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On the Existence in the Sense of Sequences

of Stationary Solutions for Some Systems

of Non-Fredholm Integro-differential

Equations

Vitali Vougalter and Vitaly Volpert

Abstract. We prove the existence in the sense of sequences of stationary
solutions for some systems of reaction–diffusion type equations in the
appropriate H

2 spaces. It is established that, under reasonable techni-
cal conditions, the convergence in L

1 of the integral kernels yields the
existence and the convergence in H

2 of the solutions. The nonlocal el-
liptic problems contain the second-order differential operators with and
without Fredholm property.

Mathematics Subject Classification. 35R09, 35A01, 35J91.

Keywords. Solvability conditions, non-Fredholm operators, systems of
integro-differential equations, stationary solutions.

1. Introduction

Let us recall that a linear operator L acting from a Banach space E into
another Banach space F has the Fredholm property if its image is closed,
the dimension of its kernel and the codimension of its image are finite. As
a consequence, the problem Lu = f is solvable if and only if φi(f) = 0 for
a finite number of functionals φi from the dual space F ∗. Such properties
of Fredholm operators are broadly used in different methods of linear and
nonlinear analysis.

Elliptic problems in bounded domains with a sufficiently smooth bound-
ary satisfy the Fredholm property if the ellipticity condition, proper ellip-
ticity, and Lopatinskii conditions are fulfilled (see [1,10,12]). This is the
main result of the theory of linear elliptic problems. When domains are
not bounded, such conditions may be not sufficient and the Fredholm prop-
erty may not be satisfied. For example, Laplace operator, Lu = ∆u, in Rd

does not satisfy the Fredholm property when considered in Hölder spaces,
L : C2+α(Rd) → Cα(Rd), or in Sobolev spaces, L : H2(Rd) → L2(Rd).
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Linear elliptic problems in unbounded domains satisfy the Fredholm
property if and only if, in addition to the conditions stated above, the lim-
iting operators are invertible (see [13]). In certain simple cases, the limiting
operators can be explicitly constructed. For example, if

Lu = a(x)u′′ + b(x)u′ + c(x)u, x ∈ R,

with the coefficients of such operator having limits at infinity:

a± = lim
x→±∞

a(x), b± = lim
x→±∞

b(x), c± = lim
x→±∞

c(x);

the limiting operators are given by:

L±u = a±u′′ + b±u′ + c±u.

Since the coefficients are constants, the essential spectrum of the operator,
that is the set of complex numbers λ for which the operator L − λ does not
satisfy the Fredholm property, can be explicitly calculated by virtue of the
Fourier transform:

λ±(ξ) = − a±ξ2 + b±iξ + c±, ξ ∈ R.

Invertibility of limiting operators is equivalent to the condition that the
essential spectrum does not contain the origin.

In the case of general elliptic problems, the same assertions hold true.
The Fredholm property is satisfied if the essential spectrum does not contain
the origin or if the limiting operators are invertible. However, such conditions
may not be explicitly written.

When the operators fail to satisfy the Fredholm property, the standard
solvability conditions may not be applicable and solvability relations are, in
general, not known. There are some classes of operators for which solvabil-
ity conditions are obtained. We illustrate them with the following example.
Consider the equation

Lu ≡ ∆u + au = f (1.1)

in Rd, where a > 0 is a constant. The operator L here coincides with its lim-
iting operators. The homogeneous equation has a nonzero bounded solution.
Hence the Fredholm property is not satisfied. However, since the operator has
constant coefficients, we can use the Fourier transform and find the solution
explicitly. Solvability relations can be formulated as follows. If f ∈ L2(Rd)
and xf ∈ L1(Rd), then there exists a solution of this equation in H2(Rd) if
and only if

(
f(x),

eipx

(2π)
d
2

)

L2(Rd)

= 0, p ∈ Sd√
a

a.e.

(see [24]). Here and further down, Sd
r denotes the sphere in Rd of radius r

centered at the origin. Thus, though the operator is non-Fredholm, solvability
relations are formulated analogously. However, such similarity is only formal,
because the range of the operator is not closed.

In the case of the operator with a potential:

Lu ≡ ∆u + a(x)u = f,
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the Fourier transform cannot help. Nevertheless, solvability relations in R3

can be obtained by a rather sophisticated application of the theory of self-
adjoint operators (see [21]). As before, solvability conditions are formulated
in terms of orthogonality to solutions of the homogeneous adjoint problem.
There are several other examples of linear elliptic operators without Fredholm
property for which solvability relations can be derived (see [13–15,17–24]).

Solvability conditions play an important role in the analysis of nonlinear
elliptic problems. When the operators do not satisfy the Fredholm property,
in spite of some progress in understanding of linear problems, there exist
only few examples where nonlinear non-Fredholm operators are studied (see
[5–7,15,24,26]). In the present article, we deal with the nonlinear system, for
which the Fredholm property may not be satisfied:

∂uk

∂t
= ∆uk + akuk

+

∫

Ω

Gk(x − y)Fk(u1(y, t), u2(y, t), . . . , uN (y, t), y)dy, 1 ≤ k ≤ N. (1.2)

Here, all ak ≥ 0 and Ω is a domain in Rd, d = 1, 2, 3, the more physically
interesting dimensions. Problems of that kind appear in cell population dy-
namics. The space variable x here corresponds to the physical space or to
the cell genotype; uk(x, t) stand for the cell densities for various groups of
cells as functions of their genotype and time. The right side of system (1.2)
describes the evolution of cell densities via cell proliferation and mutations.
Here, the diffusion terms correspond to the change of genotype via small
random mutations, and the nonlocal terms describe large mutations. In this
context, Fk(u1, u2, . . . , uN , x) are the rates of cell birth which depend on the
vector function:

u := (u1, u2, . . . , uN ) ∈ RN (1.3)

and x (density-dependent proliferation), and the functions Gk(x − y) show
the proportion of newly born cells changing their genotype from y to x.
Let us assume that they depend on the distance between the genotypes.
In population dynamics, the integro-differential equations describe models
with intra-specific competition and nonlocal consumption of resources (see
[2,3,8]). The existence of stationary solutions of (1.2) was studied in [15] via
the fixed point technique. Related to problem (1.2), we consider the sequence
of iterated systems of equations with m ∈ N and 1 ≤ k ≤ N :

