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Abstract

We study a local multiplicity problem related to so-called generalized Shalika models.
By establishing a local trace formula for these kinds of models, we are able to prove a
multiplicity formula for discrete series. As a result, we can show that these multiplicities
are, for discrete series, invariant under the local Jacquet-Langlands correspondence and
are related to local exterior square L-functions.
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1 Introduction

Let G be a p-adic reductive group, H a closed subgroup of G and y a character of H
(potentially the trivial one). To every smooth irreducible representation 7 of G, we associate
a multiplicity

m(m, x) := dim Homg (7, x)

If the subgroup H is spherical (that is it admits an open orbit on the flag variety of GG) then
we expect these multiplicities to always be finite (This is already known in a certain number
of cases see [10, Theorem 4.5] and [34, Theorem 5.1.5]) and to roughly detect certain kind
of functorial lifts. For a good references on this circle of ideas, that has come to be called
the relative local Langlands program, we refer the reader to [33] and to the monograph [34]
that set forth a general formalism ’a la Langlands’ for these kinds of problems.

In the foundational papers [38], [39], Waldspurger has discovered a new way to attack
these questions by proving a certain integral formula computing the multiplicity m(7, y) in
the case of the so-called orthogonal Gross-Prasad models which, together with some twisted
version of it related to epsilon factors of pair, has found a remarkable application to the local
Gross-Prasad conjecture for orthogonal groups (see [40], [30]). This line of attack has then
been adapted by the first author of this paper [], [5] to deal with the local Gross-Prasad
conjecture for unitary groups and by the second author [41], [42] in the setting of the so-
called Ginzburg-Rallis models. Subsequently, in [6] the first author has also find another
application of this method to a conjecture of Prasad concerning Galois pairs. In all these
cases the basic tool to prove the aforementioned multiplicity formulas has been some new



kind of local (simple) trace formulas in the spirit of Arthur [2]. However, the proofs of these
trace formulas, and particularly of their geometric sides, have each time been done in some
ad hoc way pertaining to the particular features of the case at hand. It makes now little
doubt that such trace formulas should exist in some generality. However, we provide here
another example for the "generalized Shalika models’ in the hope that it can shed some light
on the general features of a potential generalization.

1.1 Main results

Let I be a p-adic field and A be a central simple algebra over F of rank n (i.e. A = Mat,,,(D)
where D/ F is a division algebra of degree r and n = mr). We will denote by Tr4/p : A — F
and N/p : A — F* the reduced trace and norm respectively. Set G := GL3(.A) and define
the following subgroups of G:

. 7, ;:{(A A) A€ A

oN:z{(l i()\XEA};
.HI:H()KN.

Fix a continuous character w : F'* — C* that we identify with a character of Hy through
composition with the morphism Ny/r : Hy — F* defined by NA/F((A )\)) = Nayr(N).
Let ¢ : FF— C* be a nontrivial character and define £ : N — C* by

5(1 )1() = (Trar X), X €A

Then ¢ is invariant under the Hy-conjugation and thus extends to a character, again denoted
&, of H that is trivial on Hy. Similarly, we consider w as a character on H by composition
with the projection H — H, and we denote by w ® £ the product of these two characters
of H. We refer to the triple (G, H,w ® &) as a generalized Shalika triple. In particular, if
A = Mat,, (F'), we recover the usual Shalika model for GLs,. For every irreducible admissible
representation 7 of G, we define the multiplicity m(m,w) by

m(m,w) = dim Hompy (7, w ® §).

According to [I0, Theorem 4.5], this multiplicity is always finite. The goal of this paper is
to study the behavior of the multiplicity m(m,w) under the local Jacquet-Langlands corre-
spondence.

Remark 1.1. In fact, by [23], [32] and [§], we even know the multiplicity m(m, w) is less
or equal to 1 (i.e. the generalized Shalika models are Gelfand pairs). But we don’t need this
result in the proof of the main theorem.



Let A’ be another degree n central simple algebra over F'. Set G' := GLy(A") and define
subgroups H), N', H' := H} x N’ analogous to the subgroups Hy, N and H of G. We also
define similarly characters characters &', w ® & of N’, H' respectively and for all irreducible
admissible representation 7’ of G/, we set

m(n’, w) := dim Homg (7', w ® &).

The main result of this paper is the following theorem that says that these multiplicities are
invariant under the local Jacquet-Langlands correspondence for discrete series.

Theorem 1.2. Let w (resp. 7') be a discrete series of G (resp. G'). Assume that © and 7'
correspond to each other under the local Jacquet-Langlands correspondence (see [9]). Then

m(m,w) =m(r' w).

Assume one moment that w = 1 (the trivial character) and set for simplicity m(7) =
m(m,1). Then, by work of Kewat [24], Kewat-Ragunathan [25], Jiang-Nien-Qin [2I] and the
multiplicity one theorem of Jacquet-Rallis [23], in the particular case where A = M, (F)
we know that for all discrete series 7 we have m(w) = 1 if and only if L(s,m, A?) (the
Artin exterior square L-function) has a pole at s = 0 (i.e. the Langlands parameter of 7
is symplectic) and m(m) = 0 otherwise. Actually, to our knowledge, a full proof of this
result has not appeared in the literature and thus for completeness we provide the necessary
complementary arguments in Section [6.I Together with Theorem this immediately
implies

Theorem 1.3. For all discrete series representation w of G, we have m(n) = 1 if and only if
the local exterior square L-function L(s, 7, A?) has a pole at s = 0; and m(m) = 0 otherwise.

We will prove Theorem in Section [6.Il The key ingredient of our proof is a certain
integral formula computing the multiplicity m(7,w) that we now state. Recall that following
Harish-Chandra, any irreducible representation 7 has a well-defined character ©,, which is
a locally integrable function on G and locally constant on the regular semi-simple locus.
Moreover, Harish-Chandra has completely described the possible singularities of ©, near
singular semi-simple elements that lead to certain local expansions of the character near
such point. Using these, we can define a certain regularization x — ¢, (x) of O, at all semi-
simple points by taking the average of the ’leading coefficients’ of these local expansions.
(See Section for details, actually for the groups considered in this paper there is always
at most one such leading coefficient.). Given this, our multiplicity formula can be stated as
follows (see Proposition B.3])

Theorem 1.4. For all essentially square-integrable representation w of G with central char-
acter x = w™ (seen as a character of Aqg = F*), we have

m(mw)= Y [W(H,T)™" / D (t)e, (t)w(t) 'dt

TeTen(Ho) AG\T



where Tean(Hy) stands for a set of representatives of elliptic maximal tori in Hy, W(Hy, T) =
Normp, (T)/T is the corresponding Weyl group, DH(t) is the usual Weyl discriminant, the
measure on the tori Ag\T are chosen to be of total mass one and the expression on the right
hand side is absolutely convergent.

Theorem is then an easy consequence of Theorem [[.4] and the characters relations
that characterize the local Jacquet-Langlands correspondence (see §6.1] for details).

Remark 1.5. In Appendiz A, we will prove a slight generalization of a result of Meglin
and Waldspurger, a consequence of which is that the multiplicity formula above holds more
generally for all irreducible admissible representations of G when A = D is a division algebra.
On the other hand, if A is not a division algebra, the multiplicity formula will only hold for
discrete series (see Remark[37) for more details).

Theorem [[L4] is a consequence of a certain local simple trace formula for the generalized
Shalika models of the same kind as the local trace formulas developed in [5], [6] and [41]. To
be specific, let f € °C(G) be an Harish-Chandra cusp form (see Section 2.5 for the definition
of these) and for all z,y € G, set

Ky = [ 76 b €)(0) dn

We define a distribution J on the space of cusp forms by

J(f):= Ky(z,z)dx.
H\G
In later sections, we will show that both integrals above are absolutely convergent.
The aforementioned trace formula gives two expansions of J(f): one geometric and one
spectral. The geometric side is given by

TP = 30 W(HLDI [ DM 0y thatt) i

TeTen(Ho)

where To(Hp) denotes a set of representatives of conjugacy classes of maximal elliptic tori in
Hy, W (H,,T) stands for the corresponding Weyl group, D! is the usual Weyl discriminant
and cs(t) is a certain weighted orbital integral of f in the sense of Arthur (see 20 for a
precise definition). The spectral side, on the other hand, is given by the following expression

Jepee(f) = Z m(m,w) Trr (f)

melly (G7X)

where II5(G, x) denotes the set of (isomorphism classes of) discrete series of G with central
character y = w™, seen as a character of A = F'*, and 7" stands for the contragredient of
7. Then the trace formula we proved in this paper is just (see Theorem [B.T])



Theorem 1.6. For all f € °C(G), we have

(1.1.1) Jspee(f) = J(f) = Jgeom(f)-

More precisely, the spectral side of the trace formula will be proved in Section [l and the
geometric side will be proved in Section Bl Moreover, Theorem [[.4] is, by standard means,
an easy consequence of this trace formula (see §3.3)).

In Section [6.2], we will discuss another application of the multiplicity formula. By applying
Theorem [[4] together with another multiplicity formula for the so-called Ginzburg-Rallis
model proved in the previous papers [4I] and [42] of the second author, we are able to
establish some relationship between the two kinds of multiplicities (cf. Theorem and
Theorem [6.7)). This will also allow us to prove the epsilon dichotomy conjecture for the
Ginzburg-Rallis model in some cases. We refer the readers to Section for details.

Finally, in Section [l guided by the idea of beyond endoscopy, together with Theorem
that relates the multiplicities for generalized Shalika models to poles of local exterior square
L-function, we restate our trace formula in the form of a (local) 'r-trace formula’ for r = A?
the exterior square representation of the L-group 'G = GLy,(C).

1.2 Organization of the paper and remarks on the proofs

In Section ] we introduce basic notation and conventions of this paper. This includes
some extended discussions of (#-)weighted orbital integrals, germ expansions and the Harish-
Chandra-Schwartz space. In Section Bl we state our (simple) local trace formula (Theorem
[LA) and prove that the multiplicity formula (Theorem [[4]) is a consequence of it.

Sections M and Bl are devoted to the proof of the trace formula. More precisely, in Section
Ml we prove the spectral side of the trace formula. It is the easy part and moreover the
arguments are very similar to [6, §4]. Section [l contains the proof of the geometric side
which is more involved. The general idea is inspired by the work of Waldspurger ([38], [39])
and the first author ([5], [6]) on the Gan-Gross-Prasad and Galois models. However, due
to significant differences between generalized Shalika models and the previous cases, our
proof of the geometric side is quite different. Indeed, as in the Gan-Gross-Prasad cases,
singular orbits are contributing to the geometric side and these contributions are reflected in
singularities of the original expression. Due to the fact that the generalized Shalika models
are usually not strongly tempered in the sense of [34] (recall that a model (G, H) is said to be
strongly tempered if all the tempered matrix coefficients of G are integrable on H/H N Zg),
we were unable to linearize the problem in order to perform a Fourier transform as in [38],[5]
where it had the effect of killing the problematic singularities. As a result, we have to deal
with them directly and for that we have in particular computed explicitly certain singular
weighted (or rather §-weighted) orbital integrals (see §5.0)).

Sections [6 and [0 contain applications of the trace formula and multiplicity formula. In
Section [6.1], we prove the two main theorems (Theorem and Theorem [[3)) of this paper
and in Section [6.2] we study the relations between the multiplicities for the generalized
Shalika model and the Ginzburg-Rallis model. Using this, we will prove new cases of the



epsilon dichotomy conjecture for the Ginzburg-Rallis model. Finally, in Section [, we rewrite
our local trace formula as some kind of "local r-trace formula’.

Finally, Appendix [Al contains a slight generalization of a result of Moeglin and Wald-
spurger concerning (generalized) Whittaker models.
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2 Preliminaries

2.1 Groups, measures, notations

Throughout this paper F' will denote a p-adic field (i.e. a finite extension of Q,, for a certain
prime number p) with ring of integers O and normalized absolute value |.|p. We will
denote by vr the normalized valuation on F', by ¢ the cardinal of the residue field of F
and by log the logarithm in base ¢ (so that vp(\) = —log|A|r for all A\ € F*). Moreover,
for all finite extensions E of F' we will set vg(\) := ﬁvF(NE/F()\)) for all A € E where

Ng/p : E — F stands for the norm (notice that vg is NOT the normalized valuation on
E unless the extension E/F is totally ramified). We fix throughout a nontrivial additive
character ¢ : F' — C*. We will slightly abuse notation and denote algebraic groups and Lie
algebras defined over F' and their sets of F-points by the same letters.

Let G be a connected reductive group over F. We denote by X*(G) its group of algebraic
characters and by Ag its maximal central split torus. We set

Ag := Hom(X*(G),R) = Hom(X"(Ag),R)

whose dual naturally identifies to

t=X"(G)®oR=X"(As) @ R.

There is a natural morphism Hg : G — Ag characterized by

O, Halg)) = log(Ix(9)])

for all x € X*(Ag) where we recall that log denotes the logarithm in base q. We set
Acr = Hg(Ag). It is a lattice in Ag. The same notations will be used for the Levi
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subgroups of G (i.e. the Levi components of parabolic subgroups of G): if M is a Levi
subgroup of GG, we define similarly Ay, Ay, Hy and Apy p. For such a Levi M, we will set

AG = .AM/Ag, A%TVLF = AM,F/AQF.

We will also use Arthur’s notations |2, Sect. 1]: P(M), F(M) and L£(M) will stand for the
sets of parabolic subgroups with Levi component M, parabolic subgroups containing M and
Levi subgroups containing M respectively. Let K be a special maximal compact subgroup
of G. Then, for all parabolic subgroup P with Levi decomposition P = MU, the Iwasawa
decomposition G = MUK allows us to extend Hy; to a map Hp : G — Ay, defined by
Hp(muk) := Hpy(m) for all m € M, v € U and k € K. The Lie algebra of G will be
denoted by g and more generally for any algebraic group we will denote its Lie algebra by
the corresponding Gothic letter. We will write Ad for the adjoint action of G on g. We
denote by exp the exponential map, which is an F-analytic map from an open neighborhood
of 0 in g to G. We define G,es as the open subset of regular semisimple elements of G.
The notation 7 (G) (resp. Ten(G)) will be used to denote a set of representatives for the
G-conjugacy classes of maximal tori (resp. elliptic maximal tori) in G.

Let H be an algebraic group over F. For any subset S C H, we write Centy(S) (resp.
Normpg(S)) for the centralizer of S in H (resp. the normalizer of S in H). If S = {z} we
will write H, for the neutral connected component of Centy(x) := Centy({z}). The Weyl
discriminant D is defined by

D (x) i= |det(1 — Ad()jo/n,)

for all semisimple element x € H. For every subtorus 1" of H, we will denote by

W(H,T) := Normpg(7T')/Centy (T)

the corresponding Weyl group. If A C H is a split subtorus that normalizes a unipotent
subgroup U C H we will write R(A, U) for the set of roots of A in u.

If T is a torus over F', we will denote by T its maximal compact subgroup.

In this paper, we will assume that all the groups that we encounter have been equipped
with Haar measures (left and right invariants as we will only consider measures on unimodular
groups). In the particular case of tori 7' we normalize these Haar measures as follows: we fix
on Ar the unique Haar measure giving A% volume 1 and we choose on 7" the unique Haar
measure such that vol(7'/Ar) = 1. For any connected reductive group G, we equip Ag with
the unique Haar measure such that vol(Ag/Agr) = 1. Thus this requirement also fixes
Haar measures on Ay, for all Levi subgroup M of G. If M C L are two Levi subgroups then
we give AF, ~ A,/ Ap the quotient measure.

We will adopt the following slightly imprecise but convenient notation. If f and g are
positive functions on a set X, we will write

f(z) < g(z) for all z € X,



and we will say that f is essentially bounded by g, if there exists a ¢ > 0 such that
f(x) < cg(z) for all z € X.

We will also say that f and ¢ are equivalent and we will write
f(z) ~ g(x) for all z € X

if both f is essentially bounded by ¢ and g is essentially bounded by f.

In this paper we will freely use the notion of log-norms on varieties over F'. The concept
of norm on varieties over local fields was introduced by Kottwitz in [26, §18]. A log-norm
is essentially just the log of a Kottwitz’s norm and we refer the readers to [B, §1.2] for
the definition and the basic properties of these log-norms. We will assume that all the
algebraic varieties X over F' that we encounter have been equipped with log norms ox.
And for all C' > 0, we will denote by 1x <c (resp. 1lx-¢) the characteristic function of
{z € X;0x(x) < C} (resp. {zx € X;0x(x) > C}).

For any connected reductive group G over F, we will denote by =¢ the Xi function of
Harish-Chandra on G (see [5, §1.5] for the definition and basic properties of this function)
and we will denote by C(G) the Harish-Chandra Schwartz space of G. This space consists
of functions f : G — C which are bi-invariant by a certain compact-open subgroup J C G
and such that for all d > 0, we have an inequality

1f(9)l < E%(9)oc(g)™

for all g € G. Let x be a unitary character of Ag. Then we will denote by C(G, ) the space
of functions f : G — C which are bi-invariant by a certain compact-open subgroup J C G
such that f(ag) = x(a)f(g) for all a € Ag and g € G, and such that for all d > 0, we have
an inequality

[f(9) < E9(g)aac\alg) ™
for all ¢ € G. There is a natural surjective map

C(G) = C(G.x): [ [y
given by

fg) = [ flag)x(a)'da, feC(G),g€QG.

Ac

For any set S we will denote by 1g its characteristic function.



2.2 Representations

Let G be a connected reductive group over F'. We will write Irr(G) for the set of isomorphism
classes of (complex-valued) irreducible smooth representations of G. We will identify any
element of Irr(G) with one of its representative. For 7 € Irr(G), we will also write 7 for the
space on which 7 acts. We will denote by Il(G) C Irr(G) the subset of essentially square-
integrable representations. And if y is a character of Ag, we will denote by Iy (G, x) C
I1,(G) the subset of representations with central character y. When x is unitary, the matrix
coefficients of any representation 7 € Ily(G, x) lie in C(G, x). For 7 € Irr(G), we will denote
by 7V its smooth contragredient; and for m € IIy(G), we will denote by d(m) the formal
degree of 7. It is the unique positive real number (depending on the Haar measure on G)
such that

% v % _LU o (s Y
[ a7 iy = o i)

for all v1,v9 € ™ and vy, vy € 7. For any f € C°(G) and 7 € Irr(G), we write

w(f) = /G f(9)m(g)dg.

