
HAL Id: hal-01941485
https://hal.science/hal-01941485

Submitted on 1 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License

ZINC: a compiler for “any language”-coloured Petri nets
Franck Pommereau

To cite this version:
Franck Pommereau. ZINC: a compiler for “any language”-coloured Petri nets. [Research Report]
IBISC, university of Evry / Paris-Saclay. 2018. �hal-01941485�

https://hal.science/hal-01941485
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://hal.archives-ouvertes.fr


ZINC: a compiler for
“any language”-coloured Petri nets

Franck Pommereau

IBISC, Univ. Évry, Univ. Paris-Saclay, 91025 Évry, France
franck.pommereau@ibisc.univ-evry.fr

TECHNICAL REPORT

c©2018 Franck Pommereau — cc by-sa cba

Abstract. We present zinc, that is the code name for a complete rewrite
of snakes [8,9], incorporating the compilation approach from Neco [4,5]
at its heart. Doing so, zinc allows to substantially extend snakes and
Neco in various ways: efficient firing and statespace computation, Petri
nets coloured by potentially any programming language, more general
class of Petri nets supported. At its current state, zinc allows to create
Petri nets from a Python program, or to load them from a simple uni-
fied file format, then to compile nets targeting: Python [10], Go [6], and
CoffeeScript [1] (the latter being compiled to JavaScript). This choice
of statically and dynamically typed languages demonstrates the feasi-
bility of supporting potentially any language as a colour domain. This
paper presents what one can do using zinc in this state, how this is
implemented, and what is planned as future developments.

Keywords: Petri nets, model compilation, library.

1 Introduction

For more than ten years, we have developed snakes [8,9] as a general purpose
Petri net library, privileging flexibility over the efficiency of executions (tran-
sitions firing and statespace exploration). snakes is a Python [10] library to
create and execute Python-coloured Petri nets. Over the years, the need for
efficient executions has led to the development of Neco [4] that uses model com-
pilation to attain efficiency. Using Neco, a Petri net is compiled into a software
library that provides all the necessary primitives to fire transitions and explore
the statespace.

In this paper, we present zinc, that is the code name for a complete rewrite
of snakes, incorporating the compilation approach from Neco at its heart. This
allows to bring three major improvements to both snakes and Neco. (1) snakes
is now quite old and a major code cleanup is desirable, in particular, supporting
both the 2.x and 3.x series of Python [10] leads to a lot of code only dedicated
to ensure compatibility. Thus, zinc drops compatibility with Python 2.x that
will be discontinued by year 2020. (2) Using a compilation approach implies
a greater distance to the annotation language. Not only this reduces the need

mailto:franck.pommereau@ibisc.univ-evry.fr


2 Franck Pommereau

c©2018 Franck Pommereau — cc by-sa cba

for code dedicated to handle the annotation language, but, more importantly,
we are able now to support potentially any programming language as a colour
domain. To demonstrate this, zinc currently supports Python, Go [6], and Cof-
feeScript [1] (and thus indirectly JavaScript that is the target of the CoffeeScript
compiler). This is a dramatic enhancement with respect to snakes that supports
only Python. Supporting Python in zinc was the most natural choice to provide
in the future a good compatibility with snakes. Then, Go was chosen to demon-
strate that a statically typed languages with type declarations can be actually
supported. Finally, CoffeeScript has been chosen as a reasonable alternative to
JavaScript with the aim to enable for Petri nets simulations within web browsers.
(3) Finally, building a Petri net compiler forced us to focus more in depth on the
process of firing transitions, which allowed to release several restrictions enforced
by snakes and inherited by Neco, leading to support a more general class of
Petri nets. For instance, zinc allows to use arbitrary expressions on input arcs
while this is forbidden in snakes, the only remaining restriction is to forbid free
variables.

From this rewrite we thus expect:

– a cleaner, lighter, and more modern library;
– efficient executions out-of-the-box;
– support for potentially any programming language in Petri nets annotations;
– a generalisation of the supported class of Petri nets.

