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Ana Lucia Cruz Ruiz1, Stéphane Caro2, Philippe Cardou3, and François Guay3

1 IRCCyN, École Centrale de Nantes, 1 rue de la Noë, 44321, Nantes, France,
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Abstract. This paper presents ARACHNIS, a graphical user interface for the analysis and paramet-
ric design of Cable Driven Parallel Robots (CDPRs). ARACHNIS takes as inputs the design param-
eters of the robot, the task specifications, and returns a visualisation of the CDPR Wrench Feasible
Workspace (WFW) and Interference-Free Constant Orientation Workspace (IFCOW). The WFW
is traced from the capacity margin, a measure of the robustness of the equilibrium of the robot.
Interferences between the moving parts of a CDPR are also determined by an existing technique
for tracing the interference-free workspace of such robots. Finally, the WFW and the IFCOW of a
planar cable-driven parallel robot and of a spatial cable-driven parallel robot are plotted in order to
demonstrate the potential of ARACHNIS.

Key words: workspace, wrench-feasible workspace, interference, graphical user interface, capac-
ity margin, static equilibrium, cable-driven robot, wire-driven robot

1 Introduction

Cable-Driven Parallel Robots (CDPRs) may be seen as Gough-Stewart platforms in
which the prismatic actuators are replaced with cables. Hence, the cables are con-
nected between the moving platform and fixed eyelets. The platform moves around
by increasing or decreasing the lengths of the different cables in concert while pre-
venting any cable from becoming slack [11]. This architecture allows for marked
advantages over conventional robots, such as the possibility of a larger workspace
and higher accelerations, thanks to lighter mechanical components. CPDRs also
suffer from important drawbacks, however. First, there is the possibility of interfer-
ences among the cables or between a cable and the moving platform. Furthermore,
the non-rigid nature of the CPDR links further restrict its workspace, and requires a
rigorous study of its force transmission characteristics.

Nevertheless, CDPRs have been used, often with success, in many areas such
as robotic cranes, cable-driven cameras, medicine, automatic painting and rescue
operations, to name but a few. The reader is referred to a recent literature survey
on the topic [4] for a more thorough account of these applications. These CDPRs
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and others were developed independently, in most cases, meaning that their design-
ers usually started the analysis and design process development “from scratch”. As
CDPRs become more popular, there is an obvious need to automate their design and
analysis, to accelerate their development and to provide a common working ground
to the engineers involved.

To partly answer this need, we propose the graphical user interface ARACHNIS,
or Analysis of Robots Actuated by Cables with Handy and Neat Interface Software.
In short, ARACHNIS is dedicated to the parameter-based analysis and design of
CDPRs. It allows the designer to enter the design parameters of the robot, to spec-
ify the task that the robot should perform in terms of force and moment ranges,
and to assess the performance of the robot through the visualization of its Wrench-
Feasible Workspace (WFW) [3, 5] and its Interference-Free Constant Orientation
Workspace (IFCOW) [8]. ARACHNIS seems to be similar in its functions to a pre-
viously developed interface named WireCenter [10]. From the little information we
could gather on WireCenter, it seems that the two interfaces differ mainly in that
WireCenter allows to trace the wrench-closure workspace (WCW), while ARACH-
NIS allows to trace the WFW.

This workspace was chosen to analyze the static-equilibrium of the robot because
it applies to a wider range of tasks than the WCW [6] or the Static Workspace
(SW) [12]. In fact, the WCW and the SW can be shown to be special cases of the
WFW. To the knowledge of the author, two methods have been reported to trace
the WFW of a spatial parallel robot driven by m cables. Both of these methods are
purely numerical, since, as was pointed out in [2], computing symbolic expressions
of the WFW-boundaries is too complex to be practical in the general case. This
spurred other researchers to simply use a brute-force method [1] to trace the WFW
as a cloud of points. Others resorted to interval arithmetics to trace the WFW as
a set of boxes that are either completely inside the workspace or not completely
outside of it [5]. Both of these methods are relatively slow and generally yield poor
renderings of the workspace boundary. In ARACHNIS, we resort to an alternative
method that was recently proposed by the authors [7], and which, if far from perfect,
appears be somewhat faster and to yield smoother estimates of the WFW than the
two existing ones. The IFCOW, on the other hand, is determined according to the
method proposed in [9].