∂uk

∂t
= ∆uk + akuk

+

∫

Ω

Gk,m(x − y)Fk(u1(y, t), u2(y, t), . . . , uN (y, t), y)dy, ak ≥ 0. (1.4)

For 1 ≤ k ≤ N , each sequence of kernels Gk,m(x) → Gk(x) as m → ∞ in
the appropriate function spaces discussed below. Let us prove that, under
the appropriate technical conditions, each of systems (1.4) admits a unique
stationary solution vector function u(m)(x) ∈ H2; the limiting system (1.2)
will possess a unique stationary solution u(x) ∈ H2 and u(m)(x) → u(x) in
H2 as m → ∞, which is a so-called existence of stationary solutions in the
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sense of sequences. The similar ideas in the sense of standard Schrödinger-
type operators were exploited in [16] and [25]. The non-Fredholm operators
arise also when studying the so-called embedded solitons (see [11]).

2. Formulation of the Results

The nonlinear part of systems (1.2) and (1.4) will satisfy the regularity con-
ditions analogous to the ones of [15].

Assumption 1. Functions Fk(u, x) : RN ×Ω → R, 1 ≤ k ≤ N are such that
√√√√

N∑

k=1

F 2
k (u, x) ≤ K|u|RN + h(x) for u ∈ RN , x ∈ Ω, (2.1)

with a constant K > 0 and h(x) : Ω → R+, h(x) ∈ L2(Ω). Moreover, they
are Lipschitz continuous functions, such that, for any u(1),(2) ∈ RN , x ∈ Ω:

√√√√
N∑

k=1

(Fk(u(1), x) − Fk(u(2), x))2 ≤ L|u(1) − u(2)|RN , (2.2)

where a constant L > 0.

Here and further down, the norm of a vector given by (1.3) is

|u|RN :=

√√√√
N∑

k=1

u2
k.

Evidently, the stationary solutions of (1.2) and (1.4), which exist under the
appropriate technical conditions, will satisfy the system of nonlocal elliptic
equations:

∆uk +

∫

Ω

Gk(x − y)Fk(u1(y), u2(y), . . . , uN (y), y)dy + akuk = 0,

ak ≥ 0, 1 ≤ k ≤ N, (2.3)

and for m ∈ N, 1 ≤ k ≤ N :

∆u
(m)
k +

∫

Ω

Gk,m(x−y)Fk(u
(m)
1 (y), u

(m)
2 (y), . . . , u

(m)
N (y), y)dy+aku

(m)
k = 0, ak ≥ 0.

(2.4)
We denote

(f1(x), f2(x))L2(Ω) :=

∫

Ω

f1(x)f̄2(x)dx,

with a slight abuse of notations when these functions are not square inte-
grable, like, for instance, those used in the orthogonality conditions of As-
sumption 2 below. Indeed, if f1(x) ∈ L1(Ω) and f2(x) is bounded in Ω, then
the integral in the right side of the definition above makes sense. In the first
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part of the work, we consider the case of Ω = Rd, such that the appropriate
Sobolev space is equipped with the norm:

‖u‖2
H2(Rd, RN ) :=

N∑

k=1

‖uk‖2
H2(Rd) =

N∑

k=1

{‖uk‖2
L2(Rd) + ‖∆uk‖2

L2(Rd)}. (2.5)

We will also use the norm

‖u‖2
L2(Rd, RN ) :=

N∑

k=1

‖uk‖2
L2(Rd).

The main issue for systems (2.3) and (2.4) above is that the operators −∆ −
ak : H2(Rd) → L2(Rd), ak ≥ 0 do not satisfy the Fredholm property, which
is the obstacle when solving such systems. The similar situations arise in
linear and nonlinear equations; both self-adjoint and non self-adjoint involv-
ing non-Fredholm second- or fourth-order differential operators or systems of
equations with non-Fredholm operators have been studied extensively in the
recent years (see [14–16,18–27]). Let us make the following assumption on
the integral kernels involved in the nonlocal parts of (2.4).

Assumption 2. Let m ∈ N, Gk,m(x) : Rd → R, such that Gk,m(x) ∈ L1(Rd)
and Gk,m(x) → Gk(x) in L1(Rd) as m → ∞ with 1 ≤ k ≤ N, 1 ≤ d ≤ 3 and
1 ≤ l ≤ N − 1, l ∈ N with N ≥ 2.

(I) Let ak > 0, 1 ≤ k ≤ l, assume that xGk,m(x) ∈ L1(Rd), such that
xGk,m(x) → xGk(x) in L1(Rd) as m → ∞ and for all m ∈ N:

(
Gk,m(x),

e±i
√

akx

√
2π

)

L2(R)

= 0, d = 1. (2.6)

(
Gk,m(x),

eipx

(2π)
d
2

)

L2(Rd)

= 0, p ∈ Sd√
ak

, d = 2, 3. (2.7)

(II) Let ak = 0, l + 1 ≤ k ≤ N , assume that x2Gk,m(x) ∈ L1(Rd), such
that x2Gk,m(x) → x2Gk(x) in L1(Rd) as m → ∞ and for all m ∈ N

(Gk,m(x), 1)L2(Rd) = 0 and (Gk,m(x), xs)L2(Rd) = 0, 1 ≤ s ≤ d. (2.8)

Let us use the hat symbol throughout the work to designate the standard
Fourier transform, such that

Ĝk(p) :=
1

(2π)
d
2

∫

Rd

Gk(x)e−ipxdx, p ∈ Rd. (2.9)

Thus

‖Ĝk(p)‖L∞(Rd) ≤ 1

(2π)
d
2

‖Gk(x)‖L1(Rd). (2.10)
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Let us define the following auxiliary quantities for m ∈ N:

Mk,m := max

⎧
⎨
⎩

∥∥∥∥∥
Ĝk,m(p)

p2 − ak

∥∥∥∥∥
L∞(Rd)

,

∥∥∥∥∥
p2Ĝk,m(p)

p2 − ak

∥∥∥∥∥
L∞(Rd)

⎫
⎬
⎭ , 1 ≤ k ≤ l.

