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Abstract

We consider a multi-player stochastic differential game with linear McKean-Vlasov dynamics
and quadratic cost functional depending on the variance and mean of the state and control
actions of the players in open-loop form. Finite and infinite horizon problems with possibly some
random coefficients as well as common noise are addressed. We propose a simple direct approach
based on weak martingale optimality principle together with a fixed point argument in the
space of controls for solving this game problem. The Nash equilibria are characterized in terms
of systems of Riccati ordinary differential equations and linear mean-field backward stochastic
differential equations: existence and uniqueness conditions are provided for such systems. Finally,
we illustrate our results on a toy example.

MSC Classification: 49N10, 49L20, 91A13.

Key words: Mean-field SDEs, stochastic differential game, linear-quadratic, open-loop controls,
Nash equilibria, weak martingale optimality principle.

1 Introduction

1.1 General introduction-Motivation

The study of large population of interacting individuals (agents, computers, firms) is a central issue
in many fields of science, and finds numerous relevant applications in economics/finance (systemic
risk with financial entities strongly interconnected), sociology (regulation of a crowd motion, herding
behavior, social networks), physics, biology, or electrical engineering (telecommunication). Ratio-
nality in the behavior of the population is a natural requirement, especially in social sciences, and is
addressed by including individual decisions, where each individual optimizes some criterion, e.g. an
investor maximizes her/his wealth, a firm chooses how much to produce outputs (goods, electricity,
etc) or post advertising for a large population. The criterion and optimal decision of each individual
depend on the others and affect the whole group, and one is then typically looking for an equilibrium
among the population where the dynamics of the system evolves endogenously as a consequence of
the optimal choices made by each individual. When the number of indistinguishable agents in the
population tend to infinity, and by considering cooperation between the agents, we are reduced in
the asymptotic formulation to a McKean-Vlasov (McKV) control problem where the dynamics and
∗This work is supported by FiME (Finance for Energy Market Research Centre) and the “Finance et Développement

Durable - Approches Quantitatives” EDF - CACIB Chair.
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the cost functional depend upon the law of the stochastic process. This corresponds to a Pareto-
optimum where a social planner/influencer decides of the strategies for each individual. The theory
of McKV control problems, also called mean-field type control, has generated recent advances in the
literature, either by the maximum principle [5], or the dynamic programming approach [14], see also
the recent books [3] and [6], and the references therein, and linear quadratic (LQ) models provide
an important class of solvable applications studied in many papers, see, e.g., [15], [11], [10], [2].

In this paper, we consider multi-player stochastic differential games for McKean-Vlasov dyna-
mics. This corresponds and is motivated by the competitive interaction of multi-population with a
large number of indistinguishable agents. In this context, we are then looking for a Nash equilibrium
among the multi-class of populations. Such problem, sometimes refereed to as mean-field-type game,
allows to incorporate competition and heterogeneity in the population, and is a natural extension of
McKean-Vlasov (or mean-field-type) control by including multiple decision makers. It finds natural
applications in engineering, power systems, social sciences and cybersecurity, and has attracted
recent attention in the literature, see, e.g., [1], [7], [8], [4]. We focus more specifically on the case
of linear McKean-Vlasov dynamics and quadratic cost functional for each player (social planner).
Linear Quadratic McKean-Vlasov stochastic differential game has been studied in [9] for a one-
dimensional state process, and by restricting to closed-loop control. Here, we consider both finite
and infinite horizon problems in a multi-dimensional framework, with random coefficients for the
affine terms of the McKean-Vlasov dynamics and random coefficients for the linear terms of the cost
functional. Moreover, controls of each player are in open-loop form. Our main contribution is to
provide a simple and direct approach based on weak martingale optimality principle developed in [2]
for McKean-Vlasov control problem, and that we extend to the stochastic differential game, together
with a fixed point argument in the space of open-loop controls, for finding a Nash equilibrium.
The key point is to find a suitable ansatz for determining the fixed point corresponding to the
Nash equilibria that we characterize explicitly in terms of systems of Riccati ordinary differential
equations and linear mean-field backward stochastic differential equations: existence and uniqueness
conditions are provided for such systems.

The rest of this paper is organized as follows. We continue Section 1 by formulating the Nash
equilibrium problem in the linear quadratic McKean-Vlasov finite horizon framework, and by giving
some notations and assumptions. Section 2 presents the verification lemma based on weak sub-
martingale optimality principle for finding a Nash equilibrium, and details each step of the method
to compute a Nash equilibrium. We give some extensions in Section 3 to the case of infinite horizon
and common noise. Finally, we illustrate our results in Section 4 on some toy example.

1.2 Problem formulation

Let T > 0 be a finite given horizon. Let (Ω,F,F,P) be a fixed filtered probability space where
F = (Ft)t∈[0,T ] is the natural filtration of a real Brownian motion W = (Wt)t∈[0,T ]. In this section,
for simplicity, we deal with the case of a single real-valued Brownian motion, and the case of multiple
Brownian motions will be addressed later in Section 3. We consider a multi-player game with n
players, and define the set of admissible controls for each player i ∈ J1, nK as:

Ai =

{
αi : Ω× [0, T ]→ Rdi s.t. αi is F-adapted and

∫ T

0
e−ρtE[|αi,t|2]dt <∞

}
,

where ρ is a nonnegative constant discount factor. We denote by A = A1 × ... × An, and for any
α = (α1, ..., αn) ∈ A, i ∈ J1, nK, we set α−i = (α1, . . . , αi−1, αi+1, . . . , αn) ∈ A−i = A1× . . .×Ai−1×
Ai+1 × . . .×An.
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Given a square integrable measurable random variable X0 and control α = (α1, ..., αn) ∈ A, we
consider the controlled linear mean-field stochastic differential equation in Rd:{

dXt = b(t,Xα
t ,E [Xα

t ] ,αt,E [αt])dt+ σ(t,Xα
t ,E [Xα

t ] ,αt,E [αt])dWt, 0 ≤ t ≤ T,
Xα

0 = X0,
(1)

where for t ∈ [0, T ], x, x ∈ Rd, ai, ai ∈ Rdi :
b(t, x, x,α,α) = βt + bx,tx+ b̃x,tx+

∑n
i=1 bi,tαi + b̃i,tαi

= βt + bx,tx+ b̃x,tx+Btα+ B̃tα

σ(t, x, x,α,α) = γt + σx,tx+ σ̃x,tx+
∑n

i=1 σi,tαi + σ̃i,tαi

= γt + σx,tx+ σ̃x,tx+ Σtα+ Σ̃tα.

(2)

Here all the coefficients are deterministic matrix-valued processes except β and σ which are vector-
valued F-progressively measurable processes.

The goal of each player i ∈ J1, nK during the game is to minimize her cost functional over αi ∈
Ai, given the actions α−i of the other players:

J i(αi, α
−i) = E

[ ∫ T

0
e−ρtf i(t,Xα

t ,E [Xα
t ] ,αt,E [αt])dt+ gi(Xα

T ,E[Xα
T ])
]
,

V i(α−i) = inf
αi∈Ai

J i(αi, α
−i),

where for each t ∈ [0, T ], x, x ∈ Rd, ai, ai ∈ Rdi , we have set the running cost and terminal cost for
each player:

f i(t, x, x,a,a) = (x− x)ᵀQit(x− x) + xᵀ[Qit + Q̃it]x

+
∑n

k=1 a
ᵀ
kI
i
k,t(x− x) + aᵀk(I

i
k,t + Ĩik,t)x

+
∑n

k=1(ak − ak)ᵀN i
k,t(ak − ak) + ak(N

i
k,t + Ñ i

k,t)ak

+
∑

0≤k 6=l≤n(ak − ak)ᵀGik,l,t(al − al) + aᵀk(G
i
k,l,t + G̃ik,l,t)al

+2[LiTx,tx+
∑n

k=1 L
iᵀ
k,tak]

gi(x, x) = (x− x)ᵀP i(x− x) + x(P i + P̃ i)x+ 2riᵀx.

(3)

Here all the coefficients are deterministic matrix-valued processes, except Lix, Lik, r
i which are vector-

valued F-progressively measurable processes, and ᵀ denotes the transpose of a vector or matrix.

We say that α∗ = (α∗1, ..., α
∗
n) ∈ A is a Nash equilibrium if for any i ∈ J1, nK,

J i(α∗) ≤ J i(αi, α
∗,−i), ∀αi ∈ Ai, i.e. , J i(α∗) = V i(α∗,−i).

As it is well-known, the search for a Nash equilibrium can be formulated as a fixed point problem as
follows: first, each player i has to compute its best response given the controls of the other players:
α?i = BRi(α

−i), where BRi is the best response function defined (when it exists) as:

BRi : A
−i → Ai

α−i 7→ argmin
α∈Ai

J i(α, α−i).

Then, in order to ensure that (α?1, ..., α
?
n) is a Nash equilibrium, we have to check that this candidate

verifies the fixed point equation: (α?1, ..., α
?
i ) = BR(α?1, ..., α

?
i ) where BR := (BR1, ...BRn).
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The main goal of this paper is to state a general martingale optimality principle for the search of
Nash equilibria and to apply it to the linear quadratic case. We first obtain best response functions
(or optimal control of each agent conditioned to the control of the others) of each player i of the
following form:

αi,t = −(Sii,t)
−1U ii,t(Xt − E[Xt])− (Sii,t)

−1(ξii,t − ξ
i
i,t)− (Ŝii,t)

−1(V i
i,tE[Xt] +Oii,t)

where the coefficients in the r.h.s., defined in (5) and (6), depend on the actions α−i of the other
players. We then proceed to a fixed point search for best response function in order to exhibit a
Nash equilibrium that is described in Theorem 2.3.

1.3 Notations and Assumptions

Given a normed space (K, |.|), and for T ∈ R?+, we set:

L∞([0, T ],K) =

{
φ : [0, T ]→ K s.t. φ is measurable and sup

t∈[0,T ]
|φt| <∞

}

L2([0, T ],K) =

{
φ : [0, T ]→ K s.t. φ is measurable and

∫ T

0
e−ρu|φt|2du <∞

}
L2
FT

(K) =
{
φ : Ω→ K s.t. φ is FT -measurable and E[|φ|2] <∞

}
S2

F(Ω× [0, T ],K) =

{
φ : Ω× [0, T ]→ K s.t. φ is F-adapted and E[ sup

t∈[0,T ]
|φt|2] <∞

}

L2
F(Ω× [0, T ],K) =

{
φ : Ω× [0, T ]→ K s.t. φ is F-adapted and

∫ T

0
e−ρuE[|φu|2]du <∞

}
.

