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Formation of blood clot in response to the vessel damage is triggered by the complex network of biochemical reactions of the coagulation
cascade. The process of clot growth can be modeled as a traveling wave solution of the bistable reaction–diffusion system. The critical value of the
initial

 

condition

 

which

 

leads

 

to

 

convergence

 

of

 

the

 

solution

 

to

 

the

 

traveling

 

wave

 

corresponds

 

to

 

the

 

pulse

 

solution

 

of

 

the

 

corresponding

 

stationary

 

problem.

 

In

 

the

 

current

 

study

 

we

 

prove

 

the

 

existence

 

of

 

the

 

pulse

 

solution

 

for

 

the

 

stationary

 

problem

 

in

 

the

 

model

 

of

 

the

 

main

 

reactions

 

of

 

the

 

blood

 

coagulation

 

cascade

 

using

 

the

 

Leray–Schauder

 

method.

1. Introduction

The main function of blood coagulation is the formation of
blood clot covering the injury site and preventing further blood
leak in case of vessel damage. One can define three main stages
of the blood coagulation process: initiation of the clotting process,
amplification of clot formation and clot growth arrest [1,2]. Clot
growth is triggered by the enzyme thrombin that catalyzes fib-
rinogen conversion to fibrin which leads to blood gelation [3,4].
During each stage of the coagulation process the speed of thrombin
formation is determined by the action of different proteins. Initial
amount of thrombin is formed in response to the exposure of the
tissue factor to blood plasma with help of factors VIIa and Xa [5,6],
or as the result of factor XI activation on the foreign surface through
the reactions of the contact system [7]. Amplification phase takes
place thanks to the positive feedback loops of the blood coagulation
cascade with participation of factors XI, X, IX, VIII, V and their
complexes [8]. The main mechanisms of the clot growth arrest are
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the action of the direct thrombin inhibitors such as antithrom-
bin [9], the mechanical removal of the active substances by the
blood flow and the active protein C pathway [2]. Whether the
amplification phase of the coagulation cascade will be launched
or not depends on the amount of thrombin formed during the
initiation stage [5]. In the current studyweaddress triggering of the
coagulation system from the initiation to the amplification phase
using a mathematical model.

Clot growth can be described as a reaction–diffusion wave for
the concentrations of blood factors [10–12]. Under certain assump-
tions we can prove existence and stability of such solutions for
the model system of coagulation cascade [13]. We suppose that
thrombin production during the coagulation process is described
by a bistable system. Indeed, under normal conditions, accelerated
thrombin formation occurs only in response to the significantly
important initial stimuli [5,14,15]. Under this assumption, the con-
vergence of the solution of the model system to a traveling wave
takes place only for the sufficiently large initial condition. In terms
of biochemical process, the amount of thrombin formed during the
initiation stage must exceed some threshold value to launch the
amplification phase of blood coagulation process. The threshold
value for the initial conditions that guarantees convergence of the
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solution to the traveling wave in case of one PDE is a stationary

solution of the system in particular form called pulse solution.

The similar criteria was proven for the system of two equations in

particular form [16]. In the current studywe consider the existence

of pulse solutions for a system of PDE describing the action of the

coagulation cascade.

Thrombin production in quiescent plasma during the amplifica-

tion phase of blood coagulation can be described by the following

system of PDEs:

∂v1

∂t
= D

∂2v1

∂x2
+ kV T − hVv1,

∂v2

∂t
= D

∂2v2

∂x2
+ kVIIIT − hVIIIv2,

∂v3

∂t
= D

∂2v3

∂x2
+ kXIT − hXIv3,

∂v4

∂t
= D

∂2v4

∂x2
+ kIXv3 − hIXv4,

∂v5

∂t
= D

∂2v5

∂x2
+ kXv4 + k∗

Xv2v4 − hXv5,

∂T

∂t
= D

∂2T

∂x2
+

(
kIIv5 + k∗

IIv1v5
) (

1 − T

T0

)
− hIIT .

(1.1)

Here T denotes thrombin concentration, vi, i = 1, . . . , 5, respec-

tively denote concentrations of the activated forms of factors V,

VIII, XI, IX and X. The constant T0 denotes the maximal available

concentration of thrombin taken equal to the initial concentration

of prothrombin in blood plasma.

The diffusion coefficient D is a positive number. We suppose

that all the diffusion coefficients are equal to each other. Such

assumption is relevant for the coagulation cascade reaction since

all the participating proteins have approximately the same size. All

results remain valid in the case of different diffusion coefficients.

We consider a one-dimensional case with x axis perpendicular

to the vessel wall and directed from thewall to the vascular lumen.

A more detailed discussion of the model can be found in [13],

see also Appendix of this paper.

Let us set w = (w1, . . . , w5, T ) (alternatively we will also

denote w6 = T ). Then, system (1.1) can be written in the vector

form:

∂w

∂t
= D

∂2w

∂x2
+ F(w), (1.2)

where F = (F1, . . . , F6), is the vector of reaction rates in Eqs. (1.1).

The functions Fi take the form:

Fi(w) = αi(βiT − wi) for i = 1, 2, 3,

F4(w) = α4(β4w3 − w4),

F5(w) = α5 (β5w4 + γw2w4 − w5) ,

F6(w) = α6w5(1 + δw1)

(
1 − T

T0

)
− σT ,

(1.3)

where the different constants are positive and are given by

α1 = hV , α2 = hVIII , α3 = hXI , α4 = hIX , α5 = hX , α6 = kII ,

β1 = kV

hV

, β2 = kVIII

hVIII

, β3 = kXI

hXI

, β4 = kIX

hIX

, β5 = kX

hX

,

γ = k∗
X

hX

, δ = k∗
II

kII
, σ = hII .

The zerosw∗ = (w∗
1, . . . , w

∗
5, T

∗) of F satisfy the equations

w∗
1 = β1T

∗, w∗
2 = β2T

∗, w∗
3 = β3T

∗, w∗
4 = β3β4T

∗,

w∗
5 = β3β4T

∗(β5 + γ β2T
∗). (1.4)

Furthermore by expressing that F6(w
∗) = 0 we find that T ∗ is a

root of some polynomial P of order four which takes the form:

P(T ) = TQ (T ) with Q (T ) = aT 3 + bT 2 + cT + d. (1.5)

Here a < 0 while the other coefficients of P have no a priori signs
(see Section 2.2 for the explicit values of the coefficients of P).
Consequently the zeros of F are in one-to-one correspondencewith
the ones of P . Clearly 0 is always a zero of P and the corresponding
zero of F is the origin 0 of R6.

Hereafter we will focus on the case where P has exactly two
positive zeros denoted by 0 < T̄ < T−. We will also assume that

Q (0) < 0, Q ′(T̄ ) > 0, Q ′(T−) < 0, (1.6)

(recall that Q is some polynomial of order three with negative
leading coefficient). It can be easily shown that T− < T0 (see
Section 2.2).

Consequently, F has exactly three zeros in R
6
+. Let us denote

them by w−, w̄ and w+ where w+ = 0 < w̄ < w− (here
and everywhere below inequalities for vectors mean that each
component of the vectors satisfies this inequality). Furthermore,
assumptions (1.6) guarantee that the principal eigenvalue of the
Jacobianmatrix of F atw± (resp. w̄) is negative (resp. positive) (see
Section 3.3). Hence the nonlinearity F is of the bistable type.

It is easy to check that Fi satisfy the following property for all
j ̸= i :

∂Fi

∂wj

(w) ≥ 0 if wk ≥ 0 for 1 ≤ k ≤ 5 and T < T0. (1.7)

Hence the system is monotone in that region of R6 containing the
positive zeros of F. It has a number of properties similar to those
for scalar equations including the maximum principle.

