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In mathematical activity, especially in proof, it is a fairly common practice to change letters' logical status without giving any indication of these changes. Nevertheless, in some cases this practice is likely to hidden invalid steps in the proving process. In this paper, I show on an example that Copi's system for natural deduction provides a methodological tool that allows us both to anticipate where such invalid steps could appear and to analyse students' proof productions.

Introduction

Difficulties met by university students in the use of logical formalism are well documented in the literature (e.g. [START_REF] Selden | Unpacking the logic of mathematical statements[END_REF][START_REF] Dubinsky | On students understanding of AE and EA quantification[END_REF][START_REF] Chellougui | L'utilisation des quantificateurs universel et existentiel, entre l'explicite et l'implicite[END_REF]). An important issue on the development of formalism in university mathematics education is to reduce ambiguities conveyed by natural language, in order to foster the understanding of mathematical statements and to improve the development of proving skills. However, Durand-Guerrier and Arsac ( 2005) have underlined a rather common practise in mathematics textbooks of changing letters' logical status in a proof without giving any indication of these changes. This practice introduces additional ambiguities in the proving procedure. The aim in this paper is to address the conjecture that university students who are not able to cope with these ambiguities face difficulties with proofs.

In this paper I use the system for natural deduction (i.e. a formalisation of mathematical reasoning) suggested by [START_REF] Copi | Symbolic Logic[END_REF] in predicate calculus (i.e. an extension of propositional calculus that deals with the internal structure of propositions, with symbols for properties, relations, quantifiers and individuals) as a tool for checking the validity of proof. A main interest of this system is to make explicit the difference between bound variables (i.e variables in the scope of a quantifier) and generic elements (i.e any individual element of the domain of quantification at stake)1 . In the first part, I present the Copi system which has been used for both a priori and a posteriori analysis in my research. The second part focuses on the letters' status in a proof from the logic and didactic point of view. To this purpose, I present results demonstrating student's difficulties with letters' status at the beginning of their university studies. In the third part, I present results from first year university student's responses in a proof where the use of letters challenges the validity of the proof [START_REF] Chellougui | L'utilisation des quantificateurs universel et existentiel, entre l'explicite et l'implicite[END_REF].

Natural deduction system

I first introduce the natural deduction system proposed by [START_REF] Copi | Symbolic Logic[END_REF] and show that this system provides tools to detect invalid steps in a proof by remaining as close as possible of the usual modes of reasoning of mathematicians [START_REF] Durand-Guerrier | An epistemological and didactic study of a specific calculus reasoning rule[END_REF]. In my work, I use this system in the frame of predicate calculus, where four rules for introduction and elimination of quantifiers are introduced. In Figure 1, I summarize a presentation offered by [START_REF] Durand-Guerrier | Natural deduction in Predicate Calculus. A tool for analysing proof in a didactic perspective[END_REF] of these rules completed by some specific restrictions needed for preserving validity. This system can be used to control locally the validity of mathematical proofs. It can act as an intermediate between the usual practice and the completely formalized system. The rules of introduction and elimination of quantifiers from Copi address the semantic dimension, because there is an introduction of letters referring to generic elements. In ordinary textbooks, most often, both operations of elimination and introduction of quantifiers are either absent or partial [START_REF] Durand-Guerrier | An epistemological and didactic study of a specific calculus reasoning rule[END_REF][START_REF] Chellougui | L'utilisation des quantificateurs universel et existentiel, entre l'explicite et l'implicite[END_REF]. By making explicit the rules of introduction and elimination of quantifiers, Copi's natural deduction system allows the identification of implicit steps, especially in cases of proof that use multi quantified statements where there is, at least once, each of both universal and existential quantifiers. In my research, I use Copi's natural deduction as a tool for a priori analysis in order to anticipate possible invalid steps in the proving process of a given statement and as a tool for a posteriori analysis of the proofs offered by undergraduate students. In a following section, I present an example of such analysis.

The logical structure of mathematical statements: Changing letters' status [START_REF] Durand-Guerrier | An epistemological and didactic study of a specific calculus reasoning rule[END_REF] have investigated the letters' logical status in mathematics teaching. In their work, they refer to the predicate calculus in order to analyse quantified statements with a focus on the variables' dependence. They analyse a specific mistake which appears in proofs where one applies twice or more a statement of the kind "for all X, there exists Y such that R(X,Y)", abbreviated to AE statements, and a student may ignore that in that case, a priori, "Y depends on X". The misuse of AE statements in calculus have been demonstrated in an invalid proof of Cauchy's mean value theorem (Figure 2, Durand-Guerrier and Arsac, pp. 151-152): We can read: "A proof rather often provided by first year science students consists of the following deduction of Theorem 2 from Theorem 1: Function f satisfies the conditions for applying Theorem 1; hence there is a number c in ]a;b[,

such that f'(c)(b-a)=f(b)-f(a)
. Also g satisfies the conditions for applying Theorem 1; hence

there is a number c in ]a;b[, such that g'(c)(b-a)=g(b)-g(a). As g' is never equal to zero on ] a ; b [ , then g'(c)0; hence g(b)-g(a)0.
The result follows from the quotient of the above two equalities. This proof is invalid; one can prove it by considering two functions for which it is not possible to choose the same number c." (Durand-Guerrier et Arsac, 2005, p.152).