Note that when we will tackle the infinite horizon case we will set T = ∞. To make the notations
less cluttered, we sometimes denote X = Xα when there is no ambiguity. If C and C̃ are coefficients
of our model, either in the dynamics or in a cost function, we note: Ĉ = C + C̃. Given a random
variable Z with a first moment, we denote by Z = E[Z]. For M ∈ Rn×n and X ∈ Rn, we denote by
M.X⊗2 = XᵀMX ∈ R. We denote by Sd the set of symmetric d× d matrices and by Sd+ the subset
of non-negative symmetric matrices.

Let us now detail here the assumptions on the coefficients.

(H1) The coefficients in the dynamics (2) satisfy:
a) β, γ ∈ L2

F(Ω× [0, T ],Rd)
b) bx, b̃x, σx, σ̃x ∈ L∞([0, T ],Rd×d); bi, b̃i, σi, σ̃i ∈ L∞([0, T ],Rd×di)

(H2) The coefficients of the cost functional (3) satisfy:
a) Qi, Q̃i ∈ L∞([0, T ],Sd+), P i, P̃ i ∈ Sd, N i

k, Ñ
i
k ∈ L∞([0, T ],Sdk+ ), Iik, Ĩ

i
k ∈ L∞([0, T ],Rdk×d)

b) Lix ∈ L2
F(Ω× [0, T ],Rd), Lik ∈ L2

F(Ω× [0, T ],Rdk), ri ∈ L2
FT

(Rd)
c) ∃δ > 0 ∀t ∈ [0, T ]:

N i
i,t ≥ δIdk P i ≥ 0 Qit − I

iᵀ
i,t(N

i
i,t)
−1Iii,t ≥ 0

d) ∃δ > 0 ∀t ∈ [0, T ]:
N̂ i
i,t ≥ δIdk P̂ i ≥ 0 Q̂it − Î

iᵀ
i,t(N̂

i
i,t)
−1Îii,t ≥ 0.

Under the above conditions, we easily derive some standard estimates on the mean-field SDE:
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- By (H1) there exists a unique strong solution to the mean-field SDE (1), which verifies:

E
[

sup
t∈[0,T ]

|Xα
t |2
]
≤ Cα(1 + E(|X0|2)) <∞ (4)

where Cα is a constant which depending on α only through
∫ T

0 e−ρtE[|αt|2]dt.
- By (H2) and (4) we have:

J i(α) ∈ R for each α ∈ A,

which means that the optimisation problem is well defined for each player.

2 A Weak submartingale optimality principle to compute a Nash-
equilibrium

2.1 A verification Lemma

We first present the lemma on which the method is based.

Lemma 2.1 (Weak submartingale optimality principle). Suppose there exists a couple
(α?, (W.,i)i∈J1,nK), where α? ∈ A and W.,i = {Wα,i

t , t ∈ [0, T ],α ∈ A} is a family of adapted
processes indexed by A for each i ∈ J1, nK, such that:

(i) For every α ∈ A, E[Wα,i
0 ] is independent of the control αi ∈ Ai;

(ii) For every α ∈ A, E[Wα,i
T ] = E[gi(Xα

T ,PXα
T

)];

(iii) For every α ∈ A, the map t ∈ [0, T ] 7→ E[Sα,it ], with
S
α,i
t = e−ρtWα,i

t +
∫ t

0 e
−ρuf i(u,Xα

u ,PXα
u
,αu,Pαu)du is well defined and non-decreasing;

(iv) The map t 7→ E[Sα
?,i

t ] is constant for every t ∈ [0, T ];

Then α? is a Nash equilibrium and J i(α?) = E[Wα?,i
0 ]. Moreover, any other Nash-equilibrium α̃

such that E[Wα̃,i
0 ] = E[Wα?,i

0 ] and J i(α̃) = J i(α?) for any i ∈ J1, nK satisfies the condition (iv).

Proof. Let i ∈ J1, nK and αi ∈ Ai. From (ii) we have immediately J i(α) = E [SαT ] for any α ∈ A.
We then have:

E[W
(αi,α?,−i),i
0 ] = E[S

(αi,α
?,−i),i

0 ]

≤ E[S
(αi,α

?−i),i
T ] = J i(αi,α

?,−i).

Moreover for αi = α?i we have:

E[W
(α?i ,α

?,−i),i
0 ] = E[S

(α?i ,α
?,−i),i

0 ]

= E[S
(αi,α

?,−i),i
T ] = J i(α?i ,α

?,−i),

which proves that α? is a Nash equilibrium and J i(α?) = E[Wα?,i
0 ]. Finally, let us suppose that

α̃ ∈ A is another Nash equilibrium such that E[Wα̃,i
0 ] = E[Wα?,i

0 ] and J i(α̃) = J i(α?) for any
i ∈ J1, nK. Then, for i ∈ J1, nK we have:

E[Sα̃,i0 ] = E[Wα̃,i
0 ] = E[Wα?,i

0 ] = E[Sα
?,i

T ] = J i(α?) = J i(α̃) = E[Sα̃,iT ].

Since t 7→ E[Sα̃,it ] is nondecreasing for every i ∈ J1, nK, this implies that the map is actually constant
and (iv) is verified.
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2.2 The method and the solution

Let us now apply the optimality principle in Lemma 2.1 in order to find a Nash equilibrium. In the
linear-quadratic case the laws of the state and the controls intervene only through their expectations.
Thus we will use a simplified optimality principle where P is simply replaced by E in conditions (ii)
and (iii) of Lemma 2.1. The general procedure is the following:

Step 1. We guess a candidate for Wα,i. To do so we suppose that Wα,i
t = wit(X

α
t ,E [Xα

t ]) for
some parametric adapted random field {wit(x, x), t ∈ [0, T ], x, x ∈ Rd} of the form wit(x, x) =
Ki
t .(x− x)⊗2 + Λit.x

⊗2 + 2Y iᵀ
t x+Rit.

Step 2. We set S
α,i
t = e−ρtwit(X

α
t ,E [Xα

t ]) +
∫ t

0 e
−ρuf i(u,Xα

u ,E [Xα
u ] ,αu,E [αu])du for i ∈

J1, nK and α ∈ A .We then compute d
dtE
[
S
α,i
t

]
= e−ρtE

[
Dα,i
t

]
(with Itô’s formula) where the

drift Dα,i takes the form:

E
[
Dα,i
t

]
= E

[
−ρwit(Xα

t ,E [Xα
t ]) +

d

dt
E
[
wit(X

α
t ,E [Xα

t ])
]

+ f i(t,Xα
t ,E [Xα

t ] ,αt,E [αt])
]
.

Step 3. We then constrain the coefficients of the random field so that the conditions of Lemma
2.1 are satisfied. This leads to a system of backward ordinary and stochastic differential
equations for the coefficients of wi.

Step 4. At time t, given the state and the controls of the other players, we seek the action αi
cancelling the drift. We thus obtain the best response function of each player.

Step 5. We compute the fixed point of the best response functions in order to find an open
loop Nash equilibrium t 7→ α?t .

Step 6. We check the validity of our computations.

2.2.1 Step 1: guess the random fields

The process t 7→ E
[
wit(X

α
t ,E [Xα

t ])
]
is meant to be equal to E

[
gi(Xα

T ,E [Xα
T ])
]
at time T , where

g(x, x) = P i.(x− x)⊗2 + (P i + P̃ i).x⊗2 + riᵀx with (P, P̃ , ri) ∈ (Sd)2 × L2
FT

(Rd). It is then natural
to search for a field wi of the form wit(x, x) = Ki

t .(x−x)⊗2 +Λit.x
⊗2 +2Y iᵀ

t x+Rit with the processes
(Ki,Λi, Y i, Ri) in (L∞([0, T ],Sd+)2 × S2

F(Ω× [0, T ],Rd)× L∞([0, T ],R) and solution to:
dKi

t = K̇i
tdt, Ki

T = P i

dΛit = Λ̇itdt, ΛiT = P i + P̃ i

dY i
t = Ẏ i

t dt+ ZitdWt, 0 ≤ t ≤ T, Y i
T = ri

dRit = Ṙitdt, RiT = 0,

where (K̇i, Λ̇i, Ṙi) are deterministic processes valued in Sd×Sd×R and (Ẏ i, Zi) are adapted processes
valued in Rd.

2.2.2 Step 2: derive their drifts

For i ∈ J1, nK, t ∈ [0, T ] and α ∈ A, we set:

S
α,i
t := e−ρtwit(Xt,E [Xt]) +

∫ t

0
e−ρuf i(u,Xα

u ,E [Xα
u ] ,αu,E [αu])du

6



and then compute the drift of the deterministic function t 7→ E[Sα,it ]:

dE[Sα,it ]

dt
= e−ρtE[Dα,it ]

= e−ρtE[(Xt −Xt)
ᵀ[K̇i

t + Φi
t](Xt −Xt) +Xt

ᵀ
(Λ̇it + Ψi

t)Xt + 2[Ẏ i
t + ∆i

t]
ᵀXt

+ Ṙit − ρRit + Γ
i
t + χit(αi,t)],

where we have defined:

χit(αi,t) := (αi,t − αi,t)ᵀSii,t(αi − αi,t) + αᵀ
i,tŜ

i
i,tαi,t + 2[U ii,t(Xt −Xt) + V i

i,tXt +Oii,t + ξii,t − ξ
i
i,t]

ᵀαi,t

with the following coefficients:

Φi
t = Qit + σᵀx,tK

i
tσx,t +Ki

tbx,t + bᵀx,tK
i
t − ρKi

t

Ψi
t = Q̂it + σ̂ᵀx,tK

i
t σ̂x,t + Λitb̂x,t + b̂ᵀx,tΛ

i
t − ρΛit

∆i
t = Lix,t + bᵀx,tY

i
t + b̃ᵀx,tY

i
t + σᵀx,tZ

i
t + σ̃ᵀx,tZ

i
t + Λitβt

+σᵀx,tK
i
tγt + σ̃ᵀx,tK

i
tγt +Ki

t(βt − βt)− ρY i
t

+
∑

k 6=i U
iᵀ
k,t(αk,t − αk,t) + V iᵀ

k,tαk,t

Γit = γᵀtK
i
tγt + 2βᵀt Y

i
t + 2γᵀt Z

i
t

+
∑

k 6=i(αk,t − αk,t)ᵀSik,t(αk,t − αk,t) + αᵀ
k,tŜ

i
k,tαk,t + 2[Oik,t + ξik,t − ξ

i
k,t]

ᵀαk,t − ρRit,

(5)

and 

Sik,t = N i
k,t + σᵀk,tK

i
tσk,t

Ŝik,t = N̂ i
k,t + σ̂ᵀk,tK

i
t σ̂k,t

U ik,t = Iik,t + σᵀk,tK
i
tσx,t + bᵀk,tK

i
t

V i
k,t = Îik,t + σ̂ᵀk,tK

i
t σ̂x,t + b̂ᵀk,tΛ

i
t

Oik,t = L
i
k,t + b̂ᵀk,tY

i
t + σ̂ᵀk,tZ

i
t + σ̂ᵀk,tK

i
tγt

+1
2

∑
k 6=i(Ĵ

i
i,k,t + Ĵ iᵀk,i,t)αk,t

J ik,l,t = Gik,l,t + σᵀk,tK
i
tσl,t

Ĵ ik,l,t = Ĝik,l,t + σ̂ᵀk,tK
i
t σ̂l,t

ξik,t = Lik,t + bᵀk,tY
i
t + σᵀk,tZ

i
t + σᵀk,tK

i
tγt

+1
2

∑
k 6=i(J

i
i,k,t + J iᵀk,i,t)αk,t.