By virtue of the above properties, system (1.2) possesses a
unique traveling wave solution u(z), z = x − ct , satisfying the
following equations and limits at infinity:

Du′′ + cu′ + F(u) = 0, u(±∞) = w±, (1.8)

(up to some translation in space for u).
The stationary solutions of system (1.2) satisfy the elliptic sys-

tem:

Dw′′
i + αi(βiT − wi) = 0, i = 1, 2, 3,

Dw′′
4 + α4(β4w3 − w4) = 0,

Dw′′
5 + α5 (β5w4 + γw2w4 − w5) = 0,

DT ′′ + α6w5(1 + δw1)

(
1 − T

T0

)
− σT = 0.

(1.9)

Hereafter we consider system (1.9) on the real axis and look for an
even positive solution vanishing at infinity:

w(x) > 0, w(x) = w(−x), x ∈ R, w(±∞) = 0.

We will call such solutions pulses. Instead of the problem on the
whole axis, we can consider system (1.9) on the half-axis R+ with
the boundary condition

w′(0) = 0. (1.10)

We will look for the decreasing solutions defined on R+ and re-
quire:

w′(0) = 0, w(x) > 0 and w′(x) < 0 for x > 0,

w(∞) = 0. (1.11)

Then the pulse is obtained by extending this function on R by
symmetry.

We can now formulate the principal result of this work.
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Theorem 1.1. Under assumption (1.6), problem (1.9) has a solution
on R+ satisfying (1.11) if and only if the value of the speed c in
problem (1.8) is positive.

Theorem 1.1 can be easily proved for scalar equations. Indeed,
suppose that we deal with some scalar equation with a nonlinear-
ity F of bistable typewith a single intermediate zero. Then it is well
known that the speed c of the scalar traveling wave problem (1.8)

has the sign of the integral
∫ w−

0
F (s)ds. Besides, if we rewrite the

scalar equation for the pulse in the form:
{
w′ = p,

p′ = −F (w),
(1.12)

it is easy to see that:

w′(x)2

2
= −

∫ w(x)

0

F (s)ds.

From there it follows that the condition
∫ w−

0
F (s)ds > 0 is nec-

essary and sufficient for the existence of the pulse solutions. This
provides the conclusion of Theorem 1.1 for the bistable scalar
equations.

For systems of equations, the positiveness of the integral cannot
be used anymore to conclude that the pulse exists and/or the speed
of the wave is positive. Nevertheless, the relation between the sign
of the wave speed and the existence of pulses may remain true.
This was first proved in [16] and [17] for monotone systems of two
equations. The proofs are much more involved than in the scalar
case and rely on the Leray–Schauder method.

In this work we aim to derive such a result for the system
describing main reactions of the blood coagulation cascade. In
particular, the method supposes to construct some appropriate
homotopy deformation. The key idea here will be to reduce the
last equation in system (1.9) to some scalar equation that only
depends on T . Meanwhile wewill want the properties of the initial
system to remain unchanged and we will have to track the sign
of the wave speed when assuming c > 0 for problem (1.8).
We start the description of the homotopy in Section 2. Then, in
Section 3we showseparation ofmonotone solutions andweobtain
a priori estimates of these solutions independently of the homo-
topy parameter. Section 4 is devoted to the proof of the existence
part in Theorem 1.1. Finally we make some concluding remarks in
Section 5 while the model is briefly discussed in Appendix.

2. Homotopy

2.1. Description

We introduce some homotopy of system (1.9) of the form:

Dw′′ + Fτ (w) = 0, τ ∈ [0, 1], (2.1)

for which only the last component of the reaction term, that is
F τ6 (w), will vary with τ ∈ [0, 1]. Hence the homotopy reads

Dw′′
1 + α1(β1T − w1) = 0,

Dw′′
2 + α2(β2T − w2) = 0,

Dw′′
3 + α3(β3T − w3) = 0,

Dw′′
4 + α4(β4w3 − w4) = 0,

Dw′′
5 + α5(β5w4 + γw2w4 − w5) = 0,

DT ′′ + F τ6 (w) = 0.

(2.2)

As usual, the value τ = 0 corresponds to the initial system (1.9) so
that

F 0
6 (w) = F6(w) = α6w5(1 + δw1)

(
1 − T

T0

)
− σT . (2.3)

Clearly F 0
6 is a nonlinear function of w1, w5 and T .

In the homotopy process we will reduce F 0
6 to some final non-

linearity F 1
6 that will only depend on T . Also we will require the

zeros of Fτ in R
6
+ to remain unchanged as τ varies between 0 and

1 and to be the ones of the initial nonlinearity F = (F1, . . . , F6).
In order to define the function F τ6 (w), we introduce the auxiliary

functions ϕi(T ), i = 1, . . . , 5, determined by the equalities Fi(w) =
0 for i = 1, . . . , 5, that is:

wi = βiT ≡ ϕi(T ), i = 1, 2, 3,

w4 = β4β3T ≡ ϕ4(T ),

w5 = β4β3T (β5 + γ β2T ) ≡ ϕ5(T ).

(2.4)

In addition we introduce some smooth function g(T ) which will
be specified below in such a way that it does not change the zeros
during the homotopy (other properties related to the positiveness
of the wave speed will be required in Section 4.1).

The homotopy is defined as follows: for τ ∈ [0, τ1] where
τ1 ∈ (0, 1) (τ1 = 1/2 for example) we set

F τ6 (w) = α6w5(1 + δw1)

(
1 − T

T0

)
− σT + τg(T ), (2.5)

while for τ ∈ (τ1, 1] we consider

F τ6 (w) = α6 [α
τw5 + βτϕ5(T )] (1 + δ [ατw1 + βτϕ1(T )])

×
(
1 − T

T0

)
− σT + τ1g(T ), (2.6)

with ατ = 1 − τ

1 − τ1
, βτ = τ − τ1

1 − τ1
.

For τ ∈ [0, τ1] it will be convenient to set ατ = 1 and βτ = 0 so
that formula (2.6) is also valid for τ ∈ [0, τ1].

For some appropriate choice of the function g(T ) (see (2.12)),
the nonlinearity Fτ will remain of bistable type (with unchanged
zeros and unchanged stability properties of the zeros). Also Fτ will
satisfy the same monotony property as F (see (1.7)). Consequently
the travelingwave problem (1.8) with F replaced by Fτ will possess
some unique solution (cτ ,uτ ) (up to some translation in space
for uτ ).

These properties of Fτ are derived in the following sections.

2.2. Stationary points

To investigate the zeros of Fτ let us start with some preliminary
remarks. For τ = 0, the zeros are given by the equations

wi = ϕi(T ) for 1 ≤ i ≤ 5, α6ϕ5(T )(1 + δϕ1(T ))

×
(
1 − T

T0

)
− σT = 0.

Here, a straightforward computation yields that

α6ϕ5(T )(1 + δϕ1(T ))

(
1 − T

T0

)
− σT ≡ P(T )

= aT 4 + bT 3 + cT 2 + dT , (2.7)

with

a = −α6β1β2β3β4γ δT
−1
0 , c = α6β2β3β4γ

+ α6β1β3β4β5δ − α6β3β4β5T
−1
0 ,

b = −α6β1β3β4β5δT
−1
0 + α6β1β2β3β4γ δ

− α6β2β3β4γ T
−1
0 , d = α6β3β4β5 − σ .