When 7 € IIy(G, x) where the character y is unitary, the map f — 7(f) extends by conti-
nuity to C(G) and C(G, x™'). In all cases, the operator m(f) has finite rank. If f is a matrix
coefficient of m € II5(G, x) (with x unitary), we have

(2.2.1) TrrV(f) =d(m) "t f(1).

Moreover, for any 7 € Irr(G), Harish-Chandra has shown ([I5, Theorem 16.3]) the existence
of a locally integrable function ©, on G which is locally constant on G,e; and such that

Ten(f) = /G £(9)0x(g)dg

for all f € C*(G). We shall refer to O, as the Harish-Chandra character of w. Fixing a
G-invariant symmetric bilinear pairing (.,.) : g x g — F. Near every semi-simple element
x € G, there is a local expansion (see [I5 Theorem 16.2])

Or(wexp(X)) = D cro(2)i(0,X)

OeNil(gz)

for X € g, .o sufficiently close to 0 and where

e Nil(g,) stands for the set of nilpotent G,-orbits in g, (for the adjoint action);

® ¢, o(z) are complex numbers;
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e For all O € Nil(g,), 3((9, .) is the unique locally integrable function on g, (whose
existence is guaranteed by [15, Theorem 7.7. and Lemma 7.9]) which is locally constant
ON gz reg, and such that

/ H(X)F(0, X)dX = / A(Z)dZ, forall p € C™(gy)
O O

where dX is any Haar measure on g,, ¢ € C°(g,) — @ is the Fourier transform given
by (7)== fgz o(X)Y((Z,X))dX and dZ is the G,-invariant measure on O associated
to the self-dual Haar measure on F' corresponding to ¢ and the volume form on O
derived from the symplectic form descended from (.,.) (see [29, §1.8] for more details
on this).

For every semisimple element x € G, we set

en(a) = INilrclg(gz)\ ZOENilreg(gx) cro(x), if G, is quasi-split;
E 0, otherwise

where Nil,e,(g,) denotes the subset of regular nilpotent orbits in g, (this set is empty if
G is not quasi-split). This value does not depend on the choices of (.,.) and . If G, is
quasi-split and we fix a Borel subgroup B, C G, and a maximal torus 7, ¢ C B,, then by
[5, Proposition 4.5.1 1.(ii)], we have

(2.2.2) DE(x) Y2, (x) = |W(Ga, Toga)| ™" lim  DE(2')20,(2).

2/ €Ty qa—

2.3 (G,M)- and (G, M, #)-orthogonal sets

Let G be a connected reductive group over F' and M be a Levi subgroup of G. For all
Q € F(M), we will denote by Ug the unipotent radical of (), L¢ the unique Levi component
of @ such that M C Lg and Q = LqUg the parabolic subgroup opposite to () (with respect
to Lg). Let Ay be the split center of M. For all P € P(M), denote by Ap (resp. X})
the set of simple roots (resp. of all roots) of Ay in P. For all « € ¥}, we shall denote by
o € Ay the corresponding coroot and we set AY, := {a¥; v € Ap}. We recall the notion of
(G, M)-orthogonal set due to Arthur: a family Y = (Vp)pepr is a (G, M)-orthogonal set
if for all P, P" € P(M), we have

Yp—Vp € Z Ra".
aexin-xt,
Moreover, if the stronger relation

Yp—YVp € Z R.a"

aexfn-xt,

11



is satisfied for all P, P’ € P(M), then we say that the (G, M)-orthogonal set ) is positive.
To a (G, M)-orthogonal set ) we can associate a smooth function vy (.,)) on A3}, defined
by (see [27, Lemme 1.9.3])

A Y) = > vol(AG/ZIAR) T (A a¥) e xe Ay,

PEP(M) aEAp

where Z[AY] C AY; denotes the lattice generated by A}, and we set

More generally we can associate to a (G, M)-orthogonal set ) smooth functions vﬁ,(., V) on
A]](f and complex numbers v% (V) := ~12(0,Y) for all Q € F(M) with 4§, V) = v (., V)
(see [27, §1.9] ). If the (G, M)-family Y is positive, then vﬁ(y) is just the volume of the
convex hull of the projection of (Yp)pepr),rcg onto AJLVIQ. Also to a (G, M)-orthogonal
set ) we can associate a certain function I'{;(.,)) on Ay (see [27, §1.8]) that is just the
characteristic function of the sum of the convex hull of Y with Ag if ) is positive.

An easy way to construct (G, M )-orthogonal sets is as follows. Let My C M be a minimal
Levi subgroup with split center Ay and pick Py € P(My). Fix Y € Ay,. For all P € P(M),
define Yp to be the projection of wY onto Ay, where w € W(G, Ap) is any element such
that wFy C P. Then (Yp)pepm) is a (G, M)-orthogonal set.

Another way to construct (G, M)-orthogonal sets is as follows. Choose a maximal special
compact subgroup K of GG and use it to define maps Hp : G — Ay as in §2.I1 Then for
all g € G, the family Vi(g) := (Hp(g9)) pep(m) is a positive (G, M)-orthogonal set. In this
situation, we define

om(g) ==om(Yulg)), g€CG

and more generally

vir(9) = v (Vu(g)), g€@

for all Q € F(M).

Assume now given an algebraic involution 6 of G. Then we recall that a parabolic
subgroup P of G is said to be 6-split if (P) is opposite to P; and a Levi subgroup M of G
is said to be #-split if there exists a #-split parabolic subgroup P such that M = P NO(P).
Also, a torus T C G is said to be f-split if 6(t) = ¢! for all t € T (here we remark
that, unfortunately, the notions of #-split torus and #-split Levi do not necessarily coincide
when a torus is also a minimal Levi, we hope that this will not create any confusion to
the reader). We refer the reader to [0, §2.8.1] for a recapitulation of the basic structure of
these 6-split subgroups. For M a 6-split Levi subgroup, we shall denote by P?(M), resp.
FO(M), resp. L2(M), the sets of f-split parabolic subgroups with Levi component M, resp.
f-split parabolic subgroups containing M, resp. #-split Levi subgroups containing M. For
all Q € F(M), we define
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POUM) :={P € P'(M); P C Q}.

This set is in bijection with the set of -split parabolic subgroups of Lg with Levi component
M by the map P — PN Lg. We will denote by A, the maximal split and #-split central
subtorus of M and set

Ao = Xo(Anmp) ® R,

AJL\J,Q = Amo/Arg, L€ L£0(M).

Then for all #-split Levi subgroup M, there is a natural decomposition

Ay = Anro ® AS

where A9, denotes the subspace of f-invariant vectors and we define an homomorphism
Hyg: M — Appp as the composition of Hjy, with the projection Ay, — Apy. There is also
a natural decomposition

.AM,g = Ai[’g ©® AG79

and more generally a natural decomposition

AMﬂ = .A]Lwﬂ ) AL,Q

for all L € L%(M). Set Ao r := Harg(Apr). We equip Aprg with the unique Haar measure
such that vol(Anre/Aner) = 1 and Af;, for L € L°(M) with the quotient Haar measure
(where the Haar measure on Ay g is defined similarly).

To every P € P?(M) is associated a cone Af, C A defined by

A;,G = {A € .AMﬂ; <Oé,A> > 0 Va € R(AMﬂ, Up)}

We shall denote by A}, the closure of Af, and by 75, the characteristic function of A%,.
For all Q € F°(M), we will also consider the function 75, as a function on Ay g via the
projection Anrg — Arg.0-

In [6 §2.8.2], the first author has defined a notion of (G, M, 6)-orthogonal set which
generalizes Arthur’s classical notion of (G, M)-orthogonal set and we refer the reader to loc.
cit. for basic definitions and properties of these. A (G, M, #)-orthogonal set is a family
Y = (Vp)pepo(u) of points of Aysg satisfying certain compatibility conditions. There is
also a notion of positive (G, M, §)-orthogonal set. If Yp € A}, for all P € P?(M), then
the (G, M, 0)-orthogonal set ) is positive. To any (G, M, #)-orthogonal set ) is associated
functions

I'Y.(,Y), Lel’(M),QeF(L)

13



L
on A, and complex numbers

which are related by

For simplicity, when @ = G, we will write v g()) := vf’g(y). When ) is positive, FJ\GM(., V)
is the characteristic function of the sum of A5 with the convex hull of J; and more generally,
for @ € F/(M), F]?M(., Y) is the characteristic function of the sum of A, ¢ with the convex
hull of (Vp)pepaoar. We have the basic relation (see [27, Lemme 1.8.4 (3)] for the case of
(G, M)-orthogonal sets, the proof being completely similar for (G, M, §)-orthogonal sets)

(2.3.1) > THANTE (A =Vo) =1, A€ Auy
QeFI(M)

where for all Q € F?(M), we have denoted by Vg the projection of Yp onto Ay, ¢ for any
P € P2Y(M) (the result does not depend on the choice of P). One basic property of the
function T'; 4(.,)) that we shall use repeatedly is the following (see [27, Corollaire 1.8.5],
again for the case of (G, M)-orthogonal sets):

(2.3.2) Let |.| be a norm on Aj;p. Then, there exists a constant ¢ > 0 independent of the
(G, M, 0)-family Y such that for all A € Ay in the support of FJ\GM,(.,)/), we have
|AS| < esuppepory|Vp| where AC is the projection of A onto AF .

In particular, this implies

.. ere exists kK > or example £ = dim would work) such that
2.3.3) Th ists k> 0 (f le k = dim(A§; 1d work) such th

k
[vire(V)] < < sup )|3/p\)

PePd(M

for all (G, M, 0)-orthogonal set ).
We will also need the following property:

(2.3.4) Let Q € F*(M) and P € P?(M). Then, for all (G, M, 6)-orthogonal set ) such that
Ypr € AL, for all P' € P?(M), the restriction of the function

A T (A V)76 (A = Vo)

to AJISﬂ only depends on Vp.
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Proof. Since Y is positive, the function 'Y, (., V)754(- — Vo) is the characteristic function
of the sum of A, with the convex hull of (Vpr)prepesy. In particular, for all A in the
support of this function, we have (a, A) > inf pepo.o(ar) (e, Vpr) > 0 for all a € R(Axzy, UQ)
This implies that if P is not included in @, the restriction of I' ]?M( V)15e(. — Vg) to AP 0
is just identically zero. Assume now that P C (). Then, by adaptlng [2, Lemma 3.1] to
the case of (G, M, 6)-orthogonal sets, we see that the restriction of F?M( Y) to A+’9 only
depends on YVp. On the other hand, TQﬂ( Vo) only depends on Yg the projection of YVp
onto Ar,¢. The claim follows. O

Let Vi and Y, be two (G, M, 0)-orthogonal sets. Then, we have the following splitting
formula (see [I, Corollary 7.4] for the case of (G, M)-orthogonal sets, the proof being again
similar for (G, M, #)-orthogonal sets)

(2.3.5) vV + Do) = Z dg\;@e(Lla L2>U1?41,0(y1)7)1?/12,6(y2)

L1,LoeL0(M)

where for all Ly, Ly € L2(M), Q; (resp. Q3) is an element of PY(L;) (resp. P?(Ly)) which
depends on the auxiliary choice of a generic point £ € Ay, and df/[ o(L1, Lo) is a nonnegative
real number. Moreover, d$; (L1, Ly) is nonzero if and only if A, = Aﬁ/}ﬂ ® Aﬁe and we
have d§; o(G, M) = 1.

As for (G, M)-orthogonal sets, there is the following easy way to produce (G, M, 0)-
orthogonal sets. Let My C M be a minimal §-split Levi subgroup and pick Py € PY(M,).
Let Ay be the maximal split and #-split central subtorus of M, and set

W(] = NOI'Ing(Ao)/MO

for the little Weyl group of My. Then, the natural action of W, on P?( M) is simply transitive
(see [18, Proposition 5.9]). To every point Y € A,y 9, we can now associate a (G, M, 6)-
orthogonal set (Yp)pepo(ar) as follows: for each P € PY(M), set Yp to be the projection of
wY to Aprg where w € Wy is any element such that wF, C P.

Let K be a maximal special compact subgroup of G. By using the Iwasawa decomposition
G = PK, we can define maps Hpg : G — Ay for all P € PY(M) by setting Hpg(muk) :=
Hyg(m) for all m € M, w € Up and k € K. Then for all g € G, the family Vy4(g) =
(Hp4(9)) pepom) 1s a positive (G, M, 0)-orthogonal set. We set

uno(9) = vmo(Vme(g), g€G

and more generally

v 6(9) =15 6 (Vre(9), g€G

for all Q € F?(M). We have the following descent formula which is a special case of a general
result of Arthur (see [I, Proposition 7.1] and [0}, (2.8.4)])
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(2.3.6) vaa(g) = Y, die(L)vf(9), g€G
LeL(M)

where for all L € L(M), @ is a certain parabolic subgroup with Levi component L which
depends on the choice of a generic point £ € A,; and d%,e(L) is a real number. Moreover,

d§; (L) is nonzero only if Af; = AS? @ A% and whenever AS” = 0 we have S 4(G) = 1.

2.4 Weighted and 6-weighted orbital integrals

Let G be a connected reductive group over F', M be a Levi subgroup of G and f € C(G).

Fix a special maximal compact subgroup K of GG that we use to define weights g — U%(g),

for @ € F(M), as in the previous section. Then, for all z € M N G, and Q € F(M) we
define, following Arthur, a weighted orbital integral by

39 (z, f) = / F(g™ 2% (9)dg.

G \G

By of [0, Lemma 2.5.1], the integral above is absolutely convergent. In the particular case
where Q = G, we simply set ®y/(z, f) := &, (z, f).

Let 6 be an algebraic involution of G and assume that M is a #-split Levi subgroup. Using
the same special maximal compact subgroup K we associate, as in the previous paragraph,
to any Q € F?(M), a weight g € G — v]?/w(g). Then for all z € M N Gyeq and Q € F(M),
we define a 0-weighted orbital integral by

9,z f) = / F(g™ 2g)0S, 4(9)dg.

G2 \G

In the particular case where () = G, we simply set ®pro(z, f) == (IDJ\GM(x, f).

2.5 Cusp forms and 0-strongly cuspidal functions

Let G be a connected reductive group over F'. Following [38], we say that a function f € C(G)
is strongly cuspidal if for all proper parabolic subgroup P = MU of GG, we have

/Uf(mu)du =0

for all m € M. By [5l Lemma 5.2.1 (i)], if f € C(G) is strongly cuspidal, M is a Levi
subgroup of G and Q) € F(M) is different from G, then we have

O (x, f) =0

for all x € M N Gyeg where the weighted orbital integral <I>J\Q/[(m, f) is defined by using any
special maximal compact subgroup K of G.
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Let 6 an algebraic involution of G. We say that a function f € C(G) is 6-strongly cuspidal
if for all proper 6-split parabolic subgroup P = MU C G, we have

/ f(g~ 'mug)du = 0
U

for all m € M and g € G. By a standard change of variable, f € C(G) is #-strongly cuspidal
if and only if for all proper @-split parabolic subgroup P = MU, all m € M N G, and all
g € G, we have

/ f(g~ ' 'mug)du = 0.
U

By a proof similar to [5, Lemma 5.2.1 (i)], if f € C(G) is #-strongly cuspidal, M is a 6-split
Levi subgroup of G and Q € F?(M) is different from G, then we have

q)J\Q/[,G(xv f) =0

for all z € M N Gyeg where the f-weighted orbital integral (I)?M (z, f) is defined by using any
special maximal compact subgroup K of G.

To a strongly cuspidal function f € C(G) we associate a function © on G, defined by

Op(z) := (—1)%”_%@%@)(% f)
where M (z) := Centg(Ag,) (i.e. the minimal Levi subgroup containing z), ag, = dim(Ag, ),
ag := dim(Ag) and the weighted orbital integral @%(m)(x, f) is defined by using any special
maximal compact subgroup K of G (the result is independent of this choice, see [38, Lemme
5.2]). Then, by [38, Corollaire 5.9], O is a quasi-character in the sense of loc. cit.. This
means that for all semi-simple elements x € GG, we have a local expansion

O (rexp(X)) = Z cro(x)j(0, X)

OeNil(gz)

for all X € g, e sufficiently near 0, where ¢ o(z), O € Nil(g,), are complex numbers and
the other notations have been defined in §2.2. For all semi-simple elements = € G, we set

cp(z) = INilrcl(gz)\ ZOENilreg(gx) cro(z), if G, is quasi-split;
I 0, otherwise

where we recall that Nil,e,(g,) denotes the subset of regular nilpotent orbits in g,. This
value does not depend on the choices of (.,.) and ¥. If G, is quasi-split and we fix a Borel
subgroup B, C G, and a maximal torus 7} q C B,, then by [5, Proposition 4.5.1 1.(ii)], we
have

(2.5.1) DC(x)2cs(x) = [W(Gyy Tpqa)| ™t lim  DE(2)204(2)).

2/ €Ty qa—
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Moreover, by [5, Proposition 4.5.1 1.(iii)], the function (D%)Y2¢; is locally bounded on G.

Let x be a unitary character of Ag. We say, following Harish-Chandra, that a function
feC(@G)or felC(G,x)is a cusp form if for all proper parabolic subgroup P = MU of G,
we have

/U flaw)du =0

for all z € G. Of course, for functions in C(G) being a cusp form implies being strongly
cuspidal. We shall denote by °C(G) and °C(G,x) the spaces of cusp forms in C(G) and
C(G, x) respectively. For each 7 € TI5(G, ), the matrix coefficients of 7 belong to °C(G, x)
([15, Theorem 29]). And if f is such a matrix coefficient, we have (see [6, Proposition 2.6.1])

(2.5.2) O =d(m) ' f(1)O,.

Moreover, any element in the space °C(G, x) can be written as a finite linear combination of
matrix coefficients of representations inside II5(G, x). As a special case of Harish-Chandra-
Plancherel formula ([37, Théoreme VIIL.4.2]), for all f € °C(G, ), we have an equality

(2.5.3) f= > dm)f

melly (G7X)

where we have set f(g) := Tr(7¥ (g~ )7V (f)) for all m € II(G, x).

