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Assembly Conditions of Parallel Manipulators Considering Geometric
Errors, Joint Clearances, Link Flexibility and Joint Elasticity

Davide Corradi1, Stéphane Caro2, Damien Chablat2 and Philippe Cardou3

Abstract— This paper presents a methodology to analyze
the assembly conditions of parallel manipulators and compute
the maximum pose errors of their moving platform, while
considering geometric errors, joint clearances, link flexibility
and joint elasticity. First, the proposed methodology consists in
determining the zone(s) of the manipulator workspace in which
the manipulator can be assembled assuming that its links and
joints are rigid, while taking into account geometric errors
and joint clearances. Then, the minimum energy required
to assemble the manipulator in the non-assembly zone(s) is
computed, while considering link flexibility and joint elasticity.
The maximum pose errors of the moving-platform are also
computed throughout the manipulator workspace. Finally, a
two-dof spatial parallel manipulator, named IRSbot-2, is used
as an illustrative example.

I. INTRODUCTION

Accuracy is one of the key features that favor robotic ma-
nipulators for many industrial applications. Superior levels
of accuracy are achieved by controlling or measuring all
possible sources of errors on the pose of the moving platform
of a robotic manipulator. Among the most important sources
of errors, we find manufacturing errors, assembly errors,
compliance in the mechanical architecture, resolution of the
servoactuators, backlash in the reductors, and clearances in
the joints. Parallel manipulators are usually assumed to be
more accurate than their serial counterparts. However, this
accuracy can be affected by the joint clearances required
for the assembly of the manipulators. The focus of this
paper is the impact of geometric errors, joint clearances, link
flexibility and joint elasticity on the assembly conditions of
parallel manipulators and on the maximum pose errors of
their moving platform.

Geometric errors are caused by the imperfect fabrication
and assembly of the elements of the robot. Their effect
on accuracy is usually measurable and repeatable, and can
therefore be compensated through appropriate calibration.

The relative motions of the two parts of a joint with
clearance may cause undesirable effects such as moving-
platform pose errors [1], [2], [3], [4], [5], impacts, wear,
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vibrations and noise [6], [7]. Their influence on the behaviour
of the manipulator is not repeatable and therefore difficult to
model and to calibrate, and reducing them usually leads to
high manufacturing costs.

If the stiffness of the links and of the joints is not sufficient,
their deformation will be able to cause a notable effect on
the accuracy of the manipulator, especially when subjected
to heavy loads or at high speeds [8], [9], [10]. The Virtual
Joint Model (VJM) approach is convenient to deal with link
flexibility and joint elasticity in robotic manipulators [11],
[12], [13].

This paper introduces a methodology to analyse the as-
sembly conditions of parallel manipulators and compute
the maximum pose errors of their moving platform, while
considering geometric errors, joint clearances, link flexibility
and joint elasticity. First, the proposed methodology consists
in determining the zone(s) of the manipulator workspace in
which the manipulator can be assembled assuming that its
links and joints are rigid, while taking into account geometric
errors and joint clearances. Then, the minimum energy
required to assemble the manipulator in the non-assembly
zone(s) is computed, while considering link flexibility and
joint elasticity. The maximum pose errors of the moving-
platform are also computed throughout the manipulator
workspace. By applying the method for different sets of
parameters (clearances, maximum geometric errors, stiffness
of joints and links) it is possible to choose the best option
with regard to accuracy and internal deformations.

The novelty of this method resides in the fact that many
sources of inaccuracies are considered at the same time, and
in the fact that it provides not only an estimate of the pose
error, but also of the internal forces of the manipulator in
different configurations. Existing studies mainly focus on one
element (joint clearances, geometric errors, or flexibilities)
and provide methods only for accuracy analysis or force
analysis.

Section II deals with the modeling of geometric errors,
joint clearances, link flexibility and joint elasticity. Sec-
tion III describes the method used to compute the assembly
zones, the minimum assembly energy, the reaction wrench
on the moving-platform and the maximum pose errors of
the moving-platform throughout the manipulator workspace.
Section IV provides an illustrative example in order to
highlight the contributions of the paper.



