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Dimensioning of Cable-Driven Parallel Robot Actuators, Gearboxes
And Winches According To The Twist Feasible Workspace

Lorenzo Gagliardini1, Stéphane Caro2 and Marc Gouttefarde3

Abstract— Cable Driven Parallel Robots (CDPRs) are a
particular class of parallel robots whose legs consist of cables.
CDPRs are composed of several components, e.g. winches,
pulleys and actuators. The design of a CDPR requires the
dimensioning of all these components, according to the task to
be performed. The dimensioning of the actuators, the gearboxes
and the winches are strictly related to the performances of
the CDPR in terms of the platform static and kinematic
equilibrium.

This paper introduces a new tool, the so called Twist Feasible
Workspace (TFW), built in order to analyze the workspace of
the platform twists. A pose is said to be twist feasible if the
platform of the CDPR can assume a given range of linear
and rotational velocities while satisfying the cable speed limits
imposed by the actuators and the transmission systems. The
size of the TFW is used as an optimization criterion for the
dimensioning of the actuators and the winches.

I. INTRODUCTION

During the last decades, the necessity to perform industrial
operations over products of large dimensions promoted the
investigation of a new category of robots, the Cable-Driven
Parallel Robots (CDPRs), whose legs consist of cables. One
side of the cables is connected to a mobile platform while
the other side is connected to a base frame. The cable
connection points on the base are defined hereafter as exit
points. Fig. 1 shows an example of CDPR design, realised
in the framework of the IRT Jules Verne’s CAROCA project.

Several CDPRs have been designed for a wide range
of applications, including the displacement of heavy
charges, [1],[2] and the painting of large products [3],[4],[5].
Other possible applications are: the shooting of sport
events [6], the rehabilitation of injured people [7] and search
and rescue operations [8]. All the previous applications take
advantage of the qualities of CDPRs, such as their wide
workspace, their reduced inertia and their high payload to
weight ratio.

However, CDPRs are characterized by several drawbacks:
cable interferences, cable collisions with the surrounding
environment and the influence of the non-rigid nature
of the cables over the platform positioning precision.
Moreover, since the cables cannot push the platform, its static
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Fig. 1. Example of a CDPR design. The robot shown in the picture is a
concept created in the framework of the CAROCA project, whose intent is
the painting of tubular structures.

equilibrium is strictly dependant to the cable layout and the
cable tension limits.

Considering the cables sufficiently resistant to bare the
platform payload, the maximum tension transmitted on the
cables depends mostly on the characteristics of the actuators,
such as their nominal torque. The actuators influence also the
twist that the CDPR platform can attain, being the nominal
speed of the actuators proportional to the coiling/uncoiling
speed of the cables.

Both the static and the kinematic aspects should be
taken into account during the desgin of CDPRs. The static
equilibrium of the platform can be analysed using the Wrench
Feasible Workspace (WFW) [9]. By definition, the WFW is
the set of wrench feasible platform poses. A pose is wrench
feasible when the cables can bare a set of external wrenches
and the cable tensions stay in between the given cable tension
limits. In this paper, the concept of wrench feasibility will be
extended to the platform kinematic analysis, introducing the
so called Twist Feasible Workspace (TFW). The TFW is the
set of twist feasible platform poses. A pose is twist feasible
when the actuators, according to their nominal speed, are
able to move the platform within a given range of linear and
rotational velocities.

A procedure aiming at dimensioning the actuators and
the winches of the CDPR has been developed. The design
problem has been formulated as an optimization problem
maximizing the size of the intersection between the TFW
and the WFW.

This paper is organized as follows. Section II introduces
the geometric, kinematic and static models used in this paper.
Section III introduces the concept of TFW. The TFW is



used as part of the design process described in Section IV.
Section V provides an illustrative example and Section VI
concludes this paper.