(6)

2.2.3 Step 3: constrain their coefficients

Now that we have computed the drift, we need to constrain the coefficients so that Sα,i satisfies
the condition of Lemma 2.1. Let us assume for the moment that Sii,t and Ŝ

i
i,t are positive definite

matrices (this will be ensured by the positive definiteness of K). That implies that there exists an
invertible matrix θit such that θitSii,tθ

iᵀ
t = Ŝii,t for all t ∈ [0, T ]. We can now rewrite the drift as: "a

square in αi" + "other terms not depending in αi". Since we can form the following square:

E[χit(αi,t)] = E[(αi,t − αi,t + θiᵀt αi,t − ηit)Sii,t(αi,t − αi,t + θiᵀt αi,t − ηit)− ζit ]
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with: 

ηit = ai,0t (Xt, Xt) + θiᵀt a
i,1
t (Xt)

ai,0t (x, x) = −
(
Sii,t
)−1

U ii,t(x− x)−
(
Sii,t
)−1

(ξii,t − ξ
i
i,t)

ai,1t (x) = −
(
Ŝii,t
)−1

(V i
i,tx+Oii,t)

ζit = (Xt −Xt)
ᵀU iᵀi,t

(
Sit
)−1

U it (Xt −Xt) +XtV
iᵀ
i,t

(
Ŝit
)−1

V i
i,tXt

+2(U iᵀi,t
(
Sit
)−1

(ξii,t − ξ
i
i,t) + V i

i,t

(
Ŝii,t
)−1

Oii,t)Xt

+(ξii,t − ξ
i
i,t)

ᵀ
(
Sii,t
)−1

(ξii,t − ξ
i
i,t) +Oiᵀi,t

(
Ŝii,t
)−1

Oii,t,

we can then rewrite the drift in the following form:

E[Dα,it ] = E[(Xt −Xt)
ᵀ[K̇i

t + Φi0
t ](Xt −Xt) +Xt

ᵀ
(Λ̇it + Ψi0

t )Xt + 2[Ẏ i
t + ∆i0

t ]ᵀXt

+ Ṙit + Γi0t

+ (αi,t − αi,t + θiᵀt αi,t − ηit)Sii,t(αi,t − αi,t + θiᵀt αi,t − ηit)],

where 
Φi0
t = Φi

t − U
iᵀ
i,t

(
Sii,t
)−1

U ii,t
Ψi0
t = Ψi

t − V
iᵀ
i,t

(
Ŝii,t
)−1

V i
i,t

∆i0
t = ∆i

t − U
iᵀ
i,t

(
Sii,t
)−1

(ξii,t − ξ
i
i,t)− V

iᵀ
i,t

(
Ŝit
)−1

Oii,t

Γi0t = Γit − (ξii,t − ξ
i
i,t)

ᵀ
(
Sii,t
)−1

(ξii,t − ξ
i
t)−O

iᵀ
i,t

(
Ŝii,t
)−1

Oii,t.

(7)

We can finally constrain the coefficients. By choosing the coefficients Ki,Γi, Y i and Ri so that
only the square remains, the drift for each player i ∈ J1, nK can be rewritten as a square only (in the
next step we will verify that we can indeed choose such coefficients). More precisely we set Ki,Γi, Y i

and Ri as the solution of: 
dKi

t = −Φi0
t dt Ki

T = P i

dΛit = −Ψi0
t dt ΛiT = P i + P̃ i

dY i
t = −∆i0

t dt+ ZitdWt Y i
T = ri

dRit = −Γi0t dt RiT = 0,

(8)

and stress the fact that Y i, Zi, Ri depend on α−i, which appears in the coefficients ∆i0, and Γi0.
With such coefficients the drift takes now the form:

E[Dα,it ] = E[(αi,t − αi,t + θiᵀt αi,t − ηit)Sii,t(αi,t − αi,t + θiᵀt αi,t − ηit)]

= E[(αi,t − αi,t − ai,1t + θiᵀt (αi,t − ai,0t ))Sii,t(αi,t − αi,t − a
i,1
t + θiᵀt (αi,t − ai,0t ))]

and thus satisfies the nonnegativity constraint: E[Dα,it ] ≥ 0, for all t ∈ [0, T ], i ∈ J1, nK, and α ∈ A.

2.2.4 Step 4: find the best response functions

Proposition 2.2. Assume that for all i ∈ J1, nK, (Ki,Λi, Y i, Zi, Ri) is a solution of (8) given α−i

∈ A−i. Then the set of processes

αi,t = ai,0t (Xt,E[Xt]) + ai,1t (E[Xt])

= −
(
Sii,t
)−1

U ii,t(Xt − E[Xt])−
(
Sii,t
)−1

(ξii,t − ξ
i
i,t)−

(
Ŝii,t
)−1

(V i
i,tE[Xt] +Oii,t)

(9)
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(depending on α−i) where X is the state process with the feedback controls α = (α1, ..., αn), are
best-response functions, i.e., J i(αi, α−i) = V i(α−i) for all i ∈ J1, nK. Moreover we have

V i(α−i) = E[Wi,α
0 ]

= E[Ki
0.(X0 −X0)⊗2 + Λi0.X

⊗2
0 + 2Y iᵀ

0 X0 +Ri0].

Proof. We check that the assumptions of Lemma 2.1 are satisfied. Since Wα,i is of the form
W
α,i
t = wit(X

α
t ,E[Xα

t ]), condition (i) is verified. The condition (ii) is satisfied thanks to the termi-
nal conditions imposed on the system (8). Since (Ki,Λi, Y i, Zi, Ri) is solution to (8), the drift of
t 7→ E[Sα,i] is positive for all i ∈ J1, nK and all α ∈ A, which implies condition (iii). Finally, for
α ∈ A, we see that E[Dα,it ] ≡ 0 for t ∈ [0, T ] and i ∈ J1, nK if and only if:

αi,t − αi,t − ai,1t (Xα
t ,E[Xα

t ]) + θiᵀt (αi,t − ai,0t (E[Xα
t ])) = 0 a.s. t ∈ [0, T ].

Since θit is invertible, we get αi,t = ai,0t by taking the expectation in the above formula. Thus
E[Dα,it ] ≡ 0 for every i ∈ J1, nK and t ∈ [0, T ] if and only if αi,t = αi,t + ai,1t = ai,1t + ai,0t for every
i ∈ J1, nK and t ∈ [0, T ]. For such controls for the players, the condition (iv) is satisfied. We now
check that αi ∈ Ai for every i ∈ J1, nK (i.e. it satisfies the square integrability condition). Since
X is solution to a linear Mckean-Vlasov dynamics and satisfies the square integrability condition
E[sup0≤t≤T |Xt|2] <∞, it implies that αi ∈ L2

F(Ω× [0, T ],Rdi) since Sii , U
i
i , Ŝ

i
i , V

i
i are bounded and

(Oii, ξ
i
i) ∈ L2([0, T ],Rdi)× L2(Ω× [0, T ],Rdi). Therefore αi ∈ Ai for every i ∈ J1, nK.

2.2.5 Step 5: search for a fixed point

We now find semi-explicit expressions for the optimal controls of each player. The issue here is
the fact that the controls of the other players appear in the best response functions of each player
through the vectors (Y 1, Z1), ..., (Y n, Zn). To solve this fixed point problem, we first rewrite (9)
and the backward equations followed by (Y, Z) = ((Y 1, Z1), ..., (Y n, Zn)) in the following way (note
that we omit the time dependence of the coefficients to make the notations less cluttered):

α?t −α?t = Sx(Xt −Xt) + Sy(Yt − Y t) + Sz(Zt − Zt) +H −H

α?t = ŜxXt + ŜyY t + ŜzZt + Ĥ

dY t =
(
Py(Yt − Y t) + Pz(Zt − Zt) + Pα(αt − αt) + F − F

+ P̂yY t + P̂zZt + P̂ααt + F̂
)
dt

+ZtdWt,

(10)
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where we define

S =
(
(Sii)

−11i=j
)
i,j∈J1,nK

Ŝ =
(

(Ŝii)
−11i=j

)
i,j∈J1,nK

J = 1
2

(
(J iij + J iji)1i 6=j

)
i,j∈J1,nK

Ĵ = 1
2

(
(Ĵ iij + Ĵ iji)1i 6=j

)
i,j∈J1,nK

J = − (Id + SJ)−1 S

Ĵ = −
(
Id + ŜĴ

)−1
Ŝ

Sx = J
(
U ii
)
i∈J1,nK

Ŝx = Ĵ
(
V i
i

)
i∈J1,nK

Sy = J (1i=jb
ᵀ
i )i,j∈J1,nK

Ŝy = Ĵ
(

1i=j b̂
ᵀ
i

)
i,j∈J1,nK

Sz = J (σᵀi )i∈J1,nK

Ŝz = Ĵ (σ̂ᵀi )i∈J1,nK

H = J
(
Lii + σᵀiK

iγ
)
i∈J1,nK

Ĥ = Ĵ
(
Lii + σ̂ᵀiK

iγ
)
i∈J1,nK



Py = (1i=j(U
i
i (S

i
i)
−1bᵀi − b

ᵀ
x + ρ))i,j∈J1,nK

P̂y = (1i=j(V
i
i (Ŝii)

−1b̂ᵀi − b̂
ᵀ
x + ρ))i,j∈J1,nK

Pz = (1i=j(U
i
i (S

i
i)
−1σᵀi − σ

ᵀ
x))i,j∈J1,nK

P̂z = (1i=j(V
i
i (Sii)

−1σ̂ᵀi − σ̂
ᵀ
x))i,j∈J1,nK

Pα = −(1i 6=j(U
i
j + U ii (S

i
i)
−1(J iij + J iᵀji )))i,j∈J1,nK

P̂α = −(1i 6=j(V
i
j + V i

i (Ŝii)
−1(Ĵ iij + Ĵ iᵀji )))i,j∈J1,nK

F = (Kiβ + σᵀxKiγ)i∈J1,nK

F̂ = (U ii (S
i
i)
−1(Li + σᵀiK

iγ)− Lx − σᵀxKiγ −Kiβ)i∈J1,nK.