The paper is organized as follows: Section 2 describes the kinetostatic model of
a cable-driven parallel mechanism. Section 3 introduces the capacity margin as a
measure of the robustness of CDPR equilibrium. Section 4 explains how the capac-
ity margin is used to trace the WFW. Section 5 presents the polygons of the IFCOW
where interferences occur between the cables and the moving platform. Section 6
describes the ARACHNIS interface. A planar cable-driven parallel mechanism and
a spatial cable-driven parallel mechanism are studied in Secs. 7 and 8, respectively.
Finally, we present our conclusions and future work in Sec. 9.
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2 Kinetostatic Model of a Cable-Driven Parallel Robot

Formally, a cable-driven parallel robot consists of a moving platform connected to
a fixed base by a set of m cables acting in parallel. The winding and unwinding of
these cables on fixed spools controls the platform motion in space.

To mathematically model this mechanism, let us attach frame P to the moving
platform, and frame F to the fixed frame, as shown in Fig. 1. The origins of these
frames are P and O, respectively. The platform pose may thus be represented by the
vector p pointing from O to P, and by the rotation matrix Q rotating F onto P .

ciF

O

P

P

Ri

Ai

p

ri

ai

Q

Fig. 1 The kinetostatic model of a cable-driven parallel mechanism

The ith cable is modeled as a straight-line segment from the attachment point
onto the moving platform, Ri, to the attachment point onto the fixed frame, Ai. The
positions of these attachment points are respectively given by ri, expressed in frame
P , and ai, expressed in frame F . The ith cable may thus be represented by the
vector

ci ≡ ai−p−Qri, (1)

and the corresponding cable length is

ci ≡ ‖ci‖2, i = 1, . . . ,m. (2)

Let us now assume that external forces are applied on the moving platform. These
forces are equivalent to the resultant force-moment system we ≡ [fT

e (1/r)nT
e ]

T , the
force fe ∈ R3 being applied at P, the moment being ne ∈ R3, and r being a pos-
itive length used to render we dimensionally homogeneous. Here, we define this
length quite arbitrarily as r2 = (1/m)∑

m
i=1 ‖ri‖2

2. For the moving platform to re-
main in equilibrium, there must be a combination of cable tensions t ≡ [t1 · · · tm]T

that balances the system of external forces. By the application of the Newton-Euler
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equations to the moving platform, we obtain

Wt+we = 06, (3)

where 06 is the six-dimensional null vector and W is the Jacobian matrix of the
mechanism at this particular pose. This matrix may be computed as

W =

[
c1/c1 · · · cm/cm

(Qr1)× c1/(r c1) · · · (Qrm)× cm/(r cm)

]
. (4)

To this standard kinetostatic model of a cable-driven parallel robot, let us add
limits to the involved forces and moments. Indeed, for a given application, we may
safely assume that the designer of a cable-driven parallel mechanism can define a
set of external force-moment systems we that can be applied on the mobile platform.
We further assume that this set is a box We in R6. For reasons that will later become
apparent, let us give the vertex representation of this box, namely,

We = {we ∈ R6 : we =
n

∑
j=1

α jwe, j,
n

∑
j=1

α j = 1, α j ≥ 0, j = 1, . . . ,n}, (5)

where we, j, j = 1, . . . ,64 are the vertices of We.
The cable tensions ti, i = 1, . . . ,m, are also limited by the load capacities of the

motors and by the strengths of the cables and spool transmission elements. From the
components he/she selected, the designer should thus be able to assess the lower and
upper tension bounds, respectively t and t. Formally, these define the m-dimensional
box of feasible tensions

T = {t ∈ Rm : t≤ t≤ t}. (6)

3 The Capacity Margin as a Measure of the Robustness of
Equilibrium

According to the model of a cable-driven parallel robot presented above, the moving
platform is in equilibrium for every possible external force-moment system we if and
only if, in every case, the Newton-Euler equilibrium, eq. (3), can be satisfied by a set
of feasible cable tensions t. Such a pose of “complete” equilibrium of the moving
platform is often called a “feasible pose” in the scientific literature. The set of all
feasible poses is called the “wrench-feasible workspace” (WFW), and is formally
expressed in Definition 1.

Definition 1. The wrench-feasible wokspace F is defined as

F = {(p,Q) ∈ R3×SO(3) : ∀we ∈We, ∃t ∈T , Wt+we = 06}, (7)
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where SO(3) is the group of proper rotation matrices, We is defined in eq. (5), T is
defined in eq. (6), and W is defined in eq. (4).

The capacity margin was recently introduced by the same authors in [7] under
the name minimum degree of constraint satisfaction. We believe that the name ca-
pacity margin describes better this index, if only for the sake of brevity, but for other
reasons that will be made apparent from its definition.