According to the authors, the error from a logical point of view is the following: since c is a bound variable following an existential quantifier, it cannot denote a particular real number. However, the existential elimination that must be applied here allows to consider a real number r such that:

f'(r)(b-a)=f(b)-f(a).
When thus applying the same rule to g, it is necessary to consider a real number s, that may or not be equal to r, such as g'(s)(b-a)=g(b)-g(a). It is important to notice that this logical analysis depends only on the logical structure of Theorem 1, and not on the mathematical meaning of the letters f, c, r, etc. The same reasoning allows us then to derive the quotients' equality: but this does not provide a proof of Cauchy's mean value theorem [START_REF] Durand-Guerrier | An epistemological and didactic study of a specific calculus reasoning rule[END_REF].

This example illustrates the difficulties linked with the logical status of letter in proof and proving. In the next section, I illustrate one example in Algebra how the use of Copi's natural deduction allow us to anticipate student's difficulties and to analyse their proofs.

An example in elementary set theory

In the context of my PhD (Chellougui, 2004) conducted in Tunisia, I distributed a questionnaire to ninety-six mathematics students arriving at university in November 2001 (details on the analysis and main results can be found in [START_REF] Chellougui | L'utilisation des quantificateurs universel et existentiel, entre l'explicite et l'implicite[END_REF]. In this paper, I focus on a specific example that I analysed in detail in order to highlight the methodological relevance of Copi's natural deduction for a priori and a posteriori analysis of proofs. In the Tunisian university, the first elements of elementary set theory including equivalence relation, order relation and binary relation, are taught at the beginning of the first academic year. The example I discuss here regards the proof that a given binary relation  is an order relation (Figure 3). My main objective was to identify precisely students' difficulties in the use of multi quantified statements in proof and proving.

We consider the set IN*2 endowed with the relation  defined by: (p,q) IN*x IN*(pqn IN*; p n =q). Show that  is an order relation. I hypothesised that the students would be able to recall each of the three properties that an order relation checked: reflexivity, antisymmetry and transitivity, because they have met this type of questions in the course and in the series of exercises, although the formalisation of an order relation was new to them. The three definitions of the properties above were given to the students in the general case of a binary relation  as follows:

Reflexivity: p pp. Formulation containing one universal quantifier.

Antisymmetry: pq(pqqp p=q). Formulation containing two universal quantifiers.

Transitivity: pqs(pqqs ps). Formulation containing three universal quantifiers.

In this paper, I focus on the proof of antisymmetry for a binary relation whose definition involves an existential quantifier, leading to a rather complex logical structure as will be shown in the a priori analysis. I first present some elements of a priori analysis; then I present results from students' responses.

Mathematical and logical analyses of proof of antisymmetry

The definition of the binary relation  involves two universal quantifiers in the beginning of the formula and an existential quantifier in the second part of the equivalence.

In order to anticipate the difficulties that the students could meet in proving that the given binary relation owns the property of antisymmetry and to make explicit the steps needed for a complete proof, I provide (Figure 4) a mathematical and logical analysis, using the Copi's system for natural deduction (see Figure 1) with a specific focus on introduction and elimination of quantifiers This formalized demonstration starts with a universal premise followed by four successive universal instantiations; twice in (2) with two different letters a and b, and twice in (3) with the two same letters a and b; so, one works then with two generic elements. In (4) an auxiliary premise is introduced to express the antecedent of the property of the antisymmetry on the generic elements (this is a standard way to prove a conditional statement in the frame of Copi's natural deduction: proving B under hypothesise A provides a proof of  The two existential statements ( 6) and ( 8) are followed by two existential instantiations with two different letters: m in (9) and k in (10).