(2.8)

Recall that we suppose that the polynomial P(T ) = TQ (T ) has
exactly two positive zeros 0 < T̄ < T−. Since Q is a polynomial of
degree three with negative leading coefficient it is straightforward
that

P < 0 on (0, T̄ ), P > 0 on (T̄ , T−), P < 0 on (T−,∞). (2.9)
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Also it is worth noting that

T− < T 0. (2.10)

Indeed, in view of definition (2.7) it is clear that P(T ) ≤ −σT < 0
for T ≥ T 0. Also recall that we assumed (1.6) which implies the
following condition on the parameters

Q (0) = α6β3β4β5 − σ < 0. (2.11)

Then the zeros of F = (F1, . . . , F6) remain unchanged if we replace
F6 by the following function

α6 [αw5 + βϕ5(T )] (1 + δ [αw1 + βϕ1(T )])

(
1 − T

T0

)
− σT ,

where 0 ≤ α ≤ 1, β = 1− α. The same remains true if we replace
F6 by

α6 [αw5 + βϕ5(T )] (1 + δ [αw1 + βϕ1(T )])

×
(
1 − T

T0

)
− σT + g(T )

provided the function g = g(s) is such that

g(s) ≥ 0 for s ≥ 0, Supp g ⊂ (T̄ , T−). (2.12)

Indeed, in that case in the equations for the zeros, P(T ) is modified
in a region where P(T ) > 0 by adding some non-negative term.

Hereafter we will suppose that function g satisfies (2.12). Then,
the zeros of functions Fτ = (F1, . . . , F5, F

τ
6 ) where F τ6 is given

by (2.5) or (2.6) coincide with the ones of F. In particular, these
functions possess exactly three zeros in R

6
+ which are w−, w̄

andw+.

2.3. Monotony of the system and stability of the stationary points

Recalling that F is given by (1.3) it is clear that

∂Fi

∂wj

(w) ≥ 0 for i, j = 1, . . . , 6, i ̸= j,

provided that

w ∈ D = {w = (w1, . . . , w5, T ), wk ≥ 0

for 1 ≤ k ≤ 5, 0 ≤ T < T0}.
This monotony property remains valid for the homotopy func-

tion Fτ . Indeed F τ1 , . . . , F
τ
5 remain unchanged while for the last

component the positivity property is easily checked. Hence, for all
τ ∈ [0, 1], the system is monotone in D:

∂F τi

∂wj

(w) ≥ 0 for i ̸= j and w ∈ D. (2.13)

Let us now investigate the stability properties of the three zeros
of Fτ in R

6
+. Note that thanks to (2.10) these zeros belong to D

so that the off-diagonal terms of the Jacobian matrices at these
points are non-negative. Hence by the Perron Frobenius Theorem
the principal eigenvalue – that is the eigenvalue withmaximal real
part – is real.

The stability properties of the zeros remain unchanged as τ
varies as stated in the following proposition.

Proposition 2.1. For τ ∈ [0, 1], the three zerosw−, w̄ andw+ of Fτ

are such that

the eigenvalues of the matrices (Fτ )′(w±)

have negative real parts, (2.14)

the matrix (Fτ )′(w̄) has a positive eigenvalue. (2.15)

Proof. We claim that, for all zeros, the sign of the principal
eigenvalue does not change as τ varies. Indeed, let us denote by
w∗ some zero of Fτ in R

6
+. When computing the Jacobian matrix

(Fτ )′(w∗) the terms related to g disappear due to (2.12). Hence, the
Jacobian matrix remains unchanged when τ varies between 0 and
τ1. Then, by investigating the kernel of this matrix for τ ∈ [τ1, 1] it
can be shown that

Ker (Fτ )′(w∗) = Ker F′(w∗) for τ ∈ [0, 1].
Hence, the determinants satisfy

Det (Fτ )′(w∗) ̸= 0 ⇔ Det F′(w∗) ̸= 0

⇔ Det (F1)′(w∗) ̸= 0, τ ∈ [0, 1].
If these determinants are not equal to zero, then the sign of the
principal eigenvalue cannot change as τ varies and the stability
property of the zerowill remain unchanged. This propertywas first
noted in [13].

For the various zeros the possible nullity of the determinants
and the sign of the principal eigenvalue are now determined by
considering τ = 1. By construction of the homotopy, for τ = 1,
F 1
6 (w) only depends on T and F 1

6 (w) = P(T ) = TQ (T ) given by (2.7).

It is easy to check that the eigenvalues of (F 1)′(w∗) are −αi with
1 ≤ i ≤ 5 and P ′(T ∗). Recall that we assumed (1.6) which implies
that for T ∗ = T+, T̄ and T− we have

P ′(T+) < 0, P ′(T̄ ) > 0, P ′(T−) < 0. (2.16)

Hence, the determinants are not equal to zero and the principal
eigenvalue has the sign of P ′(T ∗). In view of (2.16) this provides
readily (2.14) and (2.15). □

3. Functional spaces and estimates of solutions

3.1. Operators and spaces

We consider the system

Dw′′ + Fτ (w) = 0, (3.1)

where for τ ∈ [0, 1] the nonlinearity Fτ is defined as above.We aim
to investigate the solutions of (3.1) defined on the half-axis x ≥ 0
and such that:

w(x) > 0 for x ∈ R+, w′(0) = 0, w(∞) = 0. (3.2)

For the functional setting let us introduce the Hölder space
Ck+α(R+) consisting of vector-functions of class Ck, which are
continuous and bounded on the half-axis R+ together with their
derivatives of order k, and such that the derivatives of order k

satisfy the Hölder condition with the exponent α ∈ (0, 1). The
norm in this space is the usual Hölder norm. Set

E1 = {w ∈ C2+α(R+), w′(0) = 0}, E2 = Cα(R+).

Next, we introduce the weighted spaces E1
µ and E2

µ with µ(x) =√
1 + x2 which are equipped with the norms:

∥w∥Eiµ
= ∥wµ∥Ei , i = 1, 2.

In view of (3.1), let us consider the operator

Aτ (w) = Dw′′ + Fτ (w), (3.3)

acting from E1
µ into E2

µ. Then, the linearized operator about any

function in E1
µ satisfies the Fredholm property and has the zero

index. The nonlinear operator is proper on closed bounded sets.
This means that the inverse image of a compact set is compact in
any closed bounded set in E1

µ.
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3.2. A priori estimates for monotone solutions

In this section we consider solutions of (3.1)–(3.2) that are

furthermore decreasing on R+. Such solutions are the pulses we

are interested in. Let us first derive some L∞ bound for these pulses.

Proposition 3.1. Assume that problem (3.1) has a solution w(x)

defined for x ≥ 0 satisfying (1.11). Then

w(x) ≤ w− for x ≥ 0, (3.4)

wherew− is the largest zero of F. In particular w(x) ∈ D for all x ≥ 0.

Proof. Recall that the coordinates of w− are ϕi(T
−), 1 ≤ i ≤ 5,

and T− where T− is the largest root of P . We start with some

preliminary result.

Lemma 3.1. There exists some smooth function Ψ (s) = (ψ1(s),

. . . , ψ6(s)) defined for s ≥ 0 such that

Ψ (0) = w−, ψ ′
i (s) > 0 for s > 0, ψi(s) → ∞ as s → ∞,

Fτ (Ψ (s)) < 0 for s > 0 and τ ∈ [0, 1]. (3.5)

In particular Ψ (s) > w− for s > 0.