3 A multiplicity formula for generalized Shalika mod-
els

3.1 Generalized Shalika triples

From now on and until the end of the paper we fix a central simple algebra A over F' of
rank n (i.e. A = Mat,,«,,(D) where D/F is a division algebra of degree r and n = mr).
Tryp: A— Fand Nyp: A— F will stand for the reduced trace and norm respectively,

and we will set v(.) := [N p(.)|p. We also fix a maximal order O 4 of A. Set G := GLy(A)
and define the following subgroups of G:

o K :=GLy(0O4) (a maximal compact subgroup of G);

. HO::{()\ A) A e A%}
.N;:{<1 )1() | X € A);
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OHI:HQIXN;

o [ := {<>\ ,u) | A, € A*} (a Levi subgroup of G);

e Q:=LN = {()\ ‘if) | A, u € A%, X € A} (a parabolic subgroup of G).

By [37, Lemme II.1.5 and Proposition I1.4.5], we see that the subgroup H has the following
property (we shall say that the pair (G, H) is tempered following [6, §2.7] and unlike [14]
where these kind of pairs were called strongly discrete):

(3.1.1) There exists d > 0 such that the integral / =Z%(h)og(h)~%dh converges.
H

We fix a continuous character w : F* — C* that we identify to a character of Hy through
composition with Ny/p : Hy — F*. We then define a character { : N — C* by

5(1 )1() =Y(TrarX), XeA

Then £ is invariant under the Hy-conjugation and thus extends to a character £ of H that is
trivial on Hy. We can also consider w as a character on H by composition with the projection
H — Hj and we will denote by w ® & the product of these two characters of H. We refer to
the triple (G, H,w ® &) as a generalized Shalika triple. In particular, if A = Mat,,(F'), this is
the usual Shalika model. For all 7 € Irr(G) we define the multiplicity m(m,w) to be

m(m,w) := dim Homy (7, w ® ).

By [10l Theorem 4.5], this multiplicity is always finite.

3.2 A simple local trace formula for the generalized Shalika mod-
els

Here we assume that the character w is unitary. Let f € C(G). For all z,y € G we set

Kyfo.)i= [ 76 b )0 dn

This integral is absolutely convergent by B.I.Il Moreover, whenever convergent, we define
the following expression

J(f) = Ky(z,z)dx.
H\G

One of the main results of this paper is the following theorem which might be seen as some
sort of simple local trace formula in the setting of the generalized Shalika models.
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Theorem 3.1. Assume that f € °C(G) and w is unitary. Then, the expression defining
J(f) is absolutely convergent and we have the following two expansions of it:

S W(H T / D)yttt = J(f) = 3 mimw) Teal(f)

TeTen(Ho) mellx(G,x)

where Ta(Hy) is a set of representatives of conjugacy classes of maximal elliptic tori in Hy,
cp(t) is defined in Section[2.8, and x = w™ be seen as a character of Aq = F*.

Note that the summation on the right hand side of the equality above is a finite sum
(by [37, Théoreme VIII.1.2]), hence it is convergent. The integrals on the left hand side are
absolutely convergent by the following lemma.

Lemma 3.2. With the same assumptions as in Theorem [31], the integral
/ DY (#)e (Hus(t)dt
T

is absolutely convergent for all T € Ton(Hy).

Proof. We can rewrite the integral as
/ DY (t)ey (t)w(t)'dt
Ac\T

where we recall that f,(g) = an f(ag)x(a)~tda. Since T is elliptic, Ag\T is compact.
Together with the assumption that w is unitary, it is enough to show that the function

t € Treg — DM (t)cy (1)

is locally bounded on T. This just follows from the fact that the function (D%)Y2¢; is locally
bounded on G ( [3, Proposition 4.5.1 1.(iii)]), and D (¢) = D% (t)'/2 for all t € Tyeq. O

The proof of this Theorem will occupy Sections [4] and [ entirely. In Section ] we will prove
the absolute convergence of J(f) when f € °C(G) together with the spectral expansion (that
is the second equality of the Theorem). It is the easy part and moreover the arguments are
very similar to [6l §4]. Section [l on the other hand contains the proof of the geometric side
(i.e. the first equality of the Theorem) which is more involved than that of the spectral side.

3.3 The multiplicity formula
Let x = w™ be seen as a character of Ag = F'*. For all 7 € Irr(G, x), define

(3.3.1) Mgeom (T, w) = Z W (Ho, T)|* DH(t)cﬂ(t)w(t)_ldt
TeTen(Ho) Ac\T
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where we recall that the Haar measures on the tori Ag\T, T € Ta(Hy), are chosen so
that vol(Ag\T) = 1 (see §2.1). By a similar argument as in Lemma B.2] we know that the
integrals on the right hand side are absolutely convergent. The main interest of Theorem
Bl is the following consequence of it.

Proposition 3.3. For all m € Il(G, x), we have the multiplicity formula

(3.3.2) m(m, w) = Mgeom (T, w) = Z \W(HO,T)\_l DH(t)cw(t)w(t)_ldt.
TeTen(Ho) AG\T

Moreover, if A =D is a division algebra, then the same formula holds for all 7 € Trr(G, x).

Proof. The case when A is a division algebra directly follows from Corollary [A.2l Assume
now that m € II5(G, x). The absolute value |x| of x extends uniquely to a positive valued
character on G that we shall denote the same way. Then, up to multiplying w by |x|~* and
replacing m by 7 ® | X|_ﬁ we may assume that y is unitary and then so is w. We can then
use the equality of Theorem Bl that may be rewritten as

Y. IW(H, D) D (t)ey (w(t) Mt =" Y m(x',w) Te(@)(f,)

TE€To (Ho) Ac\T €l (G,x)

for all f € °C(G). Let m € II1(G, x). We choose f € °C(G) so that f, is a matrix coefficient
of m with f,(1) # 0. Then by Schur’s orthogonality relations, the spectral side reduces to

m(m,w) Tra”(f,) = d(m)~'m(m, w) f, (1)
On the other hand, by 2521 the geometric side equals

d(m) "' (1) Y (W (H, T DY (t)ex(t)w(t)"dt.

TeTen(Ho) AG\T

This proves the proposition. O

Remark 3.4. In general, if A is not a division algebra, then the multiplicity formula (3:3.2))
will not hold for all tempered (or generic) representations. For example, let A = Mat,,xm(D)
with m > 1, and let © be a tempered representation of G = Gliy, (D) with central character
X. Assume that w is the parabolic induction of some discrete series T =T ® -+ Q Top, of the
minimal parabolic subgroup Py = MyNy of G (here My = (GLy(D))?™). Using [39, Lemme
2.3], we readily check that c.(t) =0 for allT € Tai(Hy) andt € Trey (actually using van Dijk
formula [11)], we also have that the character ©, vanish on a neighborhood of any t € Tieg).
This implies that Myeom (7, w) is always equal to zero in this case. On the other hand, we
can choose some nice T such that m(m,w) # 0 (e.g. when the character w is trivial, we just
need to let T =71 @ « -+ @ Toy, With T9;_1 >~ 7y, for 1 <i<m).
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4 The spectral side

In this section we prove, following [0, §4], the absolute convergence as well as the spectral
side of Theorem Bl
For 7 € II1(G, x), let
B, :mxn’ —C

be the bilinear form defined by

B (v,v") ::/A \H<7T(h)v,vv)(w®§)(h)_1dh

for all (v,vY) € m x ©”. Note that the integral above is always absolutely convergent by
BT Obviously B, descends to a bilinear pairing

BW P Twee X WE{U®£)71 — C

where To,g¢ and 7 -1 denote the (H,w®¢)- and (H, (w®&)~1)-coinvariant spaces of T and
7" respectively. As in [0, §4] the main ingredient of the proof is the following proposition,

which is a variation of [34, Theorem 6.4.1] (a similar idea also appears in [39, Proposition
5.6]):

Vv

Proposition 4.1. B, induces a perfect pairing between m,ge and T (woe) 1 -

This proposition can be proved exactly the same way as [0, Proposition 4.2.1] once we
establish the next lemma.

Lemma 4.2. For all{ € Hompg(m,w ® &) and all v € 7, we have

/ 0 (2)0) Pz < oo.
H\G

Moreover, for all f € C(G), the integral

/G F(9)t(r(g)v)dg

is absolutely convergent and equals ¢(m(f)v)

Proof of Lemma 2t Let ¢/ € Hompg(m,w ® §) and v € 7. Set G; := A* and embed G; in

9
1

maximal split torus. Let A; be the set of simple roots of A; in P; and set

G via g — . Let P, = L U; C G4 be a minimal parabolic subgroup and A; C L; the

Af :={a € Ay;|ala)] < 1Va € Ay},
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Aft:={a € Af; |a(a)] < 1Va € R(A;,N)}.

Then, by the Iwasawa decomposition G = QK and the Cartan decomposition for GG1, there
exists a compact subset Cy C G such that

(4.0.1) G = HAFC,.

Moreover, there exists a compact subset Cx C A; such that for all a € A} with ¢(m(a)v) # 0,
we have

a € Aii_—i_CA.

Indeed, it suffices to show that for all & € R(A;, N), there exists ¢, > 0 such that for all
a € Ay with {(m(a)v) # 0, we have |a(a)| < ¢,. Let a be such a root and note that the
character £ has a nontrivial restriction to the corresponding root subspace N,. Let K, C N,
be a compact-open subgroup which leaves v invariant. Then, there exists ¢, > 0 such that
for all @ € A; with |a(a)| > cq, the restriction of ¢ to aK,a™! is nontrivial. This easily
implies that ¢(7(a)v) = 0. This proves the claim.

Thus there exists a compact-open subset C' C G such that

(4.0.2) The function g € G — {(7(g)v) has support in HA{"C.

Let P, = LU, be the parabolic subgroup opposite to P; and introduce the following
parabolic subgroup of G:

pi O -
P = cmE€EPL,g1€GL,XeAL.
{(X 91) y%i 1,91 1 }

It has a Levi decomposition P = LpUp where

i 0
Lp:= {(5 g1> s hely,g € Gl}

UP:Z{(% (1)), U1€U1,X€A}.

Note that A; is contained in the center of Lp and

and

(4.0.3) AT ={a € Ay; |a(a)] = 1Va € R(A,Up)}.

Moreover, we have
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(4.0.4) HP is open in G.
Define a function Z#\¢ on H\G by

=H\Y (7)== volyno(z0) 2, x € H\G.
Then as in [5, Proposition 6.7.1], we can show in turn that
(4.0.5) EM\Y(zk) ~ EM\G(2) and o\ (zk) ~ omg(x) for all z € H\G and all k € C;

(4.0.6) There exists d > 0 such that 2¢(a) < Z7\%(a)og(a)? for all a € A] T (this uses L3

and [.0.4);

(4.0.7) omg(a) ~ og(a) for all a € A, (this is because the regular map G; — H\G is a
closed embedding);

(4.0.8) There exists d > 0 such that the integral

/ EH\G(LL’)2O'H\G(SL’)_ddSL’
H\G

converges (this uses decomposition E0LT));

(4.0.9) For all d > 0, there exists d’ > 0 such that

/ =26 (hx)og(hr) ¥ de < =Y () (z) 7
H
for all x € H\G (this uses .04 together with decomposition E.0.T]).

Finally, by the above points and L0.2] in order to prove the lemma, it remains to show that

(4.0.10) For all d > 0, we have |{((a)v)] < Z%(a)og(a)™® for all a € AT,

Let K, C G be an open subgroup which stabilizes v. Then, from [£0.3] and [£.0.4] we deduce
the existence of a compact-open subgroup J of G such that J C HaK,a ! for all a € A] ™.
It follows that

Um(a)v) = (m(a)v, ey x L)

for all @ € A" where e; * £ denotes the element of 7 defined by

(w, ey * £) = vol(J)™! /Jﬁ(w(/ﬁ)w)dk, w E .
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4.0.100 now follows from standard estimates for coefficients of square-integrable representa-
tions. W

We now prove the absolute convergence and the spectral side of Theorem Bl Let f €
°C(G). Then, we have

K(z,y) = / G @ e ) an

for all x,y € G where we recall that x denotes the restriction of w to Ag and f,(g) :=
fAG flag)x(a)~tda for all g € G. By 253, we may assume that there exists m € IIo(G,
such that f, is a matrix coefficient of 7, i.e. there exist (v,vY) € m x 7" such that f,(g) =
(m(g)v,vY) for all g € G. In this case, we have

Ky(x,y) = Bx(m(y)v, m(z)v”)

for all x,y € G. Let N := m(m,w) and let vy, ..., vy be vectors in 7 whose images in m,g¢
form a basis. Let vy, ..., vy be vectors in 7" whose images in 7 ... form the dual basis
with respect to B,. Then, we have

N
Kf(l’, y) = Z Bﬂ(ﬂ'(y)'l}, U;/)BW(Uh 7T(x)vv)
i=1
forall z,y € G. From there and Lemma[L.2 we deduce the absolute convergence of J(f). Now
the end of the proof is the same as that of [6, Theorem 4.1.1]: using Schur’s orthogonality
relations we have

N

JH=) Br(m(x)v, v)')Br(vi, 7" ()0 )du = Z/A \G(W(Q)MUW%(%Wv(g)vv)dg

i=1 H\G i—

_N<U>Uv> v oY) = m(r. w =m(m,w) Trm
_; o B, (vi,v)) = m(m, )d(ﬂ) (m,w) Tra(f).

5 The geometric side

The goal of this chapter is to prove the geometric side of Theorem Bl The proof will be
given in Section (.9 We will continue to use the notations introduced in Chapter Bl and
we will assume as in Theorem B.1] that w is unitary. We will also need the following extra
notations:

e §:=Ad (1 1) (an involution of G);
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e G : =A%, K, := 0 and gy := A (the Lie algebra of G1), note that we have a natural
identification L ~ G x Gfy;

e There is a natural open embedding G; — g; and we will denote by g} its image.
Similarly, for any maximal torus 1" of G; the previous embedding restricts to an open
embedding T < t, where t denotes the Lie algebra of 7', and we will denote by t* its
image (i.e. the open subset of all X € t such that v(X) # 0);

e (.,.): g1 X g1 — F the bilinear pairing given by (X,Y) := Tr4/p(XY);

Remark 5.1. The introduction of the involution 6 might seem unmotivated at first sight. It
will however naturally appear in the computations of the next sections. A heuristic reason
for this could be that distinction for the generalized Shalika model (G, H,§) considered in
this paper is closely related to distinction for the generalized linear model associated to the
pair (G, L) where L is as in Section [31] i.e. the subgroup of 0-fixed points. Indeed, when
A is split by [23, Sect. 6] if an irreducible representation © admits a Shalika model then it
also admits a linear model. Moreover, using the technique of local unfolding of Sakellaridis-
Venkatesh [34, §9.5] it is highly plausible that we can prove (although we will not do it in
this paper) that a tempered representation of G (or more generally a generic representation)
has a generalized Shalika model if and only if it has a generalized linear model. If this is the
case, the spectral sides of the (simple) trace formulae (of the kind considered in this paper)
for these two models would be exactly the same and therefore so would their geometric sides.
However, working with (generalized) Shalika models seemed easier to us since the space of
semi-simple conjugacy classes in H is of half the dimension of the space of semi-simple

conjugacy classes in L (and this plays somehow a crucial role in our proof of the geometric
side).

Recall that in this paper we are assuming that every algebraic variety X over F' that we
encounter has been equipped with a log-norm ox. For simplicity we will assume, as we may,
that g, and oy are both left and right invariant by K. Let T'C G; be a maximal torus.
By [26 Proposition 18.3], we may, and will, assume that for every g € G, we have

(501) 0T\G1 (g) = %2:; e (tg)'

We also recall the following inequality from [0, (2.2.2)]:

(5.0.2) or\a(9) < o6, (97 "tg) log (2+ D' (1))

forall g € Gy and all t € T'N Gy 1. We will also need the following easy-to-check lemma:
Lemma 5.2. Let K be a finite extension of F and set vy := m—=vp 0O Ng/p. Then for all

[K:F]
k > 0, the inequality
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/ max(1, v (y))dy < C* x vol{y € K: vie(y) > C)
yEK; v (y)=C

holds for all C' > 1.

We now describe roughly how we will prove the geometric side of Theorem B.Il In Section
B.1 we will introduce a sequence of truncations (Jy(f))n=1 of J(f) such that A}im In(f) =
—00

J(f) whenever J(f) is absolutely convergent. Then, in Section 0.8 we will show that Jy(f)
admits a limit whenever f is 0-strongly cuspidal (see §2.5]) and we compute this limit. In the
particular case where f is strongly cuspidal (in particular if f is a cusp form), we prove in
Section 5.9 that this limit is equal to the geometric side of Theorem 3.1l The bulk of the proof
is contained in Section [£.6] where we show that we can replace certain weights appearing
naturally from our truncations by other weights that are related to certain (singular) 6-
weighted orbital integrals.

5.1 Definition of a truncation

Fix a maximal split torus A; of GGy such that K is the fixator of a special point in the
apartment associated to A;. Let M; := Centg, (A;) and P; be a minimal parabolic subgroup
with Levi component M;. Let A; be the set of simple roots of A; in P;. We have a Cartan
decomposition

Gl = KlMl—i_Kl

with M;" := {m € My;{a, Hy,(m)) > 0 Va € A;}. Let N > 1 be an integer and let
Ty € AJ\G/}I,F be the point characterized by («,Tx) = N for all &« € Ay. In [2 §3], Arthur
has defined a certain characteristic function (., Tyy) associated to T. More precisely, if we
denote for all « € A; by @, € A}, the corresponding simple weight and set

M (N) :={m € M{"; (Hy,(m) — Ty, @s) < 0Va € Ay}

Then u(., T) is the characteristic function of Ky M;" (N)K; (see [2 Lemma 3.1]). Because of
the center, the set K;M; (N)K; is not compact and we define another truncation function
kn @ G1 — {0, 1}, this time of compact support, by setting

kn(g) = 1~ gn(v(9))ul(g, Tn), g€ Gy

where 1j;-~ v stands for the characteristic function of the segment [, ¢"]. The next
lemma summarizes some basic properties of the sequence (ky)y>1 that we will need.