(11)

Now, the strategy is to propose an ansatz for t ∈ [0, T ] 7→ Y t in the form:

Y t = πt(Xt −Xt) + π̂tXt + ηt (12)

where (π, π̂, η) ∈ L∞([0, T ],Rnd×d)× L∞([0, T ],Rnd×d)× S2
F(Ω× [0, T ],Rnd) satisfy:

dηt = ψtdt+ φtdWt, ηT = r = (ri)i∈J1,nK

dπt = π̇tdt, πT = 0

dπ̂t = ˙̂πtdt, π̂T = 0.

By applying Itô’s formula to the ansatz we then obtain:

dY t = π̇t(Xt −Xt)dt+ πtd(Xt −Xt) + ˙̂πtXtdt+ π̂tdXt + ψtdt+ φtdW

= dt
[
π̇t(Xt −Xt) + ψt − ψt + πt

(
β − β + bx(Xt −Xt) +B(αt −αt)

)]
+ dt

[
˙̂πtXt + ψt + π̂t

(
β + b̂xXt + B̂αt

)]
+ dWt

[
φt + πt

(
γ + σxXt + σ̃xXt + Σαt + Σ̃αt

)]
.

By comparing the two Itô’s decompositions of Y , we get
Py(Yt − Y t) + Pz(Zt − Zt) + Pα(αt − αt) + F − F = π̇t(Xt −Xt) + ψt − ψt

+πt
(
β − β + bx(Xt −Xt) +B(αt −αt)

)
P̂yY t + P̂zZt + P̂ααt + F̂ =

[
˙̂πtXt + ψt + π̂t

(
β + b̂xXt + B̂αt

)]
Zt =

[
φt + πt

(
γ + σxXt + σ̃xXt + Σαt + Σ̃αt

)]
.

(13)
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We now substitute the Y by its ansatz in the best response equation (10), and obtain the system:
(Id− SzπΣ)(α?t −α?t) = (Sx + Syπt + Szπtσx)(Xt −Xt)

+(H −H + Sy(ηt − ηt) + Sz(φt − φt + πt(γ − γ)))

(Id− ŜzπtΣ̂)α?t = (Ŝx + Ŝyπ̂t + Ŝzπtσ̂x)Xt + (Ĥ + Ŝyηt + Ŝz(φt + πt.γ)).

(14)

To make the next computations slightly less painful we rewrite (14) as

α?t −α?t = Ax(Xt −Xt) +Rt −Rt
α?t = ÂxXt + R̂t

where
Ax := (Id− SzπtΣ)−1(Sx + Syπt + Szπtσx)

Âx := (Id− ŜzπtΣ̂)−1(Ŝx + Ŝyπt + Ŝzπtσ̂x)

Rt := (Id− SzπtΣ)−1(H + Syηt + Sz(φt + πtγ))

R̂t := (Id− ŜzπtΣ̂)−1(Ĥ + Ŝyη + Ŝz(φt + πtγ)).

(15)

By injecting (14) into (13) we have:

0 = [π̇t + πtbx − Pyπt − Pzπt(σx + ΣAx)− (Pα − πtB)Ax] (Xt −Xt)

+ψt − ψt + πt(β − β)− (Pα − πtB)(R−R)− (F − F )

−Pz(φt − φt + πt(γ − γ + Σ(R−R)))− Py(ηt − ηt)
0 =

[
˙̂πt + π̂tb̂x − P̂yπ̂ − P̂zπt(σ̂x + Σ̂Âx)− (P̂α − π̂tB̂)Âx

]
Xt

+ψt + π̂tβ − (P̂α − π̂tB̂)R̂− F̂ − P̂z(φt + πt(γ + Σ̂R̂))− P̂yη.

Thus we constrain the coefficients (π, π̂, ψ, φ) of the ansatz of Y to satisfy:

π̇t = −πbx + Pyπt + Pzπtσx + (Pα + PzΣ)(Id− SzπtΣ)−1(Sx + Syπt + Szπtσx)

−πtB(Id− SzπtΣ)−1(Sx + Syπt + Szπtσx)

πT = 0
˙̂πt = −π̂tb̂x + P̂yπ̂t + P̂zπtσ̂x + (P̂α + P̂zΣ̂)(Id− ŜzπtΣ̂)−1(Ŝx + Ŝyπ̂t + Ŝzπtσ̂x)

−π̂tB̂(Id− ŜzπtΣ̂)−1(Ŝx + Ŝyπ̂t + Ŝzπtσ̂x)

π̂T = 0

dηt = ψtdt+ φtdW

ηT = r

where:
ψt − ψt = −πt(β − β) + (Pα − πtB)(R−R) + (F − F )

+Pz(φt − φt + πt(γ − γ + Σ(R−R))) + Py(ηt − ηt)
ψt = −π̂tβ + (P̂α − π̂tB̂)R̂+ F̂ + P̂z(φt + πt(γ + Σ̂R̂)) + P̂yηt

Rt := (Id− SzπΣ)−1(H + Syη + Sz(φ+ πγ))

R̂t := (Id− ŜzπΣ̂)−1(Ĥ + Ŝyη + Ŝz(φ+ πγ)).

(16)

We now have a feedback form for (Y, Z) = ((Y 1, Z1), ..., (Y n, Zn)). We can inject it in the best
response functions α? in order to obtain the optimal controls in feedback form. We then inject these
latter in the state equation in order to obtain an explicit expression of t 7→ X?

t .
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2.2.6 Step 6: check the validity

Let us now check the existence and uniqueness of t 7→ (Ki
t ,Λ

i
t, (Y

i
t , Z

i
t), R

i
t, πt, π̂t, (ηt, φt)) where

Ki ∈ L∞([0, T ],Sd+), Λi ∈ L∞([0, T ], Sd+), (Y i
t , Z

i
t) ∈ S2

F(Ω × [0, T ],Rd) × L2
F(Ω × [0, T ],Rd), Ri ∈

L∞([0, T ],R), π, π̂ ∈ L∞([0, T ],Rnd×d) and (η, φ) ∈ S2
F(Ω× [0, T ],Rnd)× L2

F(Ω× [0, T ],Rnd), under
the assumptions (H1)-(H2). We recall that t 7→ (Ki

t ,Λ
i
t, (Y

i
t , Z

i
t), R

i
t and t 7→ (πt, π̂t, (ηt, φt)) are

solutions respectively to (8) and (16). Fix i ∈ J1, nK:

(i) We first consider the coefficients Ki which follow Ricatti equations:
K̇i
t +Qit + σᵀx,tK

i
tσx,t +Ki

tbx,t + bᵀx,tK
i
t − ρKi

t

−(Iik,t + σᵀk,tK
i
tσx,t + bᵀk,tK

i
t)(N

i
k,t + σᵀk,tK

i
tσk,t)

−1(Iik,t + σᵀk,tK
i
tσx,t + bᵀk,tK

i
t) = 0

Ki
T = P i.

By standard result in control theory (see [16], Ch. 6, Thm 7.2]) under (H1) and (H2) there
exists a unique solution Ki ∈ L∞([0, T ],Sd+).

(ii) Given Ki let us now consider the Λi’s. They also follow Ricatti equations:{
Λ̇i + Q̂iKt + Λitb̂x,t + b̂ᵀx,tΛ

i
t − ρΛit − (ÎiKt + b̂ᵀi,tΛ

i
t)(N̂

iK
t )−1(ÎiKt + b̂ᵀi,tΛ

i
t) = 0

ΛiT = P̂ i

where we define: 
Q̂iKt := Q̂it + σ̂ᵀx,tK

i
t σ̂x,t

ÎiKt := Îii,t + σ̂ᵀi,tK
i
t σ̂x,t

N̂ iK
t := N̂ i

i,t + σ̂ᵀi,tK
i
t σ̂i,t.

We need the same arguments as for Ki. The only missing argument to conclude the existence
and uniqueness of Λi is: Q̂iK − (ÎiK)ᵀ(N̂ iK)−1ÎiK ≥ 0. As in [2] we can prove with some
algebraic calculations that it is implied by the hypothesis Q̂i − (Îi)ᵀ(N̂ i)−1Îi ≥ 0 that we
made in (H2).

(iii) Given (Ki,Λi) we now consider the equation for (Y i, Zi) which is a linear mean-field BSDE
of the form:{

dY i
t = Vit + Git(Y

i
t − E[Y i

t ]) + ĜitE[Y i
t ] + Jit(Z

i
t − E[Zit ]) + ĴitE[Zit ] + ZitdWt

Y i
T = ri,

(17)

where the deterministic coefficients Git, Ĝi, Ji, Ĵi ∈ L∞([0, T ],Rd×d) and the stochastic process
Vi ∈ L2([0, T ],Rd) are defined as:

Vit := −Lix,t − Λitβt − σ
ᵀ
x,tK

i
tγt − σ̃

ᵀ
x,tK

i
tγt −Ki

t(βt − βt)−
∑

k 6=i

(
U ik,t(αk,t − αk,t) + V i

k,tαk,t

)
+U iᵀi,tS

i−1
t (Lik,t − E[Lik,t] + σᵀi,tK

i
t(γt − E [γt]) + 1

2

∑
k 6=i(J

i
i,k,t + J iᵀk,i,t)(αk,t − E [αk,t]))

+V iᵀ
i,t Ŝ

i−1
t (E[Lik,t] + σ̂ᵀi,tK

i
t − E [γt] + 1

2

∑
k 6=i(Ĵ

i
i,k,t + Ĵ iᵀk,i,t)E [αk,t])

Git := ρId − bᵀx,t + U iᵀi,tS
i−1
i,t b

ᵀ
i,t

Ĝit = ρId − b̂ᵀx,t + V iᵀ
i,t Ŝ

i−1
i,t b̂

ᵀ
i,t

Jit := −σᵀx,t + U iᵀi,tS
i−1
i,t σ

ᵀ
k,t

Ĵit := −σ̂ᵀx,t + V iᵀ
i,t Ŝ

i−1
i,t σ

ᵀ
k,t.

(18)
By standard results (see Thm. 2.1 in [12]) we obtain that there exists a unique solution
(Y i, Zi) ∈ S2

F(Ω× [0, T ],Rd×d)× L2
F(Ω× [0, T ],Rd×d) to (17).
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(iv) Given (Ki,Λi, Y i, Zi) we consider the equation of Ri which is a linear ODE whose solution is
given by:

Rit =

∫ T

t
e−ρ(s−t)hisds,

where hi is a deterministic function defined by:

hit = −E[γᵀtK
i
tγt + 2βᵀt Y

i
t + 2γᵀt Z

i
t+∑

k 6=i
(αk,t − αk,t)ᵀSik,t(αk,t − αk,t) + αᵀ

k,tŜ
i
k,tαk,t + 2[Oik,t + ξik,t − ξ

i
k,t]

ᵀαk,t]

+ E
[
(ξii,t − ξ

i
i,t)

ᵀSi−1
t (ξii,t − ξ

i
t)−O

iᵀ
i,tŜ

i−1
t Oii,t

]
,

(19)

and the expressions of the coefficients are recalled in (6).