(2.11)

Mk,m := max

⎧
⎨
⎩

∥∥∥∥∥
Ĝk,m(p)

p2

∥∥∥∥∥
L∞(Rd)

,
∥∥∥Ĝk,m(p)

∥∥∥
L∞(Rd)

⎫
⎬
⎭ , l + 1 ≤ k ≤ N.

(2.12)

Similarly, in the limiting case, we have

Mk := max

⎧
⎨
⎩

∥∥∥∥∥
Ĝk(p)

p2 − ak

∥∥∥∥∥
L∞(Rd)

,

∥∥∥∥∥
p2Ĝk(p)

p2 − ak

∥∥∥∥∥
L∞(Rd)

⎫
⎬
⎭ , 1 ≤ k ≤ l.

(2.13)

Mk := max

⎧
⎨
⎩

∥∥∥∥∥
Ĝk(p)

p2

∥∥∥∥∥
L∞(Rd)

,
∥∥∥Ĝk(p)

∥∥∥
L∞(Rd)

⎫
⎬
⎭ , l + 1 ≤ k ≤ N.

(2.14)

Clearly, expressions (2.11) and (2.12) are finite due to Lemma A1 in one
dimension and Lemma A2 for d = 2, 3 of [22] under Assumption 2 above.
This enables us to define for each m ∈ N:

Mm := maxMk,m, 1 ≤ k ≤ N (2.15)

with Mk,m given by (2.11) and (2.12). Analogously, for the limiting case due
to Lemmas 6.1 and 6.2 of the Appendix of [27], we define

M := maxMk, 1 ≤ k ≤ N, (2.16)

which is finite. Our first main statement is as follows.

Theorem 3. Let Ω = Rd, d = 1, 2, 3, Assumptions 1 and 2 hold, and for all

m ∈ N, we have
√

2(2π)
d
2 MmL ≤ 1 − ε for some 0 < ε < 1. Then, each sys-

tem of equations (2.4) admits a unique solution u(m)(x) ∈ H2(Rd, RN ); the

limiting system of equations (2.3) has a unique solution u(x) ∈ H2(Rd, RN ),
such that u(m)(x) → u(x) in H2(Rd, RN ) as m → ∞.

The unique solution of each system (2.4) u(m)(x) is nontrivial pro-

vided the intersection of supports of the Fourier transforms of functions

supp ̂Fk(0, x) ∩ suppĜk,m is a set of nonzero Lebesgue measure in Rd for

some 1 ≤ k ≤ N . Similarly, the unique solution of the limiting system (2.3)

u(x) does not vanish identically if supp ̂Fk(0, x) ∩ suppĜk is a set of nonzero

Lebesgue measure in Rd for a certain 1 ≤ k ≤ N .

The second part of the present work deals with the studies of the anal-
ogous system on the finite interval with periodic boundary conditions for the
solution vector function and its first derivative, namely on Ω = I := [0, 2π].
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We assume the following about the integral kernels present in the nonlocal
parts of system (2.4) in such case.

Assumption 4. Let Ω = I, m ∈ N, Gk,m(x) : I → R, Gk,m(x) ∈ L∞(I), such
that Gk,m(x) → Gk(x) in L∞(I) as m → ∞ with Gk,m(0) = Gk,m(2π), 1 ≤
k ≤ N , where N ≥ 3 and 1 ≤ l < q ≤ N − 1, l, q ∈ N.

(I) Let ak > 0 and ak �= n2, n ∈ Z for 1 ≤ k ≤ l.
(II) Let ak = n2

k, nk ∈ N and
(

Gk,m(x),
e±inkx

√
2π

)

L2(I)

= 0, l + 1 ≤ k ≤ q. (2.17)

(III) Let ak = 0 and

(Gk,m(x), 1)L2(I) = 0, q + 1 ≤ k ≤ N. (2.18)

Let Fk(u, 0) = Fk(u, 2π) for u ∈ RN and k = 1, . . . , N .

We introduce the Fourier transform for functions on the [0, 2π] interval
as follows:

Gk,n :=

∫ 2π

0

Gk(x)
e−inx

√
2π

dx, n ∈ Z (2.19)

and define the following auxiliary expressions for m ∈ N:

Pk,m := max

{∥∥∥∥
Gk,m,n

n2 − ak

∥∥∥∥
l∞

,

∥∥∥∥
n2Gk,m,n

n2 − ak

∥∥∥∥
l∞

}
, 1 ≤ k ≤ l. (2.20)

Pk,m := max

{∥∥∥∥
Gk,m,n

n2 − n2
k

∥∥∥∥
l∞

,

∥∥∥∥
n2Gk,m,n

n2 − n2
k

∥∥∥∥
l∞

}
, l + 1 ≤ k ≤ q. (2.21)

Pk,m := max

{∥∥∥∥
Gk,m,n

n2

∥∥∥∥
l∞

, ‖Gk,m,n‖
l∞

}
, q + 1 ≤ k ≤ N. (2.22)

In the limiting case, we will use

Pk := max

{∥∥∥∥
Gk,n

n2 − ak

∥∥∥∥
l∞

,

∥∥∥∥
n2Gk,n

n2 − ak

∥∥∥∥
l∞

}
, 1 ≤ k ≤ l. (2.23)

Pk := max

{∥∥∥∥
Gk,n

n2 − n2
k

∥∥∥∥
l∞

,

∥∥∥∥
n2Gk,n

n2 − n2
k

∥∥∥∥
l∞

}
, l + 1 ≤ k ≤ q. (2.24)

Pk := max

{∥∥∥∥
Gk,n

n2

∥∥∥∥
l∞

, ‖Gk,n‖
l∞

}
, q + 1 ≤ k ≤ N. (2.25)

Evidently, expressions (2.20), (2.21), and (2.22) are finite by virtue of Lemma
A3 of [22] under Assumption 4 above. This allows us to define for each m ∈ N:

Pm := maxPk,m, 1 ≤ k ≤ N (2.26)

with Pk,m given by (2.20), (2.21), and (2.22). Similarly, in the limiting case
by means of Lemma 6.3 of the Appendix of [27], we define

P := maxPk, 1 ≤ k ≤ N, (2.27)

which is finite. Let us use here the corresponding functional space:

H2(I) :={v(x) : I →R | v(x), v′′(x)∈L2(I), v(0)=v(2π), v′(0)=v′(2π)},
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aiming at uk(x) ∈ H2(I), 1 ≤ k ≤ l. We introduce the following auxiliary
constrained subspaces:

H2
k(I) :=

{
v ∈ H2(I) |

(
v(x),

e±inkx

√
2π

)

L2(I)

=0

}
, nk ∈N, l+1≤k≤q,

with the goal of having uk(x) ∈ H2
k(I), l + 1 ≤ k ≤ q. Finally:

H2
0 (I) := {v ∈ H2(I) | (v(x), 1)L2(I) = 0}, q + 1 ≤ k ≤ N.