Lemma 5.3. (i) There exist ¢i,co > 0 such that for all g € Gy and all N > 1, if og(g) <
1N, then kn(g) = 1; and if ky(g) = 1, then og(g) < caN.

(i1) Let T C Gy be a maximal torus. Then, there exist ¢ > 0 and Ny > 1 such that for all
N > Ny and all g, h € G7 with max (O’T\Gl (9), O’T\Gl(h)) < ¢eN, the function
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a €T ry(htag)
s invariant by the maximal compact subgroup T¢ of T.
Proof. (i) is obvious;

(ii) Up to conjugating T" we may assume that 7¢ C K; and Ay C A;. Since the property
we want to prove is invariant by left translation of both g and h by T', by BE.0J] we
may replace the condition max (opq, (9), or\a, (h)) < ¢N by the seemingly stronger

one max (0¢, (9), 06, (h)) < ¢N. Also, there exists a finite family (¢;);=1..x of elements
k

of T such that T = |_| ArT*t;. Hence, it suffices to show the existence of ¢ > 0 and

.....

i=1
Ny > 1 such that for all N > Ny and all g, h € Gy with max (o¢, (9), 0¢,(h)) < cN, we
have

k(b 'tag) = kn(h™'ag)

for all t € T¢ and all a € Ap. This property is obviously satisfied by the function
g = 1i-~ 4v(v(g)) and thus we may replace ky by u(., Tx). Set M := Centg, (Ar) and
define the maps Hp : Gy — Ay, P € P(M), by using the maximal compact subgroup
K. These maps are Tinvariant on the left. As og, is also Tinvariant on the left
(since we are assuming 7° C K7), it suffices to show that for some ¢ > 0 and Ny > 1,
the following holds: for all N > Ny and ¢, h € Gy with max (o, (9), ¢, (h)) < ¢N, the
function

a€ Ar — u(h™tag, Ty)

only depends on the families (Hp(h))pepnr) and (Hp(g))pepm). Such a property is
provided by the proof of |2 Lemma 4.4]. Indeed, by the equation on the last line of
p-38 of loc. cit., there exists ¢ > 0 and Ny > 1 such that for all N, g and h as before,
we have
u(h_lagv TN) = 1—WJ\G/[l (HM(CL)v yM(ha 9, TN))
for all a € Ap(F') where the (G, M)-orthogonal set Yy (h, g, Tx) is defined by
Yu(h,g9,Tn)p :=Tnp + Hp(h) — Hp(g), P € P(M).

Obviously this (G4, M)-orthogonal set only depends on the sets (Hp(h))pepr) and
(Hp(9)) pep(ary and this proves the claim.
U
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Choose Haar measures on GG, g; and K such that

oo Lo [ )0 )r)osorans
frmas [ [((* ) 1)) one

for all ¢ € C.(G) (resp. for all p € C.(H)).

For every integer N > 1 and every function f € C(G), we define the following expression:

LD L)) (D)) ) s taxen a2

where we have set
= / f(k_lgk:)dk
K

for all g € G. Note that if the integral defining J(f) (see §3.2)) is absolutely convergent, then
we have

and

J(f) = lim Jy(f).

N—oo

By Weyl’s integration formula, we have

(5.1.1) IN(f) =Y W(GLT) Inar(f)

TeT(G1)

for all N > 1 and all f € C(G) where T(G1) is a set of representatives of the G1-conjugacy
classes of maximal tori in Gy, and for all T € T(G;) we have set

= [ f LA ) DE )

d
HN,T,&(Q, h7 X)dXﬁy(h)”dhw(t)_ldt
1%

with

knTe(g, h, X) :z/f(aX)_lfiN(h_lag)da.
T
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From now on and until the end of Section (.8 we fix a torus T € T(G;). Without loss of
generality (i.e. up to conjugating 7" by an element of GG;), we may assume that Ap C A
and 7'N K; = T°. From Lemma [.3(i) and E.0.1] we easily infer that there exists £ > 0 such
that the following estimate

(5.1.2) kN re(g, by X)| < ora (9) o, (h)FN*

holds for all N > 1, all g,h € GG; and all X € g;. More precisely, there exists k& > 0 such
that

(5.1.3) / k(b ag)da < o, (9) o, (W) NF
T
for all N > 1 and all g, h € G;.

5.2 Concrete description of 7" and of related objects
Set My := Centg, (Ar) (a Levi subgroup of Gy), M = M, x M; (a Levi subgroup of G).

Then, the Levi M is #-split. Moreover, there exist field extensions K1, ..., K4 of F' such that
(5.2.1) T~ Kx...xKJ.
More precisely, there exist:

e A division algebra D, central over F' and of degree r dividing n;

A right D-module V free of rank n/r;

e An isomorphism of F-algebras

A~ Endp(V)

inducing an isomorphism

Gl ~ GLD(V)

For all 1 <7 < d, a degree r subextension F; of K; together with an embedding F; — D
and an isomorphism of (right) D-modules

(5.2.2) VoK@ D®...0 K@ D
through which the action of 7" is given by multiplication by K. on the i-th factor.
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We fix such data (and isomorphisms) once and for all and we fix a basis of V' compatible
with the decomposition Doing so we will identify G; (resp. G) with GL, /(D) (resp.
GLg,/r(D)). Besides 5.2.1] we also get identifications

and
(5.2.4) M ~ GLj, (D) x ... x GLy, (D) x GLy, (D) x ... x GLy,(D)

where we have set k; := [K; : Fj] for all 1 <i < d. We will denote by t* the orthogonal of
t in g; with respect to the symmetric bilinear form (.,.) and by X — X (resp. X — X1)
the projection g; — t (resp. g; — t1) relative to the decomposition g; = t @ t*.

5.3 An estimate

For all f € C(G), all t1,t5 € T'N G4 and all £ > 0, we define the following expressions:

Li(f t, ta) = /TxT\Gle1 /glf ((g_l h—l) (tl tz) (1 )1() (9 h))

d
7 (9)*oma (1) o (97 X 0, (g™ X h)FAX S Sow ()

and
Inalf) = | DOOL(S )
T

where we recall that for all X € g1, X; and X, stand for the projections of X onto t and t*
respectively with respect to the decomposition g; = t @ t+. Similarly, for all f € C(G), all
t1,t2 € TN Gyreg, all K> 0 and all C' > 0, we define the following expressions:

In<c(f ty,t2) := /TxT\Glel /glf ((g‘l h—l) (tl tz) (1 )1() (9 h))

OT\G1 (g)kUT\Ch (h)k%f (g_lXth)kUm (g_lXti h)k

d
1y ,<c(9) e <c(h) g <c(97 ' Xih) 1y, <c(97 X h)dXTj)nV(h)"dh

and

Iry<o(f) ::LDcl(t)]k,gc(f,t,t)dt.
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Proposition 5.4. (i) Forall f € C(G), allty,tos € TNG1eg and all k > 0, the expressions
defining Ii.(f,t1,t2) and Ipi(f) are absolutely convergent.

(i1) For all f € C(G), all t1,ty € TN Giyreg, all k>0 and all ¥ > 0, we have inequalities

‘]k(fu t17t2) - [k,<C(f7 t17t2)| < C_T

and

Ik (f) = I <c(f)] < C7"
for all C' > 0.

Proof. (i) Fix f € C(G) and k > 0. Up to the replacement of f by its absolute value, we
may assume that f only takes nonnegative values. By [0 Lemma 1.9.2 and Lemma
1.9.3], it suffices to prove that for every r > 0, we have an inequality

<%)"/§1f <(g_l h—l) (tl tg) <1 )1(> <g h))Ug}‘(g_lXth)kUgl(g_lthh)kdX

n/2

v(t _ B _ - - . ) -

< <Vgt2§) :Gl(g ltlg):Gl(h 1t2h)O.Gl(g ltlg) O_Gl(h thh)
1

x log(2 + D ()™ )" log(2 + DY () ™) opma, (9) Fora, (h) "

for all g,h € Gy and t1,ty; € T'N G 1eq, Where we recall that d denotes the rank of Ap
(see §5.2). By B.0.2] we have

ora (9)ora, (h) < o6, (97 t1g)oc, (R tah) log(2 + D (t1) ") log(2 + D% (t2) ™)

for all g,h € Gy and t1,t2 € T'N Gy ree. Thus we are reduced to show that for every
r > 0 we have

O () 0D ) st st

n/2

v(t _ B _ - B B ) -

< (U0) =0 0= 0t (7 ) o (7 ) o (0) o, ()44
1

for all g, h € Gy and t1,t5 € T. As the left hand side of the above inequality is invariant
by left translations of both g and h by 7', by E.0.1] we see that we may replace op\q, (9)
and on\q, (h) by 0¢, (g) and o¢, (h) respectively in the right hand side of the inequality.
Moreover, we have
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Og; (g_lXih'>Ugl( Xti-h < log (2 +v Xt 1)) Ugl( ) e (9)2001 (h)2
<log (2+ V(X)) 04, (97" X D)0, (9) 06, (h)*
< lOg (2 +v Xt 1)) UG1( ) 0G, (h)4

() () D)

for all g,h € Gy and X € g;. Thus, as the function v € G — f(v)og(vy)?* is again
Harish-Chandra Schwartz, up to the replacement of f by this function, we just need to
verify that for every r > 0 we have

<%)n/glf<(g_l h—l) (tl t2) (1 )1() (g h))log (2+ (X)) dX

n/2

v(t _ B _ B - . B B

<<<Et§) =9 (g7 19)EN (W 1210, (97 1ig) o, (k) 06, (9) Mo, ()™
1

for all g,h € G and ti,t; € T. Fix henceforth r > 0 and for all Y € ¢, let YV =
Yi + ...+ Yy be the decomposition of Y according to the identification (so that
Y; € K; for all 1 <i < d). Then,

d

log (2+v(Y ™)) < [ [ max(1, v (¥7)

i=1

for all Y € t* and thus, by Hoélder inequality,

/glf<<9_l h_l) (tl tz) (1 )1() (9 h))log 2+ v(X7H) " dx
(LA ) D)) momaar)”

It follows that we just need to establish the following estimates for every 1 < i < d:

(5.3.1)
(V (9) ) / / (( 1) (tl tg) (1 )1() (g h)) max(1, v, (X)) " dX
< ( E ) 9 t1g)E (™ th)og, (97 tg) "o, (R th) "o, (9) ™ oq, (h)™
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for all g,h € Gy and all t1,t5 € T. Fix 1 < i < d and let t; be the subspace of t corre-
sponding to K; via the identification .23 Denote by t;- the orthogonal complement
of t; in g; with respect to the bilinear pairing (.,.). We can write

/glf <<g_1 h_1> <t1 t2) (1 )1() (g h)) max(1, v, (X)) *dX
- /t%/t@-f ((g‘l h‘l) (tl t2) (1 XJ{Y) (g h)) max(1, vg, (Y))®*dY dX

for all g,h € Gy and all t1,t5 € T. Let J C G be an open subgroup by which f is

-1
Ly 1Yh € J for all g, h € G and

all Y € t; with v, (Y) > Aog,(9)og, (h). For all g, h € Gy, set

biinvariant. Then, there exists A > 1 such that

tz‘[<7ga h] = {Y € tz | UKi(Y) < AUG1 (g)aGl (h’>}7

t[>,9,h] ={Y €t | vk, (Y) = Ao, (g)oa, (h)}.

Then by further decomposing the above integral, we have

[ ) () (D i
Lt () )TN o
L (O ) ) D)o

for all g,h € Gy and all t;,t, € T. By applying Lemma (.2, we see that this last
expression is essentially bounded by the product of og, (9)%*0q, ()% times

Lo ) ) o
L AE D)
J(E D DE )

for all g,h € G7 and all t1,t, € T Finally, it follows from [37, Proposition I1.4.5] that
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) L0 ) () O 5) ()
=L ) (1))

n/2
v(t _ 3 - . ) -
< (,,E;%) =9 (g7 tg)EY (W ah)oc, (9 thg) o, (B Eah)

for all g,h € G and all t1,t5 € T. This proves inequality 5.3 and ends the proof of
().

(ii) We prove the first inequality, the proof of the second one being similar. Fix f € C(G),
ti,t2 € TN GYeg, K> 0and r > 0. For all C' > 0 we have

\Le(f ot te) — I (fotr to)| <Iioo(|f1 b t2) + I s o (If] o o) + 12 oo (1 f |t t2)
+Il§,>0(|f|>t1>t2)

where

e LU ) DE )

ore (9) one, (h) oy (g7 Xih) g, (97" X )"
d
]—T\G1,>C(g) V(;ny(h')ndh'a

and I7 o (|f], t1,t2), Ipoc(|f], 1, t2) and I;{>C(|f|,t1,t2) are defined similarly by re-
placing 17\¢,, >C(9) by 1mg, >c(h), 1g: (9™ 'Xih) and 14, »o(9~' X1 h) respectively.
Then for all 1 < j <4 and all C' > 0, we have

]Ig,>C(|f‘7t17t2) < C7 T (], s t2)-

By (i) Ixsr(|f],t1,t2) is absolutely convergent. This proves the claimed inequality and
finishes the proof of the Proposition.
U

5.4 Computation of certain (G, M, #)-orthogonal sets

Recall that we have fixed a basis of V' compatible with the decomposition 5. 2.2 In this basis,
the maximal (0, F')-split central torus Asp of M is the subgroup of matrices of the form
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)\lIkl

Aalg,
AN,
M,
where \; € F* for all 1 < i < d and we recall that k; := [K; : F;]. We identify Mo With
R through the choice of the basis (—xi, ..., —xq) Where for every 1 < i < d, x; denotes
the character of A);¢ sending an element as written above to A;. From this, we get an
identification of Aye with R? such that for every m = (my, ..., maq) € M (decomposition
according to the identification [5.2.4]), we have
'UF(NMkl(D)/le) - UF(NMkl(D)/Fmd—i-l) 'UF(NMkd(D)/Fmd) - UF(NMkd(D)/FmM)
Hyrg(m) = N
' 2rky 2rky

where for every 1 <4 < d, N, (p)/r M;(D) — F denotes the reduced norm and r stands
as before for the degree of D over F' (Recall that the homomorphism H),; was defined, see
Section 2] using the logarithm in base ¢ explaining why there is no log(q) in the above
formula). For all X = (X,...,X,) € t*, we will also set

V(X) = (v, (X1), ..., vk, (Xq))

where we recall that vk, = ﬁvp o Nk, for every 1 < i < d. Note that we have

(5.4.1) He <‘§ Xo_l) =V(X)

for all X € t*. We extend the map Hyrp : M — App to the maps Hpp : G — Aprp for all
P € PY(M) by using the maximal compact subgroup K.

Set W := (Z/2Z)". We identify W with a subgroup of G by sending the i-th element e
of the canonical basis of W to the element of G which switch the two copies of K; ®p, D in
V @ V. By the assumption that T C K;, we have W C K. Conjugation by W preserves
M and commutes with #. Hence it induces an action on the set F?(M) of #-split parabolic
subgroup containing M and also on Ay that we shall simply denote by (w, P) — wP and
(w, X) — wX respectively. We have

(5.4.2) PI(M) = | | wP?? (M)

weW

where we recall that PY(M) is the set of #-split parabolic subgroups with Levi component
M and P%Q(M) is the subset of P € P?(M) such that P C Q.
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Proof. 1t suffices to show that

U 'APG

PeP?Q(M)

is a fundamental domain for the action of W on A;g. With the identification above, we
have

U Aby={X € Ay (0, X) >0Va € R(Ayy,Ug)} = R™.
PeP9Q(M)

Now the claim follows easily from the fact that the action of W on A/ is given by sign
changes of the coordinates. O

Lemma 5.5. There exist ¢ > 0 and Ny > 1 such that for all X € t*, allY € t*, all g, h € G,
and all X € F* satisfying

° 'UF(A) 2 NO;.
° 06,(9) < cvr(A), 06, (h) < cvr(A), ov(X) < cor(A) and oq, (V) < cup(A),

we have

(7))o s (1)

for all P € P*Q(M) and all w € W.

Proof. Let P € P?(M), w € W and fix Ny > 1 and ¢ > 0. Let X,Y, g, h, \ satisfy the
conditions of the lemma. We will show that the claimed equality is true provided Ny is
sufficiently large and ¢ sufficiently small. For simplicity, we will set z = A\~1.