(v) The final step is to verify that the procedure to find a fixed point is valid. More precisely we
need to ensure that t 7→ (πt, π̂t, ηt) is well defined. It is difficult to ensure the well posedness of
t 7→ (πt, π̂t) for two reasons: first because π and π̂ follow Ricatti equations but are not squared
matrices; and second because π appears in the equation followed by π̂. We are not aware of
any work addressing this kind of equations in a general setting.
If we suppose t 7→ (πt, π̂t) well defined, then t 7→ (ηt, φt) follows a linear mean-field BSDE of
the type:{

dηt =
(
Vt + Gt(ηt − E[ηt]) + ĜtE [ηt] + Jt(φt − E[φt]) + ĴtE [φt]

)
dt+ φtdWt

ηT = r,
(20)

where the deterministic coefficients Git, Ĝi, Ji, Ĵi ∈ L∞([0, T ],Rnd×nd) and the stochastic process
Vi ∈ L2([0, T ],Rnd) are defined as:

Vt := −π(β − β) + F − F + Pzπ(γ − γ) + (Pα − πB + PzπΣ)(Id − SzπΣ)−1(H −H + Szπ(γ − γ))

−π̂β + F̂ + P̂zπγ + (P̂α − π̂B̂ + P̂zπΣ̂)(Id − ŜzπΣ̂)−1(Ĥ + Ŝzπ̂γ)

Gt :=
[
Py + (Pα − πB + PzπΣ)((Id − SzπΣ)−1Sy)

]
Ĝt = P̂y

Jt :=
[
Pz + (Pα − πB + PzπΣ)((Id − SzπΣ)−1Sz)

]
Ĵt := −σ̂ᵀx,t + V iᵀ

i,t Ŝ
i−1
i,t σ

ᵀ
k,t.

Again, by standard results (see Thm. 2.1 in [12]) we obtain that there exists a unique solution
(η, φ) ∈ S2(Ω× [0, T ],Rd×d)× L2

F(Ω× [0, T ],Rd×d) to (20).

To sum up the arguments previously presented, our main result provides the following charac-
terization of the Nash equilibrium:

Theorem 2.3. Suppose assumptions (H1) and (H2). Suppose also that the system associated with
the fixed point search (16) is well defined. Then α? = (α1, ..., αn) defined by{

α?t −α?t = Sx,t(X
?
t −X

?
t ) + Sy,t(Yt − Y t) + Sz,t(Zt − Zt) +Ht −Ht

α?t = Ŝx,tX
?
t + Ŝy,tY t + Ŝz,tZt + Ĥt

where Sx, Sy, Sz,H, Ŝx, Ŝy, Ŝz, Ĥ are defined in (11), (Y, Z) are in S2
F(Ω×[0, T ],Rnd×d)×L2

F(Ω×
[0, T ],Rnd×d) and satisfy (12) and (16), is a Nash equilibrium.

13



3 Some extensions

3.1 The case of infinite horizon

Let us now tackle the infinite horizon case. The method is similar to the finite-horizon case but some
adaptations are needed when dealing with the well posedness of (Ki,Λi, Y i, Ri) and the admissibility
of the controls.

We redefine the set of admissible controls for for each player i ∈ J1, nK as:

Ai =

{
α : Ω× [0, T ]→ Rdi s.t. α is F-adapted and

∫ ∞
0

e−ρuE[|αu|2]du <∞
}

while the controlled state defined on R+ now follows a dynamics of the form{
dXt = b(t,Xα

t ,E [Xα
t ] ,αt,E [αt])dt+ σ(t,Xα

t ,E [Xα
t ] ,αt,E [αt])dWt

Xα
0 = X0

(21)

where for each t ∈ [0, T ], x, x ∈ Rd, ai, ai ∈ Rdi :
b(t, x, x,a,a) = βt + bxx+ b̃xx+

∑n
i=1 biai + b̃iai

= βt + bxx+ b̃xx+Bat + B̃at

σ(t, x, x,a,a) = γt + σxx+ σ̃xx+
∑n

i=1 σiai + σ̃iai

= γt + σxx+ σ̃xx+ Σa+ Σ̃a.

(22)

Notice that now only the coefficients β and γ are allowed to be stochastic processes. The other
linear coefficients are constant matrices.

The goal of each player i ∈ J1, nK during the game is still to minimize her cost functional with
respect to control αi over Ai, and given control α−i of the other players:

J i(αi, α
−i) = E

[∫ ∞
0

e−ρtf i(t,Xα
t ,E [Xα

t ] ,αt,E [αt])dt

]
(23)

where for each t ∈ [0, T ], x, x ∈ Rd, ai, ai ∈ Rdi we have set the running cost for each player as:

f i(t, x, x,a,a) = (x− x)ᵀQi(x− x) + xᵀ[Qi + Q̃i]x

+
∑n

k=1 a
ᵀ
kI
i
k(x− x) + aᵀk(I

i
k + Ĩik)x

+
∑n

k=1(ak − ak)ᵀN i
k(ak − ak) + ak(N

i
k + Ñ i

k,)ak

+
∑

0≤k 6=l≤n(ak − ak)ᵀGik,l(al − al) + aᵀk(G
i
k,l + G̃ik,l)al

+2[Liᵀx,tx+
∑n

k=1 L
iᵀ
k,tak].

Note that the only coefficients that we allow to be time dependent are Lix and Lik for k ∈ J1, nK
which may be stochastic processes.

3.1.1 Assumptions

We detail below the new assumptions:

(H1’) The coefficients in (22) satisfy:
a) β, γ ∈ L2

F(Ω× [0, T ],Rd)
b) bx, b̃x, σx, σ̃x ∈ Rd×d; bi, b̃i, σi, σ̃i ∈ Rd×di

(H2’) The coefficients of the cost functional (3) satisfy:

14



a) Qi, Q̃i ∈ Sd+; N i
k, Ñ

i
k ∈ Sdk+ ; Iik, Ĩ

i
k ∈ Rdk×d

b) Lix ∈ L2
F(Ω× R?+,R

d), Lik ∈ L2
F(Ω× R?+,R

dk)

c) N i
k > 0 Qi − Iiᵀi (N i

i )
−1Iii ≥ 0

d) N̂ i
k,t > 0 Q̂i − Îiᵀi (N̂ i

i )
−1Îii ≥ 0

(H3’) ρ > 2
(
|bx|+ |b̃x|+ 8(|σx|2 + |σ̃x|2)

)
As shown below, the new hypothesis (H3’) ensure the well posedness of our problem. Notice

first that by (H1’) and classical results, there exists a unique strong solution Xα to the SDE (21).
Furthermore by (H1’) and (H3’) we obtain by similar arguments as in [2] the following estimate:∫ ∞

0
e−ρuE[|Xα

u |2]du ≤ Cα(1 + E[|X0|2]) <∞, (24)

in which Cα is a constant depending on α = (α1, ..., αn) only through
∫∞

0 e−ρE[|αu|2]du. Finally by
(H2’) and (24) the minimizing problem (23) is well defined for each player.

3.1.2 A weak submartingale optimality principle on infinite horizon

We now give an easy adaptation of the weak submartingale optimality principle in the case of infinite
horizon.

Lemma 3.1 (Weak submartingale optimality principle). Suppose there exists a couple
(α?, (W.,i)i∈J1,nK), where α? ∈ A and W.,i = {Wα,i

t , t ∈ R?+,α ∈ A} is a family of adapted processes
indexed by A for each i ∈ J1, nK, such that:

(i) For every α ∈ A, E[Wα,i
0 ] is independent of the control αi ∈ Ai;

(ii) For every α ∈ A, limt→∞ e
−ρtE

[
W
α,i
t

]
= 0;

(iii) For every α ∈ A, the map t ∈ R?+ 7→ E
[
S
α,i
t

]
, with

S
α,i
t = e−ρtWα,i

t +
∫ t

0 e
−ρuf i(u,Xα

u ,PXα
u
,αu,Pαu)du is well defined and non-decreasing;

(iv) The map t 7→ E[Sα
?,i

t ] is constant for every t ∈ R?+;

Then α? is a Nash equilibrium and J i(α?) = E[Wα?,i
0 ]. Moreover, any other Nash-equilibrium α̃

such that E[Wα̃,i
0 ] = E[Wα?,i

0 ] and J i(α̃) = J i(α?) for any i ∈ J1, nK satisfies the condition (iv).

Proof. The proof is exactly the same as in Lemma 2.1.

Let us now describe the steps to follow in order to apply Lemma 3.1. Since they are similar to
the ones in the finite-horizon case, we only report the main changes.
Steps 1-3
For each player i ∈ J1, nK we still search for a random field {wit(x, x), t ∈ [0, T ], x, x ∈ Rd} of the
form wit(x, x) = Ki

t .(x − x)⊗2 + Λit.x
⊗2 + 2Y iᵀ

t x + Rit for which the optimality principle in Lemma
3.1 now leads to the system: 

dKi
t = −Φi0

t dt

dΛit = −Ψi0
t dt

dY i
t = −∆i0

t dt+ ZitdWt

dRit = −Γi0t dt, t ≥ 0.

(25)
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Notice that there are no terminal conditions anymore since we are in the infinite horizon case. The
coefficients Φi0,Ψi0,∆i0

t ,Γ
i0
t are defined in (7). The fourth step is exactly the same as in the finite

horizon case.
Step 5
We now search for a fixed point of the best response functions. Let us define Y = (Y 1, ...Y n)
and propose an ansatz in a feedback form Y : Yt = π(Xt − E [Xt]) + π̂E [Xt] + ηt where π, π̂ ∈
L∞(R+,Rnd×d) and η ∈ L2

F(Ω× R+,Rnd) satisfy

0 = −πbx + Pyπ + Pzπσx + (Pα + PzΣ)(Id− SzπΣ)−1(Sx + Syπ + Szπtσx)

−πB(Id− SzπΣ)−1(Sx + Syπ + Szπσx)

0 = −π̂b̂x + P̂yπ̂ + P̂zπσ̂x + (P̂α + P̂zΣ̂)(Id− ŜzπΣ̂)−1(Ŝx + Ŝyπ̂ + Ŝzπσ̂x)

−π̂B̂(Id− ŜzπΣ̂)−1(Ŝx + Ŝyπ̂ + Ŝzπσ̂x)

dηt = ψtdt+ φtdWt

with:
ψt − ψt = −πt(β − β) + (Pα − πtB)(R−R) + (F − F )+

Pz(φt − φt + πt(γ − γ + Σ(Rt −Rt))) + Py(ηt − ηt)
ψt = −π̂tβ + (P̂α − π̂tB̂)R̂t + F̂ + P̂z(φ+ πt(γ + Σ̂R̂t)) + P̂yηt

Rt := (Id− SzπtΣ)−1(H + Syηt + Sz(φt + πtγ))

R̂t := (Id− ŜzπtΣ̂)−1(Ĥ + Ŝyηt + Ŝz(φt + πtγ))

(26)

where the coefficients are defined in (11).
Step 6
We finally tackle the well-posedness of (25) and (26).