Our aim is to have uk(x) ∈ H2
0 (I), q+1 ≤ k ≤ N . The constrained subspaces

defined above are Hilbert spaces, as well (see Chapter 2.1 of [9]). The resulting
space used for proving the existence in the sense of sequences of solutions
u(x) : I → RN of system (2.3) will be the direct sum of the spaces given
above, such that

H2
c (I, RN ) := ⊕l

k=1H
2(I) ⊕q

k=l+1 H2
k(I) ⊕N

k=q+1 H2
0 (I).

The corresponding Sobolev norm is given by

‖u‖2
H2

c (I, RN ) :=
N∑

k=1

{‖uk‖2
L2(I) + ‖u′′

k‖2
L2(I)}

with u(x) : I → RN . Another useful norm here is

‖u‖2
L2(I, RN ) :=

N∑

k=1

‖uk‖2
L2(I).

Our second main result is as follows.

Theorem 5. Let Ω = I, Assumptions 1 and 4 hold, and for all m ∈ N, we

have 2
√

πPmL ≤ 1 − ε with some 0 < ε < 1. Then, each system of equations

(2.4) possesses a unique solution u(m)(x) ∈ H2
c (I, RN ); the limiting system

of equations (2.3) admits a unique solution u(x) ∈ H2
c (I, RN ), such that

u(m)(x) → u(x) in H2
c (I, RN ) as m → ∞.

The unique solution of each system (2.4) u(m)(x) is nontrivial provided

the Fourier coefficients Gk,m,nFk(0, x)n �= 0 for some k = 1, . . . , N and some

n ∈ Z. Similarly, the unique solution of limiting system (2.3) u(x) does not

vanish identically if Gk,nFk(0, x)n �= 0 for some k = 1, . . . , N and some

n ∈ Z.

Remark. We use the constrained subspaces H2
k(I) and H2

0 (I) involved in
the direct sum of spaces H2

c (I, RN ), such that the Fredholm operators

− d2

dx2 − n2
k : H2

k(I) → L2(I) and − d2

dx2 : H2
0 (I) → L2(I) have trivial kernels.

We conclude the article with the studies of our system on the product
of sets, where one is the finite interval I with periodic boundary conditions as
before and another is the whole space of dimension not exceeding two, such
that in our notations Ω = I × Rd = [0, 2π] × Rd, d = 1, 2 and x = (x1, x⊥)
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with x1 ∈ I and x⊥ ∈ Rd. The total Laplace operator in such context will
be

∆ :=
∂2

∂x2
1

+
d∑

s=1

∂2

∂x2
⊥,s

.

The appropriate Sobolev space for the problem is H2(Ω, RN ) of vector func-
tions u(x) : Ω → RN , such that for k=1,. . . ,N

uk(x), ∆uk(x) ∈ L2(Ω), uk(0, x⊥) = uk(2π, x⊥),
∂uk

∂x1
(0, x⊥) =

∂uk

∂x1
(2π, x⊥)

with x⊥ ∈ Rd a.e. It is equipped with the norm:

‖u‖2
H2(Ω, RN ) :=

N∑

k=1

{‖uk‖2
L2(Ω) + ‖∆uk‖2

L2(Ω)}.

Another norm used here is given by the following:

‖u‖2
L2(Ω, RN ) :=

N∑

k=1

‖uk‖2
L2(Ω).

Similar to the whole space case studied in Theorem 3, the operators −∆−ak :
H2(Ω) → L2(Ω), ak ≥ 0 do not possess the Fredholm property.

Assumption 6. Let m ∈ N, Gk,m(x) : Ω → R, Gk,m(x) ∈ L1(Ω):

Gk,m(x) → Gk(x) in L1(Ω), m → ∞,

for x⊥ ∈ Rd a.e. Gk,m(0, x⊥) = Gk,m(2π, x⊥) ∈ L∞(Rd), such that

Gk,m(0, x⊥) → Gk(0, x⊥), Gk,m(2π, x⊥) → Gk(2π, x⊥) in L∞(Rd), m → ∞
and Fk(u, 0, x⊥) = Fk(u, 2π, x⊥) for x⊥ ∈ Rd a.e., u ∈ RN , d = 1, 2 and
k = 1, . . . , N . Let N ≥ 3 and 1 ≤ l < q ≤ N − 1 with l, q ∈ N.

(I) Assume that, for 1 ≤ k ≤ l, we have n2
k < ak < (nk + 1)2, nk ∈

Z+ = N ∪ {0}, x⊥Gk,m(x) ∈ L1(Ω), such that x⊥Gk,m(x) → x⊥Gk(x) in
L1(Ω) as m → ∞ and

⎛
⎝Gk,m(x1, x⊥),

einx1

√
2π

e±i
√

ak−n2x⊥

√
2π

⎞
⎠

L2(Ω)

= 0, |n| ≤ nk, d = 1, (2.28)

(
Gk,m(x1, x⊥),

einx1

√
2π

eipx⊥

2π

)

L2(Ω)

= 0, p ∈ S
2√

ak−n2 , |n| ≤ nk, d = 2. (2.29)

(II) Assume that, for l+1 ≤ k ≤ q, we have ak = n2
k, nk ∈ N, x2

⊥Gk,m(x)
∈ L1(Ω), such that x2

⊥Gk,m(x) → x2
⊥Gk(x) in L1(Ω) as m → ∞ and

(
Gk,m(x1, x⊥),

einx1

√
2π

e±i
√

n2
k
−n2x⊥

√
2π

)

L2(Ω)

= 0, |n| ≤ nk − 1, d = 1, (2.30)

(
Gk,m(x1, x⊥),

einx1

√
2π

eipx⊥

2π

)

L2(Ω)

= 0, p ∈ S
2√

n2
k
−n2 , |n| ≤ nk − 1, d = 2, (2.31)

(
Gk,m(x1, x⊥),

e±inkx1

√
2π

)

L2(Ω)

= 0,

(
Gk,m(x1, x⊥),

e±inkx1

√
2π

x⊥,s

)

L2(Ω)

= 0, (2.32)
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for 1 ≤ s ≤ d.