On the other hand, flexibility that has always been a strength of snakes is likely
to be harder to achieve within the compilation approach. Indeed, adding a new
Petri net features may imply to change how nets are compiled with potentially,
but not necessarily, an impact for all the supported annotations languages. zinc
will have to provide help to this respect. Moreover, while this difficulty is ex-
pected for most changes on the transition rule, this is absolutely not the case
for the large majority of extensions that are dedicated to handle Petri nets at a
structural level (for instance, supporting algebras of Petri nets like pbc/pna [2]
can be implemented exactly the same way are they are currently implemented
in snakes).

In the next sections, we present the current features of zinc and how it can
be used for various tasks. Then we discuss its implementation and performances,
before to conclude and sketch a development roadmap.

2 Using ZINC

zinc is currently at a very early stage of its development, but it is already a
useful tool. Mainly, it allows to define Petri nets (just as with snakes) and to
compile them, either to explore their statespace directly, or to use the resulting
library from another tool. Below, we will use Python as the annotation language
but everything could equally be made using Go or CoffeeScript.

zinc supports a very general class of Petri nets coloured by potentially any
programming language (3 being currently implemented). Tokens are arbitrary



ZINC: a compiler for “any language”-coloured Petri nets 3

c©2018 Franck Pommereau — cc by-sa cba

values of the annotation language. zinc supports arcs annotated by values, vari-
ables, expressions, or tuples of such annotations (nesting being allowed). Unlike
snakes, zinc allows to use expressions on input arcs, the only restriction is that
all the variables used in such expressions must be bound by another arc (typi-
cally labelled by a variable). It supports also multiple arcs (i.e., consuming or
producing multiple tokens), whole-place arcs (flush and fill), inhibitor arcs, and
test arcs (i.e., read arcs), with combinations that snakes forbids (e.g., both a
test arc and a regular arc between the same place and transition).

At the time we write this, zinc is barely documented, but snakes documen-
tation can be used as a reference because zinc can be seen as a subset of snakes
with a mostly identical api.

2.1 Getting ZINC and installing it

zinc is available at https://github.com/fpom/zinc, there is currently no in-
stallation procedure, all one needs is to clone the Git repository (“git clone
https://github.com/fpom/zinc.git”) and use its content:

– directory zinc is the Python package;
– script zn is a command line net compiler;
– directory libs provides libraries needed to execute the code generated by

zinc, in particular, marking data-structures for Go and CoffeeScript.

In the following, we assume that we work in the directory created by command
“git clone” (which should be called “zinc”), and that “.” is in PATH environ-
ment variable (so that one can invoke zn directly instead of ./zn).

zinc has been developed and tested under Linux only but it should work on
any Unix, like MacOS-X or “Windows subsystem for Linux” [3]. It depends on:

– Python (version used: 3.5) http://www.python.org;
– 竜 TatSu library (version used: 4.2.3) http://github.com/neogeny/TatSu;
– the Go compiler (version used: 1.7.4) http://golang.org;
– the CoffeeScript compiler (version used: 2.0.2) http://coffeescript.org.

zinc is free software release under the gnu Lesser General Public License
(http://www.gnu.org/licenses/lgpl.html).

2.2 Creating a Petri net

The first step to use zinc is to create a Petri net. There are currently two ways
to do so. The first one is to use zinc as a library, like one could do using snakes.
The api is almost the same with one major difference: annotations in zinc are
provided as source code within strings and not interpreted (in particular, not
checked for syntax correctness). This means that errors in the annotations will
remain unnoticed until the net is compiled, or even executed. Figure 1 shows
two simple models created this way, using zinc or snakes.

https://github.com/fpom/zinc
http://www.python.org
http://github.com/neogeny/TatSu
http://golang.org
http://coffeescript.org
http://www.gnu.org/licenses/lgpl.html


4 Franck Pommereau

zinc
1 from zinc.nets import ∗
2 net = PetriNet("Erathostene␣sieve", lang="python")
3 net.add_place(Place("p", ["2", "3", "4", "5", "6"], "int"))
4 net.add_transition(Transition("t", "n␣%␣d␣==␣0"))
5 net.add_input("p", "t", MultiArc(Variable("n"), Variable("d")))
6 net.add_output("p", "t", Variable("d"))

snakes
1 from snakes.nets import ∗
2 net = PetriNet("Erathostene␣sieve")
3 net.add_place(Place("p", [2, 3, 4, 5, 6], tInteger))
4 net.add_transition(Transition("t", Expression("n␣%␣d␣==␣0")))
5 net.add_input("p", "t", MultiArc([Variable("n"), Variable("d")]))
6 net.add_output("p", "t", Variable("d"))