(i) We first consider the ODE for Ki. Since the map (t, k) 7→ φi0t (k) does not depend on time (all
the coefficient being constant) we search for a constant non-negative matrix Ki ∈ Sd satisfying
Φi0(Ki) = 0, more precisely solution to:

Qi + σᵀxK
iσx +Kibx + bᵀxK

i − ρKi

− (Iik + σᵀkK
iσx + bᵀkK

i)(N i
k + σᵀkK

iσk)
−1(Iik + σᵀkK

iσx + bᵀkK
i) = 0.

(27)

As in [2] we can show using a limit argument that there exists Ki ∈ Sd+ solution to (27). The
argument for Λi is the same as for Ki.

(ii) Given (Ki,Λi) the equation for (Y i, Zi) is a linear mean-field BSDE on infinite horizon:

dY i
t = Vit + Gi(Y i

t − E[Y i
t ]) + ĜiE[Y i

t ] + Ji(Zit − E[Zit ]) + ĴiE[Zit ] + ZitdWt,

where the coefficient are defined in (18). Notice that now Gi, Ĝi, Ji, Ĵi are all constant matrices.
To the best of our knowledge, there are no general results ensuring the existence for such
equation. We then add the following assumption:

(H4’) There exists a solution (Y i, Zi) ∈ ×S2
F(Ω× R+,Rd)× L2

F(Ω× R+,Rd)

(iii) Given (Ki,Λi, Y i, Zi) the equation for Ri is a linear ODE whose solution is:

Rit =

∫ ∞
t

e−ρ(s−t)his ds,

where hi is a deterministic function defined in (19).
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(iv) We now study the well posedness of the fixed point procedure. More precisely we need to
ensure that the process t→ (π, π̂, ηt) defined as a solution of the system (26), recalled below,
is well defined. Note that in the infinite horizon framework we search for constant π and π̂.

0 = −πbx + Pyπ + Pzπσx + (Pα + PzΣ)(Id− SzπΣ)−1(Sx + Syπ + Szπσx)

−πB(Id− SzπΣ)−1(Sx + Syπ + Szπσx)

0 = −π̂b̂x + P̂yπ̂ + P̂zπσ̂x + (P̂α + P̂zΣ̂)(Id− ŜzπΣ̂)−1(Ŝx + Ŝyπ̂ + Ŝzπσ̂x)

−π̂B̂(Id− ŜzπΣ̂)−1(Ŝx + Ŝyπ̂ + Ŝzπσ̂x)

dηt = ψtdt+ φtdWt, t ≥ 0.

(28)

Existence of (π, π̂) in whole generality is a difficult problem. Let us first rewrite the system
(28) as:

F ((π, π̂),C) = 0

Where C = (bx, σx, B,Σ, b̂x, σ̂x, B̂, Σ̂, Sx, Sy, Sz, Ŝx, Ŝy, Ŝz, Py, Pz, Pα, P̂y, P̂z, P̂α). Note that F
is continuously differentiable on its domain of definition. Thus, if

[
∂F
∂π ,

∂F
∂π̂

]
(π, π̂,C) is invertible

for, then, by the implicit function theorem, there exists an open set U containing C and a
continuously differentiable function g : U 7→ (Rnd×d)2 such that for all admissible coefficients
C ∈ U : F (g(C),C) = 0 and the solutions (π, π̂) = g(C) are unique. It means that if we find a
solution to (28) while the condition

[
∂F
∂π ,

∂F
∂π̂

]
is invertible, then for small perturbations on the

coefficients we still have solutions for (π, π̂).

Let us now give sufficient conditions to ensure the existence of (π, π̂) in a simplified setting
where the state t → Xt belongs to R and all the players are symmetric in the sense that all
the coefficients associated with each player are equals (b1 = ... = b2, Q

1 = ... = Qn, etc.). We
suppose also that the volatility is not controlled i.e. σi = 0 for all i ∈ J1, nK. In such a case
π, π̂ ∈ Rn×1, π1 = ... = πn, π̂n = ... = π̂n and the systems (28) of coupled equations now
reduces to two coupled second order equations:π

2
1 [nb1Sy,1] + π1

[
−bx + Py,1 + Pz,1σx +

∑
j 6=1 Pα,1,jSy,1 − nb1Sx,1

]
+
∑

j 6=1 Pα,1,jSx,j = 0

π̂2
1

[
nb̂1Ŝy,1

]
+ π̂1

[
−b̂x + P̂y,1 +

∑
j 6=1 P̂α,1,jŜy,1 − nb̂1Ŝx,1

]
+
∑

j 6=1 P̂α,1,jŜx,j + π1P̂z,1σ̂x = 0.

If we note: 
a := nb1Sy,1

b := −bx + Py,1 + Pz,1σx +
∑

j 6=1 Pα,1,jSy,1 − nb1Sx,1
c :=

∑
j 6=1 Pα,1,jSx,j ,

then a sufficient condition for π1 to exists is simply: b2 − 4ac ≥ 0. Since a ≤ 0 and c ≥ 0 we
have two possibilities a priori for π1. We choose the positive one to ensure that α ∈ A. Then
if we note: 

â := nb̂1Ŝy,1

b̂ := −b̂x + P̂y,1 +
∑

j 6=1 P̂α,1,jŜy,1 − nb̂1Ŝx,1
ĉ(π1) :=

∑
j 6=1 P̂α,1,jŜx,j + π1P̂z,1σ̂x,

a sufficient condition for π̂1 to exist is b̂2 − 4âĉ(π1) ≥ 0. To ensure that there is a positive
solution we also need ĉ(π1) ≥ 0.
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(v) Let us finally verify that α? ∈ A. Let us consider the candidate for the optimal control for
each player:

α? −α? = Ax(X −X) +Rt −Rt

α? = ÂxX + R̂t

where the coefficients are defined in (15) and X? is the state process optimally controlled.
Since R, R̂ ∈ L2

F(Ω × R+,R
∑
i di) and given that the coefficient are constant in the infinite

horizon case, we need to verify that:∫ ∞
0

e−ρuE[|X?
u − E[X?

u]|2]du <∞
∫ ∞

0
e−ρu|E[X?

u]|2du <∞.

As we will see below, we will have to choose ρ large enough to ensure these conditions. From
the above expressions we see that X? satisfies:{

dX?
t = b?tdt+ σ?t dWt

X0 = x0

with:

b?t = β?t +B?(X?
t − E[X?

t ]) + B̂?E[X?
t ] σ?t = γ?t + Σ?(X?

t − E[X?
t ]) + Σ̂?E[X?

t ]

where we define

B? = bx +BAx B̂? = b̂x + B̂Âx Σ? = σx + ΣAx Σ̂? = σ̂x + Σ̂Âx

β?t = βt +B(Rt − E[Rt]) + B̂R̂t

γ?t = σt + Σ(Rt − E[Rt]) + Σ̂R̂t.

By Itô’s formula we have:

d

dt
e−ρt|Xt|2 ≤ e−ρt

(
−ρ|X?

t |2 + 2(b
?
t )

ᵀX
?
t

)
≤ e−ρt

(
|X?

t |2(−ρ+ 2B̂?) + 2|X?
t ||β

?
t |
)

≤ e−ρt
(
|X?

t |2(−ρ+ 2B̂? + ε) +
1

ε
|β?t |2

)
.

If we now set:

K = |E[X?
0 ]|2 +

1

ε

∫ ∞
0

e−ρu|β?t |2du C = −ρ+ 2B̂? + ε,

then, by Grownall inequality we obtain:

e−ρt|E[X?
t ]|2 ≤ KeCt.

Therefore, in order to have
∫∞

0 e−ρu|E[X?
u]|2du < ∞, we shall impose that ρ > 2B̂?. Finally,

18



by Itô’s formula we also have:

d

dt
E[e−ρt|X?

t −X
?
t |2] ≤ e−ρtE

[
−ρ|X?

t −Xt
?|2 + 2(b?t − bt

?
)ᵀ(X?

t −Xt
?
) + |σ?t |2

]
≤ e−ρtE

[
|X?

t −Xt
?|2(−ρ+ 2B? + ε) +

1

ε
|β?t − βt

?|2

+4(|γ?t |2 + |Σ?|2|X?
t − E[X?

t ]|2 + |Σ̂?|2|E[X?
t ]|2)

]
≤ e−ρtE

[
|X?

t −Xt
?|2(−ρ+ 2B? + ε+ 4|Σ?|2)+

1

ε
|β?t − βt

?|2 + 4(|γ?t |2 + |Σ̂?|2|E[X?
t ]|2)

]
.

If we now set:

K = |X?
0 −X

?
0|2 +

∫ ∞
0

e−ρuE

[
1

ε
|β?u − βu

?|2 + 4(|γ?u|2 + |Σ̂?|2|E[X?
u]|2)

]
du

C = −ρ+ 2B? + 4|Σ?|2 + ε,

then, by Grownall inequality we obtain:

e−ρtE
[
|X?

t −Xt
?|2
]
≤ Ke−Ct.

This time in order to ensure the convergence
∫∞

0 e−ρuE
[
|X?

u −Xu
?|2
]

du < ∞, we will add
the constraint ρ > 2B? + 4|Σ?|2. To conclude, in order to ensure that α? ∈ A we make the
following assumption:

(H5’) ρ > max
[
2B̂?, 2B? + 4|Σ?|2

]
.