Proof. Let us first consider the function Ψ 0 with coordinates:

ψ0
i (s) = ϕi(T

− + s), i = 1, . . . , 5, ψ0
6 (s) = T− + s. (3.6)

It is easy to see that

Ψ 0(0) = w−, (ψ0
i )

′(s) > 0 for s > 0,

ψ0
i (s) → ∞ as s → ∞, (3.7)

and since P < 0 on (T−,∞) (see (2.9))

Fi(Ψ
0(s)) = 0, F τ6 (Ψ

0(s)) = P(T− + s) < 0

for s > 0 and τ ∈ [0, 1]. (3.8)

Let us then introduce the following modification of the functions

Ψ 0:

ψi(s) = ϕi(T
− + κis) for i = 1, . . . , 5, ψ6(s) = T− + κ6s, (3.9)

where κi, i = 1, . . . , 6, are some positive coefficients. Under the

conditions

κi > κ6 for i = 1, 2, 3, κ3 < κ4, κ2 < κ5, κ4 < κ5, (3.10)

we can see that

Fi(Ψ (s)) < 0 for s > 0 and i = 1, . . . , 5. (3.11)

It remains to investigate the sign of F τ6 (Ψ (s)). In view of defini-

tions (2.5) and (2.6) of F τ6 it is clear that for w ≥ 0 and T ≥ T0
we have g(T ) = 0 and F τ6 (w) < 0. Consequently, F τ6 (Ψ (s)) < 0 for

s ≥ s∗ with s∗ = (T0 − T−)/κ6. Let us now study this inequality

on the bounded interval 0 < s < s∗. For this purpose we set

κi = 1+ϵρi, i = 1, . . . , 6, where ϵ > 0 is sufficiently small and the

constants ρi > 0 are chosen in such a way that condition (3.10) are

satisfied for any ϵ. We note that s∗ depends on ϵ butwe can neglect

this dependence for ϵ small enough. Thus,

ψi(s) = ψ0
i (s) + ϵsψ1

i (s), ψ
1
i (s) > 0 for s > 0,

where ψ1
i (s) are some bounded positive functions on the interval

0 ≤ s ≤ s∗ (some of them are constants). Hence,

F τ6 (Ψ (s)) = F τ6 (Ψ
0(s)) + ϵsHτ (s),

where Hτ (s) is a bounded function for s ∈ [0, s∗] and τ ∈ [0, 1].
Here F τ6 (Ψ

0(s)) < 0 on (0, s∗] thanks to (3.8). Furthermore, the
derivative of function s → F τ6 (Ψ (s)) at s = 0 reads

(F τ6 ◦ Ψ )′(0) = ∇F τ6 (w
−).(Ψ 0)′(0) + ϵ∇F τ6 (w

−).Ψ 1(0) =

P ′(T−) + ϵ∇F τ6 (w
−).Ψ 1(0), (3.12)

where P ′(T−) < 0. These properties yield readily that F τ6 (Ψ (s)) < 0
on (0, s∗] for all τ ∈ [0, 1] if ϵ is sufficiently small. □

Let us get back to the proof of Proposition 3.1. Let w̃ denote
some solution of (3.1) satisfying (1.11). Then, to derive (3.4) it is
sufficient to prove that

w̃(0) ≤ w−. (3.13)

Considering the function Ψ given by Lemma 3.1, for s ≥ 0 let us
introduce the set

E(s) = {w| 0 ≤ w ≤ Ψ (s)},
with the boundary hyperplanes denoted as

Γ i(s) = {w| wi = Ψi(s), 0 ≤ wj ≤ Ψj(s), j = 1, . . . , 6, j ̸= i}.
Note that for 0 ≤ s1 ≤ s2 we have E(s1) ⊂ E(s2).

Let us argue by contradiction and assume that (3.13) is not true.
Note that this is equivalent to w̃(0) ̸∈ E(0). Clearly, for s > 0
sufficiently large, we have w̃(0) < Ψ (s) and w̃(0) ∈ E(s). Let us
choose theminimal value of s forwhich w̃(0) ∈ E(s). Then, for some
i we have w̃i(0) > w−

i and w̃i(0) ∈ Γ i(s). We claim that

F τi (w̃(0)) < 0. (3.14)

Suppose that this is proved. Since w̃′
i(0) = 0 and w̃′

i(x) < 0 for
x > 0 we also have w̃′′

i (0) ≤ 0. Thus, we have a contradiction in
signs in the ith equation of system (3.1).

It remains to check (3.14). Let us come back to the monotony
property (2.13) and note that, for 1 ≤ i ≤ 5, it is valid provided
that w ≥ 0. Consequently, if w̃i(0) ∈ Γ i(s) for some 1 ≤ i ≤ 5,
the monotony property yields that F τi (w̃(0)) ≤ F τi (Ψ (s)) < 0.
Suppose now that w̃6(0) = Ψ6(s) and w̃i(0) < Ψi(s) for 1 ≤ i ≤ 5.
The nonlinearity F τ6 is such that F τ6 (w) < 0 if w ≥ 0 and w6 ≥
T 0. Hence, due to the maximum principle the solution w̃ satisfies
w̃6(x) < T 0 for x ≥ 0. In particular, w̃6(0) = Ψ6(s) ≤ T0. Hence the
samemonotony argument applies and provides that F τ6 (w̃(0)) < 0.
This concludes the proof of Proposition 3.1. □

In view of (2.14)–(2.15), the nonlinearity Fτ is of bistable type
while by (2.13) it is monotone in D. Consequently, the traveling
wave problem:

Du′′ + cτu′ + Fτ (u) = 0, u(±∞) = w±, (3.15)

possesses a unique solution denoted by (cτ ,uτ ) (up to some trans-
lation in space for uτ ) [20].

Estimates for monotone pulses in E1
µ can be obtained by impos-

ing positiveness conditions on cτ . The following result is proved
in [16] (and remains true here thanks to Proposition 3.1).

Theorem 3.1. Under assumption (1.6), moreover suppose that cτ >

0 for all τ ∈ [0, 1]. Then, there exists some constant R > 0 such

that for all τ ∈ [0, 1] and for all monotone solution w of (3.1)
satisfying (1.11) the following estimate holds:

∥w∥E1µ
≤ R.

Since the proof of this theorem is given in [16], we will re-
call here only its main idea. Solutions of Eq. (3.1) are uniformly
bounded in the C(R+)-norm due to Proposition 3.1. However,
this is not sufficient to conclude that the solutions are uniformly
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bounded in theweighted space E1
µ. Indeed, if there is a sequence u

k

of solutions which converge to w− on any bounded interval (and
to w+ = 0 at ∞), then this sequence is uniformly bounded in
the uniform norm but not in the weighted space. Let us explain
why this situation is not possible. Suppose that such sequence
exists. Consider then a sequence of shifted functions vk(x) =
uk(x + hk), where hk is a real number chosen in such a way that
∥uk(hk)∥ = ∥w−∥/2 (where ∥.∥ denotes the Euclidean norm in
R

6). Since the sequence uk(x) converges to w− uniformly in every
bounded interval (in positive half-axis), then hk → ∞ as k → ∞.
Hence, the functions vk(x) are defined for x ≥ −hk. Choosing a
locally convergent subsequence of the sequence vk(x), we obtain
a function v0(x) defined on the whole axis and satisfying (3.15)
with cτ = 0. This conclusion contradicts the assumptions of the
theorem.

3.3. Separation of monotone solutions

Let us suppose that all monotone solutions of (3.1)–(3.2) are
uniformly bounded in space E1

µ (Theorem 3.1 provides condi-
tions that guarantee this property and will be investigated in
Section 4.1).

We aim to derive a result of separation between the solutions
of (3.1)–(3.2) that are monotonically decreasing for all their com-
ponents that will be denoted by wM (x), and the solutions of (3.1)–
(3.2) which do not satisfy this condition that will be denoted by
wN (x). We will call the latter ones non-monotone solutions.

Theorem 3.2. Suppose that all monotone solutions of (3.1)–(3.2) are
uniformly bounded in the space E1

µ. Then there exists a constant r > 0

such that, for all τ ∈ [0, 1], for anymonotone solutionwM (x) and any

non-monotone solutionwN (x) of (3.1)–(3.2), we have

∥wM − wN∥E1µ
≥ r. (3.16)

Proof. Let us start with two preliminary results.