.zn file
1 lang python
2 net "Erathostene␣sieve" :
3 place p int = 2, 3, 4, 5, 6
4 trans t n % d == 0 :
5 < p var = n
6 < p var = d
7 > p var = d

Fig. 1. Creating a Petri net using zinc as a library (top), using snakes (middle), or
through a “.zn” file (bottom). This net is a model of Eratosthenes’ sieve borrowed
from the model-checking contest [7].

c©2018 Franck Pommereau — cc by-sa cba

The other way to create a Petri net is to edit a “.zn” file as shown at the
bottom of Figure 1. zinc introduces this generic file format that makes it easy
to specify nets annotated with arbitrary source code. A Petri net in this format
can be loaded easily using function zinc.io.zn.load implemented in zinc.

2.3 Compiling a Petri net

Once we have a Petri net, we can compile it to a library, implemented in the lan-
guage we have chosen for the annotations (Python in the example above). If our
net is a PetriNet object in a Python program, like at the top of Figure 1, compi-
lation is triggered with a single method call, e.g., net.build(saveto="sieve.py")
which saves the generated source code into a file. Otherwise, if the net resides
in a file “sieve.zn”, we can invoke compilation from the command line using
“zn -o sieve.py sieve.zn”.

We discuss now how this generated code can be used, first as a standalone
program, then as a library.



ZINC: a compiler for “any language”-coloured Petri nets 5

$ python3 sieve.py -ms
4 reachable states
$ python3 sieve.py -ds
1 deadlocks
$ python3 sieve.py -d
[3] {’p’: [2, 3, 5]}
$ python3 sieve.py -m
[0] {’p’: [2, 3, 4, 5, 6]}
[1] {’p’: [2, 3, 4, 5]}
[2] {’p’: [2, 3, 5, 6]}
[3] {’p’: [2, 3, 5]}
$ python3 sieve.py -g
[0] {’p’: [2, 3, 4, 5, 6]}
> [1] {’p’: [2, 3, 4, 5]}
> [2] {’p’: [2, 3, 5, 6]}
[1] {’p’: [2, 3, 4, 5]}
> [3] {’p’: [2, 3, 5]}
[2] {’p’: [2, 3, 5, 6]}
> [3] {’p’: [2, 3, 5]}
[3] {’p’: [2, 3, 5]}
$ python3 sieve.py -l
[0] {’p’: [2, 3, 4, 5, 6]}
@ t = {’n’: 4, ’d’: 2}
- {’p’: [4]}
+ {}

> [1] {’p’: [2, 3, 5, 6]}
@ t = {’n’: 6, ’d’: 2}
- {’p’: [6]}
+ {}
> [2] {’p’: [2, 3, 4, 5]}

@ t = {’n’: 6, ’d’: 3}
- {’p’: [6]}
+ {}
> [2] {’p’: [2, 3, 4, 5]}

[1] {’p’: [2, 3, 5, 6]}
@ t = {’n’: 6, ’d’: 2}
- {’p’: [6]}
+ {}
> [3] {’p’: [2, 3, 5]}

@ t = {’n’: 6, ’d’: 3}
- {’p’: [6]}
+ {}
> [3] {’p’: [2, 3, 5]}

[2] {’p’: [2, 3, 4, 5]}
@ t = {’n’: 4, ’d’: 2}
- {’p’: [4]}
+ {}
> [3] {’p’: [2, 3, 5]}

[3] {’p’: [2, 3, 5]}

Fig. 2. Using the generated code as a program. Note that markings numbering may
differ between executions (see, e.g., markings 1 and 2).

c©2018 Franck Pommereau — cc by-sa cba

2.4 Exploring the statespace

File “sieve.py” that we have just generated has can be used as a program to
explore the statespace in various ways, which is illustrated in Figure 2 where we
use options: “-ms” to count the number of reachable markings, “-ds” to count
the number of deadlocks, “-d” to list the deadlocks, “-m” to list the markings,
“-g” to list the markings and their successors, and “-l” to show the detailed
statespace (modes, consumed and produced tokens).

