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Image enhancement with PDEs
and nonconservative advection flow fields

Vincent Jaouen∗, Julien Bert, Nicolas Boussion, Hadi Fayad, Mathieu Hatt and Dimitris Visvikis, Senior
Member, IEEE

Abstract—We propose a new method for the progressive
enhancement of images degraded by noise and blur using shock
filters. The originality of our approach lies in the iterative
exploitation of nonconservative edge based force fields normally
designed for segmentation to determine both locations and am-
plitudes of the sharpening action. The proposed Nonconservative
Shock Filter (NCSF) produces images with strong discontinuities
that can be used as an additional pre-processing step to facilitate
higher level tasks such as edge detection or segmentation. NCSF
is especially useful when coupled with an anisotropic diffusion
equation in noisy configurations. Using the proposed method,
edges that are not well defined prior to filtering can be iteratively
recovered. We show processing results on various types of
images, focusing on medical transrectal ultrasound and brain
PET imaging.

Index Terms—Image enhancement, Image sharpening, De-
noising, Partial differential equations, Shock filter, Anisotropic
diffusion.

I. INTRODUCTION

INITIATED by the non-local means algorithm [1], image
denoising techniques aiming at solving the known additive

white Gaussian noise (AWGN) model have improved con-
siderably over the past decade, mainly thanks to patch-based
approaches. State-of-the-art techniques include block matching
and 3D filtering (BM3D) and its variants [2], [3], spatially
adaptive iterative singular-value thresholding (SAIST) [4],
Non-Local Bayes [5], or online dictionary learning using
patches [6] or patch groups [7]. It was recently suggested that
modern approaches could be close to reaching a theoretical
limit in terms of minimization of the mean square error (MSE)
[8], [9], to the point that a recent publication claims that ”to
a large extent, removal of zero-mean white additive Gaussian
noise from an image is a solved problem in image processing”
[10].

This statement however concerns natural photographic im-
ages with high levels of details, at which are devoted most
efforts in the image processing community. Other types of
images such as medical images, which typically present less
details and more noise, are likely to have more room for
improvement towards these theoretical bounds [9]. Moreover,
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alongside noise, medical images are often affected by ad-
ditional distortions. These include blur, insufficient contrast
between regions of interest or artifacts that further complicate
higher level processing tasks such as edge detection or seg-
mentation. In these cases, noise suppression is not sufficient
and application-specific image alteration is needed. One rather
use in this context the concept of image enhancement [11],
which can be considered as an intermediate processing level
between denoising (where mild modification of the original
image occurs), and segmentation (where image regions are
fully abstracted into independent objects). Among various
application contexts, image enhancement may be required in
medical images where objects of interest (organs, tumors...)
are large compared to the field of view and in which smaller
details are artificial or irrelevant for the task at hand. For
example, appropriate pre-processing techniques that render
macroscopic features more visible may be of practical interest
for facilitating user guided image analysis tasks and automated
segmentation or co-registration between different imaging
modalities. The appropriateness of an enhancement method is
entirely dependent on the targeted application, and the ultimate
judge of the performance of an enhancement technique is often
the user [11]. This is in contrast to the restoration of images
corrupted by a known degradation model, where methods can
be validated using full-reference image quality metrics based
on distances to clean images, such as signal-to-noise ratio
(SNR) or structural similarity [12].

In this paper, we focus on the common requirement of
sharpening image edges while smearing out noise and irrele-
vant details. We propose a new partial differential equation
(PDE)-based filtering formulation by coupling a nonlinear
diffusion term and a new regularized shock filter term. By
exploiting nonconservative edge flow fields normally designed
for active contour segmentation, we iteratively estimate the
locations of shocks, that can yield improved sharpening ef-
fects. Following a recent work [13], we also reformulate the
action of shock filtering as an advection process of the image
intensities embedded in external vector fields, allowing for fast
approximations of the proposed scheme.

Images obtained after processing with the proposed method
compare favorably to state of the art approaches accord-
ing to both subjective evaluation and quantitative evaluation
metrics. In the present case, we focus on edge detection,
image sharpness, and segmentation accuracy with application
to transrectal medical ultrasound (TRUS) images, as well as
the improvement of partial volume corrected positron emission
tomography (PET) brain images.
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The rest of the article is organized as follows. In the next
section, we present current PDE-based approaches for image
enhancement and their limitations. Section III describes the
proposed shock filter based on nonconservative fields. The
validation setup used in our experiments in described in section
IV. Results are presented in section V. Finally, conclusions are
drawn in section VI.

II. BACKGROUND

In this section, we briefly discuss partial differential equa-
tions in image processing and describe related PDE-based
enhancement approaches using shock filters.

A. Partial differential equations in image processing

Unlike patch-based approaches that rely on self-similarities
of local patches across the image domain, pixel-based regu-
larizers such as Tikhonov [14], Mumford-Shah [15] or total
variation (TV) regularization methods [16] rely on the hy-
pothesis that images obey to global generic priors, such as
piecewise constancy or piecewise linearity. These priors are
often expressed under the variational framework, where the
solution image corresponds to the minimization of an energy
integrated across the image domain [17].

Most developments in image regularization were made
during the 1990s using regularizing PDEs, where image evo-
lution towards a solution is understood as an iterative gradi-
ent descent scheme for solving the Euler-Lagrange equation
associated with the corresponding variational problem [18],
[19]. Since the seminal work on anisotropic diffusion [20],
PDE schemes have become a field on their own, and many
proposed regularizing PDEs do not necessarily derive from a
variational formulation. Under the framework of PDEs, various
terms can be combined to obtain different and simultaneous
desired effects for the targeted application. Due to this modular
nature, they can lead to a wide variety of outputs, ranging from
low-level denoising to super-resolution or image segmentation,
and are well-adapted to image enhancement [21], [22]. Such
schemes allow equally for an easy extension to vector-valued
images like color or multimodal images [23]–[25]. For these
reasons, while PDEs are generally considered less effective
than patch-based approaches for natural image denoising due
to their general tendency to smear out image details [7], they
are still popular for medical imaging applications [26]–[29].