Since W C K, we have

o 57) () ol 5) ()

Up to reordering the K;’s, we may assume that w =e; + ...+ ¢; for some 1 <t < d. In this
case we have

0, 0 Iy O
0 Im—k 0 Om—k
I, 0 0 O
0 Om—k 0 [m—k

w =
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w Ym—k
(Xk, Yk) € Mk(D)2, (Xm_k, Ym—k) € Mm_k(p)2, W e Mm_ng(D) and Z € Mk,m—k(p) Note
that if Ny is sufficiently large and ¢ sufficiently small, the matrix 2 X +Y), = X, ([x+A X, 'Y
is invertible. Direct computation then gives

(1 zX—I—Y)
w 1 =

where k := ki +...+k; and m = n/r. Write X = (Xk 0% ) and Y = <Yk 4 ) where
m—k

—(ZXk + Yk)_l I, —(ZXk + Yk) Z
Im—k Im—k W ZXm—k + Ym—k
ZXk + Yk Ik
Im—k Im—k
I, 0 O 0

—W(ZXk -+ Yk)_l Ip—r O —W(ZXk + Yk)‘lZ
(ZXk+Yk)_1 0 I, (ZXk+Yk)_1Z
0 Om—k 0 Im—k

For Ny sufficiently large and ¢ sufficiently small, the matrix

O 0 O 0
—W(ZXk + Yk)_l Oz O —W(ZXk + Yk)_lZ
(ZXk + Yk)_l 0 0 (ZXk + Yk)‘lZ
0 Op—r O Ok

is so small compared to g and h that

I 0 O 0

g‘l —W(ZXk +Yk)_1 Ly O —W(ZXk +Yk)_IZ q
h=t (ZXk + Yk)_l 0 I, (ZXk + Yk)_IZ h

belongs to K. Hence, for Ny sufficiently large and c sufficiently small, we have

(—(sz +Y)! ;

1 2z2X+Y g . Im—k
Hpy <w < 1 ) < h)) = Hpy (ZXk Ly, )
Im—k h

Once again, for Ny sufficiently large and ¢ sufficiently small, the matrix 21 X Y is so small
compared to g and h that we have

g—l (([k + Z_le_lyk)_l ) q e Kl h_l ([k + z‘le_lYk
Im—k ’
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So finally we get that

1y-1
-2 X,

1 2X+Y I,
o (1) (7 0)) = o o | reme(T)

[m—k
for Ny sufficiently large and ¢ sufficiently small. Now, from [5.4.T] we easily check that

—Z_le_l
Lk V(zX) —wV(zX)

wHMﬂ ZXk = 9

and this ends the proof of the lemma. O

5.5 Computation of certain singular #-weighted orbital integrals

To all g,h € Gy and X € t* @ t- we associate a (G, M,0)-orthogonal set Z(g,h, X) =
(Z(g,h, X)p)pepoary defined by

1

Z(9,h, X)yp = wHpy (9 h) — 5 (V(X) V(X))

for all P € P*?(M) and w € W where we recall that X denotes the projection of X onto
t. The fact that Z(g, h, X) is indeed a (G, M, f)-orthogonal set easily follows from Lemma
0.5l We define

wM,G(ga haX) = 'UM,Q(Z(g> h> X))

for all g,h € Gy and X € t* & t+. Note that wysg(g, h, X) is NOT always the volume of the
convex hull of the set Z(g, h, X) (this is because this (G, M, §)-orthogonal set is not always
positive). However, there exists k£ > 0 such that

(551) ‘U)M,G(g, h, X)| <ona, (g>kUT\G1 (h)kag’f (g_leh'>k

for all g,h € Gy and X € t* @ t+. Indeed, by 2.3.3] there exists k¥ > 0 such that

|1UM79(g, ha X)| <og (g)kgGl (h)kgf* (X’t)k < og (g)kgGl (h)kUgT (g_lX’th)k

for all (g,h, X) € G2 x (t* t'). We easily check that wyso(t1g, t2h, t1 Xt5 1) = ware(g, h, X)
for all t1,t5 € T and thus we get

lware(g, b, X)| < 06, (t19)* 06, (t2h) oy (g7 X (h)"
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for all g,h € Gi, X € t* @ t- and t1,t, € T. Taking the infimum over ¢; and ¢, of the right
hand side yields the desired inequality by (.01

Recall that in §2.4] we have defined a -weighted orbital integral f € C(G) +— @pr0(z, f) for
all z € M N G (Where we again use the maximal compact subgroup K to define the maps
Hpp: G — Apg for P € PY(M)). For all t € T'N G 1eq, we define a O-weighted orbital

. . t
integral at the non-regular point < t) by

wur () )= o L) () C ) ()

dg "
ware(g, h, X)de(g)nl/(h) dh

for all f € C(G). Note that this integral is absolutely convergent by B.5.1land Lemma [5.4]i).

Proposition 5.6. For all 0-strongly cuspidal function f € C(G) and allt € T N G reg, we

have
lim D¢ t 1/2 o t _ DO(20 ¢
pa) At M6 vl = (t)"Pare NEEAE

(In particular the limit exists).

Proof. Recall that by definition

s )1)~ ot €)oo

where for g € G, Y(g) is the (G, M, #)-orthogonal set defined by
Y(9)p = Hpylg), P € P'(M).
For all z € F*, we define a (G, M, f))-orthogonal set X(z) = (X (z)p)pepoar) by

1

X(2)yp = 5(V(2) —wV(2)), forall P € PLM) and all w e W.

Then for all A € F*\{1}, we have

() ) 1 ()0

Indeed, this follows from and the equality
t
(1))
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for all Q € F%(M) with Q # G, which is a consequence of the fact that f is #-strongly
cuspidal.

Now by the Iwasawa decomposition G = (G x G1)NK, we can write

t B gt 1 —X\ [t 1 X\ (g

2 (o) ) o L (O 0 ) ) ()0 0)
Un g (3/ <<1 )1() (g h)) +X(1 - )x)) Véfl)ny(h)"dh.

After the variable change X — (1 — AAd(t7!))1 X, for A sufficiently close to 1, we get
e [t 1/2(1) ; -

Y M0 ) )=

G1 K g_l t 1 X g ] iy n

990 e () () (3) (7)) oo

where we have set

w(g, h, X, A) == vare (37 ((1 (1- AAdYﬂ))_lX) (g h)) +X(1 -~ A)) .

By 2.3.3] there exists & > 0 such that

(5.5.2) (g, h, X, M) < or\6y (9) om\6 (h) o, (97 X 1) * (v (1 = A))*
for all (g,h, X, \) € G x (t* @ t+) x F* with ) sufficiently close to 1.

For all C > 0, set
—1/2
( ) DY (t) x

owe(( 1)) -2
T 2 (P TG TCR) ) e

dg

Ina<c(9)1ne,<c(h)1g (g_lXth)1gl,<0(9_1XtLh)dXWV(h)"dh
and
t _ gt t 1 X\ (g
vwsce (") o) =orw [ L () () D))
Mose << t) () TXT\GlXGl g1 h ! t 1 h’
d
ware (9, hy X) 16y <c(9)1mer<c(h) g <o (97 Xih) g, <o(g™ X h)dXng)nu(h)”dh.
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Fix 0 < e < 1. By B.50] 552 and Proposition 5.4((ii), we have (Note that for A sufficiently

)\) on the left):

t 12 / /
(553) lm DG( At) (ch,e (( At) ,f) Barocurin (( At) f)) 0,
(5.5.4) ll_)ﬂi DParg <<t t) ,f) — Drrp,<op(r—1)e ((t t) ,f) = 0.

Moreover, it follows from Lemma that for all A sufficiently close to 1 and all g,h € Gy,
X € g1 with OT\G, (g) < UF()\ — 1)6, OT\G, (h,) < U()\ — 1)6, Ug{(g_lXth) < ’UF(>\ — 1)6 and
0g (97 Xt h) < vp(A — 1), we have

y(c Q—Mﬁrm*X)G 0)+XG—M=Z@mX%

. : 1
close to 1, f¥ is invariant by (

and so
@(97 h> Xa )‘) = wM,G(ga haX)

Since f¥ is left invariant by ()\ 1) for X\ sufficiently close to 1, it follows that

t 1/2 t /
D¢ < )\t) P s, <oir—1)¢ (( )\t) ,f) = D (t)*®rr 0 <or1)e <( t) ,f)

for A\ sufficiently close to 1 and hence, by 5.5.3] and (£.5.4],
t\" t t
- G _ NGi14\2
iy (* ) e () 7) =20 (1) 1).

5.6 Change of weight

Choose a minimal §-split Levi subgroup M, contained in M and fix Py € P?(M;). Using
these data we can associate to any point Y € Ay a (G, M, 0)-orthogonal set (Yp) pepoarn
as in §23 For every Y € Ay, every g,h € Gy and every X € t* @t we define a
(G, M, 8)-orthogonal set Z(g,h, X,Y) := (Z(g,h, X,Y)p) pepoar) by setting

Z(g, 1, X,Y)p = Yp — Z(g,h, X) p

for all P € P(M) where Z(g,h, X)p was defined in Section BB To such a (G, M,0)-
orthogonal set is associated a function I'(j,(., Z(g,h, X,Y)) on Ay (see §23). If the
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(G, M, 0)-orthogonal set Z(g,h, X,Y) is positive, this is just the characteristic function of
its convex hull.

For all Y € Ay, 0, we define a new weight wazg(.,.,.,Y) on Gy x Gy X g; by setting
ﬁ;M,G(g> h> Xa Y) = / F]?/[,Q (HM,G(a)a Z(g> h> Xa Y)) da
T

where for simplicity we have written Hysg(a) for Hpp (a 1). A proof similar to that of
E.5d shows that for some k > 0, we have

(5.6.1) (@ o(g, h X, V)| <€ o6, (9) oma, () og (7" Xeh)* (1 +[Y])"

and even

(5.6.2) /|Ff4,e (Huo(a), Z(g, b, X, Y))|da < o6, (9) ome, (W) og: (g7 Xeb)" (1+ [V )
T

for all g,h € Gy, X € t* @t and all Y € Ay, 4, where |.| denotes a norm on Ay, ¢. Using
this weight we define a new expression

natpy= [oow [ () () () ()

ware(g, b, X, Y)dX Vgl;])nu(h)"dhw(t)_ldt

which is absolutely convergent by .61 and Proposition B.A((ii).

Let Ay be the maximal central (6, F')-split subtorus of M, and let Ag be the set of simple
roots of Ag in Fy. The goal of this section is to show the following:

Proposition 5.7. Let 0 < €1 < €3 < 1 and assume that f € C(G) is O-strongly cuspidal.
Then for all r > 0, we have

Tna(f) = ggvalf)| € N7

forall N > 1 and allY € AJISOﬂ satisfying the following two inequalities

6. a@ g :

(5.6.3) N alenAfo a(Y)

(5.6.4) sup a(Y) < N
[ISVAN)
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Proof. For all C' >0, all N > 1 and all Y € A}, ,, we set

Inrec(f) = /TDG‘(@ /TxT\Glel /g fK ((g_l ;rl) <t t) (1 )1() (g h))

d
knre(9,h, X)1T\G1,<C(g>1T\G1,<C(h>19’{,<C(g_1Xth)dXV(gg)n v(h)"dhw(t) " dt

and

pnectt= [0 () )0 ()

_ . d .
ware(g, h, X, Y )G, <c(9)1m\ar,<c(h)1gr <c(g lXth)dXV(g%n’/(h) dhew(t)~"dt.

We fix henceforth an ¢ > 0 satisfying ¢ < e;. It follows from B.GT] and Proposition
B.Ai1) that for all » > 0, we have

|Ino(f) = Inrene(f)] <K N7"

and

| Jyr(f) = Jyrne(f)| < N7"

for all N > 1 and all Y € A}, , satisfying inequality .64l Thus it suffices to establish that
for all » > 0, we have

1

(5.6.5) -5

InT<ne(f) Jyr<ne(f)| K N"

forall N >1and all Y € ‘AJJSO,G satisfying inequalities £.6.3] and (.6.4]
For all g,h € Gy, X € t* ®t+ and Y € Ay g, we have the identity (see 2231))

(5.6.6) > TH(A Z(g. b, X, V)1 (A— Z(g,h, X,Y)R) = 1
ReFO (M)

forall A € Ajzp. We are going to modify this decomposition slightly by taking its convolution
with a function ¢y € C°(T") of small support (relative to N°') and satisfying the condition
fT oy = 1. The function we need is provided by the next lemma. Before we state the lemma,

we need to introduce some more notations. Let ¢ +— @ be the usual Fourier transform on
C(t) defined by

P(X) = /SO(Y)§(XY)‘1dK X et

t
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For p € C*(T), we also set

(X)) = /Tap(a)f(aX)_lda, X et

Note that ¢f = co(l/_lgo)AWhere ¢o is the constant such that da = cq-L~

v(Y)"
We define a function L € C'°(t) by

L(X) = LKl(X1)~~~LKd(Xd)> X et
where X = X7 4+ ...+ Xy is the decomposition of X according to the identification [(.2.3]
and for all 1 < i < d, the function L, (-) is defined to be

otherwise.

L,
LKZ- (Xz) = %7
0,

This function factorizes through the map X € t+— V(X) € Ay introduced in §5.4 and we
set L(V(X)) := L(X) for all X € t. A crucial property of the function L is that it satisfies
the identity

(5.6.7) > LwX)=1

weW

for all X € t, where W is the subgroup of the normalizer of M that was introduced in §5.41

Lemma 5.8. There exists a sequence of nonnegative functions (pn)n=n, in C2°(T/T€) with
the following properties

o Supp(pn) C{a€T; or(a) < N} for all N > Ny;

° /apNzlforaZZNZNo;
T
e There exists ¢ > 0 such that | (X) — L(X)| < e N for all X € t and all N > N.

Proof. Setting ¢y = covlpn, we are looking for a sequence of nonnegative functions
(PN )n=n, In C2°(T/T°) such that
o Supp(ply) C{a €T; or(a) < N} for all N > N;

o 0\ (0)=L(0) =1 for all N > Np;

e There exists ¢ > 0 such that g;’]\V(X) — L(X)| <e ™ forall X € tand all N > N,.
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Let ¢ € CX(t) — ¢ € C°(t) be the inverse Fourier transform and for C' > 0 denote by
1<¢ the characteristic function of {{< C] := {a € T; or(a) < C}. Notice that L > 0 as L is
a positive linear combination of characteristic functions of lattices and set % = l<yeL for
every N > 1. Then,

i}g g;;(,(X) - L(X)’ < /t(l —1ne(X))L(X)dX < vol (t> NN supp(ﬁ)) i}lelzlv/(X)

for every N > 1 where we have set t{> C] = t \ t{< C] for C' > 0. Moreover, there exists
d > 0 such that vol(t[> O] Nsupp(L)) < e=C for all C > 0. Then, we easily check that

—

the sequence ¢y = ¢ (0)"1¢% (which is well-defined for N > 1) satisfies all the required
conditions for any ¢ < ¢ provided Nj is large enough. O

We choose a sequence of functions (¢n)ny=n, as in the above lemma. For all g, h € Gy, all
XetaothallY € Ay and all R € F(M), we set

AR(A>ga h, X, Y) = FJI\Z,G(A’Z(97 h, X, Y))T}C%;,Q(A - Z(g> h, X, Y)R)> Ae AMﬂ‘

And for all ¢ € C(T'), we define the convolution ¢ * Ag(., g, h, X,Y) as usual by

©*x AR(Aag> h> X7 Y) = / SO(G’)AR(A - HM,G(a’)>ga haX> Y)daa A€ AM,€~
T

By 6.6l and the second property satisfied by the sequence (¢n)n=n,, We have

(5.6.8) > enxAr(Agh XY)=1
ReFO(M)

for all N > Ny, all A € Ay and all (g,h, X,Y) € G2 x (t* & th) x .A;SOﬂ.
Set

fran-fro LA C)EDE)

d
knre(9: 1 X) e <c(9)1men,<o(h) g <o(g7' Xih)dX y(gg)" v(h)"dhw(t)™"dt

for all N > Ny, all Y € Ay 0, all R € F(M) and all C' > 0, where

knre(g,h, X) = / £(aX) ey (b ag)on * Ap(Hyro(a), g, b, X,Y)da
T

for all g,h € Gy and X € t* @ t+. Then, by £.6.8 we have
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RY
Inr<c(f E JNT<C
ReFO(M

forall C" > 0, all N > Ny and all Y € Ay . Thus in order to prove B.6.5] it suffices to
establish the following two facts

(5.6.9) There exists ¢ > 0 such that

2d

InTen(f) = ! Sadvr <Ne(f)' e
forall N > Ny and all Y € Alto,é) satisfying inequality £.6.41
(5.6.10) For all R € F?(M) with R # G and all r > 0, we have
TR ()] < N
forall N > Ny and all Y € AIJS079 satisfying inequality B.6.3l

From now on and until the end of the proof, when N > 1 is fixed, we will say that (g, h, X) €
G} x g1 s in the good range if X € t* @ t- and we have the inequalities o\, (9) < N€,
o6, (h) < N and og; (97 Xih) < N°.

Proof of 5.6.91: By Proposition [£.4)(i), it suffices to show the existence of ¢ > 0 and k& > 0
such that

(5.6.11)

1 e _
K%?&(gv h X) - ﬁwM 9(97 h, X, Y) <e N OT\G1 (g)kaT\Gl (h'>kag’{ (g 1th’>k(1 + ‘Y‘)k

for all N > Ny, all Y € A}, , satisfying inequality B.6.4 and all (g,h, X) € Gy x Gy x g1 in
the good range.

By and the first property satisfied by the sequence (¢n)n=n,, there exists C' > 0 such
that for all (g,h, X,Y) € Gy x Gy x (¥ © t7) x A}, , and all N > 1, we have

N5 o(Haro(a), Z(g,h, X,Y)) # 0 = 06,(a) < C (06, (9) + 06, (h) + 05 (97 Xih) + Y] + N°)

for all @ € T. Hence by Lemma [£3)i), together with the inequality ¢ < e; < 1, for N
sufficiently large, we have

PN * P%,G(HM,G(G’%Z(ga h, X, Y)) 7& 0= K’N(h_lag) =1
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for all Y € A}, , satisfying inequality £.6.4 and all (g,h, X) € Gy x G x gy in the good
range. This implies, again for N sufficiently large, that

K%’,?g(g,h,X) =/Tﬁ(aX)‘lcpN*F%,Q(HM,Q(a),Z(g, h,X,Y))da

— [ XIS (Hura(a), 20,1, X, Y)da
T

for all Y € A}, , satisfying inequality E.6.4 and all (g,h, X) € Gy x G x g; in the good
range. By [0.6.2]and the third property satisfied by the sequence (¢n)n=n,, there exist ¢ > 0
and k£ > 0 such that

/wﬁv(aXt)Fﬁ,e(HM,e(a%Z(g,h,XaY))da—/L(aXt)Fﬁ,e(HM,e(a%Z(g,haXvY))da
T T

< e /T DS o(Haro(a), Z(g, b, X, Y))|da < e~ o6, (9) o, (h) og (g7 X k)" (1 + |Y])F

for all N > Ny and all (g,h, X,Y) € G; x Gy x (t* ®t+) x Ay, Thus in order to show
L6111, it only remains to establish the following identity

1
(5.6.12) [ XS o(Hao(@). 20,0, X.Y))do = Soasalg. b X.Y)
T

for all (g,h, X,Y) € Gy x Gy x (t* @ t') x Apgp. Fix such (g,h, X,Y). After the variable
change a +— a X!, we get

1
/ L(aX)T; y(Hue(a), Z(g, h, X,Y))da = / L(a)T$; o(Huo(a), Z(g, h, X, Y)+§V(Xt))da
T T

(Note that Hyg(X,) = 3V (X{)). Moreover, we easily check from the definitions that the
(G, M, 0)-orthogonal set X(g,h, X,Y) = Z(g9,h, X,Y) + %V(Xt) has the property that
X(g,h, X,Y)wp = wX(g,h, X,Y)p for all w € W and all P € P?(M). This implies that the
function T'; »(., X (g, h, X,Y")) is W-invariant and by G.6.7it follows that

/T L(a)T'$, o(Hue(a), X (g, h, X,Y))da = ﬁ Z /T L(wa)T'§; y(Hare(a), X (g, h, X,Y))da

1

= ?/F%ﬂ(HMﬂ(a),X(g, h, X,Y))da
T

1

=% ), D5ro(Hae(a), 2(9,h, X,Y))da

where to get the last equality we have performed the variable change a — aX;. This proves
0.6.12] and ends the proof of 5.6.9 .
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Proof of B.6.101: Let R € FY(M) with R # G. We will need to rewrite slightly the weight
/{N’T@(g, h,X). By Lemma [5.3(ii) and since the functions (¢n)ns=n, are Tinvariant, for N
big enough, all Y € Ay ¢ and all (g, h, X) € G; x Gy X g; in the good range, we have

K’ﬁ?g(g’ h’ X) = VOI(TC)_l / f(aoaX)_ldaol-@N(h_lag)gpN * AR(HM,G(a)a 9, h> Xa Y)da’
T JT1e
or equivalently

Kne(g,h, X) = /T ot (aX)kn(h " ag)on * Ap(Hyro(a), g, h, X,Y)da

where ¢, := vol(T¢) 1.