II. GEOMETRIC, STATIC AND KINEMATIC ROBOT
MODELS

A CDPR consists of a mobile platform connected to a
fixed base by m cables. The pose of the platform, p, is
composed of the Cartesian coordinates of the platform Centre
of Mass (CoM), t, and the platform roll, pitch and yaw
angles, φ, θ and ψ. The platform orientation angles are
collected in the vector Ω = [φ, θ, ψ]

T. The pose is described
with respect to an absolute reference frame, Fb, of origin
Ob and axes xb, yb and zb.

The Cartesian coordinate vectors abi , i = 1, . . . ,m
describe the positions of the exit points, Ai, i = 1, . . . ,m,
with respect to frame Fb. The Cartesian coordinate
vectors bpi , i = 1, . . . ,m represent the positions of the
platform-cable connection points, Bi, i = 1, . . . ,m, with
respect to a local reference frame, Fp, of origin Op and
axes xp, yp and zp. This local reference frame is attached
to the mobile platform.

A. Geometric model

The geometric model of a generic CDPR is shown in
Fig. 2. The chain closure equations of the cable vectors,
defined with respect to Fb, compose the geometric model
of the CDPR:

lbi = abi − t−Rbpi , i = 1, . . . ,m (1)

where R denotes the orientation matrix of the platform:

R = Rz (φ)Ry (θ)Rx (ψ) =

=

cφcθ cφsθsψ − sφcψ cφsθcψ + sφsψ
sφcθ sφsθsψ + cφcψ sφsθcψ − cφsψ
−sθ cθsψ cθcψ

 (2)

The cable unit vectors can be derived directly by the
geometric model:

dbi =
lbi
||lbi ||2

, i = 1, . . . ,m (3)

where ||lbi ||2 is the Euclidean norm of lbi .

B. Static model

The static equilibrium of the CDPR platform is described
by the following equation:

Wτ + we = 0 (4)

where W is the so called wrench matrix, whose columns are
the unit wrenches ŵi exerted by the cables on the platform:

W =

[
db1 db2 . . . dbm

Rbp1 × db1 Rbp2 × db2 . . . Rbpm × dbm

]
(5)

The cable tensions τi, i = 1, . . . ,m are collected in the
vector τ = [τ1, . . . , τm]

T. The external wrench acting on
the platform, we, is defined as follows:

we =
[
fT,mT

]T
= [fx, fy, fz,mx,my,mz]

T (6)

Fig. 2. Geometric description of an example of fully constrained CDPR.

The components of the external force vector, f , as well as the
components of the external moment vector, m, are bounded:

fmin ≤ fx, fy, fz ≤ fmax (7)
mmin ≤ mx,my,mz ≤ mmax (8)

C. Kinematic model

The kinematic model of the CDPR describes the twist
of the platform in terms of the cable coiling/uncoiling
velocities:

Jl̇− ṗ = Jl̇−
[

ṫ
ω

]
= 0 (9)

where ṫ is the vector of the platform linear velocity, ω is the
vector of the platform angular velocity and l̇ is the vector
of the cable velocities, l̇ = [l̇1, . . . , ˙lm]. J is the Jacobian
matrix of the CDPR. The columns of the Jacobian matrix
represent the twist ˆ̇pi associated to each cable.

Considering the duality of the geometric-static model, the
static equilibrium of the platform can be rewritten as:

τ = JTwe (10)

Comparing (4) and (10) we observe that:

JTwe = −W†we (11)

The Jacobian matrix can be computed as:

J = −W†T (12)

Consequently, the kinematic model in (9) can be rewritten
as:

W†T l̇ + ṗ = 0 (13)

where W† is the Moore-Penrose pseudo-inverse. Since the
system is not square, an infinite number of solutions can
be associated to Eq. 13. The pseudo-inverse provides the
solution minimizing the cable lengths, preventing the cables
to become slack.



III. WRENCH AND TWIST FEASIBLE
WORKSPACES

A. Wrench Feasible Workspace

The platform of the CDPR is modelled as a rigid body
attached to m cables. Each cable transmits on the platform
a wrench, proportional to the unit wrench ŵi. The cable
wrenches, wi = ŵiτi, i = 1, . . . ,m, balance the external
wrench acting on the platform. We assume the external
wrench acting on the platform is bounded according to (7)
and (8). These boundaries are provided by the CDPR
designer according to the task requirements. The set of
external wrenches that the platform has to bare, the so called
Required Wrench Set (RWS), [we]r, is a polytope.