B. Shock filter

A popular edge sharpening scheme using PDEs is the shock
filter (SF), a nonlinear hyperbolic operator that restores shock-
like patterns (i.e. sharp discontinuities) in blurred signals. Its
general PDE formulation is :

It = −S (L(I)) ‖∇I‖ s.t. I0 = I, (1)

where subscript ·t denotes partial derivative with respect
to Euler time t, L(I) is a signed edge indicator function
and S is a sign-preserving function of this edge response.
In the original formulation of the SF [30], S(x) = sign(x)
and L = Iηη , where η is the direction of the image gradient,

so that shocks are recovered around the zero-crossings of the
second directional derivative along the gradient direction. This
scheme is extremely unstable due to the sensitivity of the
second derivative to noise. For this reason, a PDE scheme
in which a Gaussian regularized SF term is coupled to mean
curvature flow was previously proposed [31] :

It = −S(Gσ ∗ Iηη)‖∇I‖+ cIξξ s.t. I0 = I, (2)

where ξ is the direction perpendicular to the gradient direction
η (isophote direction), Gσ is a Gaussian kernel of scale σ and
∗ is the convolution operation. A SF term was incorporated
[32] in the complex diffusion framework [33] to regularize
the solution without making use of Gaussian convolution
and allowing for a progressive increase of the sharpening
effect along with diffusion time. The sign preserving func-
tion S(x) = sign(x) was also replaced by a softer version
S(x) = 2 arctan(ax)/π to favour sharpening near edges in a
nonlinear fashion controlled by parameter a. The use of the
tanh function [34] or fuzzy memberships functions [35] were
also proposed in recent papers.

Recently, an unconditionnally stable approximation of the
SF was proposed [13] following the observation that its action
can be rewritten as the advection of the image intensity values
along the flow lines of the (irrotational) vector field:

~u =
1

2
∇‖∇I‖2. (3)

In the context of fast processing of surface meshes, this new
formulation is used to approximate the shock filter for any
Euler time t by back-tracing image values along the flow lines
of ~u.

Despite providing improved performance in noisy configu-
rations over the original SF formulation, all of these methods
use regularized versions of the image second derivative as
the signed edge response. In this context, robustness to noise
can only be improved through increased smoothing, e.g. by
using larger values of scale σ in eq. (2) or by smoothing the
advection field in eq. (3) [13]. Such smoothing can only be
performed at the expense of smearing out weak edges in the
image, which is not desirable, especially in medical images.

C. Relationship with active-contour external forces

The vector field ~u of eq. (3) is, up to a factor 1/2, the
gradient of the scalar edge map ‖∇I‖2. This is the classical
conservative (i.e. irrotational) edge-based force-field (EBF)
used for active contour segmentation [36]. This observation
is of interest as it allows for a natural connection between
shock filtering and the vast amount of work made on EBF in
the active contours literature [37]–[42]. Considerable progress
in active contour segmentation were indeed made by over-
coming the drawbacks of conservative forces such as eq. (3)
with nonconservative alternatives, i.e. forces that cannot be
expressed as gradients of a scalar potential. For example, the
popular Gradient Vector Flow (GVF) method was proposed
to increase robustness to noise, provide better capture range
and allow active contours to progress into narrow concavities
formed by objects in the image. Other similar approaches
include the Generalized GVF (GGVF, [38]) and the Vector
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Field Convolution (VFC). One of the most desirable properties
shared by these new flow fields is their ability to preserve
perceptual boundaries of the objects, i.e. gaps in the image that
are connected visually by the human visual system [37], [38].
This can be exploited for better restoration of weak or invisible
edges when applied to image enhancement with shock filters.

In the following, we propose a PDE framework for image
enhancement using SF based on nonconservative edge-based
force fields. Our contribution is threefold. First, the proposed
Nonconservative Shock Filter scheme (NCSF) takes advantage
of the recalculation of edge-based forces along the iterative
process to better identify locations of shocks, yielding stable
and accurate image sharpening enhancement. Secondly, we
reformulate NCSF as an advection process, extending a recent
work [13] to the nonconservative case and thereby enabling
efficient schemes for single-channel and vector-valued image
enhancement. Finally, we propose to couple the NCSF effect
to anisotropic diffusion for the simultaneous denoising and
sharpening of highly degraded images.

We note that the use of GVF fields as edge indicator
function for shock filtering was proposed by earlier [43].
A similar idea was proposed for the suppression of mixed
noise by coupling GVF-based shock filtering with a median
filter [44]. A coupled anisotropic diffusion and shock filter
scheme for the restoration of vector-valued images was also
proposed recently [25] using generalizations of GVF to the
multi-channel case [24]. However, in all these works, the
field is computed prior to filtering and is not part of the
filtering process, acting as a static vectorial edge map. This
may be not optimal in noisy configurations where edges are
ill-defined. Moreover, the relationship between advection and
shock filtering is not taken into consideration.

In the next section, we describe the proposed NCSF scheme
and show how a regularization method can take advantage of
a dynamic use of edge flow fields along the iterative process
to improve filtering results for noisy configurations.

III. PROPOSED METHOD

A. Dynamic Nonconservative Shock Filtering (NCSF)

We describe our iterative PDE scheme for image sharpening
with shock filters based on nonconservative edge-based force
(EBF) fields. Let I(x) : x ∈ Rn → R be a n-dimensional
image defined on a discrete grid x of the image domain. Let
F t(x) be an EBF field computed dynamically at each Euler
time step t of the iterative process and oriented toward edges.
F t is normalized such that all vectors have unit norm. The
general formulation of the proposed shock filter is:

It(x) = −P(x)‖∇I‖ s.t. I0 = I, (4)

where P(x) = 〈F t(x), ∇̂I(x)〉 is the scalar projection of F t
onto the unit gradient vector ∇̂I = ∇I/‖∇I‖ of direction η,
and 〈·, ·〉 is the dot product.

Fig. 1 illustrates the action of the proposed shock filter on
a sigmoidal signal in the 1D case. The EBF field is oriented
toward the inflection point (i.e. edge in 2D/3D images). A step
signal is iteratively recovered by increasing or decreasing the

signal intensity with strength |P(x)| × ‖∇I‖ dt, where dt is
the Euler time step.

Fig. 1. Effect of the proposed NCSF on a sigmoidal 1D signal. Shocks
are recovered around the inflection point at x = 0 (red dot) with strength
proportional to |P(x)| × ‖∇I‖ (vertical arrows), where P(x) is the degree
of co-alignment between Ft and ∇I.

This formulation differs from previous GVF-based shock
filtering developments [43], where the sign of the projection
P is used only as a replacement for the sign of the second
derivative to increase or decrease signal values around the
inflection point [43]. Shocks are here recovered proportionally
to the degree of colinearity between the gradient direction and
the EBF field. This ensures that well-defined edges, identified
by the co-alignment of gradient and EBF, are enhanced with
more strength. Moreover, the field is dynamically recomputed
at each Euler time t, so that the estimation of the edge location
is refined along the iterative process. This last property is
especially useful when SF is coupled to a denoising scheme,
as discussed in section III-B.