3.2 The case of common noise

Let W and W 0 be two independent Brownian motions defined on the same probability space
(Ω,F,F,P) where F = {Ft}t∈[0,T ] is the filtration generated by the pair (W,W 0). Let F0 = {F0

t }t∈[0,T ]

be the filtration generated by W 0. For any X0 and α ∈ A as in Section 1, the controlled process
Xα is defined by:

dXt = b(t,Xα
t ,E[Xα

t |W 0],αt,E[αt|W 0])dt +σ(t,Xα
t ,E[Xα

t |W 0],αt,E[αt|W 0])dWt

+σ0(t,Xα
t ,E[Xα

t |W 0],αt,E[αt|W 0])dW 0
t

Xα
0 = X0

where for each t ∈ [0, T ], x, x ∈ Rd, ai, ai ∈ Rdi :

b(t, x, x,α,α) = βt + bx,tx+ b̃x,tx+
∑n

i=1 bi,tαi + b̃i,tαi

= βt + bx,tx+ b̃x,tx+Btα+ B̃tα

σ(t, x, x,α,α) = γt + σx,tx+ σ̃x,tx+
∑n

i=1 σi,tαi + σ̃i,tαi

= γt + σx,tx+ σ̃x,tx+ Σtα+ Σ̃tα

σ(t, x, x,α,α) = γ0
t + σ0

x,tx+ σ̃0
x,tx+

∑n
i=1 σ

0
i,tαi + σ̃0

i,tαi

= γ0
t + σ0

x,tx+ σ̃0
x,tx+ Σ0

tα+ Σ̃0
tα.
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Since we will condition onW 0, we assume that the coefficients bx, b̃x, bi, b̃i, σx, σ̃x, σi, σ̃i, σ0
x, σ̃

0
x, σ

0
i , σ̃

0
i

are essentially bounded and F0-adapted processes, whereas β, γ, γ0 are square integrable F0-adapted
processes. The problem of each player i is to minimize over αi ∈ Ai, and given control α−i of the
other players, a cost functional of the form

J i(αi, α
−i) = E

[∫ T

0
e−ρtf i(Xα

t ,E[Xα
t |W 0

t ],αt,E[αt|W 0
t ])dt+ e−ρT gi(Xα

T ,E[Xα
T |W 0

T ])

]
with f i, gi as in (3). We now suppose that Qi, Q̃i, Ii, Ĩi, N i, Ñ i are essentially bounded and F0-
adapted, Lix, Lik are square-integrable F-adapted processes, P i, P̃ i are essentially bounded F0

T -
mesurable random variable and ri are square-integrable FT -mesurable random variable. Hypoth-
esis c) and d) of (H2) still holds. As in step 1 we guess a random field of the type W

α,i
t =

wit(X
α
t ,E

[
Xα
t |W 0

t

]
) where wi is of the form wit(x, x) = Ki

t .(x − x)⊗2 + Λit.x
⊗2 + 2Y iᵀ

t x + Rit with
suitable coefficients Ki,Λi, Y i, Ri. Given that the quadratic coefficient in f i, gi are F0-adapted we
guess that Ki,Λi are also F0-adapted. Since the linear coefficients in f i, gi and the affine coefficients
in b, σ, σ0 are F-adapted, we guess that Y i is F-adapted as well. Thus for each player we look for
processes (Ki,Λi, Y i, Ri) valued in Sd+ × Sd+ × Rd × R and of the form:

dKi
t = K̇i

tdt+ ZK
i

t dW 0
t Ki

T = P i

dΛit = Λ̇itdt+ ZΛi
t dW 0

t ΛiT = P i + P̃ i

dY i
t = Ẏ i

t dt+ ZitdWt + Z0,Y i

t dW 0
t Y i

T = ri

dRit = Ṙitdt RiT = 0

where K̇i, Λ̇i, ZK
i
, ZΛi are F0-adapted processes valued in Sd; Ẏ i, ZY

i
, Z0,Y i are F-adapted processes

valued in Rd and Ri are continuous functions valued in R. In step 2 we now consider, for each player
i ∈ J1, nK, a family of processes of the form:

S
α,i
t = e−ρtwit(X

α
t ,E

[
Xα
t |W 0

t

]
) +

∫ t

0
e−ρuf i(u,Xα

u ,E
[
Xα
u |W 0

u

]
,αu,E

[
αu|W 0

u

]
)du.

By Itô’s formula we then obtain for (5) and (6):

Φi
t = Qit + σᵀx,tK

i
tσx,t + σ0ᵀ

t K
i
tσ

0
t +Ki

tbx,t + bᵀx,tK
i
t + ZK

i

t σ0
x,t + σ0ᵀ

x,tZ
Ki

t − ρKi
t

Ψi
t = Q̂it + σ̂ᵀx,tK

i
t σ̂x,t + σ̂0ᵀ

x,tΛ
i
tσ̂

0
x,t + Λitb̂x,t + b̂ᵀx,tΛ

i
t + ZΛi

t σ̂0
x,t + σ̂0ᵀ

x,tZ
Λi
t − ρΛit

∆i
t = Lix,t + bᵀx,tY

i
t + b̃ᵀx,tY

i
t + σᵀx,tZ

i
t + σ̃ᵀx,tZ

i
t + σ0ᵀ

x,tZ
0,Y i

t + σ̃0ᵀ
x,tZ

0,Y i
t + Λitβt

+σᵀx,tK
i
tγt + σ̃ᵀx,tK

i
tγt +Ki

t(βt − βt) + ZK
i

t (γ0
t − γ0

t ) + ZΛi
t γ0

t − ρY i
t

+
∑

k 6=i U
iᵀ
k,t(αk,t − αk,t) + V iᵀ

k,tαk,t

Γit = γᵀtK
i
tγt + γ0ᵀ

t Λitγ
0
t + (γ0

t − γ0
t )

ᵀKi
t(γ

0
t − γ0

t ) + 2βᵀt Y
i
t + 2γᵀt Z

i
t + 2γ0ᵀ

t Z
0,Y i

t

+
∑

k 6=i(αk,t − αk,t)ᵀSik,t(αk,t − αk,t) + αᵀ
k,tŜ

i
k,tαk,t + 2[Oik,t + ξik,t − ξ

i
k,t]

ᵀαk,t − ρRit,
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with 

Sik,t = N i
k,t + σᵀk,tK

i
tσk,t + (σ0

k,t)
ᵀKi

tσ
0
k,t

Ŝik,t = N̂ i
k,t + σ̂ᵀk,tK

i
t σ̂k,t + (σ̂0

k,t)
ᵀΛitσ̂

0
k,t

U ik,t = Iik,t + σᵀk,tK
i
tσx,t + (σ0

k,t)
ᵀKi

tσ
0
x,t + (σ0

k,t)
ᵀZK

i

t + bᵀk,tK
i
t

V i
k,t = Îik,t + σ̂ᵀk,tK

i
t σ̂x,t + (σ̂0

k,t)
ᵀΛitσ̂

0
x,t + (σ̂0

k,t)
ᵀZΛi

t + b̂ᵀk,tΛ
i
t

Oik,t = L
i
k,t + b̂ᵀk,tY

i
t + σ̂ᵀk,tZ

i
t + σ̂ᵀk,tK

i
tγt + (σ̂0

k,t)
ᵀΛitγ

0
t + (σ̂0

k,t)
ᵀZ0,Y i

t

+1
2

∑
k 6=i(Ĵ

i
i,k,t + Ĵ iᵀk,i,t)αk,t

J ik,l,t = Gik,l,t + σᵀk,tK
i
tσl,t + (σ0

k,t)
ᵀKi

tσ
0
l,t

Ĵ ik,l,t = Ĝik,l,t + σ̂ᵀk,tK
i
t σ̂l,t + (σ̂0

k,t)
ᵀΛitσ̂

0
l,t

ξik,t = Lik,t + bᵀk,tY
i
t + σᵀk,tZ

i
t + (σ0

k,t)
ᵀZ0,Y i

t + σᵀk,tK
i
tγt + (σ0

k,t)
ᵀKi

tγ
0
t

+1
2

∑
k 6=i(J

i
i,k,t + J iᵀk,i,t)αk,t.

Note that we now denote by U the conditional expectation with respect to W 0
t , i.e. U = E

[
U |W 0

t

]
.

Then, at step 3, we constraint the coefficients (Ki,Λi, Y i, Ri) to satisfy the following problem:
dKi

t = −Φi0
t dt+ ZK

i

t dW 0
t Ki

T = P i

dΛit = −Ψi0
t dt+ ZΛi

t dW 0
t ΛiT = P i + P̃ i

dY i
t = −∆i0

t dt+ +ZitdWt + Z0,Y i

t dW 0
t Y i

T = ri

dRit = −Γi0t dt RiT = 0

(29)

where Φi0,Ψi0,∆i0,Γi0 are defined in (8). Thus we obtain the best response functions of the players:

αi,t = −Si−1
i,t U

i
i,t(Xt − E[Xt|W 0

t ])− Si−1
i,t (ξii,t − ξ

i
i,t)− Ŝi−1

i,t (V i
i,tE[Xt|W 0

t ] +Oii,t).

We then proceed to step 5 and to the search of a fixed point in the space of controls. The
only difference at that point is in the ansatz for t 7→ Yt. Since we consider the case of common
noise, we now search for an ansatz of the form Y t = πt(Xt − Xt) + π̂tXt + ηt where (π, π̂, η) ∈
L∞([0, T ],Rnd×d)× L∞([0, T ],Rnd×d)× S2

F(Ω× [0, T ],Rnd) satisfy:

dηt = ψtdt+ φtdWt + φ0
tdW

0
t

ηT = r = (ri)i∈J1,nK

dπt = π̇tdt+ Z0,πi

t dW 0
t

πT = 0

dπ̂t = ˙̂πtdt+ Z0,π̂i

t dW 0
t

π̂T = 0.

(30)

The method to determine the coefficients is then similar. Existence and uniqueness of a solution
(Ki,Λi) to the backward stochastic Ricatti equation in (29) is discussed in [13], section 3.2. The
existence of a solution (Y i, Zi, Z0,Y i) to the linear mean-field BSDE in (29) is obtained as in step
6 thanks to Thm. 2.1 in [12]. As in the previous section the existence of a soltion (π, π̂) ∈ L∞F0(Ω×
R+,Rnd×d) (essentially bounded F0-adapted functions) of (30) in the general case is a conjecture
and needs to be verified in each example. We are not aware of any work tackling the existence of
solutions in such situation. Given (π, π̂) the existence of (η, φ, φ0) solution to (30) is ensured as in
the previous section by Thm. 2.1 in [12].
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3.3 The case of multiple Brownian motions

We quickly sketch an extension to the case where there are multiple Brownian motions driving the
state equation. The assumptions on the coefficients are the same as in the previous part. Only the
length of the calculus changes. Let us now consider the state dynamic:

dXt = b(t,Xα
t ,E [Xα

t ] ,αt,E [αt])dt+
κ∑
`=1

σ`(t,Xα
t ,E [Xα

t ] ,αt,E [αt])dW
`
t

where Φi0,Ψi0,∆i0,Γi0t are defined in (8).
αt = (α1,t, ..., αn,t)

b(t, x, x,a,a) = βt + bx,tx+ b̃x,tx+
∑n

i=1 bi,tai,t + b̃i,tai,t

σ`(t, x, x,a,a) = γ`t + σ`x,tx+ σ̃`x,tx+
∑n

i=1 σ
`
i,tαi,t + σ̃`i,tαi,t.