Cable tensions, τi i = 1, . . . ,m, are affected as well
by some limitations. Due to their non-rigid nature, cable
tensions are always non-negative. A lower tension boundary,
τmin > 0, can be defined by the user in order to prevent the
cables to be slack. The cable tensions present also an upper
bound, τmax, associated to the physical characteristics of the
cables and the nominal torque of the motors. Thus, the set
of cable tensions which can be transmitted by the cables is
defined hereafter as the Available Cable Tension Set (ACTS):

[τ ]a = {τ | τmin ≤ τi ≤ τmax, i = 1, . . . ,m} (14)

Due to the previous constraints, cables can transfer on
the platform only a bounded set of wrenches, defined as
the Available Wrench Set (AWS), [we]a. The AWS can be
computed from the ACTS recurring to the equation of the
static equilibrium (4). Considering that [we]a is the image
of [τ ]a under the linear map represented by the wrench
matrix W, [we]a is affinely isomorphic to a particular class
of polytopes called zonotopes [9], [10].

According to the previous considerations, the static
equilibrium of the platform can be assured only if the pose
assumed by the platform is wrench feasible. Nominally, a
pose is said to be wrench feasible when the CDPR can
balance any external wrench we included in [we]r according
to cable tension limits expressed by [τ ]a:

∀we ∈ [we]r, ∃τ ∈ [τ ]a s.t.

{
we ∈ [we]a

Wτ + we = 0
(15)

From a geometrical point of view, a pose is wrench feasible
if [we]r is fully included in [we]a (as shown in Fig.3):

[we]r ⊆ [we]a (16)

The feasibility can be verified according to the procedure
proposed by Gouttefarde et al. [11], by measuring the
distance between all the vertices of [we]r and the facets of
[we]a:

Cwe ≤ d, ∀we ∈ [we]r (17)

The columns of matrix C represent the facets of [we]a and
vector d the distance of these facets from the origin of the
wrench space. Alternative methods for the computation of
the WFW can be found in the literature, such as the one
provided by Guay et al. [12] and Cruz et al. [13].

Fig. 3. Example of the mapping of [τ ]a into the wrench space, for a
planar CDPR with 3 actuators.

B. Twist Feasible Workspace

The definition of WFW is based on the linearity of the
static equilibrium equation, being W a linear map between
the cable tension space and the space of the external wrench
acting on the platform:

we =

m∑
i=1

ŵiτi (18)

The kinematic problem described in (9) presents a similar
structure. The geometric Jacobian matrix, J, is a linear map
between the space of the cable velocities and the space of
the platform twist. As a matter of fact, (9) can be rewritten
as a linear combination of the cable twists, ṗi, i = 1, . . . ,m
(being ṗi, i = 1, . . . ,m the column vectors of J):

ṗ =

m∑
i=1

ṗi l̇i (19)

Due to the similarities of the static and kinematic
problems, the considerations performed in Sec. III-A can be
extended to the kinematics of the CDPR platform.

During the task execution, the platform is supposed to
move within a given range of speeds:

ṫmin ≤ ṫx, ṫy, ṫz ≤ ṫmax (20)

ωmin ≤ φ̇, θ̇, ψ̇ ≤ ωmax (21)

where ṫx, ṫy and ṫz represent the components of the platform
linear velocity, ṫ, along xb, yb and zb, respectively. φ̇, θ̇
and ψ̇ represent the components of the platform rotational
velocity, ω, around xb, yb and zb, respectively. ṫmin and
ṫmax are the lower and the upper bounds of the linear
velocity components. Analogously, ω̇min and ω̇max are
the lower and the upper bounds of the rotational velocity
components. The set of twists, [ṗ]r, which is limited by
the previous boundaries, is defined as the Required Twist
Set (RTS).

Similarly to the WFW, matrix J depends on the platform
position and orientation in space. Thus, the TFW is function
of the platform pose. The platform twists depends also on
the power of the actuators. The nominal speed of the motors
limits the cable coiling/uncoiling speed. The maximum
coiling speed is defined as l̇max; for most of the actuators,



considering l̇min = −l̇max, the cable speeds are bounded as
follows:

l̇min ≤ l̇i ≤ l̇max, ∀i = 1, . . . ,m (22)

The set of possible cable coiling/uncoiling speeds is defined
hereafter as Available Cable Velocity Set (ACVS), [l̇]a:

[l̇]a = {l̇ | l̇min ≤ l̇i ≤ l̇max, ∀i = 1, . . . ,m} (23)

According to the previous limitations, the platform can
assume only a given set of twists, defined hereafter as the
Available Twist Set (ATS), [ṗ]a. The ATS, which represents
a polytope, can be computed from the ACVS using the
Jacobian matrix as a linear map from the cable velocity space
to the platform twist space.