(III) Assume that, for q + 1 ≤ k ≤ N , we have ak = 0, x2
⊥Gk,m(x) ∈

L1(Ω), such that x2
⊥Gk,m(x) → x2

⊥Gk(x) in L1(Ω) as m → ∞ and

(Gk,m(x), 1)L2(Ω) = 0, (Gk,m(x), x⊥,s)L2(Ω) = 0, 1 ≤ s ≤ d. (2.33)

Let us use the Fourier transform for functions on such a product of sets,
namely for d = 1, 2 and k = 1, . . . , N :

Ĝk,n(p) :=
1

(2π)
d+1

2

∫

Rd

dx⊥e−ipx⊥

∫ 2π

0

Gk(x1, x⊥)e−inx1dx1, p ∈ R
d, n ∈ Z.

(2.34)
Thus

‖Ĝk,n(p)‖L∞
n,p

:= sup{p∈Rd,n∈Z}|Ĝk,n(p)| ≤ 1

(2π)
d+1
2

‖Gk‖L1(Ω).

For the technical purposes, we define the following quantities for m ∈ N:

Rk,m := max

⎧
⎨
⎩

∥∥∥∥∥
Ĝk,m,n(p)

p2 + n2 − ak

∥∥∥∥∥
L∞

n,p

,

∥∥∥∥∥
(p2 + n2)Ĝk,m,n(p)

p2 + n2 − ak

∥∥∥∥∥
L∞

n,p

⎫
⎬
⎭ ,

(2.35)

1 ≤ k ≤ l. (2.36)

Rk,m := max

⎧
⎨
⎩

∥∥∥∥∥
Ĝk,m,n(p)

p2 + n2 − n2
k

∥∥∥∥∥
L∞

n,p

,

∥∥∥∥∥
(p2 + n2)Ĝk,m,n(p)

p2 + n2 − n2
k

∥∥∥∥∥
L∞

n,p

⎫
⎬
⎭ ,

(2.37)

l + 1 ≤ k ≤ q. (2.38)

Rk,m := max

⎧
⎨
⎩

∥∥∥∥∥
Ĝk,m,n(p)

p2 + n2

∥∥∥∥∥
L∞

n,p

,
∥∥∥Ĝk,m,n(p)

∥∥∥
L∞

n,p

⎫
⎬
⎭ , (2.39)

q + 1 ≤ k ≤ N. (2.40)

In the limiting case, we have

Rk := max

⎧
⎨
⎩

∥∥∥∥∥
Ĝk,n(p)

p2 + n2 − ak

∥∥∥∥∥
L∞

n,p

,

∥∥∥∥∥
(p2 + n2)Ĝk,n(p)

p2 + n2 − ak

∥∥∥∥∥
L∞

n,p

⎫
⎬
⎭ , (2.41)

1 ≤ k ≤ l. (2.42)

Rk := max

⎧
⎨
⎩

∥∥∥∥∥
Ĝk,n(p)

p2 + n2 − n2
k

∥∥∥∥∥
L∞

n,p

,

∥∥∥∥∥
(p2 + n2)Ĝk,n(p)

p2 + n2 − n2
k

∥∥∥∥∥
L∞

n,p

⎫
⎬
⎭ , (2.43)

l + 1 ≤ k ≤ q. (2.44)

Rk := max

⎧
⎨
⎩

∥∥∥∥∥
Ĝk,n(p)

p2 + n2

∥∥∥∥∥
L∞

n,p

,
∥∥∥Ĝk,n(p)

∥∥∥
L∞

n,p

⎫
⎬
⎭ , q + 1 ≤ k ≤ N.

(2.45)
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Assumption 6 along with Lemmas A6, A5, and A4 of [22] yield that the
expressions given by (2.35), (2.37), and (2.39) are finite, which enables us to
define for each m ∈ N:

Rm := maxRk,m, k = 1, . . . , N,

with Rk,m given in (2.35), (2.37), and (2.39). Analogously, in the limiting
case by virtue of Lemmas 6.6, 6.5, and 6.4 of the Appendix of [27], we define
the finite quantity

R := maxRk, k = 1, . . . , N.

The final statement of the work is as follows.

Theorem 7. Let Ω = I × Rd, d = 1, 2, Assumptions 1 and 6 hold, and for

all m ∈ N, we have
√

2(2π)
d+1
2 RmL ≤ 1 − ε for some 0 < ε < 1. Then, each

system of equations (2.4) admits a unique solution u(m)(x) ∈ H2(Ω, RN ); the

limiting system of equations (2.3) has a unique solution u(x) ∈ H2(Ω, RN ),
such that u(m)(x) → u(x) in H2(Ω, RN ) as m → ∞.

The unique solution of each system (2.4) u(m)(x) is nontrivial pro-

vided that the intersection of supports of the Fourier transforms of func-

tions supp ̂Fk(0, x)n(p) ∩ suppĜk,m,n(p) is a set of nonzero Lebesgue mea-

sure in Rd for some k = 1, . . . , N and for some n ∈ Z. Similarly, the

unique solution of limiting system (2.3) u(x) does not vanish identically if

supp ̂Fk(0, x)n(p) ∩ suppĜk,n(p) is a set of nonzero Lebesgue measure in Rd

for a certain k = 1, . . . , N and for some n ∈ Z.

Remark. Note that, in the work, we deal with real-valued vector functions
by means of the assumptions on Fk(u, x), Gk,m(x) and Gk(x), k = 1, . . . , N

involved in the nonlocal terms of systems (2.4) and (2.3).

3. The Whole Space Case

Proof of Theorem 3. By virtue of Theorem 3 of [15], each system of equations
(2.4) possesses a unique solution u(m)(x) ∈ H2(Rd, RN ), m ∈ N. System
(2.3) has a unique solution u(x) ∈ H2(Rd, RN ) as a result of Lemmas 6.1
and 6.2 of the Appendix of [27] in dimensions d = 1 and d = 2, 3, respectively,
along with Theorem 3 of [15].

