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Résumé. Nous abordons la question de l’apprentissage robuste de la structure de
dépendance d’un ensemble de variables continues. Nous considérons l’estimation de ma-
trices de précision creuses qui reflètent une forme de dépendance entre variables. Pour ce
faire, nous proposons d’extraire les bonnes caractéristiques de deux méthodes existantes, à
savoir tlasso et CLIME. La première est basée sur l’observation que la modélisation gaussi-
enne standard aboutit à des procédures qui sont trop sensibles aux valeurs aberrantes et
propose l’utilisation de lois de Student comme alternative. Quant à CLIME, il s’agit
d’une alternative au populaire Lasso qui peut gérer certaines de ses limitations. Nous
combinons ensuite ces idées dans une nouvelle procédure appelée tCLIME qui peut être
vue comme une modification de l’algorithme tlasso. Les performances de ces procédures
sont illustrées sur données simulées et révèlent que tCLIME fonctionne favorablement par
rapport aux autres méthodes standard.

Mots-clés. Apprentissage de structure, modèle graphique gaussien, lois de Student,
matrice de precision creuse, estimation robuste.

Abstract.
We address the issue of robust graph structure learning in continuous settings. We

focus on sparse precision matrix estimation for its tractability and ability to reveal some
measure of dependence between variables. For this purpose, we propose to extract good
features from existing methods, namely tlasso and CLIME procedures. The former is
based on the observation that standard Gaussian modelling results in procedures that
are too sensitive to outliers and proposes the use of t-distributions as an alternative.
The latter is an alternative to the popular Lasso optimization principle which can handle
some of its limitations. We then combine these ideas into a new procedure referred to
as tCLIME that can be seen as a modified tlasso algorithm. Numerical performance is
investigated using simulated data and reveals that tCLIME performs favorably compared
to the other standard methods.

Keywords. Structure learning, Gaussian graphical model, t-distribution, sparse pre-
cision matrix estimation, robust estimation.
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1 Introduction

Graphs are an intuitive way of representing and visualizing relationships between
variables. In a typical graphical model setting, a p-dimensional random vector Y =
(Y1, Y2, · · ·Yp) is represented as an undirected graph denoted by G = (V,E), where V
is the set of nodes corresponding to the p variables in Y , and the edge set E describes
dependence structure among Y1, · · ·Yp. In practice, only instances of the variables are
observed. The edges encoding the graph structure are unknown and have to be esti-
mated from the observations. Structure or dependence learning has therefore attracted
a lot of interest. In a continuous setting, many methods assume the random vector Y is
Gaussian with the advantage that for Gaussian vectors, the conditional independence is
directly readable from the zeros of the precision matrix. Structure learning can therefore
be reduced to standard maximum likelihood parameter estimation. However, in most
applications, either the number of observations is too small, or the observations are too
noisy, with respect to the dimension of the graph. Most popular approaches face then
this issue by resorting to penalized likelihood estimation with the idea of favoring sparse
precision matrix estimation. Penalized likelihood approaches based on L1-norm of the
precision matrix Θ include the work of Banerjee et al. [1] and Yuan and Lin [12] while
Friedman et al. [6] have developed the most popular method - the graphical lasso (glasso),
which is a computationally efficient algorithm that maximizes the penalized log-likelihood
function through coordinate descent. As an alternative, Cai et al. [2] have proposed the
CLIME procedure, which is a L1 minimization technique for precision matrix estimation
based on different objective function, that tends to provide more sparse solution than
glasso.

The literature on sparse precision matrix estimation is rapidly growing and received
significant attention by the research community. Fan et al. [4], Cai et al. [3] gave a nice
review of recent results. Many strong methods are valid only for Gaussian variables such
as, for example, SCIO suggested by Sun and Zhang [11] and TIGER of Han and Lie [7].
Although data may deviate from normality in various ways. Outliers and heavy tails
frequently occur that can severely degrade the Gaussian models performance. A natural
solution is to turn to heavier tailed distributions that remain tractable. In recent pa-
pers, Liu et al. [9] exploit the connection between Kendall’s tau and Pearson’s correlation
coefficient in the context of transelliptical distributions to obtain robust estimators of
correlation matrices. Zhao and Liu [13] introduced a strong tool for estimation of sparse
precision matrix for elliptical family. This method overcome drawbacks of CLIME al-
gorithms. EPIC simultaneously handles data heavy-tailness and allows to calibrate the
regularization for estimating different columns of the precision matrix in CLIME algo-
rithm. It uses the combination of the transformed Kendall’s tau estimator and Catoni’s
M-estimator instead of sample covarince matrix. In the special case of multivariate t-
distributions Finegold and Drton [5] designed a so-called tlasso algorithm to improve
graph inference in non Gaussian settings. The tlasso algorithm is based on the use of
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an Expectation-Maximisation (EM) algorithm that iteratively identifies outlying observa-
tions and downweights their impact by using an accordingly modified sample covariance
expression. Sparsity is then enforced by replacing the standard M-step by a glasso opti-
mization step.

