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Research has shown that mathematics courses in engineering programmes present students with a 

number of difficulties, some of which stem from a disconnection between mathematics course content 

and the professional activity of engineers. Using tools from the anthropological theory of the didactic 

(ATD), we examine how the drawing of bending-moment diagrams is introduced in a classic textbook 

used in engineering programs. Although the notion of integral is used to teach this topic, the 

techniques used rely mostly on geometrical considerations (and not on integral techniques or 

theorems), and the justifications provided are a mix of (incomplete) mathematical discourse and 

professional justifications, with implications for students’ learning. 
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Introduction and background 

Mathematics is an important subject in many scientific and technological fields, including 

engineering. However, the difficulties university students face in their mathematics courses can lead 

them to abandon their professional aspirations (Ellis, Kelton, & Rasmussen, 2014). Research in 

engineering and mathematics education has shown that these difficulties manifest themselves in at 

least two points in a student’s learning pathway. First, researchers have stated that students find the 

progression from secondary to tertiary education to be very difficult, especially when it comes to 

mathematics (Rooch, Junker, Härterich, & Hackl, 2016), and that they possess unsatisfactory 

mathematical readiness for engineering courses (Bowen, Prior, Lloyd, Thomas, & Newman-Ford, 

2007). Second, a disconnect between mathematics courses and professional courses in university 

engineering programmes has been identified. For instance, Loch and Lamborn (2016, p. 30) stated 

that “mathematics is often taught in a ‘mathematical’ way with a focus on mathematical concepts and 

understanding rather than applications. The applications are covered in later engineering studies.” 

This disconnect may create a “gap in the students’ ability to use mathematics in their engineering 

practices” (Christensen, 2008, p. 131). This gap can be aggravated by the fact traditional engineering 

courses are usually separated into two groups: basic science courses in the first two years (such as 

mathematics and physics), and technical courses specific to each area of engineering in later years. 

Regarding this, Winkelman (2009, p. 306) indicated that “the first 2 years are typically devoted to the 

basic sciences, which means that students may only encounter engineering faculty in the third year 

of study”. Some effort has been made to bridge the gap between mathematical and engineering 

practices, for instance by linking basic mathematical methods to applications (Rooch et al., 2016) or 

by introducing courses on mathematical modelling and problem solving early on in engineering 

programmes (Wedelin, Adawi, Jahan, & Andersson, 2015). These initiatives seem to have positive 

effects on student learning. 

Tertiary mathematics education research has identified a number of difficulties encountered by 



Calculus students; however, there is a lack of research on how teachers of professional engineering 

courses consider and use the mathematical tools taught in prerequisite mathematics courses. In 

general, it is expected that students in second- or third-year professional courses have grasped the 

mathematical notions taught in their earlier courses. We are interested in studying how Calculus 

notions – which students are expected to master – are used in professional engineering courses; in 

particular, whether they are used in the same way as in Calculus courses. Specifically, our research 

analyses the presentation of Calculus notions in a classic engineering textbook. We anticipate that 

this analysis will help Calculus teachers in engineering programmes understand how the notions they 

teach are used in higher-year professional courses, which may lead to a reflection on the connections 

(or lack thereof) between the content of Calculus courses and that of professional courses. In this 

sense, we adhere to Castela’s (2016) position on the issue of choosing appropriate mathematics for 

professional-oriented programmes: “mathematicians need to take some distance with their own 

culture […]. They have to reconsider the following questions: which mathematical praxeologies are 

useful for such engineering or professional domains? What needs would be satisfied? Which 

discourse makes the mathematical technique intelligible? This is actually an epistemological 

investigation that we consider as a prerequisite to the design of mathematics syllabi for professional 

training programs” (p. 426). 

Theoretical framework 

Because we are interested in how mathematical notions are used in Calculus and professional 

engineering courses, we believe that an institutional approach is appropriate for our research. In 

particular, Chevallard’s (1999) anthropological theory of the didactic (ATD) provides useful tools for 

analysing mathematical activity, since it considers that human activities are institutionally situated, 

and, consequently, so is knowledge about these activities (Castela, 2016, p. 420). 

A key element is the notion of praxeology (or praxeological organization), which is formed by a 

quadruplet [T / τ / θ / Θ] consisting of a type of task to perform T, a technique τ which allows the 

completion of the task, a discourse (technology) θ that explains and justifies the technique, and a 

theory Θ that includes the discourse. In analysing tasks, we identify the practical block (or know-

how) which is composed of types of tasks and techniques. The knowledge block describes, explains 

and justifies what is done, and is composed of the technology and the theory. These two blocks are 

important elements of the anthropological model of mathematical activity that can be used to describe 

mathematical knowledge. 