We apply the standard Fourier transform (2.9) on both sides of systems
(2.3) and (2.4). This gives us for k = 1, . . . , N and m ∈ N:

ûk(p) = (2π)
d
2
Ĝk(p)f̂k(p)

p2 − ak

, û
(m)
k (p) = (2π)

d
2
Ĝk,m(p)f̂k,m(p)

p2 − ak

, (3.1)
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with f̂k(p) and f̂k,m(p) denoting the Fourier transforms of Fk(u(x), x) and

Fk(u(m)(x), x), respectively. Evidently, we have the upper bound

|û(m)
k (p) − ûk(p)| ≤ (2π)

d
2

∥∥∥∥∥
Ĝk,m(p)

p2 − ak

− Ĝk(p)

p2 − ak

∥∥∥∥∥
L∞(Rd)

|f̂k(p)|

+ (2π)
d
2

∥∥∥∥∥
Ĝk,m(p)

p2 − ak

∥∥∥∥∥
L∞(Rd)

|f̂k,m(p) − f̂k(p)|.

Hence

‖u
(m)
k − uk‖L2(Rd) ≤ (2π)

d

2

∥∥∥∥∥
Ĝk,m(p)

p2 − ak

− Ĝk(p)

p2 − ak

∥∥∥∥∥
L∞(Rd)

‖Fk(u(x), x)‖L2(Rd)

+ (2π)
d

2

∥∥∥∥∥
Ĝk,m(p)

p2 − ak

∥∥∥∥∥
L∞(Rd)

‖Fk(u(m)(x), x) − Fk(u(x), x)‖L2(Rd).

By means of inequality (2.2) of Assumption 1, we have

√√√√
N∑

k=1

‖Fk(u(m)(x), x) − Fk(u(x), x)‖2
L2(Rd)

≤ L‖u(m) − u‖L2(Rd, RN ). (3.2)

Note that u
(m)
k (x), uk(x) ∈ H2(Rd) ⊂ L∞(Rd), k = 1, . . . , N, d ≤ 3 by

means of the Sobolev embedding. Hence, we obtain

‖u(m) − u‖2
L2(Rd, RN )

≤ 2(2π)d

N∑

k=1

∥∥∥∥∥
Ĝk,m(p)

p2 − ak

− Ĝk(p)

p2 − ak

∥∥∥∥∥

2

L∞(Rd)

‖Fk(u(x), x)‖2
L2(Rd)

+ 2(2π)dM2
mL2‖u(m) − u‖2

L2(Rd, RN ),

such that

‖u(m) − u‖2
L2(Rd, RN )

≤ 2(2π)d

ε(2 − ε)

N∑

k=1

∥∥∥∥∥
Ĝk,m(p)

p2 − ak

− Ĝk(p)

p2 − ak

∥∥∥∥∥

2

L∞(Rd)

‖Fk(u(x), x)‖2
L2(Rd).

By virtue of inequality (2.1) of Assumption 1, we have Fk(u(x), x) ∈ L2(Rd),
k = 1, . . . , N for u(x) ∈ H2(Rd, RN ). Thus,

u(m)(x) → u(x), m → ∞ (3.3)

in L2(Rd, RN ) due to Lemmas 6.1 and 6.2 of the Appendix of [27] for d = 1
and d = 2, 3, respectively. Obviously, for k = 1, . . . , N and m ∈ N:

p2ûk(p) = (2π)
d
2
p2Ĝk(p)f̂k(p)

p2 − ak

, p2û
(m)
k (p) = (2π)

d
2
p2Ĝk,m(p)f̂k,m(p)

p2 − ak

.
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Therefore

|p2û
(m)
k (p) − p2ûk(p)| ≤ (2π)

d
2

∥∥∥∥∥
p2Ĝk,m(p)

p2 − ak

− p2Ĝk(p)

p2 − ak

∥∥∥∥∥
L∞(Rd)

|f̂k(p)|

+ (2π)
d
2

∥∥∥∥∥
p2Ĝk,m(p)

p2 − ak

∥∥∥∥∥
L∞(Rd)

|f̂k,m(p) − f̂k(p)|.

By means of (3.2) we obtain for k = 1, . . . , N

‖∆u
(m)
k − ∆uk‖L2(Rd)

≤ (2π)
d
2

∥∥∥∥∥
p2Ĝk,m(p)

p2 − ak

− p2Ĝk(p)

p2 − ak

∥∥∥∥∥
L∞(Rd)

‖Fk(u(x), x)‖L2(Rd)

+ (2π)
d
2

∥∥∥∥∥
p2Ĝk,m(p)

p2 − ak

∥∥∥∥∥
L∞(Rd)

L‖u(m) − u‖L2(Rd, RN ).

Therefore, by means of Lemmas 6.1 and 6.2 of the Appendix of [27] in d = 1
and for d = 2, 3, respectively, along with (3.3), we arrive at ∆u(m)(x) →
∆u(x) in L2(Rd, RN ) as m → ∞. Norm definition (2.5) yields that u(m)(x) →
u(x) in H2(Rd, RN ) as m → ∞.

Suppose that the solution u(m)(x) of system (2.4) discussed above van-
ishes a.e. in Rd for some m ∈ N. This will contradict to the assumption that
the Fourier images of Gk,m(x) and Fk(0, x) do not vanish on a set of nonzero
Lebesgue measure in Rd for a certain 1 ≤ k ≤ N . The similar reasoning
holds for the solution u(x) of the limiting system of equations (2.3) discussed
above. �

4. The Problem on the Finite Interval

Proof of Theorem 5. Evidently, for 1 ≤ k ≤ N , we can estimate |Gk(0) −
Gk(2π)| from above by

|Gk(0) − Gk,m(0)| + |Gk,m(2π) − Gk(2π)|
≤ 2‖Gk,m(x) − Gk(x)‖L∞(I) → 0, m → ∞

as assumed, such that Gk(0) = Gk(2π). Clearly, under the stated conditions,
we have Gk,m(x) ∈ L1(I), m ∈ N and Gk,m(x) → Gk(x) in L1(I) for k =
1, . . . , N as m → ∞. By means of Theorem 5 of [15], each system (2.4) admits
a unique solution u(m)(x) belonging to H2

c (I, RN ) with m ∈ N. System (2.3)
possesses a unique solution u(x) belonging to H2

c (I, RN ) due to Lemma 6.3
of the Appendix of [27] along with Theorem 5 of [15].