This definition stems from the geometric interpretation of the wrench-feasible
workspace, which is represented in Fig. 2. The two sets involved in the definition of
F , We and T , live in different spaces and have different numbers of dimensions.
In this paper, we assume the number of dimensions of We to be six, although the
proposed method applies equally well to lower dimensional cases. The number of
cables m corresponds to the number of dimensions of T . For the sake of illustration,
the dimensions of We and T in Fig. 2 were chosen to be two and three, respectively.
The two sets are connected by eq. (3), by which the tensions, t, are linearly mapped
onto the wrench space via the transformation −W. Hence, the box T of feasible
tensions becomes the zonotope Wt in the wrench space.

T
Wt

We

−W

w1

w2

γ

t1

t2

t3

Fig. 2 An analog geometric representation of the capacity margin γ

From the definition of the wrench-feasible workspace, this zonotope should in-
clude the set We of external wrenches. Indeed, for an external wrench we to be
sustained by the moving platform, there must exist a set of tensions in T such that
we =−Wt. Geometrically, this means that the point we should be contained in Wt .
Therefore, for any external wrench to be sustained, we should have

We ⊆Wt , (8)

which gives us a necessary and sufficient condition for a pose (p,Q) to be wrench-
feasible.

This binary condition does not tell us how far is a feasible pose from being unfea-
sible. Such a question is important to the designer, as an answer would indicate the
robustness of the equilibrium. This is precisely what the capacity margin represents.

In Fig. 2, the capacity margin is geometrically represented by γ , the signed width
of the margin between the boundary of Wt and We. This width is taken positive when
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the margin is inside Wt , and negative when it is outside. It may thus be seen as the
degree of inclusion of We within Wt .

Mathematically, we compute γ as follows:

1. Compute the facet representation of Wt using the hyperplane shifting method [3].
We thus obtain al and bl , l = 1, . . . , p in the equation Wt = {w∈R6 : aT

l w≤ bl , l =
1, . . . , p}.

2. Compute the coordinate γ j,l of each vertex we, j of We with each facet (al ,bl) of
Wt . This coordinate is taken from the facet in its normal direction al , which gives
γi, j = (bl−wT

e, jal)/‖al‖2, j = 1, . . . ,n, l = 1, . . . , p.
3. Keep the minimum of all coordinates as a worst case scenario:

γ = min j=1,...,n minl=1,...,p γ j,l .

4 Tracing the Wrench-Feasible Workspace Using the Capacity
Margin

The capacity margin γ indicates the degree of inclusion of the set We of external
wrenches into the set Wt of feasible wrenches. γ is a greater positive scalar as We is
further inside Wt opposed to being a greater negative scalar as at least a part of We
is further outside Wt . Consequently, γ is zero when We ⊆ Wt and a point of We is
on the boundary of Wt . From definition 1, this latter case corresponds to a pose that
is on the limit of feasibility. Hence, the boundary of the wrench-feasible workspace
may simply be expressed as

γ(p,Q) = 0. (9)

In this paper, we use this fact to trace the boundary of the wrench-feasible
workspace as the zero isosurface or isocontour of the capacity margin. To compute
the zero isocontour of a function, one first needs to evaluate it at a grid of points cov-
ering its domain. The next step consists in interpolating the between adjacent points
of the grid in search of roots of the function. This process is readily implemented in
virtually all scientific computation packages. In Matlab, for instance, the functions
isosurface and contour can be used to trace the isosurface and isocontour of a
function, respectively. In Maple, the analogous functions are implicitplot3d
and implicitplot.

5 Tracing the Interference Polygons

The wrench-feasible workspace alone is not sufficient to design a cable-driven par-
allel robot. Interferences between the moving parts must also be considered, either
by shear intuition or by systematic analysis. A technique for such analysis of the
interference-free workspace was proposed in [9], and was implemented in ARACH-
NIS. Let us note, however, that the technique only applies to a constant orientation
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of the moving platform. Moreover, it is developed under the assumptions that the
cables are line segments and that the moving platform is a convex polyhedron rep-
resented by its edges.

In [9], it was shown that the region of the Cartesian space where a pair of ca-
bles collide is composed of two disjoint polygons in space. Mathematically, the two
polygons corresponding to an interference between the ith and jth cables may be
expressed as

Ci, j = {p ∈ R3 : p = a j−Qri +α(a j−ai)+βQ(r j− ri), α,β ≥ 0}, (10a)

C j,i = {p ∈ R3 : p = ai−Qr j +α(ai−a j)+βQ(ri− r j), α,β ≥ 0}. (10b)