(31)

We require the coefficients in (31) to satisfy an adaptation of (H1) where γ, σx, σ̃x, (σi, σ̃i)i∈J1,nK are
replaced by γ`, σ`x, σ̃`x, (σ`i , σ̃

`
i )i∈J1,nK for ` ∈ {1, ..., κ}.

To take into account the multiple Brownian motions in step 1, we now search for random fields of
the form wit(x, x) = Ki

t .(x−x)⊗2+Λit.x
⊗2+2Y iᵀ

t x+Rit with the processes (Ki,Λi, Y i, (Z`,i)`∈J1,κK, R
i)

in (L∞([0, T ],Sd+))2×, S2
F(Ω× [0, T ],Rd)× (L2

F(Ω× [0, T ],Rd))κ × L∞([0, T ],R) and solution to:
dKi

t = K̇i
tdt Ki

T = P i

dΛit = Λ̇itdt ΛiT = P i + P̃ i

dY i
t = Ẏ i

t dt+
∑

` Z
i,`
t dW

`
t Y i

T = ri

dRit = Ṙitdt RiT = 0

where (K̇i, Λ̇i, Ṙi) are deterministic processes valued in Sd+ × Sd+ × R and (Ẏ i, Zi) are adapted
processes valued in Rd.

The method then follows the same steps with generalized coefficients and at step 2 we obtain
generalized coefficient for (5) and (6):

Φi
t = Qit +Ki

tbx,t + bᵀx,tK
i
t +

∑
r σ

rᵀ
x,tK

i
tσ
r
x,t − ρKi

t

Ψi
t = Q̂it + Λitb̂x,t + b̂ᵀx,tΛ

i
t +
∑

r σ̂
rᵀ
x,tΛ

i
tσ̂
r
x,t − ρΛit

∆i
t = Lix,t + bᵀx,tY

i
t + b̃ᵀx,tY

i
t + Λitβt +Ki

t(βt − βt)
+
∑

` σ
`ᵀ
x,tK

i
tγ
`
t + σ̃`ᵀx,tK

i
tγ
`
t + σ`ᵀx,tZ

i,`
t + σ̃`ᵀx,tZ

i,`
t − ρY i

t

+
∑

k 6=i U
i
k,t(αk,t − αk,t) + V i

k,tαk,t

Γit = 2βᵀt Y
i
t +

∑
` γ

`ᵀ
t K

i
tγ
`
t + 2γ`ᵀt Z

i,`
t

+
∑

k 6=i(αk,t − αk,t)ᵀSik,t(αk,t − αk,t) + αᵀ
k,tŜ

i
k,tαk,t + 2[Oik,t + ξik,t − ξ

i
k,t]

ᵀαk,t

(32)



Sik,t = N i
k,t +

∑
` σ

`ᵀ
k,tK

i
tσ
`
k,t

Ŝik,t = N̂ i
k,t +

∑
` σ̂

`ᵀ
k,tK

i
t σ̂
`
k,t

U ik,t = Iik,t + bᵀk,tK
i
t +

∑
` σ

`ᵀ
k,tK

i
tσ
`
x,t

V i
k,t = Îik,t + b̂ᵀk,tΛ

i
t +
∑

` σ̂
`ᵀ
k,tK

i
t σ̂
`
x,t

Oik,t = L
i
k,t + b̂ᵀk,tY

i
t +
∑

` σ̂
`ᵀ
k,tZ

i,`
t + σ̂`ᵀk,tK

i
tγ
`
t

J ik,l,t = Gik,l,t +
∑

` σ
`ᵀ
k,tK

i
tσ
`
l,t

Ĵ ik,l,t = Ĝik,l,t +
∑

` σ̂
`ᵀ
k,tK

i
t σ̂
`
l,t

ξik,t = Lik,t + bᵀk,tY
i
t +

∑
` σ

`ᵀ
k,tZ

i,`
t + σ`ᵀk,tK

i
tγ
`
t .

(33)
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From these extended formulas we can then constrain the coefficients as in step 3 and obtain (8)
with now the generalized coefficients defined in (32) and (33). The step 4 is then straightforward
and we obtain the best response functions:

αi,t = ai,0t (Xt,E[Xt]) + ai,1t (E[Xt])

= −(Sii,t)
−1U ii,t(Xt − E[Xt])− (Sii,t)

−1(ξii,t − ξ
i
i,t)− (Ŝii,t)

−1(V i
i,tE[Xt] +Oii,t).

From step 4 we can then continue to step 5, i.e. the fixed point search. The only difference
at that point is in the ansatz fort 7→ Yt. Since we consider the case with multiple Brownian
motions we now search for an ansatz of the form Y t = πt(Xt −Xt) + π̂tXt + ηt where (π, π̂, η) ∈
L∞([0, T ],Rnd×d)× L∞([0, T ],Rnd×d)× S2

F(Ω× [0, T ],Rnd) satisfy:

dηt = ψtdt+
∑

` φ
`
tdW

`
t

ηT = r = (ri)i∈J1,nK

dπt = π̇tdt

πT = 0

dπ̂t = ˙̂πtdt

π̂T = 0.

The method to determine the coefficients π, π̂, η is then similar. The validity of the computations
i.e. Step 6 can be done exactly as in the case of a single brownian motion.

4 Example

We now focus on a toy example to illustrate the previous results. Let us consider a two player game
where the state dynamics is simply a Brownian motion that two players can control. The goal of
each player is to get the state near its own target t 7→ T it , where t 7→ T it , i = 1, 2, is a stochastic
process. In order to add mean-field terms we suppose that each player try also to minimize the
variance of the state and the variance of their controls.{

dXt = (b1α1,t + b2α2,t)dt+ σdWt

J i(α1, α2) = E
[∫∞

0 e−ρu
(
λiVar(Xu) + δi(Xu − T iu)2 + θiVar(αi,u) + ξiα2

i,u

)
du
]
, i = 1, 2,

where (λi, δi, θi, ξi) ∈ R4
+. In order to fit to the context described in the first section we rewrite the

cost function as follows:

J i(α1, α2) = E
[ ∫ ∞

0
e−ρu

(
(λi + δi)(Xu −Xu)2 + δiX

2
u + (θi + ξ)2(αi,u − αi,u)

+ ξiα2
i,u + 2Xu[−2δiT i] + δi(T iu)2

)
du
]
.

Since the terms δi(T i)2 do not influence the optimal control of the players, we work with the slightly
simplified cost function:

J̃ i(α1, α2) = E

[∫ ∞
0

e−ρu
(

(λi + δi)(Xu −Xu)2 + δiX
2
u + (θi + ξ)2(αi,u − αi,u) + ξiα2

i,u + 2Xu[−2δiT i]
)
du

]
.

Following the method explained in the previous section, we use Theorem 2.3 in order to find a
Nash equilibrium. We obtain the feedback form of the open loop controls and the dynamics of the
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state: 
αi − αi = −P i

bi

(
(Ki + πi)(Xt −Xt) + ηit − ηit

)
αi = − P̃ i

bi

(
(Λi + π̃i)Xt + ηit

)
Xt = X0e

−ãt +
∫ t

0 e
−ã(t−u)γudu

Xt −Xt = (X0 −X0)e−at +
∫ t

0 e
−a(t−u) [(γu − γu)du+ σdWu]

(34)

where Ki ∈ R+,Λ
i ∈ R+, a ∈ R, ã ∈ R, π ∈ R2, π̃ ∈ R2, η ∈ L2

F((0,∞),R2), γ ∈ L2
F((0,∞),R2) satisfy:



Ki =
−ρ+
√
ρ2+4P i(λi+δi)

2P i

Λi =
−ρ+
√
ρ2+4P̃ iδi

2P̃ i

a =
∑2

i=1 P
i(Ki + πi)

ã =
∑2

i=1 P̃
i(Λi + π̃i)

0 = Pyπ − (πB − Pα)(Sx + Syπ)

0 = P̃yπ̃ − (π̃B − P̃α)(S̃x + S̃yπ̃)

ηt − ηt = −
∫∞
t e[Py−(πB−Pα)Sy ](t−u)E

[
Hu −Hu|Ft

]
du

ηt = −
∫∞
t e[P̃y−(π̃B−P̃α)S̃y ](t−u)Hudu

γt − γt = −
∑2

i=1 P
i(ηi,t − ηi,t)

γt = −
∑2

i=1 P̃
iηi,t



Sx = −(P 1K1/b1, P
2K2/b2)

S̃x = −(P̃ 1Λ1/b1, P̃
2Λ2/b2)

Sy = −(1i=jP
i/bi)i,j∈{1,2}

S̃y = −(1i=jP̃
i/bi)i,j∈{1,2}

Pα = −(1i 6=jK
ibj)i,j∈{1,2}

P̃α = −(1i 6=jΛ
ibj)i,j∈{1,2}

Py = (1i=j(P
iKi + ρ))i,j∈{1,2}

P̃y = (1i=j(P̃
iΛi + ρ))i,j∈{1,2}

H = (δ1T 1, δ2T 2)

B = (b1, b2)

P i =
b2i

θi+ξi

P̃ i =
b2i
ξi
.

(35)

From (34) and (35) we can study and simulate the influence of the different parameters of the
cost-function of the first player. We notice that (λ1, θ1) only influence X − E [X] and the feedback
form of α1 − α1 (zero-mean terms).

• If λ1 →∞ then π1 ∼ λ1 and K1 →∞ which implies that Xt − E [X]t → 0 for all t ≥ 0. This
is expected since the term λ1 penalizes the variance of the state Var(Xt) in the cost function
of the first player. See Figure 1.

• If δ1 →∞ then (π, π̃)→∞ and K1 ∼ δ1 and Λ1 ∼ δ1 which imply that Xt → T 1
t for all t ≥ 0.

This is also expected since the term δ1 penalizes the quadratic gap between the state X and
the target T 1. See Figure 2.

• If θ1 →∞ then P 1 → 0, P 1K1 → 0, P 1π1 → 0 and P 1η1
t → 0 for every t ≥ 0. We then have

αt − αt → 0 for all t ≥ 0 and all the terms relative to the first player in X − E [X] disappear.
Given that θ1 penalizes the variance of the control of the first player, this convergence is also
intuitive.

• If ξ1 →∞ then (P 1, P̃ 1)→ 0 which imply that (α1,t, α1,t)→ 0 for all t ≥ 0 and all the terms
relative to the first player in Xt − E [Xt] and E [Xt] disappear for all t ≥ 0. This means that
the first player becomes powerless.
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(a) λi = 0 (b) λi = 10

(c) λi = 100 (d) λi = 500

Figure 1: Nash equilibrium with:
bi = σ = δi = θi = ξi = 1, ρ = 3, T 1 = 0, T 2 = 10

Figure 2: t 7→ E[Xt]
bi = σ = δi = θi = ξi = 1, ρ = 3, T 1 = 0, T 2 = 10
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