Our research identifies specific praxeologies present in professional courses; we analyse how 

Calculus notions are applied in these courses and whether this application reflects how the notions 

are usually presented in Calculus courses. In this case, analysing the practical block of these 

praxeologies allows us to identify specific tasks that require the use of Calculus notions, whereas 

analysing the knowledge block allows us to identify the justifications given in using these notions, 

and compare them with the justifications usually given in Calculus courses. We consider the work of 

Castela (2016), who identified that “when a fragment of social knowledge, produced within a given 

institution I, moves to another one IU in order to be used, the ATD’s epistemological hypothesis states 

that such boundary crossing most likely results in some transformations of knowledge, called 

transpositive effects” (p. 420). Her model (p. 424) proposes that in the boundary-crossing process, 

some (or all) elements of the original praxeology may evolve, and it ascribes the same level of 



importance to types of problems and techniques as to concepts and theories. However, unlike Castela, 

we do not analyse the same type of task in two institutions, but rather a single praxeology specific to 

engineering and the use of mathematical tools within it. 

Methodology 

As we stated in the introduction (agreeing with Castela, 2016), in order to analyse how mathematics 

are used to solve problems in a given professional field, we must first understand and define these 

problems. We believe this is best achieved in collaboration with professional practitioners. To 

determine how Calculus notions are applied in professional contexts in engineering courses, we 

contacted an engineering teacher who holds Bachelor and Master of Civil Engineering degrees. Over 

the past 28 years this teacher has taught a variety of professional engineering courses at Brazilian 

universities, in engineering programs that meet international standards. He has also enjoyed a career 

in structural systems and reinforced concrete since 1986, developing projects and serving as a 

consultant. We interviewed him in March 2016 to understand how he uses Calculus notions in his 

professional courses. The interview and post-interview exchanges covered his way of teaching, the 

books he uses and the course notes he produces, focusing on his way of presenting different notions. 

For the purposes of this paper, we have chosen to analyse the introduction of shear force and bending 

moment and, specifically, how integrals are used to introduce this topic. At his university, shear force 

and bending moment are introduced in the second year of the programme, in the Strength of Materials 

for Civil Engineering course (students take Calculus in their first year). Three classic international 

textbooks are listed in the course syllabus (all translated into Portuguese), the main reference being 

the book by Beer, Johnston, DeWolf and Mazurek (2012). 

The teacher indicated he primarily follows the structure of the main reference book in teaching shear 

force and bending moment. Therefore, this paper focuses on the book’s content; we are currently 

analysing the complementary material provided to students, as well as the content of the interview, 

which will be the source of future papers. In analysing the textbook, we identified how notions are 

introduced, the type of tasks associated with them, and the type of praxeology developed, paying 

particular attention to the practical and knowledge blocks and the role of mathematical tools and 

discourse within these blocks. 

It is also important to note that in the prerequisite Calculus course at this instructor’s university, 

certain properties and results are proved while others are simply stated. For instance, the connection 

between the sign of the derivative and the monotonicity of the function (θ1) is present and used in 

some tasks (such as the drawing of functions), as well as the connections between differentiability 

and continuity (θ2). 

Shear and bending forces: a summary 

The content introduced in this part of the 

course is related to the analysis and design 

of beams, an important aspect of civil and 

mechanical engineering. Generally, loads 

are perpendicular to the axis of a beam 

(transverse loading), which produces 

bending and shear in the beam. These 



transverse loads can be concentrated (measured in newtons, pounds, or their multiples of kilonewtons 

and kips), distributed (measured in N/m, kN/m, lb/ft, or kips/ft), or both (Figure 1). 

When a beam is subjected to transverse loads, any given section of the beam experiences two internal 

forces: a shear force (V) and a bending couple (M). The latter creates normal stresses in the cross 

section, whereas the shear force creates shearing stresses. Consequently, the criterion for strength in 

designing a beam is usually the maximum value of the normal stress in the beam. 

Therefore, one of the most important factors to consider in designing a beam for a given loading 

condition is the location and magnitude of the largest bending moment. To determine this location, 

students are introduced to techniques for drawing bending-moment diagrams, defining M at various 

points along the beam and measuring the distance x from one end. 

Data analysis and discussion 

Although the main reference book develops its theoretical content in a well-structured way – which 

allowed us to grasp the notions presented – is it possible that students do not read it. Research 

examining how engineering students use their mathematics books seems to indicate that students pay 

little attention to theory, focusing instead on tasks (Randahl, 2012). We are not aware of research that 

looks at the way engineering students use their textbooks in professional courses. 