In what follows, for every a € T', we will write a = (ay, ..., aq) for the decomposition of a
according to the identification B.2.1] (so that a; € K for all 1 < i < d). Recall that we have
identified Ay o with R? (see §5.4)), the identification being so that

1
Hiro(a) = 5(vi (a1), ., vk, (aa))
for all a € T" where vk, = e F]vF o Nk, for all 1 <4 < d. Moreover the set of roots of

Anp in Ug, identified to a subset of A}, 4, can be exphcltly described as

R(AM,97 UQ) = {XZ + Xj ‘ 1 < Zaj < d}
where for all 1 < i < d, we have denoted by x; the functional Ay 9 = RY — R given by

Xi(T1, .o, Tq) = — ;. B
Write R = LgUpg for the unique Levi decomposition of R with M C Ly and let R = LrUg
be the parabolic subgroup opposite to R (with respect to Lg). We now distinguish two cases:

e First assume that Uz is not included in the parabolic subgroup ). Then, we will
actually prove that for N big enough, we have

Knre(g h, X) =0

forall Y € AJIS(LG satisfying inequality 5.6.3]and all (g, h, X) € G x G; X g1 in the good
range. This would imply that

J1€¥<N€(f) =0

for N big enough and all Y € .A;SOﬂ satisfying inequality B.6.3] .

By our assumption, we have UgpNUg # {1} which implies R(Anr 9, Ur) NR(Ano,Ug) #
0. Let @ € R(Aprg,Ur) N R(App, Ug). Then, by the previous concrete description of
R(Anp,Ug), there exist 1 < 4,5 < d such that
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UK, (ai) + vr; (a;)

(5.6.13) (a, Hypla)) = — 5

for all a € T. As € < ¢, there exists ¢; > 0 such that for all N sufficiently large, all
Y € A}, 4 satisfying inequality B3 and all (g, h, X) € Gy x Gy x g in the good range,
we have (3, Z(g,h, X,Y)p) = ;N for all P € P’(M) and all 8 € R(Anp,Up). In
particular, Z(g,h, X,Y)p € AJISﬂ for all P € P’(M) and the (G, M, 6)-orthogonal set
Z(g,h, X,Y) is positive. This implies that Ag(., Z(g,h, X,Y)) is the characteristic
function of the sum of AEG with the convex hull of the family (Z(g,h, X,Y)p)pcr and
hence that

AR(A>Z(gahaX> Y)) 7é 0= <OZ,A> = ClNel

for all A € Ajrp. Again since € < € and by the first property satisfied by the sequence
(oN)N=Ny, 1t follows that there exists ¢ > 0 such that

ON * AR(A, Z(g, h, X, Y)) §£ 0= <Oé,A> > o N9
for all A € Ay, all N sufficiently large, all Y € A}, , satisfying inequality and

all (g,h, X) € G1 x Gy X g1 in the good range. On the other hand, since the function
©? is compactly supported on t, by B.6.13 there exists c3 > 0 such that

pi(aXo) # 0= (o, Hyp(a)) < esN©

forall N > 1, all a € T and all (g,h, X) € G; X G; X g; in the good range. As € < €,
it follows that for NV sufficiently large, the supports of the functions

a€Tl — YN * AR(HM,G(a)aZ(g> h> Xa Y))

and

a €T ¢f(aX,)
are disjoint and hence
mnrel9,h, X) =0

forall Y € Azto,e satisfying inequality 5.6.3]and all (g, h, X) € G x G; X g1 in the good
range. This proves the claim and ends the proof of 5.6.10] in this case.
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e Now assume that Uz C Q or equivalently Uy C R. Let V& and VEl be the subspaces
of g, such that
1 X
UFQUQ:{( 1)‘X€VE},

LRﬂUQ:{<1 )1() |Xev§i}

(we can show that VEl is the orthogonal of V; with respect to (.,.) but we won’t need
this fact). Let Uy, Uy be the unipotent subgroups of Gy such that Uz N L = Uy x U,
and let L; be the Levi subgroup of Gy such that Lg N L = Ly x Ly (that Lr N L is of
this form follows from the fact that R is 6-split). Then, we have g, = V7 ® V= (this

follows from the fact that Uy = (Lp N Ug)(Uz N Ug)) and u; Xuy' — X € VEL for all
(u1,u9) € Uy x Uy and all X € VEl (this follows from the fact that ["'ulu~! € Uy for
all (I,u) € Lg x Ug). We will denote by X — X= the projection g; — V= relative to
the decomposition g, = Vi @ V.

For all (¢g,h,Y) € G; x Gy X AJISOﬂ, we introduce a new (G, M, #)-orthogonal set
Z(g,h,Y) defined by

Z(g> h> Y)wﬁ = Ywﬁ - ,LUHP#Q <g h)

for all P € P%Q(M) and all w € W (that it indeed defines a (G, M, §)-orthogonal set
follows from Lemma [B.5]). As before, we set

AR(Aa Z(g> h> Y)) = Fﬁ,@(A> Z(ga ha Y))Tg,G(A - Z(g> h> Y))’ Ae AMﬂ‘

For all N > Ny and all Y € AJISOﬂ, we define a new weight by

KR (g7, X) = /T £(aX) " rn (" ag)on * Ap(Haro(a), Z(g, h,Y))da

for all (g, h, X) € G1 x G1 x g1. We will now need the following lemma whose proof is
postponed to the next section:

Lemma 5.9. For N big enough, we have
Hﬁ’7¥7£(ulllk1, Uglgkz, X) = Hﬁ:?}(ll, lg, X%)

fOT all (ul,uQ) S U1 X UQ, (11,12) S L1 X Ll, (1{31,]{32) c K1 X Kl, X e g1 andY € A;O,G
such that'Y satisfies inequality [2.6.3 and (u1liky, usloks, X) is in the good range.
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Assuming the above lemma, by the Iwasawa decompositions Gy = U; L1 Ky = Uy L1 K,
and since K; x K7 C K, for N sufficiently large, we have

Ttenf )Z/Dcl(t)/ / /
T TxT\LixLi1 JU1xUsz J g1
~ ((ll_lu;l ) (t ) (1 X) (UIZI ))
I uy? t 1 usly

KJNTg(lla ly, X )1T\G1 <ve (Url) I\gy e (Ual2) 1g:, ve (T Xuols)

dX duydusdp, (1)~ di — L 5p, (1) (L) dlow (t) i
v(l)"

for all Y € AP o satisfying inequality £.6.3] where we have denoted by dp, and dp,
the modular characters of the parabolic subgroups P, = LU, and P, = LUy of Gy
respectively.

Introduce the following expression:

T = [ 0o /TxT\M/WQ/
() (C D )

. di . ~
knre(ln, b, Xop)dX duyduydp, (1) 0 1) Op, (1) M (ly) " dlow () ~tdt

forall N > Ny and all Y € Altoﬂ‘ By B.1.3l for some k > 0, we have

“11\%/?2([1,[2, D < o, (wilikn) o, (ualaks)®
for all (Iy,13) € Ly X Ly, (ug,us) € Uy xUs and (ky, ko) € Ky x K;. Hence, by Proposition

5.4 (and using the Iwasawa decompositions Gy = Uy L1 Ky = Us L1 K7 backwards), the
expression defining Jﬁ:}/’*( f) is absolutely convergent. And for all » > 0, we have

Ty o) = T ()| < N7

forall N > Ny and all Y € Alto,é) satisfying inequality £5.6.3] . Thus to prove £.6.10] in
this case, it suffices to establish that

INr(f) =0
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for all N > Ny and all Y € AJJSOﬂ. This vanishing follows from the fact that f is
f-strongly cuspidal by the following sequence of equalities:

K ll_lul_l t 1 X U1l1 R,Y,x L
/WUQ /g / (( R AR AU wly) ) el by Xg)dX durdu,
. K ll_l ul_ltul 1 X ll
o /g ! (( ! i) 1) ) ) vl b X dXdudus
_ k(5 tuy 1 X\ (I N
= A(t) /UlXU2 /gl f (( l2_1 t’lLQ 1 lg IiNTg(ll,lg,X )dXduldUQ
-1 L

s [ (E ) )0 B

Ve JUg 2 2

for all N > Ny, all t € T'N Gypeg, all 11,1 € Ly and all Y € AP ) Where A(t) =
DGl(t)‘lDLl( ) and where the first equality follows from the variable change X
ur Xuy ' (vecall that (uyXuy 1)% = X=), the second equality is a consequence of the
classical change of variable inverse to (u1, us) = (t~'uy tuy, = u; tuy) (whose jacobian
equals DE/I1(4)~! because dp, (t) = dp,(t)71), in the third equality we have merged an
integral over U; x U, and an integral over V5 into an integral over Uz, and finally the

L
last equality follows from the fact that f is #-strongly cuspidal (note that (1 XlR)

belongs to Lg) so that the inner integral already vanish identically. This finishes the
proof of [5.6.10/ in this case and thus also of the proposition.

0

5.7 Proof of Lemma

For convenience we recall the statement here.

Lemma 5.10. Let 0 < € < ¢; < 1 and let R € F(M) with Ug C Q. Then, for N big
enough, we have

HJI\%/:}I/“,S(ulllkla Uglaky, X) = Hﬁ};z(ll, la, X5)

fOT all (Ul,UQ) S U1 X UQ, (ll,lg) c L1 X Ll, (1{31,]{32) S K1 X Kl, X € g1 and Y € A;Olg
satisfying the inequalities

o N Linfaen, a(Y);

o op\g, (uil) < N¢, opg, (uals) < N¢;
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o o (17w Xqusly) < N-.

Proof. We will use the notation introduced in the proof of Proposition 5.7 In particular,
we have a decomposition g; = V7 @ Vﬁl. Recall that the linear map X — X%‘ is just
the projection onto VFL relative to this decomposition. We will set Vg, := Vx Nt and
V}—it = VEL Nt Then, we have t = V7, & Vﬁt (this follows from the fact that the adjoint
action of 7" preserves the decomposition gy = Vi @ VEL). For all X € g;, we will set
X}iz_,t = (X5)i = (X5 Note that we have X, — Xﬁt € Vg, forall X € g;.

By the definition of Iiff’;é, it is invariant by right translation by K; in both the first and
the second variables. Thus, we just need to prove the lemma in the case where k; = ky = 1.
Moreover, since /{ﬁ%g(g, h,X)= /ﬁf,%,g(tlg, toh, t; Xt5 1) for all (g, h, X, t1,t5) € G2x gy xT?,
by B.0.1 we may replace the conditions that o\, (uily) < N¢ and op\q, (uala) < N€ by the
conditions that og, (u1ly) < N€ and o¢, (u2ly) < N€. Note that there exists ¢ > 0 such that
for all (I1, 1y, uy, us, X) € L3 x Uy x Uy X gy, the inequalities og, (u1ly) < N€, 0g, (usly) < N€
and og: (17 'y Xqualy) < N€ imply that

max (0G1 (l1)> oG, (l2)a oG, (ul)a oG, (u2)> O (Xt)) < cN*.

Fix such a ¢. From now on and until the end of the proof, for a fixed N, we will say that
(I1, 1o, up, ug, X, Y) € L3 x Uy X Uy X gy X -AJ]SO,@ is in the good range if it satisfies the inequality
above and moreover N < inf,ea, @(Y). Then in order to prove the lemma, we just need
to establish the following fact:

(5.7.1) For N big enough and all (I1,l3, u1, us, X, Y) in the good range, we have

Kﬁ”§7§(u1l1, Uglg, X) = K]I\%[:?’z(ll, lg, X%)

First of all, by Lemma [(E.3[ii) and since the functions (¢n)n=n, are T%invariant, for N
sufficiently large and all (11, 1o, u1, ue, X, Y') in the good range, we have
K]I\%[:};’E(Ulll,Ung, X) = / O (aX)kn (I uy aur ) o * Ar(Harp(a), Z(uly, ugly, X, Y))da
T

and

KRV (1, 1y, X2) = /T PHaXE Jron (15 als o+ Ap(Haro(a), Z(1, b, Y))da

where ¢, := vol(T¢)"*1pc. Therefore, 5.7.11is a consequence of the two following facts:
(5.7.2) For N sufficiently large and all (i1, ly, u1,us, X,Y) in the good range, we have
k(I My taugly) = k(I Maly)
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and
ph(aX) = pi(aXz,)
for all @ € T with @x * Ag(Hyg(a), Z(11, 15, X, Y)) # 0.

(5.7.3) For N sufficiently large and all (I1,ly, u1,us, X,Y) in the good range, we have
PN * AR(HM,O(a)a Z(urly, ugly, X,Y)) = oy * AR(HM,G(CL)a Z(11,15,Y))
for all @ € T such that ¢(aX,) # 0.
Proof of .72 As R is #-split, the parabolic subgroups P, = LUy and P, = LyU, of G are
opposite to each other. Therefore, R(Ar, Us) = —R(Ar,Uy). Let us denote by R(Ar, Vg,)

the set of weights of A in Vg for the linear action (a, X) = aX. Then, we will need the
following

(5.7.4) For every a € R(Ar,Uy) (resp. a € R(Ar,Vg,)), there exists a root 3 €
R(Anrp, Ug) such that

(o, Hp(a)) = 2(B, Harg(a)) (vesp. (o, Hp(a)) = (B, Harp(a)))

forallacT.

Let uy, (resp. Vg, ,) be the root (resp. weight) subspace corresponding to a. Then, we
easily check that Ay, = Ar x Ap acts on this subspace by a character v where in the case
a € R(Ap,Vg,), we consider the action of Ay on Vg, given by (ai,az) - X = amXa;' =
ayay " X. Denoting by 3 the restriction of v to Ay (so that in particular 8 € R(Ayg, Ug)),

we have
w,HM,e(a»:%w,HM,a((“ Je(” 1)_1)>=§<5,HM,9 (" ) =glosls (* )]

for all @ € T. On the other hand, the action of <a 41 On Mia (resp. Vg,,) coincides

with the action of a (resp. a?). Hence, (3 (a a‘l) = «(a) (resp. (a a‘l) = a(a)?) and

this shows the claim.

Now, since € < €y, there exists ¢; > 0 such that for N sufficiently large and all (11, Iy, u1, ug, X, Y)

in the good range, the (G, M, #)-orthogonal set Z(ly, [, X,Y) is positive and (3, Z(l1,13, X, Y )p) <
—c N for all P € PY(M) with P C R and all 3 € R(Ayg,Ug). Since the (G, M, 0)-
orthogonal set Z(ly,1y, X,Y") is positive, the function Ag(., Z(l1,ls, X,Y)) is the character-

istic function of the sum of A}, , with the convex hull of (Z(I1,ly, X,Y)p)pcr and it follows

25



that (5, A) < —c; N for all A € Ay, in the support of this function and all 5 € R(Aprg, Ug).
Again by using the fact that € < ¢;, we deduce from this and the first property satisfied by
the sequence (¢n)nsn, (see Lemma[5.8), that there exists ¢o > 0 such that for N sufficiently
large and all (11, ls, uy, uz, X,Y') in the good range, we have (5, A) < —co N forall A € Ay
in the support of the function ¢y * Ag(., Z(l1,1l2, X,Y)) and all 8 € R(Anp, Ug). By 514,
it follows that we have, again for N sufficiently large and all (11, I3, u1, ue, X, Y) in the good
range,

(a, Hr(a)) < —coN©
for all « € R(Ar,Ur) U R(Ar, V) and all @ € T such that

PN * AR(HM,e(a)> Z(ly,15,X,Y)) #0

Still assuming that (I, ls, uy, uz, X, Y') is in the good range, this implies (recall that R(Ar, Us) =
—R(Ap,Uy) and X — X € Vg

Iy uy faua usly € Ky, 17 a M uytaly € Ky and a(X— X5 ) € L

for N sufficiently large, where L is a lattice in t by which ¢ is invariant. Hence, we get

HN(lz_luglaulll) = ffN(lQ_luglall) = mN(lz_lall)

and

PHaXy) = ¢E(aXz,)

for all N sufficiently large, all ({1, ls, u1, us, X,Y) in the good range and all a € T  such that
ON * AR(HMﬂ(CL), Z(ll, ZQ, X, Y)) §£ 0

Proof of B.73} Since the function ¢ is compactly supported on t, there exists c3 > 0 such
that for all N, all (I1,ly,u;,us, X,Y) in the good range and all a € T, if ©'(aX,) # 0,
then vy, (a;) = —c3N€ for all 1 < i < d (recall that we are denoting by (ay,...,aq) the
decomposition of a according to the identification (.2.7]). These last inequalities mean that
Hyp(a) € RY + c3Zy where Zy = (—N°¢,..., —N¢) (recall that we are identifying Ay
with R? as in §5.4]). Moreover, by the first property satisfied by the sequence (oy)n=n, (see
Lemma [5.8), there exists ¢, > 0 such that, for all N > N; and all function A on Ay, the
restriction of the function ¢n * A to ¢3Zy + R% only depends on the restriction of A to
cadyn + Ri. Note that

d _ +
Ry = U Aﬁ,e
PeP.O(M)

(this follows from the fact that RL = {A € Ay | (o, A) < 0Va € R(Anp, Ug)}). Hence, it
suffices to show that for all P € P2Y(M), all N sufficiently large and all (11, ly, u1, us, X,Y)
in the good range, the two functions
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AR(-, Z(Ullla U2l2> X, Y))

and

AR(., Z(ll, l27 Y))

coincide on ¢4 Zn + A% ,- Or equivalently that the two functions

AR(., Z(ulll, UQZQ, X, Y) — C4ZN)

and

AR(., Z(ll, ZQ, Y) — C4ZN)

coincide on "4%9' Fix P € PYY(M). Ase < ¢, for N sufficiently large and all (11, lo, u1, up, X, Y)
in the good range, we have

Z(urly, ugly, X, Y )pr — caZy € A g and Z(11,12,Y)pr — caZy € Ap
for all P’ € PY(M). By 234, it follows that the restrictions of the functions

AR(’a Z(“Jhuzlz, X, Y) - C4ZN) and AR('v Z(lh ls, Y) - C4ZN)

to "4%9 only depend on Z(uyly, usls, X, Y)p and Z(1y, 1y, Y)p respectively. Returning to the
definitions, we see that

urly

l
Z(urly, ugly, X,Y)p =Yp — Hpp < ) =Yps— Hpy < ! 12) =Z(l,15,Y)p

uply
for all (I1, 1y, uy,us, X,Y) € L? x Uy x Uy X g1 X .AJISO,(,. Hence, for N sufficiently large and
all (11,12, u1,uz, X,Y) in the good range, the functions Ag(., Z(uily, usls, X,Y) — ¢4 Zy) and
Ag(., Z(l1,1,Y) — ¢4 Zy) indeed coincide on A%g. This finishes the proof of .73 and also
of the lemma. O

5.8 Computation of ]\1;im Jyr(f) for f-strongly cuspidal functions
—00

Proposition 5.11. Let f € C(G) be a 0-strongly cuspidal function. Then, we have

(;}l)d /TDG1 (£)2P s <<t t) ’f> w(t)~tdt

where ®arg ((t t) , f) is the ’singular 0-weighted orbital integral’ introduced in §5.5.