In this work, we propose to modify the approach of Finegold and Drton [5] by replacing
the glasso M-step with a CLIME M-step, yielding a new procedure for sparse precision
matrix estimation referred to as tCLIME. This simple modification enables us to combine
benefits from both heavier tail modelling and CLIME optimization. It follows better
performance, over tlasso, CLIME and EPIC in estimating the zeros of the precision matrix
as illustrated on simulations.

This paper is organized as follows. We first describe briefly glasso and CLIME opti-
mization problems in Section 1. In Section 5, we recall the tlasso algorithm and describe
the proposed tCLIME algorithm. Preliminary results on simulations illustrate the supe-
riority of the latter in non Gaussian setting.

2 Gaussian structure learning

For Gaussian graphical models, conditional independence properties are reflected in
the precision matrix Θ = {θjk}j,k = Σ−1 of the distribution through zero entries (Lauritzen
[8]). Thus inferring the graph in this case corresponds to inferring the nonzero elements of
the precision matrix. For each nonedge (j, k) 6∈ E, Yj and Yk are conditionally independent
given all the remaining Y\{j,k} if and only if θjk = 0.

One of the most commonly used approaches to estimating sparse precision matrix for
multivariate normal distribution is through the maximum likelihood. Let Y1, · · · , Yn be
observed independent samples from N(µ,Σ), Θ = Σ−1 ∈ IRp×p is the precision matrix
and S = 1

n

∑n
i=1(Yi−µ)(Yi−µ)T is the sample covariance matrix. The negative Gaussian

log-likelihood is given by: l(Θ) = tr(SΘ) − log det(Θ). In penalized likelihood methods
a L1-norm penalty is added to the log-likelihood function to favor zero entries in Θ.
One of the most popular techniques to maximize the resulting L1-penalized log-likelihood
function is glasso (Friedman et al. [6]):

min
Θ�0

L(Θ) = tr(ΘS)− log det(Θ) + ρ‖Θ‖1 (1)

where ρ is a regularization parameter. Larger values of ρ correspond to larger levels of
sparsity in Θ. If ρ is equal to zero then the solution of the (1) is the inverse of the sample
covariance matrix.

An alternative to glasso is a non-likelihood based approach called CLIME which solves
instead:

min ‖Θ‖1

s.t.: |SΘ− I|∞ 6 ρ, (2)
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where ρ is a tuning parameter and S is the sample covariance matrix. No symmetry
condition is imposed on Θ and symmetry is achieved by setting both estimates θ̂ij and

θ̂ji to the one with the smaller magnitude. Note that theoretical justification of CLIME
algorithm heavily relies on the Sub-Gaussian tail assumption. However CLIME, as glasso,
still uses the usual sample covariance matrix as input which makes it sensitive to outliers.

As explained in Cai et al. [2], the CLIME motivation and its relationship to glasso
comes from the following observation. The solution of the glasso optimization problem:

Θ̂glasso = min
Θ�0

tr(ΘS)− log det(Θ) + ρ‖Θ‖1 (3)

satisfies (Θ̂glasso)
−1 − S = ρẐ, where Ẑ is an element of the subdifferential ∂‖Θ̂glasso‖1.

This leads to the optimization problem:

min ‖Θ‖1

s.t.: |Θ−1 − S|∞ 6 ρ, (4)

After multiplying the constraint with Θ we find the problem (2).