Lemma 3.2. Suppose that w is some solution of problem (3.1) for
0 ≤ τ ≤ 1 and satisfies

w(x) ∈ D for x ∈ R
+, w′(0) = 0. (3.17)

Then, either all the components of w are positive for all x ≥ 0 or all of

them are identically equal to 0.

Proof. Each of the equations of system (3.1) or equivalently (2.2)
can be written in the form

Dz ′′ − γ z + f (x) = 0, z ′(0) = 0, (3.18)

where γ is a positive constant and f (x) ≥ 0 for all x ≥ 0. It can be
easily verified that either z(x) > 0 for all x ≥ 0 or z(x) ≡ 0. Let
us verify that all components of the solution are similar from the
point of view of the choice between these two options. In the other
words, if one of the components is identically zero, then all other
components are also identically zero.

Suppose that w1(x) ≡ 0. Then, from the first equation in (2.2)
it follows that T (x) ≡ 0. Hence, from second and third equations
of (2.2) we can conclude that w2(x) ≡ w3(x) ≡ 0 since the only
bounded solutions of these equations are decaying exponentials. In
order to satisfy the boundary conditions, these functions should be
identically 0. From the next two equationswe getw4(x) ≡ w5(x) ≡
0. Thus, the lemma is proved if w1(x) ≡ 0. Similar arguments are
applicable if w2(x) ≡ 0 or w3(x) ≡ 0.

If w4(x) ≡ 0, then we conclude from fourth equation of (2.2)
that w3(x) ≡ 0, and we return to the previous case. If w5(x) ≡ 0,
then we conclude from the fifth equation of (2.2) that w4(x) ≡ 0.

As before, the previous arguments are applicable here. Finally, if
T (x) ≡ 0, then w1(x) ≡ 0 from the first equation of (2.2), and we
proceed as above. □

Lemma 3.3. There exists some vector q > 0 such that for all τ ∈
[0, 1] we have (Fτ )′(0)q < 0.

Proof. For τ ∈ [0, 1] the matrix (Fτ )′(0) reads

(Fτ )′(0)

=

⎛
⎜⎜⎜⎜⎝

−α1 0 0 0 0 α1β1
0 −α2 0 0 0 α2β2
0 0 −α3 0 0 α3β3
0 0 α4β4 −α4 0 0
0 0 0 α5β5 −α5 0
0 0 0 0 α6α

τ α6β3β4β5β
τ − σ

⎞
⎟⎟⎟⎟⎠

(3.19)

We look for a positive vector q = (q1, . . . , q6) such that (Fτ )′(0)q <
0. The following inequalities should be satisfied:

βiq6 < qi for i = 1, 2, 3, β4q3 < q4, β5q4 < q5,

α6α
τq5 < (σ − α6β3β4β5β

τ )q6. (3.20)

For τ = 1 we have ατ = 0 and the existence of reals qi > 0
satisfying (3.20) follows readily from (2.11). Let us verify it for
τ ∈ [0, 1). From the last four inequalities in (3.20) we obtain:

q6 <
σ − α6β3β4β5β

τ

β3β4β5α6ατ
q6, (3.21)

while the first two inequalities are independent. Hence, the re-
quired qi exist if and only if

1 <
σ − α6β3β4β5β

τ

β3β4β5α6ατ
. (3.22)

For τ ∈ [0, τ1] we have ατ = 1, βτ = 0 and inequality (3.22) holds
true by virtue of (2.11). Since the function in the right-hand side
increases for τ ∈ [τ1, 1), then it also holds true for all τ from this
interval. □

We aim now to derive (3.16). Let us argue by contradiction and
suppose that there exist some sequence of monotone solutions
wM,k(x) and some sequence of non-monotone solutions wN,k(x)
such that:

∥wM,k − wN,k∥E1µ
→ 0 as k → ∞. (3.23)

Sincemonotone solutions are uniformly bounded and the operator
is proper, the set {wM,k, k ∈ N} is relatively compact in E1

µ.
Consequently, there exists some subsequence of the monotone
solutions still denoted bywM,k converging to some function ŵ(x).

Clearly, the limit function ŵ(x) is a solution of system (3.1) for
some τ = τ0; furthermore it satisfies ŵ(x) ≥ 0, ŵ(x) ∈ D,
ŵ′(x) ≤ 0 for x ≥ 0, ŵ′(0) = 0, ŵ(∞) = 0. This concludes the
proof of Theorem 3.2.

The next two lemmas provide more precise properties of the
function ŵ(x).

Lemma 3.4. The limit function ŵ is positive: for all x ≥ 0, ŵ(x) > 0.

Proof. Let us first check that ŵ(0) ̸≡ 0. Arguing by contradiction
suppose that wM,k(0) → 0. It follows from Lemma 3.3 that there
exists a vector q > 0 such that (Fτ0 )′(0)q < 0. Due to the continuity
of Fτ (w) and its derivatives, for τ close to τ0 and sufficiently small
ε, we have Fτ (εq) < 0. Then, the monotony property (2.13)
guarantees that for any w ∈ Bε = [0, εq], w ̸= 0 at least one
component of Fτ (w) is negative. SincewM,k(0) converges to 0, then,
for sufficiently large k, wM,k(0) enters Bε . Consequently, for some
k and some i we see that F

τk
i

(
wM,k(0)

)
< 0. Thus, from (3.1) we

conclude thatw
M,k
i

′′
(0) > 0 andw

M,k
i (0) cannot be decreasing that

contradicts (3.2). Thus, ŵ(0) is different from 0.
In view of Lemma 3.2 this implies the positiveness of ŵ. □
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Lemma 3.5. The limit function ŵ is decreasing: for all x > 0,
ŵ′(x) < 0.

Proof. Recall that the function ŵ satisfies (3.1) for some τ = τ0.
Suppose that ŵ′

i(x0) = 0 for some point x0 > 0 and for some i. By
differentiating the ith equation of system (3.1) for τ = τ0, we see
that v(x) = −ŵ′

i(x) satisfies:

− Dv′′ − ∂F
τ0
i

∂wi

(ŵ)v = −
6∑

j=1,j̸=i

∂F
τ0
i

∂wj

(ŵ)ŵ′
j . (3.24)

Here v(x) ≥ 0, v(x0) = 0 for x0 > 0 and from (2.13) the right hand-
side of (3.24) is non-negative. Hence, the positiveness theorem
guarantees that v ≡ 0. Consequently, in view of the limit at infinity
we have that ŵi(x) ≡ 0 and this contradicts Lemma 3.4. □

Consider now a sequence of non-monotone functionswN,k con-
verging to the monotone function ŵ as k → ∞. Without loss
of generality, we can suppose that the first components of the
solutions are not monotone. Then, there are values xk > 0 such

that w
N,k
1

′
(xk) = 0 and up to some subsequence we have either

xk → x∗ > 0 or xk → ∞ or xk → 0 as k → ∞.
If xk → x∗ for some x∗ > 0, then ŵ′

1(x∗) = 0 and we obtain a
contradiction with Lemma 3.4. Next, we claim that for sufficiently
large y > 0 and for sufficiently large k,

(wN,k)′ < 0 on [y,∞[. (3.25)

Therefore, the convergence xk → ∞ cannot hold.
Indeed, considering again the positive q given by Lemma 3.3,

we have (Fτ0 )′(0)q < 0. Thus, there exists k0 > 0 and δ > 0 such
that (Fτk )′(w)q < 0 for k ≥ k0 and for ∥w∥ ≤ δ (where ∥.∥ denotes
the Euclidean norm in R

