation as seen from Figure 8.

6 Conclusion

In this paper, a dynamic factory layout with a set of mobile production resources (e.g.

robots) carrying out the production, has been proposed. Notice, however, that the latter

can also be used to increment the production capacity of already existing machines in

the traditional factories. In respect to a classical layout where the production locations

are placed on static positions, a less constrained facility is obtained, which allows to

postpone critical design decisions to the operative level and makes the plant more capable

of responding to a fluctuating external demand. The proposed solution can be considered

as an extension of traditional factories since every control policy implemented in plants

with a static layout can be applied in the dynamic factory proposed in this paper, while

the viceversa is not true.

This extension is at the price of a more complex scheduling problem, involving, for
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each period of the planning time horizon, the determination of the robots’ positions in

order to minimize all the production costs. Owing to this complexity, and/or also for

the inherent decentralized structure of the system, a two-level decentralized multi-agent

system (MAS) production scheduling architecture was proposed: at the first level the

agents are the tasks which compete for the robots, and at the second level the agents

are the robots which reallocate themselves among different tasks to satisfy the requests

coming from the first level. An iterative auction based negotiation protocol was used

at the first level while the second level resolves a Multi-Robot Task Allocation Problem

(MRTA) through a distributed version of the Hungarian Method.

The advantages of the decentralized architecture with respect to the centralized one

were discussed in the paper and include robustness and efficiency (notice that the decen-

tralized approach can be in some cases the only viable solution for the structural organi-

zation of the system). From the simulation results it can be observed, however, that the

lack of information associated with the decentralized solution implies larger production

costs, with respect to the centralized approach when the system has a strict number of

robots necessary to carry out requested production: in this case, in fact, the centralized

approach is characterized by a much higher robot displacement distance with respect to

the decentralized solution; the latter tending to under-utilize the production resources and

representing a sub-optimal control policy.

Moreover, the proposed dynamic layout (even if sub-optimally controlled) shows a

significant superiority with respect to a static plant, in particular if the fluctuation of

the demand is characterized by low frequency components or by a drift in the average

demand: in these cases, in fact, the strategic static sizing of the plant (i.e. the decision

on the number of machines which must be dedicated to a particular product) may result

completely inappropriate for long time periods, while a dynamic solution with mobile

production robots adequately adapts their roles and positions in the plant to track the

perturbations.
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Figure 1: Two-level framework for multi-agent system production planning and scheduling

of mobile robots.
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Figure 2: Case 1: augmenting path (t, . . . , t∗, r∗).

Figure 3: Case 1: forests’ updating.
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Figure 4: Case 2: no new augmenting path.

Figure 5: Case 2: forests’ updating.
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Figure 6: The pointers to the (robot) neighbors of a robot j.
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Figure 7: Decentralized vs. centralized model performance on the upper level.
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