3 A proposition upon which an argument is based or from which a conclusion is drawn.

The mathematical argument is developed in ( 11) to ( 14) using mathematical properties without the quantifiers. The passage from ( 13) to ( 14) does not appear in this demonstration. It can be expressed in the following way:

(13): a=1 or mk=1; First case: a=1 then a=b=1; Second case: if mk=1, with mIN* and kIN*, then m=k=1; finally, in both cases, a=b (

Framing the proof in Copi's system allows us to anticipate potential flows likely to appear in students' responses from ( 6) and ( 8) to ( 9) and ( 10), respectively, in case the restriction rule for two successive existential introductions is not applied.

I provide an a priori classification of the answers that I will use for a posteriori analysis.

Category 1: answers for which two different letters are quantified existentially.

Category 2: answers for which the same letter is quantified existentially.

Category 3: answers for which the same letter is used without existential quantifier, Category 4: answers where two different letters are used without existential quantifier.

Classification of students' answers

Among the ninety-six students that answered the questionnaire 80 students have produced a proof of the antisymmetry property for the given binary relation.

1) There are 17 copies in category 1 (about 21%) with representative examples that illustrate this category (Figure 5). In the solution of student 1, the mathematical argument for step (11) to ( 14) is fully developed. This is not the case of student 2: the mathematical argument is absent, there is no mathematical justification for the equality of both natural numbers x and y.

Student 3 used two different letters in the existential statements, however student 3 declared them to be equal. In this case we can make the hypothesis that the student attributed the same value to m and n in order to satisfy the validity of the statement. Another hypothesis could be that student 3 thinks that the equality is necessary.

2) There are 27 copies in category 2, that I have subdivided in two cases:
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(a) The existential quantifier is present twice (21 copies), see Figure 6. In the production of student 4, there is a presence of both quantifiers, the student tries to construct the object n existentially introduced in such a way as to have the conclusion. So, to verify the property of antisymmetry and have the equality p=q, the student takes, for the natural number n, the value 1 which is a solution of the equation p n =q of unknown n. Also for the student 5, where there is absence of universal quantification, the construction of the object n is implicit and the conclusion is immediate for the student.

(b) The existential quantifier is present only once (6 copies), see Figure 7. I notice with the student 6, that the existential introduction of n for the relation pq is also considered for qp. Let us note here that, on one hand, both variables p and q are not introduced and that, on the other hand, the elimination of the number n is not declared. This illustrates the fact that there are implicit arguments in the use of variables and in the steps required to prove the antisymmetry property.

3) There are 36 copies classified in category 3. I have considered in this category copies where the letter is used for both statement and is not in the scope of a quantifier. I have consider it as an implicit existential introduction without taking in account the restriction rule. The example in Figure 8 is typical of answers in this category. In the production of student 7, the variable n is the same in the two equivalences, and there is no mathematical argument supporting the conclusion. It is possible that the student wrote directly the conclusion p=q to fulfill the antisymmetry property; another possibility is that he considered that it was obvious that both equations p n =q and q n =p allow to conclude that n is 1 and to deduct the equality.

4) There is no copy in category 4, provided that we consider that the existential introduction may remain implicit.

These results confirm my hypothesis that the complexity of the logical structure on the side of quantifiers is likely to create an obstacle for the students to provide a correct mathematical argument. In particular, it is noticeable that the only students that provide sound mathematical arguments are those in category 1, i.e. those who take in account the restriction rule for existential introduction.

These results also highlight the fact that in case of two successive applications of an existential definition that a priori requires the use of different letters, many students use the same letter. In other words, they do not respect the restrictions on the names of objects associated with the rule of existential instantiation. We could suppose that the symmetry in pq and qp triggers the choice of the same letter; however in line with other results (e.g. Durand-Guerrier et Arsac 2005) we would say that this students' practice could be found in various other contexts.

Conclusion

In this paper, I aimed to illustrate the relevance of our methodology relying on Copi's natural deduction that allowed detailed a priori analysis of proofs and a posteriori analysis of students' productions. From the a priori analysis of the proof of the antisymmetry property of the binary relation at stake, I identified possible invalid steps. The a posteriori analysis of the proofs provided by students has shown that such invalid steps appeared in many answers and that in some cases, this invalid steps prevent the students from identifying the mathematical property required for providing a valid proof.
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 2 Figure 2: Two theorems: mean-value theorem and Cauchy's mean-value theorem.
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 4 Figure 4: Formalisation of the proof in the frame of Copi's natural deduction
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 5 Figure 5: Responses of Student 1, Student 2 and Student 3
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"[…] the proof of a universal statement, apart from the case of proof by induction, is always done by the method of the generic element: in order to prove a statement of the kind "for all x ∈ E, P(x)", you prove P(a) for a generic element a ∈ E, then after verifying that only properties of a that are common to all elements in E were used, you conclude that P(x) is true for every x in E."(Durand-Guerrier and Arsac, 

2005, p.153) 
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