The content addressing the drawing of bending-moment 

diagrams is presented in Chapter 5 (Analysis and design 

of beams for bending) of Beer et al. (2012). The chapter 

starts by introducing the different types of beam and 

loads, and the notions of load (w), V, and M. Section 5.1 

introduces the relations between, and the directions of, 

the forces V and M in different sections of a beam, 

according to the type of load. In this section, calculations 

are made based on the idea that the sum of forces must 

equal zero, using formulae introduced earlier in the book. 

Sketches of bending-moment diagrams result in 

configurations such as the one shown in Figure 2. 

Obviously, someone with a background in Calculus 

could start to make a connection between the diagrams 

for V and M. However, this connection is not made in the 

textbook until section 5.2 (Relationships between load, 

shear, and bending moment).  

The technique used in section 5.1 is quite rudimentary, 

but section 5.2 defines more explicitly (using derivatives 

and integrals – for this reason we focus on the content of this section) the relationships between w, V, 

and M to facilitate the drawing of bending-moment diagrams, which is the type of task (TE) to solve. 

Section 5.2 presents a new praxeology (related to the one in section 5.1) that introduces the calculation 

of V and M at two adjacent points, x and Δx. Expanding on results from section 5.1, the authors arrive 

at ΔV = -w Δx and state: “Dividing both members of the equation by Δx and then letting Δx approach 

zero: dV/dx = – w. [This] indicates that, for a beam loaded as shown in [the given figure], the slope 



dV/dx of the shear curve is negative” (p. 360). We have two remarks about this. First, the book avoids 

the writing of limits. Including limits could help make a connection with mathematical praxeologies 

present in the prerequisite Calculus courses (for instance, when defining derivatives and shifting from 

Δx to dx). Even if the technology used to arrive at the final expression is based on content previously 

taught in a Calculus course, it is not certain that every student will make the connection, since tasks 

addressing the passage from Δx to dx are not very numerous in Calculus courses. Second, the book 

links dV/dx with the notion of slope, but (surprisingly) relates the latter to a single case (illustrated 

with a figure), rather than explaining it as a general principle using the technology θ1 introduced in 

the Calculus course. This could lead some students to think that this connection between the slope of 

V and w applies only to the given figure. Although the notions (and their properties) introduced 

through TE are defined using tools from Calculus, they are not explicitly linked to technologies (such 

as θ1) derived from Calculus. Finally, the expression is integrated between points C and D to obtain: 

“VD – VC = 
D

C

x

x
wdx

 

 
” and “VD – VC = – (area under load curve between C and D).” 

In general, although the textbook uses elements of Calculus, it avoids explicitly using the kind of 

notation and properties that have been institutionalised in Calculus courses (such as θ1 and θ2 

mentioned above). For instance, the books states: “[dV/dx = –w] is not valid at a point where a 

concentrated load is applied; the shear curve is discontinuous at such point” (p. 361). Here, the author 

avoids a clear statement about continuity and differentiability (available in θ2). As Castela (2016) 

pointed out in a different context, we believe that the authors are seeking to develop another kind of 

knowledge, strongly correlated with a professional context. Employing techniques similar to those 

used to find V (and again, avoiding the writing of limits and saying instead “and then letting Δx 

approach zero”), the expression dM/dx = V is deduced and the authors state: “[this] indicates that the 

slope dM/dx of the bending-moment curve is equal to the value of the shear. This is true at any point 

where the shear has a well-defined value (i.e., no concentrated load is applied). [It] also shows that V 

= 0 at points where M is maximum. This property facilitates the determination of the points where 

the beam is likely to fail under bending”. Interestingly, once again, the book’s authors avoid using 

explicitly a technology derived explicitly from Calculus (θ1), making it less likely that students will 

make the connection. They finally deduce that: “MD – MC = 
D

C

x

x
Vdx

 

 
” and “MD – MC = area under 

shear curve between C and D.” 