]\}1_{1;0 Iner(f) =
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Proof. By the same argument as in the proof of [0, Proposition 5.4.1], except that we replace
Lemma 2.9.4 and Proposition 5.3.1 of loc. cit. by Proposition (.4l and Proposition (.7 of
this paper, we have

mon- ool R )N DE )

vae(—Z(g, h, X))dXV(d;)n v(h)"dhw(t)~ dt

S () DE)

d
warolg, b X)X gg)nu(h)"dhw(t)‘ldt
1%

(—;l)d/TDGl(t)%M,@ ((t t) ,f) w(t)~dt.

5.9 Proof of the geometric side

The geometric side of Theorem [B.I] now follows immediately from [B.1.1] Proposition [5.11]
and the following proposition:

Proposition 5.12. Assume that the function f € C(G) is strongly cuspidal. Then,

(i) If T is not elliptic in Gy (i.e. d > 1), then
t
( ))-

(11) If T is elliptic in Gy (i.e. d =1), then

forallt € T'N Gy reg.

for allt € TN G reg-

Proof. (i) By Proposition [£.6] it suffices to show that

(1))
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for all (tl ; ) € (T x T) N Gyreg. This follows from the descent formula which
2

wl(* )= 5 s )0)

and the fact that for @ # G, since f is strongly cuspidal, we have (see §2.10))

Al )

for all (tl tz) € (T x T) N Gyeg (Note that here dS o(G) = 0 since Af;" # 0).

gives

(ii) By Proposition (.6l and 2Z5.1] it suffices to notice that

1/2
e (* ) )l () =

for all <t1 ) € (T'x T) N Greg and all t € T'N G 1eg Where we have set z = <t t)'

to

6 Applications

In this section, we give applications of the multiplicity formula we proved in Proposition B3l
In Section [6.1] we study the behavior of the multiplicities under the local Jacquet-Langlands
correspondence. We also study the relations between the multiplicities and the local exterior
square L-function. Then in Section [6.2] we study the relations between generalized Shalika
models and Ginzburg-Rallis models. We keep the notation introduced in Section B.11

6.1 The multiplicities over L-packets

In this subsection, we are going to prove the main theorems (Theorem and Theorem [L.3))
of this paper. Let A’ be another degree n central simple algebra over F. Set G’ := GLy(A")
and define subgroups Hj, N', H' := H{ »x N' analogous to the subgroups Hy, N and H of G.
We define a character ¢ : N’ — C* in the same way as the character £ of N and we extend
it to a character of H' trivial on H). We also identify the character w : F* — C* with a
character of H' by composition with projection H" — H/, and the reduced norm. This gives
us a character w ® & of H'. For all " € Irr(G’), we set
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m(r’,w) := dim Hompy (7", w @ &').
We want to prove the following theorem.

Theorem 6.1. Let m € 1I5(G) and 7" € Tl5(G’) which correspond to each other under the
local Jacquet-Langlands correspondence (see [9]). Then, we have

m(m,w) =m(r',w).

Proof. If the central characters of m and 7’ does not coincide with w™, then by looking at
the action of the center, we see that m(m,w) = m(n’,w) = 0. Assume now that the central
characters of m and 7’ are equal to w". Set Gy := A* and G} := (A')*. Then, by the
multiplicity formula of Proposition B3, we have

m(m,w) = Z \W(Gl,T)|_1/ DY (t)%c, <t t) w(t)~tdt,
TeTen(G1) Aey \T
mww) = Y e |
TETan(GY) Ao \T”
There is a natural bijection Ten(G1) =~ Ten(GY) which sends T € Toy(G1) to the unique
torus 17" € Tan(GY) such that 7"~ T’. Moreover, such an isomorphism can be obtained as
conjugation by an element in G (F) ~ G (F) where G1(F) and G (F) denote the groups of
points of G, G over a fixed algebraic closure F' of F and the isomorphism G, (F) ~ G (F)
is induced by an F-isomorphism A ®@p F ~ A'@p F. Let T € Ta(G1) and T" € Ton(GY))
corresponding to each other and fix an isomorphism 7" ~ T" as before (i.e. induced from
conjugation by an element over the algebraic closure). Then, conjugation by the same
element induces an isomorphism W(G1,T) ~ W(G',T"). Let t € T and denote by t' its
image in 7. We easily check that D% (t)2 = D% (¢)? and w(t) = w(t'). Moreover, if
t € TN Greg, then t’ € T" NG L.,; and by 2.2.2] we have

/
DY ()2 (t t,) w(t) Lt

/
1,reg

N A S aflt N7t
o ( t) =3P ( t) it DU ) O )
t/ 1 o t/ _1/2 ) o t/ 1/2 t/
C’r'< t’) N < t') W S w) O )

Once again we can easily check that

a(t e (T gt e (T
(" )= () o) = ()

for all A € F*. Furthermore, by the relations of the distribution characters under the local
Jacquet-Langlands correspondence (see [9]), we also have
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t ¢
(") =0 (" )

for all A c F>. This shows that
@ t = C t/
g ¢ ™ t/ .

wic.n) " [

Ag,\T

All in all, we get the equality

D (1), (t t) w(t)dt

/
e [ Doy (U, )y ar
Agr\T/
Summing this over all 7" € Tou(G1), we get the desired equality. O

Then we study the relations between the multiplicity and the local exterior square L-
function. Assume that A" = M, (F), 7’ € IIo(G’) and w = 1 is the trivial character of H in
which case we will simply set

m(r’) == m(x’, 1)

The following theorem seems to be well-known but apparently only half of its proof has
appeared in the literature (by combining results of different sources). For sake of complete-
ness, we provide a proof of the other half. The exterior square L-function appearing in the
statement is the Artin local L-function defined through the local Langlands correspondence
of Harris-Taylor [16], Henniart [I9] and Scholze [35].

Theorem 6.2. With the notations above, the local exterior square L-function L(s, 7', A?)
has a pole at s = 0 if and only if m(7') = 1.

Proof. By the multiplicity one result of [23] (see [§] for a more general result), in order to
prove the theorem, it is enough to show that the local exterior square L-function L(s, 7/, A?)
has a pole at s = 0 if and only if m(n’) # 0. This has been proved in [2I] when 7’ is
supercuspidal. When 7’ is a discrete series, by [24, Theorem 4.3, Corollary 4.4] and [25]
Corollary 1.4], if the local exterior square L-function L(s, 7, A?) has a pole at s = 0, then
m(n’) # 0. Hence it remains to prove the other direction. We will follow the method
introduced in [21].

Assume that m(n’) # 0. Then, of course, the central character of 7’ is trivial. Let
SO4,(F) be the F-split special orthogonal group of rank 2n, and let P = M N be a Siegel
parabolic subgroup of SOy, (F') with Levi component M isomorphic to GLg, (F'). For s € C,
let TI(s) = II%O“"(F) (r'®]|det|*) be the normalized parabolic induction of 7'®|det|® to SOy, (F).
By [22, Theorem 3.1] and [21], Proposition 2.3], together with the assumption that m(n’) # 0,
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we know that the representation II(
the following lemma.

1) of SOy, (F) is reducible. Hence it remains to prove
Lemma 6.3. With the notations above, the representation H(%) 1s reducible if and only if
then the local exterior square L-function L(s, ', A*) has a pole at s = 0.

Proof. Let Ny, C M be the unipotent radical of a Borel subgroup of M and set Ny :=
Ny x N. Then, Ny is the unipotent radical of a Borel subgroup of SOy, (F). Let & be
a generic character on Ny and set &y = & |n,, for the restriction of & to Ny, As 7’ is
square-integrable it is in particular generic with respect to (Nys, &y). By [12, Lemma B.2]
and the Standard Module Conjecture [17], we have that II(3) is reducible if and only if

(28, ' A2 ) = €(2s, 7, /\2,1#)% has a pole at s = 1/2 where y"(s, 7/, A2, 1))
denotes the gamma factor defined by Shahidi (with respect to any non-trivial additive char-
acter v since it doesn’t change the existence or not of a pole at s = 1/2). Since 7’ is
square-integrable, L(s, 7', A?) has no pole with positive real part and in particular at s = 1.
Hence, by the main result of [20], H(%) is reducible if and only if L(s, 7', A?) has a pole at

s =0. O
O

As the Jacquet-Langlands correspondence preserves L-function, we get a Corollary from
the two theorems above which proves Theorem L3l

Corollary 6.4. For all m € TIy(G), the local exterior square L-function L(s,m,A?) has a
pole at s =0 if and only if m(w) = 1.

Remark 6.5. If w s the square of a character of F*, then by twisting ™ by a suitable
character of G together with the above corollary, we see that for m € 1l3(G), the local twisted
exterior square L-function L(s, 7, A> @ w™') has a pole at s = 0 if and only if m(m,w) = 1.
The same should be true in general (i.e. when w is not a square of a character of F*)
although it would necessitate to redo the works of [21), [22], [24)] and [25] by introducing this
twist. However, note that in the case where n = 2, this more general result has been proved
in [13, Theorem 1.5].

6.2 The relations between the generalized Shalika model and the
Ginzburg-Rallis model

In this subsection, we will consider the particular cases where A = My(F) or a non-split
quaternion algebra D over F'. More precisely, we will give some relations between the mul-
tiplicities for the Ginzburg-Rallis model of GL3(D) (resp. GLg(F')) and for the generalized
Shalika model for GLy(D) (resp. GL4(F))).

Assume w unitary. Let mp be a tempered representation of GLy(D) with central character
w? and let IIp be the normalized parabolic induction of the representation mp X w™! of the
Levi subgroup GLy(D) x GL;(D) to GL3(D) (where again we have identified w™' with a

62



character of GL;(D) by composition with the reduced norm). Then IIp is a tempered
representation of GL3(D) with trivial central character. Let mggr(Ilp) be the multiplicity
of the Ginzburg-Rallis model (with trivial character). We refer the readers to the previous
papers J41] and [42] of the second author for the definition of the Ginzburg-Rallis model.
The following theorem tells us a relation between the Ginzburg-Rallis model for GL3(D) and
the generalized Shalika model for GLy(D).

Theorem 6.6. With the notations above, we have
m(wD, w) = mGR(HD).

Proof. In [42], Section 8.1], we proved a multiplicity formula mgr(Ilp) = mgeom(Ilp) for the
Ginzburg-Rallis model. By the definition of meom (I1p) in [42], together with the definition
of IIp above and [39, Lemme 2.3], we can easily show that

_ t _
Mgeom(Ip) = Y |[W(GLy(D),T)|™ D) (t)2e, ( t) w(t)dt.
TE€Tan(GLy(D)) /e
Hence by Proposition B3] we get m(wp) = m(Ilp), and this proves the theorem. O

Next, we will prove a relation between the Ginzburg-Rallis model for GLg(F) and the
Shalika model for GL4(F"). Let m be a discrete series of GL4(F) with central character
w?, and let mp be the Jacquet-Langlands lift of m to GLy(D). Let St(w™!) be the Steinberg
representation of GLy(F) twisted by the character w™! and let IT be the normalized parabolic
induction of the representation 7<St(w™") of the Levi subgroup GL4(F)xGLy(F) to GLg(F).
Then II is a tempered representation of GLg(F") with trivial central character. Let mgr(II)
denote the multiplicity of II relative to the Ginzburg-Rallis model (with trivial character) of
GLg(F).

Theorem 6.7. With the notations above, we have
m(7r, w) + mGR(H) = 1.

Proof. Let IIp be the Jacquet-Langlands lift of II to GLs(D). Then IIp is the parabolic
induction of the representation mp ® w™! of the Levi subgroup GLy(D) x GL;(D). By
Theorem and Theorem [6.1] we have

mar(llp) = m(7mp,w) = m(m,w).

On the other hand, in [4I] and [42], we have proved that mgr(Il) + mgr(llp) = 1. The
theorem follows. O

Remark 6.8. It is worth to mention that Theorem[G.@ can also be directly proved by Mackey
theory. On the other hand, it is not clear to us how to prove Theorem|[6.7 by Mackey theory
(we can however show that the sum of the multiplicities it at least one in this way).
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For the rest part of this section, we are going to prove some partial results for the
epsilon dichotomy conjecture of the Ginzburg-Rallis model. Let II be an irreducible generic
representation of GLg(F') with central character 32 where 3 is some character on F*, and
let mer(II) be the multiplicity relative to the Ginzburg-Rallis model with character 5. We
first recall the epsilon dichotomy conjecture from [42].

Conjecture 6.9. With the notations above, we have

mar(ll) =1 <= €(1/2,(N°I) @ 37" =1,
mer(I) =0 <= €(1/2,(N°T) @) =—1.

In [42], we have proved the conjecture when II is not a discrete series, or the parabolic
induction of a discrete series of GL4(F') x GLy(F'). Now we are going to prove the conjecture
when II is the parabolic induction of a discrete series m X my of GL4(F') x GLo(F') with
being a twist of the Steinberg representation of GLy(F').

Let my = St(«) for some character a : F* — C*. Then the central character of 7 is «
which implies that the central character of 7 is a =232, Let ¢, (resp. ¢,,) be the Langlands
parameter of 7 (resp. mg). Then the Langlands parameter ¢p of 1T is just ¢ & ¢r,-

2

Y

Proposition 6.10. With the notations above, we have
(6.2.1) €(1/2,(N°TI) @ B71) = €(1/2, A*(¢r) @ by @ B71).

Proof. Since ¢y = ¢r @ ¢r,, we have

N (¢n) = (N (9r) © Pry) B (9r @ det(dry)) © (A*(r)).

Since the central character of 7 is a23% and the central character of 7 is a
(N (pr) @B =, ®a?® B! = ¢p @ det(dy,) ® 7. This implies that

e(1/2,(NI) @ B7Y) = e(1/2,A*(¢r) ® 6ry ® B71)e(1/2, ¢ @ det(¢r,) ® B7)
€(1/2, N (6x) ® B7)
= det(A*(dr) @ B7)(—1) x €(1/2, A*(¢2) ® 6y @ B7)
(det(d))*(=1)B7*(=1) x €(1/2, A*(¢n) ® i, @ )
= e(1/2,N*(6) ® ¢m, @ 7).

This proves the proposition. O

2 we have

Now up to twist m by the character 5!, we may assume that 3 = 1. This is allowable
since twist by characters will not change the multiplicity and the epsilon factor. In fact, by
the proposition above, we know that the epsilon factor will not be changed if we twist m by
characters. As for the multiplicity, by [42, Corollary 5.15], the multiplicity mgg(1I) for the
Ginzburg-Rallis model is equal to the multiplicity m (7 ® 7o) of the middle model (we
refer the readers to [42, Appendix A] for the definition of the middle model). But it is easy
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to see from the definition that the multiplicity of the middle model will not be changed if
we twist mg by characters.

Assuming that 3 = 1, by Theorem [6.7, we have mggr(I1) + m(w,a™t) = 1. Let mp be the
Jacquet-Langlands lift of 7 to GLy(D). By Theorem 6.1 we have m(m,a™') = m(7p,a™?).
Combining with the proposition above, we see that in order to prove the epsilon dichotomy
conjecture for II, it is enough to prove that

m(ﬂ-Da a_l) =0 < 6(1/2a /\2(¢7r) ® ¢7ro) 1,
a =1 = €1/2,A*(¢r) @ ¢r,) = —1.

But the above relations have already been proved in [I3| Theorem 1.5(2)]. This finishes the
proof of the epsilon dichotomy conjecture for II.

Remark 6.11. It is worth to mention that the cases so far proven of the epsilon dichotomy
conjecture of the Ginzburg-Rallis model all reduce to the epsilon dichotomy conjecture of the
Gross-Prasad model.