The proposed scheme implies that the EBF field F t is
recomputed at each Euler step. For this reason, the use of
computationally expensive flow fields such as GVF is imprac-
tical. Instead, in this work, we use Vector Field Convolution
(VFC) EBF fields [40]. VFC vector fields are similar to those
produced with GVF, however their computation is much faster,
requiring only n convolutions in n-dimensional images, which
make them well adapted to the proposed iterative approach. We
briefly recall here their formulation. A VFC field is obtained
by convolving a scalar edge map f t of image I at Euler time
t with a Vector Field Kernel (VFK):

F t = f t ∗ K, (5)

where K is the VFK, a vector kernel whose vectors point
toward its center r0 with decreasing magnitude m(r) = r−γ

as a function of the distance r to r0. In this work, we set f t

as the squared Euclidean norm of the gradient f t = ‖∇I‖2.
The VFK shape is controlled by two parameters : kernel

radius s and vector attenuation parameter γ. Fig. 2 shows two
example VFK of size s = 5 with γ = 2.2 and γ = 2.8. The
kernel shape is crucial to the filtering output, as it rules the
detection of weak edges in the image. Using low values of
γ increases robustness to noise, at the expense of smearing
out weak edges which are then lost for recovery. Conversely,
strong values of γ must be used to recover weak edges, at
the expense of higher sensitivity to noise [40]. This is the
classical conflict between edge detection and robustness to
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Fig. 2. VFK kernel used for VFC calculation. Vectors point toward its
center r0 with decreasing intensity. (a) s = 5, γ = 2.2. (b) s = 5, γ = 2.8.
High values of γ increase sensitivity to local weak edges but also yield more
sensitivity to isolated noise

noise, which are contradictory by nature [45]. This problem
can be alleviated using approaches that combine both edge
sharpening and denoising, which is the object of the next
section.

B. Regularized NCSF for noisy images (NCRSF)

Under eq. (4), the SF acts throughout the image domain any-
where the gradient is non-zero. This includes noisy flat regions
where, in principle, no sharpening should occur. It is however
generally preferable to sharpen only edges while removing
noise in homogeneous regions. This can be done by coupling
SF to anisotropic diffusion, as originally proposed by Alvarez
and Mazorra [31]. To this end, we couple the proposed EBF-
based SF to a denoising approach in an Advection-Diffusion-
Reaction (ADR) scheme. We use the oriented laplacians
formalism, which decomposes anisotropic diffusion in terms
of independent diffusions along the gradient and isophote
directions [23].

In n-dimensional images, let η be the gradient direction and
ξi, i = (2, ..., n) be the orthogonal directions to η that span the
hyperplane tangent to the local isophote. The proposed cou-
pled ADR scheme for simultaneous denoising and sharpening
of noisy images (NCRSF for Non-Conservative Regularized
Shock Filter) is expressed as:

It = cη(N )Iηη +
n∑
i=2

cξ(N )Iξiξi + λ
(
I0 − I

)
− P(x)‖Iη‖.

(6)

The first two terms in equation (6) respectively corre-
spond to the nonlinear diffusion of image intensities along
the gradient and isophote directions, weighted by diffusion
coefficients cη and cξ, two decreasing functions of a scalar
edge detector N (x) [20]. The third term is a reaction term
[46], controlled by parameter λ, that helps preventing the
solution from diverging too far from the initial image I0 .
The last term is the proposed EBF-based SF term. In single-
channel images, ‖Iη‖ = ‖∇I‖.

In the proposed approach, the recalculation of the vector
field F t at each time step enables to enhance edge detection
along the process. This property is especially useful in noisy
configurations where the initial edge-based field is ill-defined.
The use of a static field has been considered as an advantage
because it provides numerical stability [43]. However, it also

limitates the edge detection task to the accuracy of the static
initial field, which can lead to erroneous sharpening of flat
regions.

To illustrate the action of the proposed coupled ADR
scheme, Fig. 3 shows a 100×100 grayscale image representing
4 disks of variable contrast (Fig. 3a) blurred with a Gaussian
filter of scale σb = 3 pixels and corrupted with additive white
Gaussian noise (AWGN) of standard deviation σ = 10 (Fig.
3b). The second row compares the EBF field computed on the
noisy image and the one obtained with the proposed scheme
after 150 iterations. The advantage of recomputing the field is
emphasized on the lower contrast disks for which the gradient
signal is weak. Because initial EBF vectors are almost random
(Fig. 3c), enhancement approaches that rely on this noisy
information [43] would perform poorly. On the contrary, the
recalculation of the field using the proposed scheme produced
more coherent orientations of the EBF vectors for all four disks
(Fig. 3d). This can be assessed quantitatively by comparing
the angular difference between EBF vectors obtained on the
noise-free image and the ones obtained after processing. We
define the pixelwise angular error D of an EBF vector F to
some reference ground-truth EBF field F0 as:

D(F 0, F ) := cos−1
(
〈F0,F〉
‖F0‖‖F‖

)
. (7)

By analogy with a metric proposed for color constancy as-
sessment [47], we define an estimator of EBF field quality
as the median value of the angular error distribution. We call
this full-reference measure median angular error (MAE). Fig.
4 shows the reduction of MAE along iterations for different
noise values in the disks image of Fig. 3. While the MAE
logically increases with the standard deviation of noise, it
diminishes along iterations due to the re-evaluation of the EBF

(a) original (b) noisy

(c) EBF field on noisy (d) NCRSF method. EBF field
after 100 iterations

Fig. 3. Shock filter action on a synthetic disks image corrupted with Gaussian
blur and AWGN noise
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Fig. 4. Median Angular Error of EBF field Ft vs. iteration time for different
noise values σ in the disks image of Fig. 3.

field on the less noisy processed image. Thanks to the use
of VFC, the computational overload of such recalculation is
moderate. As an example, in this image, 150 iterations of a
finite-difference scheme implementation of the approach take
0.32s, against 0.21s without recalculation of the field on a 3
GHz Intel i7 processor.

C. Extension to vector-valued images

Vector-valued (VV) images such as color, multispectral
or hyperspectral images can be enhanced with the proposed
scheme by processing each of their channel independently, i.e.
using a marginal approach. However, it is generally preferable
to couple channel evolution, e.g. to reduce the production of
false colors in color images, due to unbalanced enhancement
between channels [23], [48]. In the VV case, the gradient
direction η and its corresponding amplitude ‖Iη‖ are not well
defined. Simple averaging of the gradient in the channels is
not satisfying, as opposite gradient directions in two channels
would cancel each other without meaning [48].