In order to satisfy the kinematic equilibrium, the CDPR
can assume only the poses contained inside the TFW.
Nominally, a pose is said to be twist feasible when the CDPR
can assume any twist ṗ included in [ṗ]r according to the
boundaries of the cable velocities, [l̇]a:

∀ṗ ∈ [ṗ]r, ∃l̇ ∈ [l̇]a s.t.

{
ṗ ∈ [ṗ]a

Jl̇− ṗ = 0
(24)

Alternatively, the twist feasibility condition can be described
as:

[ṗ]r ⊆ [ṗ]a (25)

The TFW can be investigated, once again, using to
the hyperplane shifting method provided by Gouttefarde et
al. [11]:

C∗ṗ ≤ d∗, ∀ṗ ∈ [ṗ]r (26)

IV. CABLE-DRIVEN PARALLEL ROBOT DESIGN
BASED ON THE TASK SPACE ANALYSIS

A. Description of the actuation and coiling system

Designing a CDPRs is a complex task which requires the
dimensioning of several components and parameters. Most
of the research works involving the design of CDPRs are
focused on the dimensioning of the platform and the exit
point locations. This paper will focus on the dimensioning
of:
• The actuators, which in this paper are represented by

electric motors, whose nominal torque and speed are
defined as τM and ω̇M , respectively.

• The winches, whose diameter is equal to φw.
• The gearboxes, connecting the winches to the motors,

whose transmission ratio is equal to ρR.
A scheme of the actuation and transmission system is

shown in Fig. 4. Motors limit both the tension transmitted
to the cables and the rotational speed of the winches. The
gearbox modifies the torque and the speed of the motor
according to the following expressions:

τR = ρRτM (27)

ω̇R = µRω̇M =
1

ρR
ω̇M (28)

Fig. 4. Scheme of the actuation and transmission system.

The winches are connected to the gearbox. They can transfer
on the cable a tension equal to:

τmax = ρW τR = ρW ρRτM =
2

φw
ρRτM (29)

where the winch transmission ratio, ρW , is equal to the
inverse of the winch radius, ρW = 2

φw
. Given the winch

rotational speed, ω̇R = ω̇W , the maximum cable speed can
be computed as:

l̇max = ω̇W
φw
2

(30)

B. Optimization Problem

The dimensioning of the motors, the winches and the
gearboxes have a great influence on the WFW and the TFW.
In order to increase the size of both the workspaces, the
design procedure has been formalized as an optimization
problem. The user defines the zone of the Cartesian space
that the CDPR should attain. This desired zone is discretized
into a set of nP points, Pk, k = 1, . . . , nP ∈P .

The user provides the dimensions of the CDPR platform,
as well as the Cartesian coordinates of the exit points of the
cables. These informations will be considered as part of the
design constant parameters, collected in vector q. The user
describes the ACTS and the ACVS, specifying as well the
boundaries of the RWS and the RTS.

The objective function of the optimization problem, V ,
represents the percentage pf of points P ∈P which proofs
to be wrench and twist feasible at the same time:

V (x) = pf =

∑nP

k=1 Fk
nP

(31)

where Fk = 1 if the the pose associated to the k-th point, Pk,
is both wrench and twist feasible and Fk = 0 otherwise. The
design variables are collected in the design variable vector,
x:

x = [τM , ω̇M , φw, ρR] (32)

A set of constraints is verified for all the points Pk ∈P
where the pose assumed by the CDPR is wrench and twist
feasible. In this paper, the following constraints are taken
into account:
• Cable interferences. This condition is verified by

measuring the distance between each pair of cables,
using the procedure proposed by Lumelsky in [14]. The
interference between the i-th cable and the j-th cable
does not occur when the distance dcci,j is greater than
the diameter of the cables, φc, i.e.,

dcci,j ≥ φc ∀i, j = 1, . . . ,m, i 6= j (33)



Fig. 5. Description of the case study and the desired workspace.