Let us apply Fourier transform (2.19) on both sides of systems (2.3) and
(2.4). This gives us for n ∈ Z and 1 ≤ k ≤ N :

uk,n =
√

2π
Gk,nfk,n

n2 − ak

, u
(m)
k,n =

√
2π

Gk,m,nfk,m,n

n2 − ak

, m ∈ N (4.1)
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with fk,n and fk,m,n standing for the Fourier images of Fk(u(x), x) and

Fk(u(m)(x), x), respectively, under transform (2.19). This allows us to de-
rive the upper bound:

|u(m)
k,n − uk,n| ≤

√
2π

∥∥∥∥
Gk,m,n

n2 − ak

− Gk,n

n2 − ak

∥∥∥∥
l∞

|fk,n|

+
√

2π

∥∥∥∥
Gk,m,n

n2 − ak

∥∥∥∥
l∞

|fk,m,n − fk,n|.

Hence

‖u
(m)
k (x) − uk(x)‖L2(I) ≤

√
2π

∥∥∥∥
Gk,m,n

n2 − ak

− Gk,n

n2 − ak

∥∥∥∥
l∞

‖Fk(u(x), x)‖L2(I)

+
√

2π

∥∥∥∥
Gk,m,n

n2 − ak

∥∥∥∥
l∞

‖Fk(u(m)(x), x) − Fk(u(x), x)‖L2(I).

Inequality (2.2) of Assumption 1 gives us
√√√√

N∑

k=1

‖Fk(u(m)(x), x) − Fk(u(x), x)‖2
L2(I) ≤ L‖u(m) − u‖L2(I, RN ). (4.2)

Note that, by virtue of the Sobolev embedding, we have u
(m)
k (x), uk(x) ∈

H2(I) ⊂ L∞(I), 1 ≤ k ≤ N . Clearly

‖u(m) − u‖2
L2(I, RN ) ≤ 4π

N∑

k=1

∥∥∥∥
Gk,m,n

n2 − ak

− Gk,n

n2 − ak

∥∥∥∥
2

l∞

‖Fk(u(x), x)‖2
L2(I)

+ 4πP 2
mL2‖u(m) − u‖2

L2(I, RN ).

Thus

‖u(m) − u‖2
L2(I, RN ) ≤

4π

ε(2 − ε)

N∑

k=1

∥∥∥∥
Gk,m,n

n2−ak

− Gk,n

n2 − ak

∥∥∥∥
2

l∞

‖Fk(u(x), x)‖2
L2(I).

Obviously, Fk(u(x), x) ∈ L2(I), k = 1, . . . , N for u(x) ∈ H2
c (I, RN ) via

inequality (2.1) of Assumption 1. Then, by virtue of the result of Lemma 6.3
of the Appendix of [27], we arrive at

u(m)(x) → u(x), m → ∞, (4.3)

in L2(I, RN ). Apparently, for n ∈ Z, m ∈ N, 1 ≤ k ≤ N

n2uk,n =
√

2π
n2Gk,nfk,n

n2 − ak

, n2u
(m)
k,n =

√
2π

n2Gk,m,nfk,m,n

n2 − ak

.

Hence

|n2u
(m)
k,n − n2uk,n| ≤

√
2π

∥∥∥∥
n2Gk,m,n

n2 − ak

− n2Gk,n

n2 − ak

∥∥∥∥
l∞

|fk,n|

+
√

2π

∥∥∥∥
n2Gk,m,n

n2 − ak

∥∥∥∥
l∞

|fk,m,n − fk,n|,
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such that via (4.2)
∥∥∥∥

d2

dx2
u

(m)
k − d2

dx2
uk

∥∥∥∥
L2(I)

≤
√

2π

∥∥∥∥
n2Gk,m,n

n2 − ak

− n2Gk,n

n2−ak

∥∥∥∥
l∞

‖Fk(u(x), x)‖L2(I)

+
√

2π

∥∥∥∥
n2Gk,m,n

n2 − ak

∥∥∥∥
l∞

L‖u(m) − u‖L2(I, RN ).

By means of the result of Lemma 6.3 of the Appendix of [27] along with (4.3),
we obtain

d2

dx2
u(m)(x) → d2

dx2
u(x), m → ∞,

in L2(I, RN ). Thus, u(m)(x) → u(x) in the H2
c (I, RN ) norm as m → ∞.

Suppose that u(m)(x) vanishes a.e. in I for some m ∈ N. Then, we will
arrive at the contradiction to the assumption that the Fourier coefficients
Gk,m,nFk(0, x)n �= 0 for some k = 1, . . . , N and a certain n ∈ Z. The similar
argument holds for the solution u(x) of the limiting system (2.3) discussed
above. �

5. The Problem on the Product of Sets

Proof of Theorem 7. Clearly, for 1 ≤ k ≤ N , the norm ‖Gk(0, x⊥)−Gk(2π, x⊥)
‖L∞(Rd) can be bounded from above by

‖Gk(0, x⊥) − Gk,m(0, x⊥)‖L∞(Rd)

+ ‖Gk,m(2π, x⊥) − Gk(2π, x⊥)‖L∞(Rd) → 0, m → ∞
as assumed, such that Gk(0, x⊥) = Gk(2π, x⊥) for x⊥ ∈ Rd a.e.. By virtue of
Theorem 7 of [15], each system (2.4) possesses a unique solution u(m)(x) ∈
H2(Ω, RN ), m ∈ N. System (2.3) admits a unique solution u(x) ∈ H2(Ω, RN )
as a result of Lemmas 6.6, 6.5, and 6.4 of the Appendix of [27] along with
Theorem 7 of [15].