We can see that the book avoids explicitly using properties previously institutionalized in Calculus 

courses, which leads to a kind of praxeology in which Calculus tools are written but geometric 

techniques are favoured. We do not mean to say these techniques are wrong; however, they could 

result in a knowledge gap, as some students may not recognise the same object (integral) that they 



encountered in their Calculus course. For instance, the first 

solved example (t1) (Figure 3) presents a uniformly distributed 

load w. Using previous formulae, the reaction forces in the 

extremities are deduced (equal to wL
2

1
), which allows the 

deduction of VA = wL
2

1
 and V – VA = 

x

wdx
 

0 
= –wx, leading 

to V = VA – wx = wL
2

1
 – wx = w 








 xL

2

1
. Note that the 

notation differs from that in the theoretical section, and the 

expression depends on the parameter w (introducing a 

technique τ1 that differs from what was previously presented 

and that does not address the presence of w); however, the latter 

is not highlighted, and a graph is drawn (Figure 3c), taking for 

granted that students can interpret a graph depending on a 

parameter (ignoring students’ known difficulties with 

parameters; e.g. Furinghetti & Paola, 1994). The maximum 

value of the bending moment is obtained by calculating the area 

under the positive triangular region 









8222

1 2

max

wLwLL
M , 

and the curve is hand-drawn (another technique that does not 

address that M has been introduced as the integral of V). The 

authors conclude with: “Note that the load curve is a horizontal 

straight line, the shear curve an oblique straight line, and the 

bending-moment curve a parabola. If the load curve had been an oblique straight line (first degree), 

the shear curve would have been a parabola (second degree), and the bending-moment curve a cubic 

(third degree). The shear and bending-moment curves are always one and two degrees higher than 

the load curve, respectively. With this in mind, the shear and bending-moment diagrams can be drawn 

without actually determining the functions V(x) and M(x)” (p. 362). A single case is used to introduce 

an important technological element (θE) that is helpful in solving TE (drawn by hand), but this element 

is not justified in general, even though introducing V and M as integrals (showing that their 

coefficients can be deduced as primitives) would allow the use of a technology derived from the 

Calculus course for this justification. The book instead chooses to introduce a “rule” (θE) indicating 

that the student simply has to add one and two degrees, respectively, to draw V(x) and M(x). The next 

solved problem has students calculate (again using formulae from section 5.1) the values of forces in 

extremities of intervals as well as areas using geometry. Students are asked to draw by hand the 

bending-moment curve (Figure 4), even for cubic functions. This way, given the original diagram 

(Figure 4-top), students can deduce the value of V, which will be constant at certain intervals, and 

deduce its value at D and E specifically, while simply linking them with a straight line. Once a student 

has drawn the graph for V, it is possible to calculate the areas under each segment to deduce the values 

of M in B, C, and D, linking them by hand. 



In summary, the book introduces a praxeology to solve the 

problem of drawing bending-moment diagrams (TE); however, 

although related notions are introduced using mathematical 

tools such as integrals, the technologies rely on implicit 

mathematical results without clearly identifying them, 

favouring a more professional perspective. The techniques 

presented are limited to calculating certain points on graphs and 

linking them using geometric properties, which hinders 

students’ ability to make connections with the techniques and 

notions introduced in their Calculus course. Notions are 

presented as integrals but this fact is not explicit in the book’s 

techniques nor in the technology; because it is possible to 

ignore the book’s explanations when focusing on techniques, it 

is not certain that students will connect this content with 

content previously studied in Calculus courses. The book 

introduces a praxeology in which the practical block is clearly 

presented [TE, τE], but where the knowledge block (mainly θE) 

mixes statements from mathematics and the engineering 

profession, leaving many facts implicit. Furthermore, this type 

of task does not justify all the content and techniques 

previously learned in Calculus courses regarding integrals.  

Final remarks 

In this paper we analysed the process of boundary crossing (Castela, 2016) of content related to 

integrals, and examined how this content is used as technique and technology in a praxeology proper 

to civil and mechanical engineering. The literature has identified disconnections between 

mathematics and professional engineering courses (Christensen, 2008; Loch & Lamborn, 2016) and 

our research has allowed us to pinpoint one of these disconnections. Furthermore, we believe the tools 

provided by ATD allow us to study praxeologies and identify the connectivities and disconnectivities 

between the content in mathematics courses and professional courses. 

It may be argued that the study of integrals in engineering programmes is motivated by the simple 

fact that “engineers use integrals”. However, we believe that the way integrals are taught in Calculus 

courses follows acknowledged mathematics praxeologies (those which are accepted and recognized 

by the institution of mathematics research; Castela, 2016, p. 421). These mathematics praxeologies 

ignore the use of integrals in professional courses. The crucial question, evoked in the introduction, 

of “what needs would be satisfied?” seems to be ignored by the praxeologies developed in Calculus 

courses, resulting in two different uses of the same object. We intend to analyse the entire content of 

the book related to sheer forces and bending moments, as well as the course notes, to provide a more 

detailed portrait of the use of integrals in this content. This work will be followed by further analysis 

of other engineering-related content, which will allow us to better understand the use of Calculus 

content by engineers and pinpoint possible gaps experienced by engineering students. 
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