• Platform positioning error. This constraint is verified by
analysing the platform positioning error due to elasticity
of the CDPR cables. All the element of the platform
positioning error, δt = [δtx, δty, δtz], should be lower
than a threshold value, δtc. The platform positioning
error can be computed from the CDPR elasto-static
model proposed in [15].

The design problem is formulated as follows:

maximize: V (x) = pf

over: x = [τM , ωM , φw, ρR]

subject to:

∀Pk ∈P : Fk = 1

{
dcci,j ≥ φc ∀i, j = 1, . . . ,m, i 6= j

−δtc ≤ δtx, δty, δtz ≤ δtc

V. CASE STUDY

A. Case Study Description

The case study presented in this paper is based on the
analysis of a spatial CDPR. The robot consists of m = 8
steel cables. Their diameter, φc, is equal to 2mm and their
linear elastic coefficient, kc, is equal to 2.52× 106 N

m . The
cables exit points, Ai, i = 1, . . . ,m, are located at the corner
of the base frame, as illustrated in Fig. 5, according to the
following Cartesian coordinates:

ab1 =
1

2

[
−sl,−sw,−sh

]
ab2 =

1

2

[
sl,−sw,−sh

]
(34)

ab3 =
1

2

[
sl, sw,−sh

]
ab4 =

1

2

[
−sl, sw,−sh

]
(35)

ab5 =
1

2

[
−sl,−sw, sh

]
ab6 =

1

2

[
sl,−sw, sh

]
(36)

ab7 =
1

2

[
sl, sw, sh

]
ab8 =

1

2

[
−sl, sw, sh

]
(37)

where the base frame length, sl, width, sw, and height, sh,
are equal to 1m, 0.6m, 0.5m, respectively.

Fig. 6. Platform of the CDPR.

The cables have been connected to the platform according
to a cable crossing layout. The main advantages of this
layout are the reduction of the cable-cable collisions and the
increase of the CDPR stiffness. The Cartesian coordinates
bi of points Bi, i = 1, . . . ,m are defined as follows:

bp1 =
1

2

[
−lp,−w′p, hp

]
bp2 =

1

2

[
lp,−w′p, hp

]
(38)

bp3 =
1

2

[
lp, w

′
p, hp

]
bp4 =

1

2

[
−lp, w′p, hp

]
(39)

bp5 =
1

2

[
−l′p,−wp,−hp

]
bp6 =

1

2

[
l′p,−wp,−hp

]
(40)

bp7 =
1

2

[
l′p, wp,−hp

]
bp8 =

1

2

[
−l′p, wp,−hp

]
(41)

where w′p = wp + u0 and l′p = lp + u0. u0 is an offset
applied to the cable-platform connection points in order to
avoid cable collisions and singularities. In the specific case,
this offset is equal to 1 cm. The platform is a parallelepiped,
as shown in Fig. 6. Its width, wp, and its length, lp, are equal
to 10 cm. Its height, hp, is equal to 5 cm.

The component of the external forces acting on the
platform, fx, fy and fz , have been constrained between
±20N. The components of the external momentum, mx, my

and mz , are bounded between ±0.1Nm:

−20N ≤ fx, fy, fz ≤ 20N (42)
−0.1Nm ≤mx,my,mz≤ 0.1Nm (43)

Analogously, the twist components of the platform, ṫx, ṫy
and ṫz , have been constrained between ±0.1 m

s . The platform
orientation is assumed to be constant, being the frame Fp

aligned to the base frame Fb.

−0.1 m

s
≤ ṫx, ṫy, ṫz ≤ 0.1

m

s
(44)

φ̇, θ̇, ψ̇ = 0 (45)

The desired workspace consists of a box, illustrated in
Fig. 5. The box has been discretized in nP = 1881 points,
whose coordinates along xb, yb and zb are defined according
to the sets of values [x], [y] and [z], respectively:

[x] = {−0.45m : 0.05m : 0.45m} (46)
[y] = {−0.25m : 0.05m : 0.25m} (47)
[z] = {−0.2m : 0.05m : 0.2m} (48)

The range of the design variables, τM , ωM , φw, ρR, have
been summarized in Tab. I.



TABLE I
DESIGN VARIABLE BOUNDARIES.