6). Since ŵ(x) is a solution of (3.1)–(3.2)
for some τ = τ0, then it is exponentially decreasing and we can
choose ỹ such that ∥ŵ(x)∥ < δ for x ≥ ỹ. Since wN,k converges to
the monotone function ŵ, we can choose y ≥ ỹ and k1 ≥ k0 such
that ∥wN,k(x)∥ ≤ δ for x ≥ y and k ≥ k1 and wN,k′

(y) < 0 for
k ≥ k1. Let us check that these properties lead to

wN,k′
(x) < 0 for x ≥ y and k ≥ k1, (3.26)

whence (3.25). Indeed, the function vk(x) = −(wN,k)′(x) is a
solution of:

Dvk
′′ + (Fτk )′(wN,k)vk = 0. (3.27)

Let us suppose that vk(x) is not positive for some x > y and k ≥ k1.
Since vk(y) > 0 and vk(+∞) = 0 (due to the exponential decay
of vk), we can choose some α > 0 such that the shifted function
uk(x) ≡ vk(x) + αq satisfies uk(x) ≥ 0 for all x ≥ y, and uk(x1) = 0

for some x1 > y (for at least one of the components of this vector).
Taking into account system (3.27), we see that

D(uk)′′ + (Fτk )′(wN,k)uk + bk(x) = 0, (3.28)

where the second term in (3.28) is positive thanks to (2.13) and
bk(x) = −α(Fτk )′(wN,k)q > 0 on [y,+∞). Then, (uk)′′(x1) must be
negative and we obtain a contradiction in signs in the equation for
the component of the vector-function uk which has a minimum at
x = x1.

It remains to study the case xk → 0. Let us verify that

Fτ0 (ŵ(0)) > 0. (3.29)

Obviously, the inequality Fτ0 (ŵ(0)) ≥ 0 holds because otherwise,
if at least one of the components of this vector is negative, then
the corresponding component of the vector ŵ′′(0) is positive. Since
ŵ′(0) = 0, this would contradict the assumption that the function
ŵ is decreasing. Thus, we need to verify that the components of

the vector F τ0 (ŵ(0)) cannot equal zero. Suppose that this is not

true, and F
τ0
i (ŵ(0)) = 0 for some i so that ŵi

′′
(0) = 0. Then

v(x) = −ŵi
′
(x) satisfies

Dv′′ + ∂F
τ0
i

∂wi

(ŵ)v + b(x) = 0,

where

b(x) = −
6∑

j=1,j̸=i

∂F
τ0
i

∂wj

(ŵ)ŵ′
j ≥ 0.

Since v(0) = 0 and v′(0) = 0, then we obtain a contradiction with

the Hopf lemma.

Thus, we proved that all the components of the vector Fτ0 (ŵ(0))

are positive. Since the functions wN,k converge to ŵ, then for all
k sufficiently large, Fτk (wN,k(0)) > 0. Therefore, wN,k(x)

′′
< 0 in

some interval 0 < x < δ independent of k. Hence wN,k(x)
′
< 0

in this interval and the convergence xk → 0 cannot hold. This

contradiction completes the proof of the lemma. □

Remark. The monotone solutions are also separated from the

trivial solution w ≡ 0 of (3.1)–(3.2). Indeed, by virtue of the

arguments in the proof of Theorem 3.2, there exists some constant

η > 0 such that for any monotone solutionwM and all τ ∈ [0, 1]:

wM
i (0) > η, for i = 1, . . . , 6. (3.30)

Indeed, otherwise there exists a sequence of monotone solutions

wM,k converging to some ŵ in E1
µ and at least one component of

ŵ(0) vanishes. This would contradict Lemma 3.4.

4. Proof of Theorem 1.1

The non-existence part in Theorem 1.1 for c ≤ 0 can be proved

as in [16] to which the reader is referred.

Hereafter we assume that the speed of the traveling wave

solution of (1.8) is positive:

c > 0, (4.1)

and we aim to derive the existence of a monotonically decreasing

pulse. The proof relies on the Leray–Schaudermethod. The key step

consists in the construction of a continuous deformation (homo-

topy) of our problem to amodel problem for which wewill be able

to prove that the value of the topological degree is different from

zero.

The continuous deformation has been introduced in Section 2.

There in definitions (2.5) and (2.6) for F τ6 , the function g is still

at hand provided it satisfies (2.12). We will first show how g can

be chosen so that the speed cτ in (3.15) remains positive as τ

varies (Section 4.1). Thanks to Theorem 3.1 this will yield a priori

estimates in E1
µ of the monotonically decreasing solutions. Then in

Section 4.2 we will investigate the limit problem (τ = 1) and in

particular some spectral properties. They will allow us to conclude

the proof of the existence of a monotone pulse in Section 4.3.

4.1. Positiveness of the wave speed

As already mentioned, we come back to the definition of the

homotopy and aim to check that by some appropriate choice of the

function g we will have cτ > 0 for all τ ∈ [0, 1].
Recall that for τ ∈ [0, τ1] the function F τ6 is given by

F τ6 (w) = α6w5(1 + δw1)

(
1 − T

T0

)
− σT + τg(T ),
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where g satisfies (2.12). Since g ≥ 0, we have F τ6 (w) ≥ F6(w).
A classical result on monotone systems (see [18]) provides that
cτ ≥ c. Consequently, by virtue of (4.1) we conclude that

cτ > 0 for τ ∈ [0, τ1]. (4.2)

It is worth noting that the above positiveness result did not need
to require any additional condition on g . This will be different for
τ ∈ (τ1, 1] where F τ6 takes the form

F τ6 (w) = α6 [α
τw5 + βτϕ5(T )] (1 + δ [ατw1 + βτϕ1(T )])

×
(
1 − T

T0

)
− σT + τ1g(T ),

with ατ , βτ ≥ 0 and ατ + βτ = 1. Let us note that for w ∈ D and
τ ∈ (τ1, 1]

F τ6 (w) ≥ G(T ) ≡ τ1g(T ) − σT . (4.3)

By virtue of conditions (2.12) on g , we haveG(0) = 0 andG′(0) < 0.
Clearly we can also assume that the nonlinearity G is of bistable
type: more precisely, there exists T̄ < T̃ < T∗ < T− such that

functionG(T ) = τ1g(T ) − σT possesses three zeros in

[0, T−] : 0, T̃ and T∗,

G(T ) < 0 for 0 < T < T̃ , G(T ) > 0 for T̃ < T < T∗,

G(T ) < 0 for T∗ < T ≤ T−. (4.4)

Proposition 4.1. Suppose that g satisfies (2.12), (4.4) and further-
more∫ T∗

0

G(s)ds > 0. (4.5)

Then, cτ > 0 for τ ∈ [τ1, 1].

Proof. Consider the scalar parabolic equation

∂θ

∂t
= D

∂2θ

∂x2
+ G(θ ), (4.6)

on the whole axis together with some initial condition θ (x, 0) that
it is a monotonically decreasing function converging to 0 at ∞ and
to T∗ at −∞. By virtue of conditions (4.4) on the function G, its
solution converges to some traveling wave solution θ∗(x − c∗t) of
this equation. The speed c∗ has the sign of the integral in (4.5) so
that condition (4.5) guarantees that c∗ > 0.

We claim that

cτ > c∗ for τ ∈ [τ1, 1). (4.7)

Indeed, let us consider the parabolic problem

∂vτ

∂t
= D

∂2vτ

∂x2
+ Fτ (vτ ), vτ (x, 0) = v̂(x). (4.8)

If v̂(−∞) = w− and v̂(∞) = w+ = 0, then vτ (x, t) converges to
somewave solutionuτ (x−cτ t) with cτ being the speed of thewave
propagation.