II. MODELING GEOMETRIC ERRORS, JOINT CLEARANCES

AND FLEXIBILITIES

A. Frame Conventions and Nomenclature

Parallel manipulators with m legs are considered. Each leg
comprises ni joints and Bi loops. A fixed base frame F0,
common to all the legs, is arbitrarily defined. A frame Fp is
attached to the moving-platform of the manipulator. All the
other frames, attached to the joints and the end effectors of
the legs, are denoted Fi,j , j = 1 . . . Ni. Each frame has only
one antecedent frame, whose index is denoted as ant(i, j).
When Fi,j is attached to a joint, it is defined according to the
Denavit-Hartenberg convention: axis zi,j is along the axis of
the joint, and axis xi,j is along the common normal to axes
zant(i,j) and zi,j . The frame attached to the end-effector of
leg i is denoted Fi,e. When the manipulator is assembled, the
frames attached to the end-effectors of the legs coincide with
the frame attached to the platform, so that Fi,e ≡ Fp, i =
1 . . .m. Each loop is cut at a passive joint, and the frames
that are attached to the two cut ends of the k-th loop of
leg i are denoted Fi,ka

and Fi,kb
. These two frames should

coincide once the manipulator is assembled, i.e., Fi,ka
≡

Fi,kb
. The transformation matrix from Fant(i,j) to Fi,j is

denoted Ti,j , while the corresponding rotation matrix and
translation vector are denoted Ri,j and ti,j , respectively.
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Fig. 1. Effect of geometric errors, link flexibility, joint clearances and joint
elasticity on the pose of frame Fi,j . Fi,j is moved to F1

i,j by geometric
errors, to F2

i,j by link elasticity, to F3

i,j by clearances and finally to F4

i,j
by joint elasticity.

B. Geometric Errors

The geometric errors of the jth link of leg i are supposed
to be small and measurable. They are represented by the
small displacement screw δli,j as shown in Fig. 1.

C. Joint Clearances

Intuitively, clearances in a joint are best modeled by
bounding its associated errors below and above. Clearances
in the jth joint of leg i are represented by the small
displacement screw δci,j as shown in Fig. 1. Assuming that
the lower and upper bounds are the same, this generally
yields six parameters that bound the error screw δci,j . In
the case of a revolute joint, however, we can take advantage
of the axisymmetry to reduce the number of parameters to
four, grouped in vector ci,j . The elements of δci,j and of
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Fig. 2. Axisymmetric revolute joint with clearance. Clearance causes a
displacement that transforms frame Fi,j to frame F ′

i,j .

ci,j are denoted as follows (see Fig. 2):

δci,j =
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(1)

The clearance constraints for the jth axisymmetric joint of
leg i can be formulated as a set of four inequalities defining
a convex set:

(δcTXi,j)
2
+ (δcTY i,j)

2
− (cTXY i,j)

2
≤ 0 (2)

(δcTZi,j)
2
− (cTZi,j)

2
≤ 0 (3)

(δcRXi,j)
2
+ (δcRY i,j)

2
− (cRXY i,j)

2
≤ 0 (4)

(δcRZi,j)
2
− (cRZi,j)

2
≤ 0 (5)

D. Link Flexibility

The elasticity of the links is modelled by using the Virtual
Joint Model (VJM) [11]. At the end of each elastic link a
6-DoF virtual elastic joint is added, while the link itself is
considered rigid. The virtual elastic joint behaves as a 6-
DoF spring with elastic properties similar to those of the
corresponding link.

It is assumed that the virtual elastic joint coordinates have
infinitesimal values, and can therefore be expressed by a
6-dimensional small displacement screw δei,j as shown in
Fig. 1. To a particular value of δei,j , a virtual elastic joint
reaction wrench wEi,j and a potential energy EEi,j are
associated. Since the deformations of the links are assumed
to be small, a linear relation exists between the virtual elastic
joint reaction wrench and the virtual elastic joint coordinates,
defined by a 6× 6 stiffness matrix KEi,j . wEi,j and EEi,j
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Fig. 3. (a) leg i with a closed loop and the corresponding cut joint; (b) path
(in red dashed lines) to consider in order to compute the error on the ith
leg end-effector pose; (c) and (d) show the two paths (in red dashed lines)
to consider in order to compute the error on poses of the two cut ends of
the loop.

are expressed as:

wEi,j = KEi,jδei,j (6)

EEi,j =
1

2
δei,j

TKEi,jδei,j (7)

The stiffness matrix KEi,j can be evaluated using FEA-
based methods, considering the real geometry of the link,
or analytically, by approximating the link with a simple
shape. Here, all links are approximated by beams with full
circular cross-section. The parameters required to compute
the stiffness matrix of a link are its radius r, its Young
modulus E, and its Poisson’s ratio ν.