Interferences can also occur between a cable and the moving platform. The as-
sociated interference regions are computed in [9]. This is done by tracing the inter-
ference region between the ith cable and the edge connecting the jth and kth vertices
of the polyhedron-shaped moving-platform. Let the positions of these vertices be
represented by v j and vk, respectively, in the mobile frame P . In this case, the
interference region Ei, j,k takes the form of a polygon in space, that is,

Ei, j,k = {p ∈ R3 : p = ai−Qri +ν jQ(v j−bi)+νkQ(vk−bi),

ν j,νk ≤ 0, ν j +νk ≤ −1}. (11)

Notice that the regions Ci, j and Ei, j,k are unbounded in some directions. In
ARACHNIS, we assume that the portion of interest of the Cartesian workspace is a
box containing all the fixed points Ai, i= 1, . . . ,m. In the proposed interface, we thus
trace the intersections of this box with the interference regions Ci, j, i, j = 1, . . . ,m,
and Ei, j,k, i = 1, . . . ,m, j,k = 1, . . . ,q, where q is the number of vertices of the mov-
ing platform.

6 The ARACHNIS Interface

ARACHNIS, or “Analysis of Robots Actuated by Cables with Handy and Neat In-
terface Software”, is a graphical user interface developed in MATLAB to automate
the design and the analysis of CDPRs. At the conceptual design stage, this tool aids
the designer in choosing the design that best meets two requirements: equilibrium
throughout the workspace and interference avoidance.

The interface provides the degree to which these requirements are satisfied for a
particular design through the generation of the WFW and the IFCOW. As shown in
Fig. 3, it is divided into four main areas: Robot Parameters, Robot Posture, Robot
Task and Robot Visualization.
The section Robot Parameters is dedicated to the specification of the geometry of the
platform and base, cable tension limits and cable arrangement. The geometry of the
platform is described through the Cartesian coordinates of the cable anchor points
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Robot and Cable Parameters 

Posture Parameters 

Task Parameters Plot Workspace Save Simulation 
Data 

Cancel Simulation Simulation 
Progress 

Section specific help data Checkboxes for choosing plot type 

Fig. 3 ARACHNIS and its main features

on the platform (rx, ry and rz) expressed in the platform frame and the geometry of
the base is described through the Cartesian coordinates of the cable anchor points on
the base (ax, ay and az) expressed in the base frame. The tension limits are specified
via the minimum and maximum tensions allowed in each cable.

In the section Robot Posture, the poses required from the platform during a spe-
cific task are specified through positions and orientations with respect to the X , Y
and Z axes (px, py, pz, phi, theta, psi). The angles phi, theta and psi are the Eu-
ler angles specifying the attitude of the platform frame with respect to the fixed
frame according to the XY Z convention. Fixed positions and orientations are spec-
ified by single numbers, while parameters that vary are specified by intervals and
resolutions. Each varying parameter is then assigned to a workspace axis through
the pop-up menus.

By allowing any combination and assignation of parameters to the workspace
axes, ARACHNIS is able to generate any WFW from two to six dimensions. The
WFW above three dimensions cannot be traced in three-dimensional space, of
course. In such cases, three of the axes are selected to trace the workspace. The
poses contained in the WFW are then the poses for which the full range of poses in
the remaining axes are wrench-feasible poses.

The section Robot Task consists in describing the prescribed robot task by spec-
ifying intervals of forces and moments along each dimension (Fx, Fy, Fz, Mx, My,
Mz) . The forces are assumed to be applied at the origin of the moving-platform
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frame, but the components of the forces and moments are parallel to the axes of the
fixed frame.

The section Robot Visualization consists of a graphical area to visualize the
CDPR geometry, its WFW and its IFCOW. This information can be hidden or shown
by first clicking the corresponding checkboxes and then clicking the plot button.
This section also contains a data button, which generates an Excel spreadsheet con-
taining the information on the interface and the simulation data, a cancel button
to stop the workspace computation, and a progress bar to indicate the simulation
progress. ARACHNIS also contains Help buttons and error messages customized
for each section to guide the user as he or she inputs the parameters.

7 Case Study 1: A Planar Cable-Driven Parallel Mechanism

This case study demonstrates the capacity of ARACHNIS to generate the wrench
feasible workspace (WFW) of planar cable-driven mechanisms. The mechanism un-
der study is the eight-cable robot shown in Fig. 4, which has previously been ana-
lyzed in [13]. As in [13], the tension limits were set to 10 N and 1000 N and no
external wrench was applied. The total orientation workspace in Fig. 4 was com-
puted by displacing the robot in a 1.2 m × 1.2 m × 120◦ grid using a resolution of
80 points per axis.