Along with system (4.8) consider also the system

∂zτ

∂t
= D

∂2zτ

∂x2
+Φτ (zτ ), zτ (x, 0) = ẑ(x), (4.9)

where F τ6 (w) is replaced by G(zτ6 ) and all other components of this
vector-function do not change. We set ẑi(x) ≡ 0 for i = 1, . . . , 5
while the last component of the initial condition is the same as
for Eq. (4.6), that is:

ẑ6(x) = θ (x, 0).

Let us suppose that v̂6(x) ≥ ẑ6(x) for all x ∈ R. Since Fτ (w) ≥
Φτ (w) and v̂(x) ≥ ẑ(x), then vτ (x, t) > zτ (x, t) for all x ∈ R and
t > 0. Since vτ (x, t) converges to the wave with the speed cτ and
uτ6(x, t) to the wave with the speed c∗, then cτ ≥ c∗ > 0. □

Hereafter we suppose that the function g is chosen so that
conditions (2.12), (4.4) and (4.5) are satisfied. This guarantees that

cτ > 0 for τ ∈ [0, 1]. (4.10)

4.2. The limit system τ = 1

The system for τ = 1 reads

Dw′′ + F1(w) = 0, (4.11)

on the half-axis x > 0 with the boundary conditions

w′(0) = 0. (4.12)

Proposition 4.2. Problem (4.11)–(4.12) has a unique monotonically

decreasing pulse solution.

Proof. According to the definition of F1 the last equation in (4.11)
reads

DT ′′ + P(T ) + τ1g(T ) = 0. (4.13)

Here the function T → P(T ) + τ1g(T ) is of the bistable type.
Moreover due to (4.5)

∫ T−

0

(P(s) + τ1g(s))ds > 0.

As recalled in the introduction, it follows that the scalar equa-
tion (4.13) possesses a unique pulse solution on R+. Let us denote
this solution by T (x). Then, equations for wi, i = 1, 2, 3 take the
form:

Dw′′
i (x) − αiwi(x) = −αiβiT (x), w′

i(0) = 0. (4.14)

Since the operators corresponding to the left-hand sides of these
equations are invertible from E1

µ into E2
µ and T (x) ∈ E2

µ, then

they also possess unique solutions w1(x), w2(x), w3(x) ∈ E1
µ (here

the spaces E i
µ are scalar functions spaces analog to the ones in

Section 3.1). Next, we proceed to the equation for w4(x):

Dw′′
4 (x) − α4w4(x) = −α4β4w3(x), w′

4(0) = 0, (4.15)

which in turn has a unique solutionw4(x), and the equation forw5:

Dw′′
5 (x) − α5w5(x) = −α5β5w4(x) − α5γw2(x)w4(x),

w′
5(0) = 0, (4.16)

has a unique solution w5(x).
It remains to verify that functions wi(x) are monotonically de-

creasing. Let us begin withw1(x). Set v1(x) = −w′
1(x). Differentiat-

ing the first equation in (4.11) we get:

Dv′′
1 − α1v1 + h(x) = 0, v1(0) = 0,

where h(x) = −α1β1T
′(x) > 0. The only bounded solution of this

problem is positive. Therefore, w′
1(x) < 0. Similarly, this can be

verified for other components of the solution. □

Next, consider the eigenvalue problem for the linearization
of system (4.11)–(4.12) at the pulse solution w(x) given by
Proposition 4.2:

Dv′′ + (F1)′(w)v = λv, (4.17)

on the half-axis x > 0 with the boundary conditions

v′(0) = 0, v(∞) = 0. (4.18)
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Lemma 4.1. All the eigenvalues of the linearized problem
(4.17)–(4.18) are different from zero.

Proof. Let us argue by contradiction and suppose that the lin-
earized problem (4.17)–(4.18) has a zero eigenvalue. In particular,
considering the last equation in (4.17) for λ = 0 there exists some
scalar function v6(x) such that:

Dv′′
6 (x) + δ(x)v6(x) = 0, v′

6(0) = 0, v6(∞) = 0, (4.19)

where δ(x) = (F 1
6 )

′(T (x)). We will show that this assumption leads
to a contradiction.

Consider also the function v(x) = −T ′(x). Differentiating (4.13)
we get:

Dv′′(x) + δ(x)v(x) = 0, (4.20)

v(0) = 0, v(x) > 0 for x > 0, v(∞) = 0. (4.21)

Let us choose x∗ in the way that δ(x) < 0 for all x > x∗.
Suppose first that v6(x) > 0 for all x ≥ 0. Then, we can choose

k large enough so that

kv6(x) > v(x) for 0 ≤ x ≤ x∗. (4.22)

Denote by k0 the infimumof all values k forwhich (4.22) holds true.
Then, k0v6(x) ≥ v(x) and there exists x0 such that k0v6(x0) = v(x0).
From Lemma 4.2 it follows, that k0v6(x∗) ≥ v(x∗) leads k0v6(x) >
v(x) for all x > x∗. Then, x0 ∈ [0, x∗]. We exclude the case x0 = 0
since it contradicts (4.21). Thus, there exists x0 ∈ (0, x∗) such that
kv6(x0) = v(x0), this contradicts the positiveness theorem.

Consider now the case where the function v6(x) has variable
sign. Let us note that v6(0) ̸= 0. Otherwise, v6(x) ≡ 0. Without
loss of generality we can assume that v6(0) < 0. Indeed, otherwise
we can multiply it by −1. Hence, we can choose k sufficiently
large such that kv(x) > v6(x) for 0 ≤ x ≤ x∗. We repeat the
construction of the previous paragraph where the functions v(x)
and v6(x) replace each other. We obtain a contradiction, as above.
This contradiction proves the lemma. □

Lemma 4.2. Let us consider the equation

Dz ′′(x) + δ(x)z(x) = 0, z(∞) = 0. (4.23)

If there exists some N such that δ(x) < 0 for x > N and z(N) ≥ 0,
then z(x) > 0 for all x > N.

Proof. Let us suppose the opposite: ∃x0 > N such that z(x0) < 0.
Since z(N) ≥ 0 and z(∞) = 0, then there exists a negative
minimum of this function reached at some x1 > N . Then, z ′′(x1) ≥
0 and δ(x1) < 0, this gives a contradiction with (4.23). □

4.3. Proof of the existence of pulses

In Sections 2 and 4.1 we constructed the homotopy Fτ with
cτ > 0 for τ ∈ [0, 1]. Recall the operator Aτ given by (3.3) and
the corresponding functional spaces.

In view of Theorem 3.1 there exists a ball B in the weighted
space containing all the monotone solutions of Aτ (w) = 0. The
operator Aτ is proper on closed bounded sets with respect to both
variables w and τ so that the set of the monotone solutions of
Aτ (w) = 0 is compact. Thus, thanks to Theorem 3.2, we can

construct a domain B̃ that contains all the monotone solutions
and its closure does not contain any non-monotone solutions for

all τ ∈ [0, 1] . Indeed, let us take as B̃ a union of balls with
radius r determined in Theorem 3.2. For this domain we define
the topological degree γ (Aτ , B̃) which preserves its value for all
τ ∈ [0, 1]:

γ (A0, B̃) = γ (Aτ , B̃) = γ (A1, B̃). (4.24)

Since the limit problem (τ = 1) has a unique solution and the oper-
ator linearized about this solution does not have zero eigenvalues,
the topological degree for the limit problem is given by

γ (A1, B̃) = (−1)νk ,

where νk is the number of positive eigenvalues of the operator
linearized about this solution together with their multiplicity.

It follows that γ (A1, B̃) ̸= 0. Hence, the degree γ (A0, B̃) is also
different from 0. This guarantees that the problem A0(w) = 0 has

(at least) a solution in B̃. This concludes the proof of the existence
result in Theorem 1.1.

5. Concluding remarks

In this work we proved that the pulse solution of the reaction–
diffusion system modeling the main reactions of the blood coag-
ulation cascade exists if and only if the traveling wave solution of
this system has a positive speed.