2.5 Using the generated library from another tool

The most general use one can make of the code generated by zinc is to call it
from another program or library. Indeed, the result of the compilation is not only
a program, it is also a library. For instance, file “sieve.py” we have generated
above could be used from another Python module with just an “import sieve”.
All the generated libraries have a consistent api (however, exact names may
vary depending on the target language, for instance in Go, they start with an
uppercase character):



6 Franck Pommereau

c©2018 Franck Pommereau — cc by-sa cba

– a function init() returns the initial marking;
– a function succ(m) returns the successors of a marking m;
– for each transition, a fonction succ_123(m) returns the successors of m for

this particular transition. These functions are numbered automatically and
a table succfunc maps the transitions names to these functions (transition
names are not expected to be valid identifiers and thus cannot be used in
the functions names);

– other functions are addsucc(m, s) and addsucc_123(m, s) that add the suc-
cessors of m to a set s. The set data structure is declared in a library that is
imported in the generated module;

– finally, iterators itersucc(m) and itersucc_123(m) are available to access more
precisely to the details of firings: instead of returning a set of successors, they
yield for each one a structure with the name t of the transitions, the mode
b (that is, a binding of the variables used in its annotations), the marking
sub to be subtracted from m, and the marking add to be added to m so that
m − sub + add is the successor of m through transition t using mode b;

– high-level functions statespace, lts, and main are also provided to implement
the command line interface of the generated code.

zinc is designed with the aim to generate human readable code, so it is easy
to read the code it produces, and this is currently the best source of informa-
tion about it. In particular, functions statespace and lst are realistic yet simple
examples of how the api should be called.

3 Implementation

As a Python library, zinc is organised as follows:

– zinc the main package (2,890 loc)
– zinc.arcs arcs labels classes
– zinc.nodes places and transitions classes
– zinc.tokens markings and tokens classes
– zinc.nets Petri nets class
– zinc.data auxiliary data structures
– zinc.io import/export from/to various file formats

– zinc.io.zn zinc’s own format
– zinc.cli implementation of command line tool “zn”
– zinc.compil compilation engine

– zinc.compil.coffee CoffeeScript backend (372 loc)
– zinc.compil.go Go backend (493 loc)
– zinc.compil.python Python backend (481 loc)

As with snakes, the user usually only need to import zinc.nets module that
itself imports all the necessary to work with Petri nets. At the time we write
these lines, zinc represents less than 3k lines of Python code (2,890 loc to be



ZINC: a compiler for “any language”-coloured Petri nets 7

c©2018 Franck Pommereau — cc by-sa cba

compared with about 82k loc for snakes). This size includes the backends,
each representing less than 500 loc in Python (to be compared with the 13k
loc of Neco), and the definition of multisets, markings, sets of markings, and
the statespace explorations algorithms in Python. For the other target languages,
these data structures represent: 827 loc for CoffeeScript, and 1331 loc for Go
(one third of which being just “}”). This shows that implementing a new backend
requires only a limited effort.

3.1 How ZINC compiles nets

When method PetriNet.build is called, it computes an abstract syntax tree (ast)
of a module that defines the various functions we have listed previously. This
ast is not related to any programming language in particular and has high-level
constructs directly related to Petri nets, like testing the presence or absence of
a specific token in a specific place. Then, the ast is passed to the appropriate
backend that is responsible for producing the actual code. To do so, it performs
a traversal of the ast and each kind of node triggers a corresponding method to
generate a piece of code. This is illustrated in Figure 3 where we show the ast
for the addsucc function for the unique transition of the sieve model, together
with its translation into Python. Not all ast nodes are as simple to translate,
but the difficult ones have been implemented for three languages already, so that
it should be easy to adapt the existing solutions.