E. Joint Elasticity

To model the joint elasticity, a virtual 6-DoF elastic
joint is added after the virtual joint clearance. The small
displacement screw, reaction wrench, potential energy and
stiffness matrix associated with the elasticity of the jth joint
of leg i are denoted δbi,j , wBi,j , EBi,j and KBi,j .

F. Differential Model of the Legs

Let δxi,e|0 be the pose error of the end-effector of leg i

expressed in frame F0. δxi,e|0 is a function of δli,j , δei,j ,
δci,j , δbi,j and is expressed as follows:

δxi,e|0 = Mi (δli + δci + δei + δbi) (8)

δli =
[

δlTi,1 . . . δlTi,Ni

]T
(9)

δci =
[

δcTi,1 . . . δcTi,Ni

]T
(10)

δei =
[

δeTi,1 . . . δeTi,Ni

]T
(11)

δbi =
[

δbT
i,1 . . . δbT

i,Ni

]T
(12)

Mi =

[

Mi,1 . . . Mi,Ni

Ni
∏

k=1

(Ni,k)

]

(13)

Mi,j =

Ni
∏

k=1

(Ni,k)

j
∏

h=Ni

(adj (Ti,h))
−1 (14)

Ni,j =

[

Ri,j 03×3

03×3 Ri,j

]

(15)

where (adj (Ti,h))
−1 is the adjoint map of Ti,h.

If the ith leg of the manipulator contains closed loop(s)
as shown in Fig. 3, Eq. (8) will be expressed as:

δxi,e|0 = M
(e)
i

(

δl
(e)
i + δc

(e)
i + δe

(e)
i + δb

(e)
i

)

(16)

where the superscript (e) indicates that only the geometric
errors and the virtual joint coordinates in the path from
the base to the end-effector of leg i must be considered.
Moreover, each loop is cut as described in Sec. II-A. The
poses of the end-frames of the k-th loop of leg i are denoted
xi,ka

and xi,kb
, respectively. The errors on these poses are:

δxi,ka
= M

(ka)
i

(

δl
(ka)
i + δe

(ka)
i + δc

(ka)
i + δb

(ka)
i

)

(17)

δxi,kb
= M

(kb)
i

(

δl
(kb)
i + δe

(kb)
i + δc

(kb)
i + δb

(kb)
i

)

(18)

The superscripts (ka) and (kb) indicate that only the geomet-
ric errors and the virtual joint coordinates in the path from
the base to the first and second cut ends of the k-th loop
must be considered.

G. Assembly Constraints

In order to assemble the manipulator, the end-effectors of
the legs must coincide, as well as the cut ends of every loop.
It means that the errors in the pose of the corresponding
frames must be equal. The following assembly constraints
must therefore be satisfied:

δxp|0 = δxi,e|0, i = 1 . . .m (19)

δxi,ka = δxi,kb, i = 1 . . .m, k = 1 . . . Bi (20)

δxp|0 denotes the small displacement screw representing the
error on the moving-platform pose in F0. It is composed of
a rotational part δxRp|0 and of a translational part δxT |0.

III. COMPUTING THE ASSEMBLY ZONES, THE MINIMUM

ASSEMBLY ENERGY AND THE MAXIMUM POSE ERRORS

This section describes the developed methodology to com-
pute the assembly zones, the minimum assembly energy that
is necessary to assemble the manipulator outside them, and
the errors on the moving platform pose. In this section, the
expression clearance constraints refers to the constraints (2)
to (5). The expression assembly constraints refers to the
constraints (19) and (20).