To avoid this effect, the multi-channel case is handled using
the local structure tensor (ST) formalism [49]. The ST, also
known as the second-order moment matrix, or Di Zenzo matrix
is a symmetric and positive semidefinite n-by-n matrix. For
p-channel images, it is expressed as the sum of the covariance
matrices of the gradient in the different channels :

Jρ = Gρ ∗
p∑
k=1

∇Ik(∇Ik)T , (8)

where Ik denotes the k−th channel of I, ·T is the trans-
position operator and Gρ is a regularizing Gaussian kernel
of scale ρ. We follow Di Zenzo’s analysis [49], where the
gradient of a VV image, or vector gradient, is obtained
from the eigendecomposition of the ST. The vector gradient
direction η is the direction of the eigenvector associated with
the principal eigenvalue, while the remaining eigenvectors
(ξ2, ..., ξn) span the hyperplane tangent to the local isophote.
The vector gradient magnitude is obtained by combining the
eigenvalues of the ST [18]. In this work, we use the trace of
the tensor as an edge detector as proposed in previous works

for color image enhancement [21] :

NV =
√
Tr(Jρ) (9)

We obtain a VFC field for VV images FV by convolving the
squared contrast N 2

V with a vector field kernel, as proposed in
the context of image segmentation [50]. Similarly to the scalar
case, the proposed ADR scheme is achieved by coupling the
evolution of each channel Ik under:

Ikt =cη(NV )Ikηη +
n∑
i=2

cξ(NV )Ikξiξi

+ λ
(
Ik

0

− Ik
)
− PV (x)‖Ikη ‖, (10)

where PV is the projection of F tV onto the unit vector gradient
direction η:

PV = 〈F tV , Ikη /‖Ikη ‖〉. (11)

(a) noisy (b) marginal (c) proposed

Fig. 5. Top row: processing result using the proposed NCRSF scheme on a
color image corrupted by Gaussian blur and AWGN. Bottom row: magnified
region marked in red. (b) Independent sharpening of each channel produces
false colors at the location of shocks. (c) Coupled sharpening using the
structure tensor-based EBF field restores sharpness without producing false
colors. Better viewed in electronic version.

Fig. 5 illustrates the effect of the proposed ADR filtering
for VV images on the 512 × 512 monument color image of
the CSIQ database [51]. The clean image was blurred with a
Gaussian filter of scale 2 pixels and corrupted with zero-mean
AWGN of standard deviation σn = 35. When channels are
processed independently (Fig. 5b), false colors appear around
locations of shocks. Under the proposed coupled VV scheme
(fig 5c), noise is suppressed efficiently without producing false
colors.

D. Relationship with advection

As noted recently by Prada and Kazhdan [13], if the signed
edge response is L(I) = (∇I)TH∇I

‖∇I‖ , where H is the Hessian,
the classical shock filter can be expressed as:

It = −
1

2
〈∇‖∇I‖2,∇I〉, (12)

which describes the advection of image I along the vector
field 1

2∇‖∇I‖
2.
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(a) Original (b) dt=0.05 (5.2s), RMSE=0.0

(c) dt=0.2 (1.3s), RMSE=2.69 (d) dt=0.4 (0.6s), RMSE=4.40

Fig. 6. Approximation of NCSF filtering for the 512× 512 mandrill image
for different values of Euler time step dt (CPU time in brackets). Image
values are advected along the flow lines of the VFC field Ft dt. Processed
images with coarse time steps are hard to distinguish visually from reference
dt = 0.05

Similarly, we approximate EBF-based shock filtering by
advecting the values of I for any Euler time t + dt along
the flow lines of the vector field F t. Due to the fact that
the EBF field is smooth and well aligned in homogeneous
regions, such advection will also lead to the denoising of non-
edge pixels. Fig. 6 shows the effect of the proposed advection
scheme on the mandrill grayscale image for various time steps
dt at fixed Euler time t = 6.4. For all step values, the image
was denoised and its edges were sharpened, showing mild
increase of the root mean square error (RMSE) for larger steps
when compared to the arbitrary reference result obtained with
dt = 0.05 .

IV. VALIDATION SETUP

The evaluation of image enhancement is generally subjec-
tive or, if used as a pre-processing stage, specific to the task at
hand [11]. This is in contrast with image restoration, which can
be assessed quantitatively using full-reference image quality
metrics such as signal-to-noise ratio (SNR) or root mean
square error (RMSE) [12]. Although the maximization of such
quantities is not a primary objective, there is in general some
overlap between the effects of restoration and enhancement
(e.g. both may denoise the image). Full-reference metrics
can therefore be used in conjunction with application-specific
evaluation to assess the effect of the proposed approach.
Provided the targeted application can be evaluated objectively
using image quality metrics, the relative improvement of these
metrics due to pre-processing can also indirectly assess the
interest of the method.

In the next section, we show how our approach can facilitate
several tasks such as image restoration, edge detection, image

sharpening or segmentation in various imaging contexts. We
describe in the following the datasets and the associated quan-
titative evaluation metrics that we used in our experiments.

We start by studying the effect of the filter on a noisy
one-dimensional signal. We then investigate the value of our
approach in two different types of medical images. First, we
consider the enhancement of TRUS images with the aim of
facilitating automatic contour-based prostate segmentation. We
then focus on the enhancement of partial volume corrected
brain PET images. Although the proposed NCRSF approach
is not specifically tailored for image restoration, it can perform
satisfyingly in this regard on heavily distorted images. Addi-
tional results in the context of natural image restoration using
NCRSF on images corrupted by heavy noise and blur can be
found in the supplemental material of this article, alongside
comparisons with other restoration approaches.

A. One-dimensional case
We studied the simplified and controlled scenario of a

one-dimensional sigmoidal signal degraded by heavy additive
white Gaussian noise (AWGN). The Matlab code necessary to
reproduce the results of this section was released online1.