Design Variable τM ωM φw ρR
min 0.5Nm 50 rpm 1 cm 0.5
Max 1.5Nm 200 rpm 5 cm 5

B. Solution

The case study proposed in Sec. V-A has been solved
in Matlab using the genetic algorithm toolbox and the
GlobalSearch algorithm developed by Zsolt et al. [16].

According to the optimal solution, 57.70% of points
Pk ∈P are included in both the WFW and the TFW. The
optimal dimensioning of the design variables contemplates
a motor nominal torque τM = 1.44Nm, a motor nominal
speed ω̇M = 195.6 rpm, a winch diameter φw = 46.5mm
and a gearbox transmission ratio ρR = 3.1. Fig. 7 represents
the intersection of the WFW and the TFW associated to the
optimal solution. Under these conditions, the TFW covers
the 97.82% of the desired points Pk ∈P , as illustrated in
Fig. 8; on the contrary, the WFW covers only the 57.73% of
points Pk ∈P .

The correlation between the design variables, x, and the
optimization function, V , has been investigated by means of
the Matlab function corrcoef. A set of values has been
associated to each design variable:

[τM ] = {−0.5Nm : 0.1Nm : 1.5Nm} (49)
[ωM ] = {50 rpm : 10 rpm : 200 rpm} (50)
[φw] = {1 cm : 1 cm : 5 cm} (51)
[ρR] = {0.5 : 0.1 : 1, 2 : 1 : 5} (52)

The different combinations of design variables have been
tested computing the percentage of feasible points belonging
to the WFW and the TFW. As illustrated in Fig. 9, the size
of the WFW increases with respect to the nominal torque
of the motor, τM , and the gearbox transmission ratio, ρR.
The diameter of the winches, φw, is inversely proportional
to the size of the WFW. Analogously, an increasing of the
nominal motor speed, ω̇M , induces an improvement of the
TFW size, as well as the increasing of the diameter of the
winches. The size of the TFW can be augmented decreasing
the the gearbox transmission ratio.

The performed analysis highlights that, regarding the
dimensions of both the WFW and the TFW, φw and ρR have
an higher influence with respect to the other design variables.
Consequently, dimensioning the gearbox transmission ratio
and the winch diameter, the designer should take into account
the sensibility of these design parameters and the trade-off
between the increasing of the WFW size and the decreasing
of the TFW size. For example, the largest WFW can be
obtained pushing the design variables to their upper limits:
τM = 1.5Nm, ωM = 200 rpm, φw = 50mm and ρR = 5.
Under these assumptions, the WFW covers the 65.98% of
Pk ∈P , as shown in Fig. 10. However, due to the high
gearbox transmission ratio, ρR = 5, all the points included

Fig. 7. Intersection of the WFW and the TFW for the optimal solution
(τM = 1.44Nm, ω̇M = 195.6 rpm, φw = 46.5mm, ρR = 3.1).

Fig. 8. TFW of the optimal solution (τM = 1.44Nm, ω̇M = 195.6 rpm,
φw = 46.5mm, ρR = 3.1).

in the WFW are not twist feasible.

VI. CONCLUSIONS AND FUTURE WORK

The research work presented in this paper dealt with
the definition of a novel workspace for CDPRs, the Twist
Feasible Workspace (TFW). The TFW can be used in
order to evaluate the twists that the platform can achieve.
Furthermore, the TFW can be successfully integrated in the
dimensioning problem of the actuators, the gearboxes and the
winches of a CDPR, supposing the locations of the cable
exit points and the platform dimensions have been fixed
a priori. The influence of the design parameters over the
dimensions of the WFW and the TFW have been analysed
and commented.

Despite the fact that the computation of the TFW can be
performed using methods developed originally to analyse the
WFW, part of the research effort should be dedicated to
the design of a novel tool for the specific computation of
the TFW. Furthermore, more optimization criteria should be



Fig. 9. Analysis of the correlation between the design variables and the optimization criterion.

Fig. 10. Larger WFW, covering the 65,98% of the desired
workspace, computed with respect to the design variables τM = 1.5Nm,
ω̇M = 200 rpm, φw = 50mm, ρR = 5.

analysed in order to dimension the CDPR components while
paying attention to the component costs.
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