A. Computing the Assembly Zones

The following constraint satisfaction problem (CSP) is
formulated in order to compute the assembly zones of
parallel manipulators:

variables δxp|0, δci,j , i = 1 . . .m, j = 1 . . . Ni (21)

constraints clearance constraints

assembly constraints

The constraints form a convex set. Therefore, problem (21)
can be solved by convex programming techniques [14].

In the formulation of the assembly constraints only the
small displacement screws related to geometric errors δli,j
and joint clearances δci,j are considered. Solving this prob-
lem allows to determine whether it is possible, in a given



configuration, to assemble the manipulator by exploiting joint
clearances only. This is equivalent to say that the manipulator
can be assembled without deforming its links and joints and,
therefore, without introducing any internal stress.

B. Computing the Minimum Assembly Energy

The following optimization problem is formulated in order
to compute the minimum assembly energy:

minimize E =

m
∑

i=1

Ni
∑

j=1

(EEi,j + EBi,j) (22)

over δxp|0, δci,j , δei,j , δbi,j , i = 1 . . .m, j = 1 . . . Ni

subject to clearance constraints

assembly constraints

The objective function of problem (22) is the elastic poten-
tial energy of the manipulator. Its minimization makes sense
from a physical point of view, since in theory the manipulator
should be naturally assembled in a configuration in which the
elastic potential energy is a minimum. The objective to be
minimized is a convex quadratic function. The constraints
of the optimization problem at hand form a convex set. The
minimum energy problem is therefore in the most general
case a convex second order-cone programming (SOCP) that
can be solved by convex optimization techniques [14].

Inside the assembly zones this problem finds a minimum
equal to zero, since there is no need to deform links
and joints. Outside the assembly zones the limits of the
joint clearances are reached, and therefore it is necessary
to deform links and joints to assemble the manipulator
and the minimum energy required to assemble the parallel
manipulator is not null.

C. Elastic Reaction Wrench on the Moving-platform

If the legs of the manipulator are simple serial chains, the
elastic reaction wrench on the end-effector of leg i, wi,e, can
be computed with the following expression [11]:

wi,e = wEi,e +wBi,e (23)

wEi,e =
(

MiK
−1
EiM

T
i

)−1
Miδei (24)

wBi,e =
(

MiK
−1
BiM

T
i

)−1
Miδbi (25)

wEi,e and wBi,e are the reaction wrenches associated to the
link and joint deformations, respectively. The values of the
screws δei and δbi are found by solving problem (22).

Once the reaction wrenches applied on the end-effectors
of the single legs are known, the total reaction wrench
applied on the moving-platform, denoted wp, is computed
by summing them, since the end-effectors are coincident:

wp =

[

mp

fp

]

=
m
∑

i=1

wi,e (26)

where mp and fp are the reaction force and moment applied
at the geometric center of the moving-platform, respectively.

In the case the parallel manipulator has parallelogram
joints, the latter can be replaced by single links having
equivalent elastic properties as explained in [13].

D. Computing the Maximum Pose Error

Two distinct problems are formulated, one to find the
maximum orientation error and one to find the maximum
position error of the moving platform:

minimize − r2 = −δxT
Rp|0δxRp|0, or (27)

− t2 = −δxT
Tp|0δxTp|0

over δxp|0, δci,j , i = 1 . . .m, j = 1 . . . Ni

subject to clearance constraints

assembly constraints

The objective function is the opposite of the square of the
orientation error r or of the position error t of the moving-
platform expressed in frame F0. The link flexibilities δei,j
and joint elasticities δbi,j are not part of the decision
variables. However, they appear in the expressions of the as-
sembly constraints. Their values are taken from the solution
of the minimum assembly energy problem (22). This allows
us to determine the maximum pose error of the moving-
platform in every point of the manipulator workspace, even
outside the assembly zones that are defined assuming that
the links and joints are rigid.

The objective to be minimized is a concave quadratic
function, while the constraints form a convex set. The max-
imum error problems is therefore a nonconvex quadratically
constrained quadratic programs (QCQPs). To solve them,
special techniques are required. Here, a branch and bound
algorithm is used [15]. The branch and bound algorithm does
not provide a single value as a result, but two values that
bound the real error from below and above. It is possible to
arbitrarily choose the tolerance ǫ representing the maximum
distance between these bounds.