1) Signal description: The studied sigmoid S(t) is ex-
pressed as:

S(t) =
1

π
arctan

[
4π

(
t− 1

2

)]
+

1

2
. (13)

An additive white Gaussian noise of variance σn = 0.42 was
added to S(t). Our objective was to recover a step signal
around the inflection point at t = 1/2. We limited our study
to the interval

[
− 1

2 ,
3
2

]
, and discretized the signal into 103

samples (Fig. 8a).
2) Comparative evaluation: In this 1D example, we com-

pared the proposed NCRSF filter to the Coupled Complex
Diffusion and Shock Filtering (CDSF) scheme of Gilboa,
Sochen and Zeevi [32]. CDSF is, like NCRSF, a PDE-based
approach that couples anisotropic diffusion and regularized
shock filter and is arguably the work closest to ours in its
formulation. It is based on complex diffusion [33], where the
diffusion in the gradient direction and shock filtering strength
are controlled by a time-dependent complex parameter λ.
The real part of λ decreases with Euler time in order to
progressively reduce diffusion in the gradient direction and
increase shock filter strength along iterations. We set the
parameters of both CDSF and NCSF models so as to maximize
the SNR between the filtered signal and the idealized step
edge.

3) Quantitative metrics: We studied three objective quan-
titative metrics. The SNR with respect to the idealized step
signal was used to assess restoration. The maximum gradient
amplitude ‖∇S‖max was used to evaluate sharpness recovery.
Finally, the total variation TV was considered to evaluate the
piecewise constantness of the output. The TV is defined as:

TV =

∫ 3
2

− 1
2

|∂tS(t)|dt (14)

and is equal to 1 for the true step signal.

1http://stockage.univ-brest.fr/∼vjaouen/tip2018/

http://stockage.univ-brest.fr/~vjaouen/tip2018/
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B. Enhancement of TRUS images

1) Dataset description: TRUS imaging is largely employed
for the evaluation of prostate diseases and plays an important
role in most prostate therapy setups such as high intensity
focus therapy or brachytherapy. Although TRUS has many
advantages such as real-time capability and low cost, the
produced images suffer from important limitations.

Ultrasound images (US) are affected by various degrada-
tions including low contrast, blur and speckle noise, making
the accurate identification of anatomical structures difficult.
To increase SNR, most US-dedicated image filters take into
account the multiplicative nature of speckle noise in their
formulation [26]. Similar noise statistics can be found in
other domains such as optical coherence tomography or radar
imaging, with related efforts to tackle this issue [52]–[54].
Speckle noise is however not the only difficulty encountered
in TRUS imaging. Depending on probe quality, acquisition
parameters and, to a lesser extent, patient anatomy, the gland
volume can be difficult to segment automatically. One of
the most problematic degradation is the weakness of the
prostate boundaries, a problem that cannot be addressed only
through denoising (i.e. in the present case, despeckling). For
this reason, automatic segmentation of the prostate is a very
challenging task even for state of the art techniques [55],
[56]. The consensus in the prostate segmentation community
is therefore that edge information alone is not sufficient to
perform accurate prostate segmentation [57].

To remain generic and widely applicable, the proposed
NCRSF approach is not specifically tailored to address the
multiplicative nature of the noise. Nevertheless, we show in the
remainder of this section that such a method can be effective
for improving prostate segmentation and edge detection in
TRUS.

In our experiments, we used a set of 14 images from
patients with prostate cancer obtained before undergoing
prostate brachytherapy treatment at the Brest University Hos-
pital, Brest, France. For all images, contours of the gland
were manually delineated in all slices by an expert radiation
oncologist to provide reference results for edge detection and
segmentation experiments.

2) Comparative evaluation: PDEs are popular among the
ultrasound imaging community for facilitating edge detection
and segmentation [26]. One of the reasons for this popularity
is their ability to explicitly adapt the filtering effect to the char-
acteristics of speckle noise. The Speckle Reducing Anisotropic
Diffusion (SRAD) [58], where the scalar diffusion coefficient
is controlled in a nonlinear way by the local coefficient of
variation, was proposed to address this issue. This can be
considered as the generalization of the isotropic Lee filter to
the nonlinear case [59]. A truly anisotropic variant of SRAD
(i.e. not only nonlinear), oriented SRAD (OSRAD) using a
matrix-based formulation which decouples diffusion along the
gradient and isophote directions was proposed [60]. In a com-
prehensive comparative study between despeckling filters [26],
OSRAD was shown to perform better than SRAD. Recently, a
new matrix-based anisotropic diffusion equation coupled to a
delay differential equation [29] using an adaptive Voltera-type

memory mechanism [61] based on speckle statistics (ADMSS)
to better preserve relevant structural information in medical
images was proposed, obtaining better results that OSRAD. In
our experiments, we compared our NCRSF approach to SRAD
and ADMSS using the implementation provided by the authors
2,3. While the objective of this section is to compare the
effects of local PDE filters, we also include quantitative results
obtained using SAR-BM3D 4 [62], a popular adaptation of the
BM3D patch-based denoising method [2] to speckle noise that
generally performs satisfyingly in speckle ultrasound images
[63].

3) Quantitative metrics: We evaluated the proposed ap-
proach using metrics commonly found in ultrasound imaging
for image quality assessment [26]: Pratt’s Figure Of Merit
(PFOM) [64], Structural similarity (SSIM) [65], Contrast-
to-noise ratio (CNR), as well as a more recent metric for
sharpness assessment, the S2 sharpness score [66].

Given two binary edge maps X and Y , where Y is the
ground truth, the PFOM returns a number between 0 and 1
that measures the similarity between edges, both in terms of
detection and pixel displacement. It is defined as:

PFOM(X,Y) =
1

max(NX, NY)

NX∑
i=1

1

1 + αd2i
, (15)

where NX and NY are respectively the number of detected
and actual edge pixels, di denotes the distance from the
ith-detected edge pixel to the nearest actual edge and α
is a scaling constant set to 1/9. Edge maps were obtained
by binarizing the gradient magnitude maps above the 95th

percentile, which corresponds to the average percentage of
pixels belonging to the prostate boundaries in the ground truth
images. While the Canny filter is often used for PFOM [26],
scores were considerably better in our dataset with this simple
thresholding, regardless of the method used.

The SSIM measure is defined as:

SSIM(X,Y ) =
(2µ1µ2 + C1)(2σ12 + C2)

(µ2
1 + µ2

2 + C1)(σ2
1 + σ2

2 + C2)
(16)

where µ1, µ2 are local means of reference and test images,
σ1, σ2 are the corresponding local standard deviations and σ12
is the covariance between X and Y . Constants C1 and C2 are
set as specified in the Matlab r2016a implementation of the
metric. As it is often the case for clinical image evaluation,
no distortion-free ground truth images were available. The
reference image used for SSIM was the original unprocessed
image as proposed in previous studies [26]. In this case, the
SSIM score provides an indication of to what extent original
structures were preserved with respect to the noisy input and
thus cannot be considered as an image restoration metric.