(a) Total Orientation WFW
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(b) Constant Orientation WFW: 60◦

Fig. 4 Wrench Feasible Workspace (WFW) of a planar robot

The green iso-surface corresponding to γ = 0 represents the frontier of the
WFW. Inside this boundary the robot can safely perform the task. We can acquire
a more quantitative view of the stability of the robot by slicing the total orientation
workspace and generating the constant orientation workspace shown in Fig. 4. Each
contour in the figure represents a value of γ . Again, the contour where γ = 0 defines
the stability frontier. The higher this value, the greater the robustness of the moving-
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platform equilibrium. Notice that these results match those obtained in [13]. Other
examples of the workspaces generated by ARACHNIS were done by the same au-
thors in [7], which match the workspaces in ref. [5]. The computation time reported
in [5] was 51 s, while that obtained with ARACHNIS was 6 s. This time difference
is significant, and cannot be attributed only to the different personal computers that
were used in the two studies. Notice that all the simulations were done on a Dell
Inspiron 15r laptop (Intel Core i7-3537U 2.50 GHz).

8 Case Study 2: A Spatial Cable-Driven Parallel Mechanism

This case study demonstrates the capacity of ARACHNIS to generate workspaces
of spatial cable-driven mechanisms. The mechanism under study is the spatial robot
with eight cables displayed in Fig. 5, which has also been previously analyzed in [5].
The tension limits for all cables were set to 1 N and 540 N. The externally applied
forces along each dimension varied from -10 N to 10 N, while the moments varied
from -0.5 N m to 0.5 N m.

The 5D WFW workspace of this robot was generated by translating it along a
1 m×1 m×1 m grid. At each point on this grid, the robot was rotated around the X
and Y axes through orientations ranging from -15◦ to 15◦, while retaining a fixed
orientation with respect to the Z-axis. The capacity margin was then evaluated at
each of these poses. A set of values γ was thus obtained for every position on a
3D grid. The minimum value from each set was selected and assigned to its cor-
responding position on the grid. Finally, the values were interpolated, creating the
boundary shown Fig. 5. As in the previous section, we computed the 2D slices of
this higher dimensional workspace to assess quantitatively the performance of the
robot. A slice along the XZ plane is also shown in Fig. 5.
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(b) Slice: Plane XZ

Fig. 5 Wrench Feasible Workspace (WFW) of a spatial robot
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These results also match those obtained in [5] by means of interval arithmetics.
An argument often made in favor of interval arithmetics is the guarantee of exact-
ness that comes with its results. In the example shown in [5], however, the volume
occupied by the uncertainty boxes—boxes that have not been determined to be fully
inside or outside the WFW—amounts to 60 % of the total workspace volume. In
these conditions, there is no guarantee on the boxes of interest, i.e., those that are
close to the boundary of the WFW. Hence, for this example, interval arithmetics
offers no more guarantee than any other method. This case study also evidences the
computational efficiency of ARACHNIS. The workspace was computed in 225 s,
outperforming the algorithm presented in [5] whose computation time was 1567 s.
The interference-free constant orientation workspace was also computed through
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Fig. 6 Interference-Free Constant Orientation Workspace (IFCOW) of a spatial robot

the method described in Sec. 5 and is displayed in Fig. 6. The green polygons sym-
bolize the interference regions between cables, while the blue ones represent the
interference regions between a cable and a moving-platform edge. The results show
that this robot has an interference free workspace within a box of 1 m×1 m×1 m.

9 Conclusions

In this paper, we presented a graphical user interface named ARACHNIS, or
Analysis of Robots Actuated by Cables with Handy and Neat Interface Software.
ARACHNIS allows the design and analysis of Cable Driven Parallel Robots (CD-
PRs). It requires the designer to enter the parameters of the robot, to specify the
loads involved in the robot task, and to assess the performance of the robot through
the visualization of its Wrench Feasible Workspace (WFW) and its Interference-
Free Constant Orientation Workspace (IFCOW). The capacity margin was first de-
fined as a measure of the robustness of the moving-platform equilibrium and was
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used to trace the wrench-feasible workspace of the CDPRs. Interferences between
the moving parts have also been considered. An existing technique for tracing
the interference-free workspace of CDPRs was summarized and implemented in
ARACHNIS. The WFW and the IFCOW of a planar cable-driven parallel mech-
anism and of a spatial cable-driven parallel mechanism have been plotted with
ARACHNIS. It turns out that ARACHNIS is very competitive in terms of computa-
tion time for tracing the WFW and the IFCOW of CDPRs. The use of the proposed
capacity margin to compute the wrench-closure workspace, the static workspace
and the dynamic workspace of CDPRs and the conversion of ARACHNIS into a
stand-alone interface are the subjects of future work.
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