The speed of the reaction–diffusion wave of blood coagulation
determines the rate of clot growth. If it is too large, then vari-
ous thrombotic events can occur, if it is too low, then this can
lead to hemophilia and to other bleeding disorders. Therefore, the
estimation of the speed of the traveling wave is important both
for the theory and the applications. The methods to estimate the
wave speed of blood coagulation are developed in [13]. They allow
the derivation of some analytical expressions for the speed which
provide good approximations as evidenced thanks to numerical
simulations and some experimental results. Moreover, in [13] the
dependence of thewave speed on the various physiological param-
eters is analyzed.

As shown in [13,19], the wave speed can be approximated by
considering the single equation for the thrombin concentration.
Indeed the traveling wave is a solution of the system

Du′′
i + cu′

i + αi(βiu6 − ui) = 0, i = 1, 2, 3,

Du′′
4 + cu′

4 + α4(β4u3 − u4) = 0,

Du′′
5 + cu′

5 + α5 (β5u4 + γ u2u4 − u5) = 0,

Du′′
6 + cu′

6 + α6u5(1 + δu1)

(
1 − u6

T0

)
− σu6 = 0,

(5.1)

where u6 is the thrombin concentration, supplemented with the
limits at infinity:

u(±∞) = w±.

If we set αi = α0
i /ϵ, i = 1, . . . , 5, and consider a formal limit as

ϵ → 0, thenwe can express the variables u1 and u5 through u6 and
substitute in the last equation, which becomes as follows:

Du′′
6 + cu′

6 + P(u6) = 0, u6(±∞) = T±, (5.2)

where the polynomial P is given by (2.7). It is proved in [19] that
the speed of the wave for system (5.1) converges to the speed of
the wave for Eq. (5.2) as ϵ → 0. Moreover, it is shown that this
approach gives a good approximation of the speed of clot growth
for the realistic physiological values of parameters. Thewave speed
for Eq. (5.2) is positive if and only if

∫ T−

T+
P(s)ds > 0.

Therefore,we obtain an approximate positiveness condition for the
wave speed of the original system.

The pulse solution w(x) is a positive stationary solution of the
parabolic system

∂v

∂t
= D

∂2v

∂x2
+ F(v), (5.3)
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on the whole axis with the zero limits at infinity. This solution is

unstable with respect to small perturbations. Indeed, differentiat-

ing the system Dw′′ + F(w) = 0, we conclude that w′(x) is an

eigenfunction corresponding to the zero eigenvalue of the corre-

sponding linearized operator. This eigenfunction has an alternating

sign. On the other hand, the eigenfunction corresponding to the

eigenvalue with the maximal real part is positive [20,18]. Hence,

we can conclude that 0 is not the principal eigenvalue, and there

exists a positive eigenvalue of the linearized operator.

Thus, the solution of the Cauchy problem for Eq. (5.3) with

an initial condition v(x, 0) = w(x) + s(x), where s(x) is a small

perturbation, in general will not converge to w(x). In order to

determine the behavior of the solutions of the parabolic system,

let us consider the two following initial conditions:

u1(x, 0) = min(w(x),w(x + h)), u2(x, 0) = max(w(x),w(x + h)),

where h is some real number. In particular, we have two small per-

turbations of the pulse solution for small values of h. It can be easily

verified that u1(x, 0) is an upper function, and the corresponding

solution decays in time and converges to w+ = 0 uniformly on

the whole axis. Similarly, u2(x, 0) is a lower function. The corre-

sponding solution grows in time and converges tow− uniformly on

every bounded interval. The convergence of this solution to the two

traveling waves propagating in the opposite directions is proved

for the scalar equation [21,22].We can expect a similar behavior for

the system under consideration but it is not proved. Propagation

of the reaction–diffusion waves of blood coagulation was studied

in several works (e.g. [23,12,10]). Convergence to a single wave in

1D and to the 2D waves was observed in [24]. Strictly speaking,

numerical results on the convergence to the two waves propagat-

ing in the opposite directions in 1D was not presented in these

publications. However, this case can be approximately considered

as 1D cross section of the 2D radially symmetric case [24].

Thus, the unstable pulse solution separates decaying and grow-

ing solutions. From the point of view of applications to blood coag-

ulation, it determines the initial concentration of thrombin, which

is necessary to initiate blood coagulation under the condition that

the wave speed is positive. If it is negative or if the initial thrombin

concentration is not sufficient, then the clot will not form possibly

resulting in bleeding and other physiological complications [12].

At the same time, for the positive wave speed, solutions of sys-

tem (5.1) are well approximated by the traveling wave solutions of

the simplified one-equation model on the thrombin concentration

studied in details in [13]:

DT̃ ′′ + bT̃ 3(1 − T̃ ) − σ T̃ = 0. (5.4)

The kinetics of thrombin production in this model is regulated by

two principal parameters: the rate of thrombin production b and

the rate of thrombin inhibition σ . The pulse solution increaseswith

the increase of σ and with the decrease of b. This effect can be in-

terpreted as an increase of the critical value of the coagulation sys-

tem disturbance necessary for the beginning of the clot formation

under the additional activation of the anticoagulationmechanisms

or under the inhibition of procoagulation mechanisms. We expect

the similar properties to be true for the system (1.1).
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Fig. 1. The main activation reactions of the coagulation cascade.

Appendix

The model system is derived from the previously published

model [25] as described in [13]. Clot formation is due to fibrin

polymerization and the key enzyme of the coagulation is thrombin.

During the amplification phase that we investigate in this paper

formation of thrombin appears due to the prothrombin activation

in the coagulation cascade. It involves activation of factors V, VIII,

XI, IX and X as described by the following system of PDEs:

∂UV

∂t
= D

∂2UV

∂x2
+ kVUII − hVUV ,

∂UVIII

∂t
= D

∂2UVIII

∂x2
+ kVIIIUII − hVIIIUVIII ,

∂UXI

∂t
= D

∂2UXI

∂x2
+ kXIUII − hXIUXI ,

∂UIX

∂t
= D

∂2UIX

∂x2
+ kIXUXI − hIXUIX ,

∂UX

∂t
= D

∂2UX

∂x2
+ kXUIX + k∗

XUVIIIUIX − hXUX ,

∂UII

∂t
= D

∂2UII

∂x2
+

(
kIIUX + k∗

IIUVUX

) (
1 − UII

T0

)
− hIIUII .

Here UII denotes the concentration of the activated form of throm-

bin while UV , UVIII , UXI , UIX , UIX , UX respectively denote the con-

centrations of the activated forms of factors V, VIII, XI, IX, X.

These variables correspond to the variables T , v1, v2, v3, v4, v5 in

system (1.1) respectively.

The coagulation cascade is described in Fig. 1. Straight arrows

indicate factors activation, curved arrows indicate the catalytic

actions on factors on other factors activation reactions. IIa, Va, VIIIa,

XIa, IXa, Xa denote the concentrations of activated forms and II, V,

VIII, XI, IX, X denote the inactivated forms. The factors in gray are

not explicitly incorporated to the model by opposition to the ones

in black (together with the notations for the model variables used

in the system (1.1) in brackets).

Thrombin (IIa) catalyzes activation of factors V, VIII, XI. Factor

XIa catalyzes activation of factor IX. Factors IXa and Xa form ac-

tive complexes with factors VIIIa and Va respectively and further

increase thrombin production. Here reactions of formation of the

intrinsic tenase and prothrombinase complexes are fast and thus

their concentrations are provided by the product of the concentra-

tions of the participating factors (UVIIIUIX and UVUX respectively).
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The constant T0 denotes themaximal available concentration of
thrombin taken equal to the initial concentration of prothrombin
in blood plasma.
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