The CNR is defined as :

CNR =
|µ1 − µ2|√
σ2
1 + σ2

2

, (17)

where µ1 and σ2
1 are the mean and variance of a small region

of interest and µ2 and σ2
2 are the mean and variance of a

2https://sites.google.com/site/gramosllorden/admss
3http://viva-lab.ece.virginia.edu/downloads.html
4 http://www.grip.unina.it/research/80-sar-despeckling/

https://sites.google.com/site/gramosllorden/admss
http://viva-lab.ece.virginia.edu/downloads.html
http://www.grip.unina.it/research/80-sar-despeckling/
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homogeneous region of similar dimensions in the background.
In the ultrasound image dataset, we selected small rectangular
regions of approximatively 5 mm2 (or 15 × 15 pixels) in the
background and in the foreground.

The S2 spatial sharpness score is a total variation-based
metric for natural image sharpness assessment. For an image
scaled between 0 and 1, the local total variation (LTV) v(x)
of each pixel x is first computed as:

v(x) =
1

4

∑
i,j

|xi − xj |, (18)

where the absolute difference is taken between all the pixels in
a 2×2 local patch at x. Since blurred image edges tend to have
a low LTV, the maximum value of v(x) in b× b overlapping
superblocks, with b > 2, gives a spatial map of the local
sharpness of an image at scale b. The S2 index is obtained by
averaging the 1% highest pixel values of the spatial map.

To further attest the performance of the proposed method for
edge detection in ultrasound images in a segmentation context,
we segmented the prostate gland using an edge-based level set
active contour. We compared our segmentation results to those
obtained on raw images, SRAD-filtered and ADMSS-filtered
images. The active contour model used in our experiments is
briefly described in the next lines.

Let C(t) be an active contour defined as the zero level-set
of a 2D function φ(x, t) defined across the image domain.
The evolution equation of φ according to curvature motion
and edge-based external forces is expressed as:

φt(x) = α [κ(x) |∇φ(x)|]− β [Fedge(x) · ∇φ(x)] , (19)

where κ is the curvature of φ, Fedge is an EBF field and
α, β are parameters that control the respective strengths of
curvature motion and edge-based forces. The EBF field Fedge
is a VFC field based on the squared image gradient magnitude.
Images were prepared by centering and cropping the field of
view around the prostate. For all methods and all images, we
initialized C(t = 0) to a rectangle centered around the prostate
and at equal distance of the image boundaries (dotted white
contour in Fig. 11). We then let the contour evolve according to
eq. (19) by considering equal parameters for all tested images
and compared the segmentation result (Fig. 11, in yellow) to
its ground truth (Fig. 11, in red) using the Jaccard similarity
coefficient [67] and the Mean Absolute Distance (MAD),
which expresses the average distance between the segmented
surface and ground truth [68]. Active contour parameters
(number of iterations, α, β, VFK kernel shape) and filter
parameters were optimized so as to produce the best average
Jaccard score for the tested method on a training dataset of 3
additional TRUS images not included in our evaluation dataset.

C. Enhancement of partial volume corrected PET images

We also performed experiments on partial-volume corrected
brain PET images. Because of the scanner point spread func-
tion (PSF) of limited spatial resolution and several intrinsic
physical factors, PET images suffer from partial volume effects
(PVE). PVE are responsible for blur and fuzzy transitions
between areas of different radiotracer uptakes, as well as

(a) Patient P05

(b) Patient P08

Fig. 7. Example transaxial PET slices in patients P05 and P08 of the PET-
SORTEO database. Left: ground truth reference. Middle: original PET image.
Right: partial volume correction with RVC.

inaccurate quantification (under or over estimation) due to
spill-in and spill-out effects [69]. It is generally required
to correct for PVE prior to analyzing PET data, a pro-
cess known as partial volume correction (PVC) [70]. PVC
is especially useful in quantitative analysis, as uncorrected
PET images may lead to standardized uptake values of poor
clinical interpretability [69]. This is however a difficult and
ill-posed problem, and most state of the art PVC methods
rely on accurate segmentation of co-registered anatomical data
obtained from modalities such as MRI or CT [71], [72]. These
methods rely on the strong assumption that PET functional
regions and anatomical regions coincide. If this assumption
cannot be made, or in the absence of availability of accurate
co-segmentation of anatomical data, deconvolution approaches
like the Richardson-Lucy and the reblurred Van Cittert al-
gorithms are typically considered [73]. While alleviating the
need for anatomical information, these methods are however
less efficient at PVC than anatomical-based methods, as they
amplify image noise [74], [75] and are generally not capable
of fully recovering image sharpness [70]. In the following, we
show how the proposed NCSF shock filtering scheme can be
employed to enhance deconvolution-based PVC results.

1) Image description: We evaluated our approach using
the PET-SORTEO database [76]. PET-SORTEO is an open
database of highly realistic Monte Carlo simulations of la-
belled brain PET images that aims at providing reliable ground
truth for the validation of PET-dedicated algorithms. The
database contains 15 patient brain PET simulated images
derived from actual magnetic resonance scans. In our ex-
periments, we focus on the static [18F]-FDG study, showing
two functional regions corresponding to differences in uptake
of [18F]-FDG between cortical gray matter and white matter
(Fig. 7, first column). These images were reconstructed into
128 × 128 × 63 voxels using a filtered back-projection algo-
rithm, leading to high PVE throughout the field of view and
relatively low noise levels (Fig. 7, second column).

A partial-volume corrected PET image (the input of the
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proposed NCSF approach) was obtained using the Reblurred
Van Cittert (RVC) algorithm. RVC is an iterative approach that
seeks a solution, in the least squares sense, to the following
minimization problem:

‖Ib −H ∗ Ĩ‖, (20)

where Ib is the blurred image, Ĩ is the deconvolved image and
H is a blur kernel (usually Gaussian), whose PSF is assumed
to be known and spatially invariant.

An estimate of Ĩ is obtained by the following iterative
scheme:

Ĩk+1 = Ĩk + α
(
H ∗ (Ib −H ∗ Ĩk)

)
, (21)

where Ĩk is the corrected image after k iterations and α is a
step parameter, usually set around 1.5 [77]. RVC parameters
were set so as to minimize the mean square error with respect
to the ground truth image. The parameters obtained (α = 1.5;
Gaussian PSF of full width at half maximum 9.1× 9.1× 9.3
mm3) were found to be in agreement with values reported
in a previous PET-SORTEO study for another tracer, using
a different optimization strategy [77]. The last column of
Fig. 7 shows the RVC outputs corresponding to these two
patients. While contrast is increased, functional boundaries
remain substantially blurred and noise levels are amplified.