Let us apply Fourier transform (2.34) on both sides of systems (2.3) and
(2.4). This gives us for k = 1, . . . , N, n ∈ Z, p ∈ Rd, d = 1, 2, m ∈ N:

ûk,n(p) = (2π)
d+1
2

Ĝk,n(p)f̂k,n(p)

p2 + n2 − ak

, ûk,m,n(p) = (2π)
d+1
2

Ĝk,m,n(p)f̂k,m,n(p)

p2 + n2 − ak

,

(5.1)

with f̂k,n(p) and f̂k,m,n(p) denoting the Fourier images of Fk(u(x), x) and

Fk(u(m)(x), x), respectively, for k = 1, . . . , N under transform (2.34). This
enables us to derive the upper bound:

|ûk,m,n(p) − ûk,n(p)|

≤ (2π)
d+1
2

∥∥∥∥∥
Ĝk,m,n(p)

p2 + n2 − ak

− Ĝk,n(p)

p2 + n2 − ak

∥∥∥∥∥
L∞

n,p

|f̂k,n(p)|

+ (2π)
d+1
2

∥∥∥∥∥
Ĝk,m,n(p)

p2 + n2 − ak

∥∥∥∥∥
L∞

n,p

|f̂k,m,n(p) − f̂k,n(p)|.
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Hence, for k = 1, . . . , N

‖u
(m)
k (x) − uk(x)‖L2(Ω)

≤ (2π)
d+1
2

∥∥∥∥∥
Ĝk,m,n(p)

p2 + n2 − ak

− Ĝk,n(p)

p2 + n2 − ak

∥∥∥∥∥
L∞

n,p

‖Fk(u(x), x)‖L2(Ω)

+ (2π)
d+1
2

∥∥∥∥∥
Ĝk,m,n(p)

p2 + n2 − ak

∥∥∥∥∥
L∞

n,p

‖Fk(u(m)(x), x) − Fk(u(x), x)‖L2(Ω).

Inequality (2.2) of Assumption 1 yields

√√√√
N∑

k=1

‖Fk(u(m)(x), x) − Fk(u(x), x)‖2
L2(Ω) ≤ L‖u(m)(x) − u(x)‖L2(Ω, RN ).

(5.2)

Note that, due to the Sobolev embedding, we have u
(m)
k (x), uk(x) ∈ H2(Ω) ⊂

L∞(Ω), k = 1, . . . , N . Evidently

‖u(m) − u‖2
L2(Ω, RN )

≤ 2(2π)d+1
N∑

k=1

∥∥∥∥∥
Ĝk,m,n(p)

p2 + n2 − ak

− Ĝk,n(p)

p2 + n2 − ak

∥∥∥∥∥

2

L∞
n,p

‖Fk(u(x), x)‖2
L2(Ω)

+ 2(2π)d+1R2
mL2‖u(m) − u‖2

L2(Ω, RN ).

Therefore, we obtain

‖u(m) − u‖2
L2(Ω, RN )

≤ 2(2π)d+1

ε(2 − ε)

N∑

k=1

∥∥∥∥∥
Ĝk,m,n(p)

p2 + n2 − ak

− Ĝk,n(p)

p2 + n2 − ak

∥∥∥∥∥

2

L∞
n,p

‖Fk(u(x), x)‖2
L2(Ω).

Evidently, Fk(u(x), x) ∈ L2(Ω), k = 1, . . . , N for u(x) ∈ H2(Ω, RN ) due to
inequality (2.1) of Assumption 1. By virtue of the results of Lemmas 6.6, 6.5,
and 6.4 of the Appendix of [27], we derive

u(m)(x) → u(x), m → ∞, (5.3)

in L2(Ω, RN ). Obviously

|(p2 + n2)ûk,m,n(p) − (p2 + n2)ûk,n(p)|

≤ (2π)
d+1
2

∥∥∥∥∥
(p2 + n2)Ĝk,m,n(p)

p2 + n2 − ak

− (p2 + n2)Ĝk,n(p)

p2 + n2 − ak

∥∥∥∥∥
L∞

n,p

|f̂k,n(p)|

+ (2π)
d+1
2

∥∥∥∥∥
(p2 + n2)Ĝk,m,n(p)

p2 + n2 − ak

∥∥∥∥∥
L∞

n,p

|f̂k,m,n(p) − f̂k,n(p)|.
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Via (5.2), this gives us

‖∆u
(m)
k (x) − ∆uk(x)‖L2(Ω)

≤ (2π)
d+1
2

∥∥∥∥∥
(p2 + n2)Ĝk,m,n(p)

p2+n2 − ak

− (p2+n2)Ĝk,n(p)

p2+n2 − ak

∥∥∥∥∥
L∞

n,p

‖Fk(u(x), x)‖L2(Ω)

+ (2π)
d+1
2

∥∥∥∥∥
(p2 + n2)Ĝk,m,n(p)

p2 + n2 − ak

∥∥∥∥∥
L∞

n,p

L‖u(m)(x) − u(x)‖L2(Ω, RN ).

By virtue of (5.3) along with the results of Lemmas 6.6, 6.5, and 6.4 of the
Appendix of [27], we obtain

∆u(m)(x) → ∆u(x), m → ∞,

in L2(Ω, RN ). Thus, we arrive at

u(m)(x) → u(x), m → ∞,

in H2(Ω, RN ). Suppose that u(m)(x) vanishes a.e. in Ω for some m ∈ N. This
gives us the contradiction to the assumption that there exist k = 1, . . . , N

and n ∈ Z, such that suppĜk,m,n(p) ∩ supp ̂Fk(0, x)n(p) is a set of nonzero
Lebesgue measure in Rd. The similar argument is valid for the solution u(x)
of limiting system (2.3) considered above. �

6. Discussion

Let us conclude the work with a short discussion of biological interpretations
of our results. All tissues and organs in a biological organism are characterized
by the cell distribution with respect to their genotype. Without mutations,
all cells would possess the same genotype. Due to mutations, the genotype
changes and represents a certain distribution around its principal value. The
stationary solutions of such systems yield a stationary cell distribution with
respect to the genotype. Existence of these stationary distributions is an
important property of biological organisms which allows their existence as
steady-state systems. We prove the existence of stationary solutions in the
space of integrable functions decaying at infinity. Biologically, this implies
that the cell distribution with respect to the genotype decays as the dis-
tance from the main genotype increases. Our results show what conditions
should be imposed on cell proliferation, mutations, and influx to arrive at
such distributions. In the context of population dynamics, our results apply
also to biological species where individuals are distributed around some aver-
age genotype. In this case, the existence of stationary solutions corresponds
to the existence of biological species (see [4]).
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