3.2 Benchmarking ZINC vs SNAKES vs Neco

We have exercised the libraries generated by zinc on two models in order to
evaluate how far the current preliminary implementation is from an optimised
net compiler like Neco. We have chosen two models from the model-checking
contest [7]: “Eratosthenes’ sieve” and “Refendum” are two small coloured Petri
nets with rapid combinatorial explosion. It is interesting to consider such small
nets in order to restrict as much as possible the overhead of querying a Petri
net structure that would impair snakes’ performance compared to compiled
approaches. In other words, using these models, we focus the comparison on the
cost of firing transitions. We have compared five methods to compute statespaces:
using snakes, using Neco with the Python backend, using zinc with each of its
backends. Unfortunately, Neco with the Cython backend is crashing on a faulty
memory access, but as we will see later on, it would probably not have given
more information. Figure 4 shows the result we obtained by setting a timeout
of 30 seconds (i.e., a computation longer than 30s is interrupted). We do not
report compilation times that are negligible and comparable for all tools (note
that the Go backend also has a compilation to machine code that is very fast as
well, which was one of the reasons to chose Go).

Let us first consider the Python-based runs: Neco is faster than zinc’s Python
backend, which itself is faster than snakes. The relative performance of these
engines are depicted in Figure 5 that shows that Neco is typically 2–3 times



8 Franck Pommereau

ast
1 DefSuccProc(trans="t", marking="marking", succ="succ")
2 Declare(d="int", n="int")
3 ForeachToken(place="p", variable="n")
4 ForeachToken(place="p", variable="d")
5 If ("n␣%␣d␣==␣0")
6 IfType(var="d", type="int", )
7 IfEnoughTokens({"p": ["d", "n"]})
8 AddSucc(sub={"p": ["n"]}, add={})

Python code
1 def addsucc_001 (marking, succ):
1 "successors␣of␣’t’"
3 for n in marking("p"):
4 for d in marking("p"):
5 if n % d == 0:
6 if isinstance(d, int ):
7 test = Marking({"p": mset([d, n])})
7 if test <= marking:
8 sub = Marking({"p": mset([n])})
8 succ.add(marking − sub)

Fig. 3. Top: the ast generated for one of the functions corresponding to the transition
in the sieve model. Bottom: the corresponding Python code, with line numbered by
the corresponding node in the ast.

c©2018 Franck Pommereau — cc by-sa cba

faster than zinc, which itself is 2–8 times faster than snakes. An interesting
observation in that all these tools have the same profile: improving of rates as
statespaces grow until a performance peak after which rates progressively amor-
tise. The first phase corresponds to cases where launching the tool dominates its
execution time, while the second phase is due to the increasing cost of managing
larger sets of markings.

These relative performance show that there is room for improving zinc, which
is not surprising since we implemented none of the optimisations from Neco.
Indeed, we discovered that Neco lacks some checks, which makes it faster, but
also make it incorrect in some cases (in particular, Neco does not check the
type of produced tokens). So, optimising the generated code like Neco does will
require a careful work to keep it correct in every case.

Considering the Go backend, we observe it starts directly with the second
phase where rate decreases (more and faster) with the number of states. This
shows that the data structure we have used to store statespaces is highly ineffi-
cient (probably there are a lot of collisions in the underlying hashtable). So, we
first need to fix this and only then it will be interesting to compare zinc’s Go
backend to Neco’s Cython backend (hoping it can fixed).

Finally, CoffeeScript exhibits very low performances, which can be explained
both by the language itself (this is JavaScript in the end), and by the implemen-



ZINC: a compiler for “any language”-coloured Petri nets 9

c©2018 Franck Pommereau — cc by-sa cba

tation of statespace data structure that mimics that of Go, and thus probably
has the same performance issues.

4 Conclusion and roadmap

We have presented zinc that is the code name for a complete rewrite of snakes
grounded on models compilation like Neco does. zinc substantially improves
both snakes and Neco in various ways, in particular:

– it is a cleaner and more modern tool. The library is much smaller, and even
with all snakes features ported, it is expected to remain as such because
many code in snakes is not needed anymore in zinc, while the new code
dedicated to compilation remains quite small;

– it provides efficient executions out-of-the-box. We have shown that while
zinc does not implement the optimisations from Neco, the latter is only
twice as fast. Moreover, we have discovered that some of the optimisations
in Neco are not always correct;

– it supports a more general class of Petri nets annotated with potentially any
programming language. Nets can be currently annotated and compiled to
Python, Go, and CoffeeScript.

zinc is in its early phases of development but we have shown how it can be
used already to define and compile Petri nets, either to explore their statespace