Our objective was to show that NCSF can enhance the
quality of the RVC-based partial volume corrected output. In
this experiment, NCSF parameters were set equally for all
images and optimized so as to maximize on average the SSIM
with respect to the ground truth reference.

2) Quantitative metrics: Alongside SSIM, we quantified
PET image enhancement using application-specific metrics.
A parameter of interest in PET quantification is the gray to
white-matter activity ratio R, equal to 2.72 in the ground truth
images. R was detemined for each image by averaging activity
within the two ground truth labelled regions. Sharpness recov-
ery was assessed by the average gradient magnitude inside the
brain ‖∇I‖max and by the S2 index.

V. RESULTS

A. One-dimensional signal

Fig. 8a compares the effect of CDSF and NCRSF on
the one-dimensional sigmoidal signal S(t). Corresponding
quantitative metrics are provided in Table I. Note that the
TV of the clean sigmoid is not exactly 1 due to the inter-
val restriction. While both methods successfully denoise the
signal, NCRSF was better at recovering the step edge around
the inflection point at t = 1/2. This result is highlighted
in Fig. 8b that shows the corresponding gradient amplitude
of CDSF and NCRSF, with a maximum gradient amplitude
about 5 times higher in the case of NCRSF at the inflection
point (0.36 for NCRSF against 0.07 for CVDS). The signal
was significantly flatter far from the edge with most gradient
energy concentrated near the step edge. The TV was also
closer to unity (NCRSF: TV= 1.02, CVDS: TV= 1.32),
showing fewer spurious gradient signal within the flat regions.

A likely explanation for the better performance of NCRSF is
that both shock filtering and diffusion are acting on the signal,
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(a) From top to bottom: Clean sigmoid, Noisy sigmoid, CDSF [33] and proposed
NCRSF.
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(b) Gradient amplitudes for CDSF and NCRSF. Maximum gradient amplitude
near the step edge is more than 5 times higher for NCRSF.

Fig. 8. Recovery of a step signal from a noisy sigmoid in the 1D case.

TABLE I
QUANTITATIVE SCORES FOR THE 1D SIGNAL

SNR TV ‖∇S‖max

Step signal ∞ 1 1
Clean sigmoid 14.7 0.95 0.008
Noisy sigmoid 4.5 441.55 1.828

CDSF 18.42 1.32 0.068
NCRSF 20.64 1.02 0.363

regardless of the iteration time. In CDSF, shock filtering is
gradually increased with Euler time but the process starts with
a purely diffusive process that smears out the edge excessively.
A smaller initial diffusion strength for CDSF would lead to
a noisier estimation of the inflection point, and consequently
irreversible spurious sharpening of the two flat regions. The
intrinsic regularization of the inflection point localization with
NCRSF helps overcoming this effect.

In the following, we show results in the more complex
context of multidimensional medical images.

B. Ultrasound images

Fig. 9 shows filtering results for SRAD, ADMSS and
NCRSF in two transaxial B-mode TRUS images of our clinical
dataset (first and third columns). The prostate can be globally
described as an hypoechoic medium, showing as a dark,
”walnut-shaped” region surrounded by a brighter, more echoic
medium. The dots appearing in the unprocessed and SRAD
images correspond to artificial grid points superimposed onto
the original image. All filters showed substantial denoising
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(a) Patient 1 (Original) (b) Edge map (Original) (c) Patient 2 (Original) (d) Edge map (Original)

(e) Patient 1, SRAD (f) Edge map (SRAD) (g) Patient 2 (SRAD) (h) Edge map (SRAD)

(i) Patient 1 (ADMSS) (j) Edge map (ADMSS) (k) Patient 2 (ADMSS) (l) Edge map (ADMSS)

(m) Patient 1 (NCRSF) (n) Edge map (NCRSF) (o) Patient 2 (NCRSF) (p) Edge map (NCRSF)

Fig. 9. Example processing results for axial TRUS images of two patients of our clinical dataset and corresponding edge maps. From top to bottom: clinical
image, SRAD [58], ADMSS [29] and proposed NCRSF filter.

capability with different properties. ADMSS tended to bet-
ter preserve the aspect of the original image, including the
smoothness of its edges. The ADMSS filtered images also
preserved textural information irrelevant for the contour-based
segmentation, showing heterogeneous features throughout the
gland due to calcifications. Both SRAD and NCRSF showed
better edge-enhancing properties, with a better contrast be-
tween background and foreground for NCRSF, alongside with
stronger denoising and flattening of the gland. The better
behavior of NCRSF for prostate edge detection is stressed on
the binary edge maps obtained using an automatic gradient-
based edge detector (second and fourth columns). Edges
coincide more clearly with the prostate boundaries, with less
spurious gradients owing to noise or smaller artifacts. Fig. 10
shows the corresponding S2 sharpness maps of the images
from the first column of Fig. 9. Because the S2 score is
sensitive to noise, the original image shows high sharpness
values throughout the field of view. This measure is indeed
sensitive to noise, due to global increase of total variation
in noisy images. Nevertheless, we find the visualization of
sharpness maps useful even in noisy images, where they
provide an easy qualitative understanding of which image
regions show strong edges, consistently with the sharpness

perceived by the observer. In the NCRSF-filtered image, sharp
regions mostly coincide with true prostate edges, contrarily
to SRAD or ADMSS. Still, some edges belonging to the
prostate could not be recovered in difficult regions for which
no gradient was detected.

(a) Original (b) SRAD

(c) ADMSS (d) NCRSF

Fig. 10. Effect of the filtering on perceived image sharpness in a TRUS
image using TV-based S2 sharpness map with block size 8 [66]. NCRSF
sharpened regions mainly coincide with true prostate edges.
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TABLE II
QUANTITATIVE SCORES FOR THE TRUS IMAGE DATASET (n = 14)

SSIM PFOM CNR
Noisy 1 0.13±0.02 0.91±0.62
SRAD 0.39±0.03 0.17±0.03 1.26±0.85

ADMSS 0.47±0.08 0.18±0.05 1.16±0.88
SAR-BM3D 0.75±0.04 0.16±0.03 1.02±0.70

NCRSF 0.30±0.02 0.27±0.05 1.41±0.99

These visual observations are further attested by the quan-
titative metrics calculated on the 14 TRUS images of the
dataset shown in Table II. The better similarity between the
ADMSS output and the original image is confirmed, showing
a higher SSIM score. SAR-BM3D altered the least the original
unprocessed image, with a SSIM score of 0.75 ± 0.04 on
average, at the expense of lower edge detection capability and
contrast recovery. Both PFOM and CNR values were higher
when using NCRSF, consistently with higher edge detection
accuracy. This suggests that edge-based segmentation of the
prostate can be facilitated by prefiltering images using the
proposed approach.