3 T-distribution graphical models: tlasso and tCLIME

Among the various existing forms of the multivariate t-distribution (Nadarajah and
Kotz [10]), the most common form with parameters µ, Σ and ν is given by:

tp(y;µ,Σ, ν) =
Γ(ν+p

2
)

(πν)p/2Γ(ν
2
)|Σ|1/2

[
1 +

δ(y, µ,Σ)

ν

]−(ν+p)/2

where δ(y, µ,Σ) = (y − µ)TΣ−1(y − µ) is the Mahalanobis distance between y and µ,
y ∈ Rp. The vector µ ∈ Rp and the positive definite matrix Σ determine the first two
moments of the distribution when ν > 2. The covariance matrix of the t-distribution is
ν/(ν − 2)Σ. We will keep the convenient notation of Finegold and Drton [5] and denote
by Θ = Σ−1 to draw a parallel between Gaussian graphical models and graphical mod-
els based on t-distribution. Unlike the Gaussian case, in a t-distribution θjk = 0, j 6= k
no longer corresponds to conditional independence of Yj and Yk given all the remaining
Y\{j,k}. However, despite the lack of conditional independence, the conditional uncorrela-
tion property still holds.

Mimicking the glasso idea, Finegold and Drton [5] proposed to add a L1-norm penalty
on Θ to the maximization of the log-likelihood function in the t-distribution case. It
follows a tlasso procedure that is more robust to outliers. Inference is made using an EM
algorithm: τ is a hidden variable and conditional distribution of Y given τ is Np(µ,Σ/τ).
Degree of freedom parameter ν is assumed to be known. At the (t + 1)th M-step, an
update value Θ(t+1) is found by solving the following optimization problem:

min
Θ�0

tr(ΘSτ (t+1)Y Y (µ(t+1)))− log |Θ|+ ρ‖Θ‖1, (5)

4



where τ
(t+1)
i is the conditional expectation of τi calculated in the (t + 1)st E-step as

τ
(t+1)
i = ν+p

ν+δY (µ(t),Σ(t))
. A ”weighted sample covariance matrix” is then computed as:

Sτ (t+1)Y Y (µ) =
1

n

n∑
i=1

τ
(t+1)
i (Yi − µ(t+1))((Yi − µ(t+1)))T (6)

and µ(t+1) =
∑n

i=1(τ
(t+1)
i Yi)/

∑n
i=1 τ

(t+1)
i . Note that (5) is a similar objective function

minimized by glasso, so that the proposed tlasso reduces to solving at each iteration a
glasso optimization.

In the same EM framework, we propose to replace glasso by CLIME for its better
performance in the M-step. It follows that (5) becomes:

min ‖Θ‖1

s.t.: |Sτ (t+1)Y Y (µ(t+1))Θ− I|∞ 6 ρ, (7)

We refer to the resulting procedure as tCLIME. As tlasso, tCLIME uses the ”weighted
sample covariance matrix” instead of the sample covariance matrix, which makes both
methods less sensitive to outliers in comparison to their Gaussian counterparts (glasso
and CLIME).

Figure 1: ROC curves illustrating the performance of tlasso, CLIME, tCLIME and EPIC
methods on 2 different data sets. The tuning parameter ρ is chosen in the range [0.1, 2.5] with
stepsize 0.05 for tlasso and [0.01, 0.4] with stepsize 0.01 for CLIME, tCLIME anf EPIC.

4 Simulation results

Since tCLIME is a combination of tlasso and CLIME, the tCLIME performance is com-
pared to that of tlasso and CLIME. We also compare tCLIME with the EPIC method
which is a strong estimator of sparse precision matrix for elliptical distributions. We
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generate a random 100 × 100 sparse precision matrix Θ according to the procedure de-
scribed in Finegold and Drton [5] and simulate n=150 observations from t100(0,Θ−1, 3)
and N100(0,Θ−1). The four algorithms are then run with different values of ρ. To mea-
sure how well the sparsity of the true precision matrix is recovered, the whole process is
repeated 50 times. The corresponding ROC curves are shown in Figure 1. For Gaussian
data, the tCLIME and EPIC performance is similar and better than that of tlasso and
CLIME. When data are generated from a t-distribution, tCLIME significantly outper-
forms CLIME and also shows better results than EPIC and tlasso.

5 Conclusion

We have introduced tCLIME a modified version of the tlasso algorithm. tCLIME
provides competitive results and can be used for robust sparse precision matrix estimation.
However further simulations should be made to account for higher dimensional cases, as
well as tests on real data.
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