IV. CASE STUDY: IRSBOT-2

A. Description of the IRSbot-2

The IRSbot-2 (IRCCyN Spatial Robot with 2 Degrees of
Freedom) is a parallel manipulator designed for fast and
accurate pick and place operations in a two-dimensional
workspace [16]. The IRSbot-2 shown in Fig. 4 is expected
to reach an acceleration up to 20 G and an accuracy equal to
20 µm throughout a parallelepiped of 800 mm side length.

The base and the moving-platform are connected by two
legs. Each leg is composed of a proximal module and a
distal module mounted in series. The proximal module is
a parallelogram, made up of four revolute joints of axes
perpendicular to the (x0, z0) plane. One of the link is fixed
with respect to the base frame F0, allowing the opposite
link, connected to the elbow, to have a constant orientation
with respect to it. The distal module is made up of two links
connected to the elbow and to the base by universal joints.
The universal joints can be represented by two revolute joints
whose axes are perpendicular to each other and intersect.
The axes of both joints are perpendicular to the link they are
connected to. Some of these joints are compliant, and have
no clearance but can be deformed elastically. Four planes,
parallel to each other, are defined (see Fig. 4): a base plane
P0, a platform plane Pp, and two elbow planes P1 and P2.
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Fig. 4. Parameterization of the IRSbot-2.

The IRSBot-2 has two legs (m = 2), each with twelve
joints (n1 = n2 = 12) and two loops (B1 = B2 = 2). Four
additional frames are added to each leg of the manipulator
in order to simplify its parametrization. In total, Ni = 21
frames are defined for each leg. The geometric parameters
that are necessary to completely define the architecture of a
leg are defined as follows (Fig. 4):

• b is the distance between the first joint of the parallel-
ogram and the origin of the base frame.

• d is the length of the fixed side of the parallelogram.
• L1 is the length of the moving side of the parallelogram.
•

[

f g e
]T

is the vector describing the position of
the universal joints with respect to the ends of the
parallelogram joints, expressed in the base frame.

• L2 is the length of the links of the distal module.
•

[

p a 0
]T

is the vector describing the position of the
platform with respect to the last universal joints of the
links of the distal module, expressed in the base frame.

• α is the angle between the platform plane and the link
of the parallelogram that is fixed to the base.

• β and αd are the azimuth and altitude angles that
describe the orientation of the second revolute joint of
each universal joint with respect to the first one.

The nominal geometric parameters of the IRSbot2 are the
following: a = 50 mm; b = 83 mm; d = 106 mm; e =
3.342 mm; f = 80 mm; g = 166 mm; p = 50 mm; L1 =
321 mm; L2 = 452 mm; α = π

6 rad; αd = π
4 rad; β =

π
2 rad.

In the scope of this paper, the proximal modules are
considered perfect in order to reduce the computational
times. Therefore, all screws δli,j , δci,j , δei,j , and δbi,j are
null for j = 1 . . . 4.

The screws δli,j are null for j 6= 5, 8, 11, 14, 19, 21 (these
frames were added to simplify the robot modeling or do
not correspond to real links). The values of the remaining
geometric error screws are selected randomly between δl

and δl, defined as follows:

δl =

















10−4 rad
10−4 rad
10−4 rad
10−3 mm
10−3 mm
10−3 mm
















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












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2 · 10−2 rad
2 · 10−2 rad
2 · 10−2 rad
2 · 10−1 mm
2 · 10−1 mm
2 · 10−1 mm

















All joints are considered axi-symmetric for the determina-
tion of the clearance constraints. The screws δci,j are null
for j 6= 7, 8, 13, 14. These frames are not associated to a joint
or are associated to a compliant joint without clearance. The
other joint clearance constraints are defined by Eq. (1) with
vectors ci,j taking the following values:

ci,j =









7.55 · 10−4 rad
10 rad

29 · 10−3 mm
29 · 10−3 mm









The screws δei,j are null for j 6= 8, 14. Only the two long
links of the distal modules are assumed to be flexible. The
Young modulus is set as E = 6 ·1010 Pa, the Poisson’s ratio
as ν = 0.3, and the radius of the links as r = 40 mm.