(a) Original (b) SRAD

(c) ADMSS (d) NCRSF

Fig. 11. Effect of the coupled ADR scheme on active contour segmentation
of the prostate. Initial state is in dotted white, manual ground truth in red,
segmentation result in yellow.

To support this statement, Table III shows the Jaccard
and MAD segmentation results obtained using unprocessed,
SRAD-, ADMSS-, SAR-BM3D- and NCRSF-filtered images.
Segmentation metrics were higher (increased Jaccard values
and smaller MAD) when NCRSF was used as a pre-processing
stage, which is consistent with the edge detection results
obtained. While being very efficient at denoising and having
some edge-enhancing properties due to inverse diffusion be-
havior around edges [58], despeckling filters such as SRAD,
ADMSS cannot make the edges sufficiently sharp to yield
satisfying segmentation results with edge-based approaches.

Image edges are often deemed unuseable in the TRUS
segmentation literature, and region-based approaches based
on image statistics are often preferred [26]. However, results
obtained with the proposed NCRSF scheme suggest that edge
information can be exploited to obtain meaningful segmenta-

(a) Patient P05

(b) Patient P08

Fig. 12. Example enhancement of deconvolution-based partial volume
correction results for patient P05 and P08 of the PET-SORTEO database.
Left: RVC only. Right: RVC+NCSF.

tion results provided the image is appropriately pre-processed.

TABLE III
SEGMENTATION SCORES FOR THE TRUS IMAGE DATASET (n = 14)

Jaccard MAD (mm.)
Original 0.72±0.06 2.89±0.60
SRAD 0.77±0.09 2.43±0.88

ADMSS 0.77±0.11 2.32±1.17
SAR-BM3D 0.75±0.07 2.63±0.71

NCRSF 0.85±0.05 1.54±0.53

C. Partial volume corrected brain PET images

Partial volume corrected images of the PET-SORTEO
database were processed using the proposed NCSF shock
filtering scheme, referred to as RVC+NCSF in the following.
For these 3D images, computation time was about 25 seconds
on average on a Core i7 CPU using 45 iterations of an explicit
finite difference scheme.
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(b) Patient P08

Fig. 13. Activity profiles across the left thalamic nucleus for patients P05
and P08 along the line overlaid in Fig. 12.
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Fig. 12 shows representative filtering results in transaxial
PET slices for patients P05 and P08. From visual inspection,
RVC+NCSF images were significantly sharper than RVC
alone, showing more acute functional boundaries between gray
and white matter. Fig. 13 further supports this statement by
comparing one-dimensional profiles in the vicinity of the left
thalamic nucleus along the line overlaid in the first column
of Fig. 12. Ground truth, RVC and original profiles are also
shown, as well as results obtained by applying NCSF directly
to the original PET image. Whereas RVC partially recovered
lost activity and increased image contrast, it was not able
to form a step edge at the thalamic boundary and images
remained significantly blurred. NCSF being a total variation
preserving filter, it did not change the extremal values of the
original PET image. Nevertheless, it significantly increased
image sharpness by fully recovering a step edge at the tha-
lamus boundary, similarly to 1D results presented in section
V-A. RVC+NCSF, by taking advantage of the deconvolution
of RVC, better recovered the gray to white matter activity
contrast while taking advantage of the proposed shock filter
to obtain a sharp functional boundary of one voxel width.

Average quantitative results obtained across the entire
dataset are presented in Table IV and confirm these qualitative
observations. The SSIM score showed an increase of 15%
on average when compared to RVC (0.186 ± 0.005 against
0.162 ± 0.004), suggesting additional image restoration ca-
pability. The perceived sharpness was increased substantially
increased, with a 72% increase of the maximum brain gradient
amplitude, and a 240% increase of the S2 score between
RVC and RVC+NCSF. The gray-to-white matter activity also
showed a moderate increase compared to its value in the
original PET image (+11.6% for RVC against +15.2% for
RVC+NCSF).

Deconvolution based partial volume correction like the
Reblurred Van Cittert method are standard in PET image
processing pipelines. However, they are usually not able to
fully recover image sharpness and tend to amplify image
noise. We showed that PET image analysis can benefit from
additional post-processing using the proposed nonconservative
shock filtering scheme, both visually and quantitatively. The
NCSF-filtered images show stronger gradient signal between
functional regions and flatter profiles within regions when
compared to results obtained with RVC only.

In the PET-SORTEO database, partial volume effects (i.e.
blur and quantitative bias) are the main cause of image
degradation. Images show only mild levels of noise due
to the strong regularization induced by the filtered back-
projection reconstruction algorithm. We thus focused on the
shock filtering part of the scheme (ie. NCSF and not NCRSF).
However, iterative reconstructions using methods such as
ordered subset expectation maximization (OSEM) are now
preferred in the PET community. While yielding more accurate
image quantification, they generally induce more noise in the
data. In that case, a coupled regularization and shock filtering
method using NCRSF would likely improve results over NCSF
only.

TABLE IV
QUANTITATIVE SCORES FOR THE PET SORTEO DATABASE (n = 15)

SSIM S2 ‖∇I‖max R

True 1.0 1.0 18.46±1.86 2.72
Orig. 0.101±0.003 0.20±0.00 3.99±0.12 1.38±0.01
RVC 0.162±0.004 0.27±0.01 7.17±0.31 1.54±0.01

RVC+NCSF 0.186±0.005 0.65±0.02 12.31±0.42 1.59±0.02

VI. CONCLUSION

We have proposed a new method for the progressive restora-
tion of images degraded by noise and blur using shock filters.
The proposed NCSF approach exploits nonconservative edge
based force fields that were normally designed for segmen-
tation. By iteratively refining edge localization, it produces
images with strong discontinuities that facilitate higher level
tasks such as edge detection or segmentation. NCSF is es-
pecially useful when coupled with an anisotropic diffusion
framework in noisy configurations (NCRSF), as edges that are
not well defined prior to filtering can be iteratively recovered.
Results on various types of medical images (ultrasound and
PET) were used to evaluate the performance and the genericity
of the proposed enhancement approach.
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