Eratosthenes’ sieve

0 5000 10000 15000 20000 25000 30000 35000
states

0

500

1000

1500

2000

2500

ra
te

engine
neco
py
go
snakes
cs

0 500 1000 1500 2000 2500
states

0

500

1000

1500

2000

2500

ra
te

engine
neco
py
go
snakes
cs

Referendum

0 10000 20000 30000 40000 50000 60000
states

0

1000

2000

3000

4000

5000

6000

7000

8000

ra
te

engine
neco
py
go
snakes
cs

0 500 1000 1500 2000 2500
states

0

1000

2000

3000

4000

5000

6000

7000

8000

ra
te

engine
neco
py
go
snakes
cs

Fig. 4. Firing rates (number of transitions fired by seconds) with respect to the number
of states in the models for the two considered models. On the left, the full range of
measures we obtained. On the right, a zoomed view for the smallest statespaces.



10 Franck Pommereau

0 5000 10000 15000 20000
states

2

4

6

8

ac
ce

le
ra

tio
n

Neco/Zinc
Zinc/SNAKES

Fig. 5. Relative performances of Neco vs zinc/Python, and zinc/Python vs snakes,
where acceleration is computed as the rate of one tool divided by the rate of the other
tool as indicated in the legend.

c©2018 Franck Pommereau — cc by-sa cba

directly, or to execute them from another program or library. We have also
discussed zinc’s implementation, its architecture, and its approach to model
compilation.

Next steps will be to progressively port to zinc the missing features from
snakes, in particular the various plugins and the extensive api documenta-
tion. We also plan, to introduce a plugin that would automate the compilation
of Python-annotated Petri nets and hide the small api changes to provide a
compatibility layer with snakes (i.e., zinc with this plugin could be used as a
drop-in replacement of snakes). We shall also add long-term missing features
from snakes like in particular the capability of importing/exporting Petri nets
and statespaces from commonly used formats. In parallel, we will progressively
introduce in zinc the optimisations from Neco in order to improve execution
performances. This must be carried with care because we must ensure that gen-
erated code remains correct in every circumstances, which is currently not the
case for Neco. Considering performance, we must also improve the Go backend
in order to fix its current performance issues, which is more a question of Go
programming than a problem related to zinc itself.

In the process, we hope to attract users (who will be able to report problems,
request features, and help to improve the tool), and hopefully contributors that
could implement backends suited to their needs.

References

1. Ashkenas, J., et al.: CoffeeScript. http://coffeescript.org
2. Best, E., Devillers, R., Koutny, M.: Petri net algebra. Monographs in Theoretical

Computer Science. An EATCS Series, Springer (2001)

http://coffeescript.org


ZINC: a compiler for “any language”-coloured Petri nets 11

c©2018 Franck Pommereau — cc by-sa cba

3. Cooley, S.: Install the Windows subsystem for Linux. http://msdn.microsoft.
com/en-us/commandline/wsl/install-win10

4. Fronc, L.: Neco net compiler. http://github.com/Lvyn/neco-net-compiler
5. Fronc, L., Pommereau, F.: Building Petri nets tools around Neco compiler. In:

Proc. of PNSE’13. vol. 989. CEUR-WS (2013)
6. Google inc.: The Go programming language. http://golang.org
7. Kordon, F., et al.: the Model Checking Contest at PETRI NETS. http://mcc.

lip6.fr
8. Pommereau, F.: SNAKES is the net algebra kit for editors and simulators. http:

//snakes.ibisc.univ-evry.fr
9. Pommereau, F.: SNAKES: a flexible high-level Petri nets library. In: Proc. of

PETRI NETS’15. LNCS, vol. 9115. Springer (2015)
10. Python Software Foundation: The Python programming language. http://www.

python.org/

http://msdn.microsoft.com/en-us/commandline/wsl/install-win10
http://msdn.microsoft.com/en-us/commandline/wsl/install-win10
http://github.com/Lvyn/neco-net-compiler
http://golang.org
http://mcc.lip6.fr
http://mcc.lip6.fr
http://snakes.ibisc.univ-evry.fr
http://snakes.ibisc.univ-evry.fr
http://www.python.org/
http://www.python.org/


12 Franck Pommereau

c©2018 Franck Pommereau — cc by-sa cba


	ZINC: a compiler for ``any language''-coloured Petri nets