The screws δbi,j are null for j 6= 6, 9, 12, 15, as these
joints are not compliant. For the other joints the stiffness
matrix is defined as follows, according to the technical data
of the employed compliant joints:

KB = diag
(

108 Nm, 108 Nm, 1 Nm, 3.51× 108 N/m,

3.51× 108 N/m, 4.39× 108 N/m
)

The optimization problems defined in Sec. III are solved
over the full half-workspace for y ≤ 0, on points sampled
with a step of 25 mm along both the x0 and z0 axes. The
tolerance for the branch and bound algorithm is set to ǫ =
10−6 rad for the orientation errors and to ǫ = 10−3 mm for
the position errors.

B. Results

Figure 5 shows the assembly zones, the minimum assem-
bly energy and the upper bounds of the maximum orientation
and position errors of the moving-platform for the IRSbot-2.
The error plots are given for both the complete case and for
a case where only joint clearances are considered (the screws
δli,j , δei,j , and δbi,j are all set to zero).

For the chosen geometric errors, assembling the manipula-
tor presents many difficulties in many areas of the workspace.
The minimum assembly energy is high throughout the whole
manipulator workspace, and the components of the wrench
associated to the maximum assembly energy point have
very large values. In such a case, the manipulator cannot
be assembled. Therefore, the dimensional tolerances of the
geometric parameters for the real robot should be lower than
those selected for this simulation.

When all screws are considered, the error is relatively high,
and its distribution does not present any regularity. When
only joint clearances are considered, the error has instead a
regular and symmetric distribution and reaches lower values.
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Fig. 5. Assembly zones (top-left). Minimum assembly energy (top-
right). Upper bounds of the maximum orientation errors (centre-left) and of
the maximum position errors (centre-right) of the moving-platform, while
considering geometric errors, joint clearances and link flexibilities. Upper
bounds of the maximum orientation errors (bottom-left) and of the maximum
position errors (bottom-right) of the moving-platform, while considering
joint clearances only.

The contribution to the pose error of the clearance dis-
placements usually has a symmetric distribution, because
clearance boundaries are symmetric and equal for all joints
from one leg to the other one. On the contrary, the contribu-
tion to the pose error of the geometric errors is irregular
throughout the manipulator workspace because the small
displacement screws associated to the geometric errors differ
for every frame in the manipulator. Here, the order of
magnitude of the geometric errors is larger than the order of
magnitude of the clearance boundaries. Therefore, the regular
contribution of the clearance displacements is negligible and
is masked by the more relevant and irregular contributions
of the geometric errors.

V. CONCLUSIONS AND FUTURE WORK

A method to determine the assembly energy, the internal
elastic reaction wrenches and the maximum pose error of
parallel manipulators subject to geometric errors, joint clear-
ances, link flexibility and joint elasticity has been developed
and applied to a two-dof spatial parallel manipulator, named
IRSbot-2.

It has been shown that outside the assembly zones, as
expected, links are bent and the assembly energy increases
smoothly. The maximum error on the moving-platform pose
has different contributions due to geometric errors, clear-
ances and flexibilities. The pose error due to joint clearances
has a regular and symmetric distribution throughout the
manipulator workspace, due to the symmetry of the clearance
bounds and of the legs. The pose error due to geometric
errors and elasticity displacements, on the contrary, is highly
irregular due to the asymmetry of the geometric errors from
one leg to the other one.

This research work opens the way to many further devel-
opments. First of all, the proposed method can be applied

to other manipulators and used to analyse the kinematic
behaviour of the manipulators close to their parallel sin-
gularities. Secondly, the error on the moving-platform pose
can be studied statistically in order to determine the most
probable error instead of the worst-case error. The method
lacks experimental validations due to the difficulty of tak-
ing the necessary measurements on real manipulators. An
experimental validation will prove that the results provided
by the developed method are realistic and reliable. Finally, it
would be relevant to relate the assembly energy to the stress
in the links in order to verify that the links do not break with
their deformations required for the assembly of the parallel
manipulator.
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