7 A connection to the local r-trace formula

In this section, we will rewrite the local trace formula for the Shalika model in terms of
the local r-trace formula. In Langlands’ proposal [28] for beyond endoscopy, one of the
most important ingredients is a global r-trace formula (the name “r-trace formula” was first
introduced by Arthur in his note [3] for beyond endoscopy). To be more specific, let G be
a connected reductive group defined over a number field k£, and let r be a finite dimensional
algebraic representation of the L-group of G. For any cuspidal automorphic representation
7w of Ramanujan type of G(Ay), we let L(s, 7, 7) be the associated global automorphic L-
function. For a given test function f on G(Ay), we let St (f) be the cuspidal part of the
stable Arthur-Selberg trace formula (we refer the reader to [3] for more details on this; let us
just say here that S}, (f) ought to be a sum over every cuspidal global L-packet of G(Ay) of a
certain stable linear combination of the characters associated to this global L-packet). Then
we define as in [3], S,,,(f) as the generalization of S;,,,(f) in which the stable multiplicities

of representations 7 that occur in S, (f) are weighted by the order of the pole

m,(7) == —ords—1(L(s, 7, 1))

at s = 1 of the automorphic L-function L(s, 7, 7). The goal of the r-trace formula is to find
a decomposition of Sy, (f) in terms of stable distributions on some smaller groups G’. Here
G’ should run over elliptic “beyond endoscopic data”. Like the theory of endoscopy, the
most important step is to find a geometric expansion for the distribution S, (f).

Guided by the same philosophy, we can also consider some kind of local r-trace formula.
Let G be a connected reductive group defined over a local field F' and r, as before, be a finite
dimensional algebraic representation of the L-group of G. For 7 an irreducible admissible

representation of GG, we denote as usual by L(s, 7, r) the associated local L-function (which
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is well-defined as soon as the local Langlands correspondence is known for ). For a test
function f on G, we can define the local analog of the distribution S’ . (f) to be

(7.0.1) L) = Y me(m) Te(r(f))

mell2(G)

where m,(m) = —ords—o(L(s,m,r)) is the order of the poles at s = 0 of the L-function
L(s,m,r). When G has non-trivial split center, we should actually fix a central character x
of Ag and only consider in the sum above the square-integrable representations with central
character x i.e. sum over II5(G, x) instead. As in the global case, the main problem is to
find a geometric expansion for 17, (f).

For the rest part of this section, we will discuss a special case of such local r-trace
formula. We consider the case where F is a p-adic field, G = GLy,(F), r = A? is the exterior
square representation of the L-group G = GL,,(C) and we fix the central character of
our representations to be trivial. For f € °C(G, 1), by applying the local trace formula of
Theorem B.I] in the case where w is trivial, we will give a geometric expansion for 17, (f).
Let us denote by Igeom(f) and Ipec(f) the geometric and spectral sides of this trace formula
respectively (i.e. the left and right hand sides of the identity of Theorem B respectively).
Then the spectral side reads

Lpee(f) = Y Tr(x(f))m(r"),
wellz(G,1)
where, for simplicity, we have set m(7") := m(7",1). As every w € II5(G, 1) is unitary, it is
easy to see that m(w") = m(w). Moreover, by Theorem [6.2] the multiplicity m(7) is nonzero
if and only if the exterior square L-function L(s, 7, A?) has a pole at s = 0. Since 7 is a
discrete series, the order of the pole of L(s, 7, A?) at s = 0 is either 0 or 1. On the other
hand, we know that m(7) < 1 (see [23]). Therefore, for all discrete series m € II3(G, 1), we
have
m(rm’) = —ord,—o(L(s,m 1)) = m, ().
This implies that
Lpee(£) = D Tr(m(f))me(r) = I (f)-
wellz(G,1)
Therefore, by Theorem B.1] we have

Igisc(f) = [geom(f)-
We summarize the above discussion in the following proposition.
Proposition 7.1. We have the identity

Igeom(f) - Igzsc(f)

for every f € °C(G, 1) where G = GLqy,(F), Igeom(f) denotes the left-hand side of Theorem
(21 and 1};..(f) stands for the local r-trace formula as defined above for the exterior square
representation 1 = N? of G = GLg,(C).
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Remark 7.2. In general, the local multiplicity problem for many spherical pairs are closely
related to the Langlands functoriality and the poles of some L-functions L(s,m,r). Hence if
we can prove the local trace formula for these models, we can find the geometric expansion
of the corresponding local r-trace formulas.

A Slight generalization of a result of Moeglin and Wald-
spurger

Let F' be a nonarchimedean field of characteristic zero with ring of integer O and normalized
absolute value |.|. We fix henceforth an uniformizer wpr € Op. As in the core of this paper,
we will abuse notations by denoting algebraic groups over F' and the corresponding group of
F-points by the same letter. We will do the same for Lie algebras.

Let G be a connected reductive group over F' with Lie algebra g. Fix a G-invariant non-
degenerate symmetric bilinear pairing (.,.) : g x g — F' and a nontrivial additive character
¥ F — C*. Let Py = MyNy be a minimal parabolic subgroup of G with unipotent radical
Ny and a fixed Levi component M,. Let Py = MyN, be the opposite parabolic subgroup and
Ay C M, the maximal central split torus. Let ng, 0y and p, denote the Lie algebra of Ny, N,
and Py respectively. Let Ay be the set of simple roots of Ay in ny and for all a € A, fix a
nonzero vector Y_, in the root subspace g_,, corresponding to —a. Set Y := Zae Ao Y_, €ng.
It is well-known that

(A.0.1) ¥, Bl = o

The exponential map induces a regular isomorphism exp : ng >~ Ny. Let log : Ny — ng be its
inverse and set

£(n) :=¢((Y,logn)), n € Nj.

Then ¢ is a character of Ny which is generic (i.e. with a stabilizer in My of minimal di-
mension). We will denote by My, the stabilizer of { in M, (i.e. the centralizer of Y in
Mp).

Let m be a smooth irreducible representation of G and ©, its Harish-Chandra character.
Recall that for all semi-simple element 2z € G there is a local expansion (see [I5, Theorem
16.2])

Or(rexp(X) = 3 ero(@)(O,X)

OeNil(gs)
for X € g, e sufficiently close to 0.

For all x € Myg, denote by O, the G-adjoint orbit of Y in g,. Theg O, is an element
of Nil(g,) which is maximal for the order defined by 0" < O & O’ C O where O denotes
closure of O for the F-analytic topology.
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Let W be the space of m and let W (Ny, &) be the subspace generated by all vectors of the
form w(n)v — {(n)v for v € V and n € Ny. The coinvariant space W/W (Ny, &) carries a
natural representation of My that we shall denote by 7y, ¢. In [29] it was shown that (see
[36] for the case of residual characteristic 2)

dlm 7TN0,£ = C7T7(91(1)'

The goal of this appendix is to extend slightly this result by using the same techniques. More
precisely we will prove:

Proposition A.1. For all x € My we have
Tr 7, ¢ (2) = DY (2) ! 2er 0, ()

where we have set

DE/Mo () .= D () DMo(z) 7L,

Proof. In order to include the case of residual characteristic 2, we will use [36] as our main
reference (which however follows very closely [29]). Let x € My¢. Note that Ad(z) is semi-
simple and compact (indeed this follows from the facts that M, is anisotropic modulo Ay
and My ¢ N Ay is contained in the center of ). To agree with the conventions of [36], we will
assume that 1 is unramified (i.e. its conductor is Op). This is no loss in generality since we
can always scale ¥ so that it become unramified and up to scaling (., .) by the corresponding
inverse factor the character £ doesn’t change and the same holds for the coeflicient ¢, o, ()
as we easily check from our normalizations. Let ¢ be the sum of the positive coroots of A
with respect to Py. Then we have ¢(s)Y¢(s)™! = s72Y for all s € F’*. The adjoint action
of o(F*) on g induces a decomposition

g= @ 9i
i€z
where g; := {X € g; p(s)Xp(s)™' =s'X Vs € F*}. Set g~ := P, 0 and g* := P,., gs.
Then we have g = g~ @ g2 and ng = g?(this is because g; = 0). Let Y* be the centralizer of Y’
in g and V be a complement subspace to Y* which is invariant by ¢(F )My (in particular
it is invariant by ¢@(F*)). By @(F*)-invariance, we have a decomposition V = V= ¢ V?
where V= :=V Ng~ and V? := V N g% Note that

(A.0.2) VZ=g*=n,.

Indeed, this follows from [A.0.1] and the fact that (.,.) induces a perfect pairing between Ty
and nyg.

Since Ad(z) is semi-simple, we have a decomposition g = g, ® g* where g, and g* stand
respectively for the kernel and the image of Ad(z) —1 in g. As V' is Ad(z)-stable, we have
a similar decomposition V' =V, @ V. The bilinear form
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By : (Z,X)€gx g By(Z,X):=(Y,[Z,X])

is alternating M ¢-invariant and nondegenerate when restricted to V. Moreover, the de-
composition V' = V, & V?* is orthogonal for this alternating form. Set V, := V, Ng~,
V2i=V,Ng? V® :=V*Ng and V®? := V*Ng? Then we have V, =V, & V? and
VT =V @V (indeed this follows from the facts that V' is ¢(F*)-stable and x centralizes
©(F*)). Moreover, the form By induces a perfect pairing between V.~ and V2 on the one

hand and between V®~ and V%2 on the other hand. Since Ad(z) is compact and commutes
with Ad(p(F*)), we can find a lattice of L*~ of V*~ which is Ad(z)-stable and such that

=P rong.

1<0
Let L*? be the dual lattice of V%2 with respect to By, that is

L*? :={X e V*? By(Z,X)€ OpVZ € L*"}.
Similarly, we fix a lattice L, C V- with the property that
L, =L, ng

i<0
and denote by L2 C V2 the dual lattice. Finally, we also fix a lattice Ly C Y* which is
Ad(z)-invariant and such that Ly = @,., Ly N g, Ly = Ly N g, ® Ly N g”. We set

L=LyoL, ®L2® L @ L"?
Then, L is a lattice of g which is Ad(z)-invariant and satisfies properties (i) and (ii) of [36],
§3]. Moreover, by construction we have
L=L,®L"

where L, := LNg, and L* := L Ng".

Set t := p(wp). For all integer n sufficiently large we set

G, =exp(wpl), G, =t"G,t"

When n is large enough, these are compact-open subgroups of G. Again for n sufficiently
large, we define two characters &, : G,, — C* and &, : G, — C* by

Eu(exp(X)) 1= U (Y, X + X0, X)), X € whL

E(7) =& t™), yeq,

where X — X_ and X — X, denote respectively the projections onto g~ and g? relative
to the decomposition g = g~ @ g2 These characters are Ad(z)-invariant (since z is in the
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centralizer of both Y and t). Moreover, we can easily check, using the Campbell-Hausdorff
formula, that for n large enough, the character &, coincide with the character y,, constructed
in [36, Lemma 6]. For all n for which G/, and &, are defined, we set

W, ={veW| n(y)v=_E,(y)vVy e G}

These subspaces are invariant by m(z) and by [36, Lemma 8 and Lemma 9.(b)], when n is
large enough, the natural projection W — W/W(Ny, &) restricts to an isomorphism W/ ~
W/W (Ny, ). From there it easily follows that

(A.0.3) Tr 7y () = Trm(z)w,

for all n large enough. Fix a Haar measure dg on G and for n sufficiently large, let ¢, ¢/, €
C*(G) be the functions defined by

1 B ‘ .
on(y) = aieEa(v™), if 7 € G
0, otherwise.

(7)== @n(t"yt").

Then 7(¢!,) is a projection onto W, and thus

(A.0.4) Trm(z)w, = Tra(z)n(p,) = Tra(z)n(t™")m(en)m(t") = Tra(L(x)en)

where (L(z)@,)(7) := @n(z71y) for all v € G.

Fix open neighborhoods w C g and 2 C G of 0 and 1 respectively such that the exponential
map induces an F-analytic isomorphism exp : w ~ Q. Let log : 2 — w denote the inverse
of this map. We fix a Haar measure on g such that the exponential map preserves measures
locally in a neighborhood of 0 and Haar measures on g* and g, whose product is equal to the
Haar measure on g. Choose e > 1 such that (1 —Ad(z™!))L* D @w%L* and (Y, L) C w,°OF.
We can find an integer B > 0 satisfying the following conditions:

(A.0.5) The map
(@BL*) x (whly) = G: (Z,X) v exp(—z~ ' Zz) exp(X) exp(2)

is an F-analytic isomorphism onto an open neighborhood of 1 contained in §2 and the
Jacobian of this map is a constant equal to D(x).

(A.0.6) For all m,m’ > B, all Z € @@ L* and all X € @' L, we have

_ 1 1 ,
log <€_m 1Z$6X6Z> eEX+Z—a " Zx+ §[X, Z 4 a7 Zx) + §[Z, e Za) + ot

(A.0.7) [L, L) C 2ewat =B,
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Assume n is large. By [A.0.3] and [A.0.4] we have

Tr g e(x) = /G O (27)Pn(7)d.

And by [AL0.5] this equals

DG(a:)/BLx/BL O (7 exp(X)) o (exp(—z~  Zx) exp(X) exp(Z))dX dZ.

By [A.0.6 and [AX0.7, we check that for Z € wBL* and X € wZL,, we have

exp(—2 ' Zz) exp(X) exp(Z) € G,

if and only if X € wlL, and Z — 27 ' Zz € w}L® and that in that case, we have

1
Enlexp(—2 ' Zx) exp(X) exp(2)) =1 <w§2"<Y,X +Z—a " Zx + 5([X, Z 4 x  Za]+
(Z, o Za)+ [ Xy + Zy —2a ' 2o, X+ 7 — x_IZ_SL’])>).

Since z centralizes Y, we have (Y, g”) = 0 and thus Y is orthogonal to Z — 2~ 'Zz, [X, Z +
v Z2), [ X, Z_ —2'Z z]and [Zy —x~ ' Z, 2z, X _]. Similarly, (Y, g;) = 0 for i # 2 so that V'
is orthogonal to [Z_,27'Z_z] and [Z,, 2717, z]. Finally, since (.,.) is Ad(x)-invariant and
x centralizes Y, we have (Y, [z7'Z, 27 Z x]) = (Y,[Z,,Z_]). From all of these, we get by
direct computation that the above expression equals

En(exp(X))y (w;any(Z_, v 7w — Z.)).
Finally we end up with

ey () =D (o) vol(L7) ™ [ b (By(Zora Zn — 2,)) d2
(1-Ad(z~1))~1Le

x vol(whL,) ™ / En(exp(X))O, (zexp(X))dX.

w;,Lz

Notice that the lattice L, of g, satisfies the assumptions (i) and (ii) of [36, §3], that is

° Lm = @iez Lm N 9z where 9z = Oz N [oF
e The lattice L, /(L, NY?) is self-dual with respect to v o By-.

Hence, the same computation as that of the proof of [36, Lemma 7] shows that

Vol(wlfiLx)_lf En(exp(X))Ox(zexp(X))dX = cr0,(7)

w}}Lx
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when n is large. Thus, it only remains to show that

(A.0.8)  D%x)vol(L*)™ /( - VO (By(Z_,a ' Zyx — 7)) dZ = DM ()12,
1—-Ad(z—1))-1L=

By construction, we have a decomposition L* = L% & L®~ @ L%? where L% = L* N Y*.
Fix Haar measures on g% := g N Y* V®~ and V=2 whose product gives the (already fixed)
Haar measure on g® through the decomposition g* = g @ V®~ @ V%2 Up to scaling all
these Haar measures, we may assume that

vol(L*™) = vol(L3) = vol(L*~) = vol(L"?) = 1.

Then, as the function Z € g+ ¢ (By(Z_,2~'Z,x — Z)) is invariant by translation by Y,
we have

= vol((1 — Ad(z1))"L%) /

/ b (By(Z_, (1 - Ad(a™"))Z.)) dZ,dZ_
(1=Ad(z-1))~1Lo— J (1=Ad(z—1))~1 Le:2

= |det(1 — Ad(2))gz.aves

N U (By(Z_,2,))dZ.d7_.
(1-Ad(z—1))-1Le— J L2

In order to get the last line we have used the fact that if V is an [F-vector space, L C
V a lattice and T" an endomorphism without the eigenvalue 1 such that TL = L, then
vol(1—=T71)71L) = |det(1 —T)|~' vol(£). Since L*? is the lattice dual to L*~ with respect
to By and 1 unramified, we have

U (By(Z_,2.))dZ, = { ;
LCD,Q b

for all Z_ € V*®~. Thus, we have

it 7_ e L™,
otherwise

/ ,lvb (BY(Z—a Z+)) dZ+dZ_ = VOI(LI’_) =1
(1—-Ad(z—1))~1L®— J L2

and consequently

—1

D% (z) / U (By(Z_,a ' Zow — 7)) dZ = DY%(z) ‘det(l — Ad(2)) gz ovee
(1—Ad(z—1))-1L*
= |det(1 — Ad(z))y=-|

where for the last equality we have used the fact that

DY) = |det(1 — Ad(z))qe

— ‘det(l — Ad(x))mﬂff@‘/xj@vx,f‘ .
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Furthermore, since V®~ and V%2 are in duality under the form By which is Ad(x)-invariant,
we have

|det(1 — Ad(z)) e | = |det(1 — Ad(z7")) =2

= ‘det(l — Ad(x)) ez

= |det(1 — Ad(z))|g7rmo|

where in the second equality we have used the fact that Ad(x) is compact and in the last
one we have used [A.0.2l Similarly, since g® N ny and g* N Ay are in duality under the form
(.,.) which is Ad(z)-invariant, we have
1/2
}det(l - Ad(x))‘gzmo} = ‘det(l — Ad(:):))mm(no@ﬁo)‘ = DC/Mo(g)1/2,
This shows [A.0.8 and ends the proof of the proposition. O

The following corollary is a direct consequence of the last proposition.

Corollary A.2. Set H = My¢ x Ny. Let 7 be a smooth irreducible representation of
Mo (necessarily of finite dimension) and let x, be its character. Assume that the central
characters of m and x. coincide on the split center Ag of G. Then, we have

dim Hompy (7,7 ® §) = / DEMo () 2¢ o (2)x-(x7")da
Moe/Ac

where the Haar measure on My¢/Ac is chosen so that vol(My¢/Ac) = 1.
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