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A local trace formula for the Gan-Gross-Prasad
conjecture for unitary groups: the Archimedean case *

Raphaél Beuzart-Plessis
November 30, 2018

Abstract

In this paper, we prove, following earlier work of Waldspurger [Wall, [Wad] a sort of
local relative trace formula which is related to the local Gan-Gross-Prasad conjecture
for unitary groups over a local field F' of characteristic zero. As a consequence, we
obtain a geometric formula for certain multiplicities m(7) appearing in this conjecture
and deduce from it a weak form of the local Gan-Gross-Prasad conjecture (multiplicity
one in tempered L-packets). These results were already known over p-adic fields
and thus are only new when F' = R.
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Introduction

Let F be a local field of characteristic 0 which is different from C. So, F' is either a p-adic
field (that is a finite extension of Q,) or F' = R. Let E//F be a quadratic extension of F' (if
F =R, we have E = C) and let W C V be a pair of hermitian spaces having the following
property: the orthogonal complement W+ of W in V is odd-dimensional and its unitary
group U(W+) is quasi-split. To such a pair (that we call an admissible pair, cf. Section
6.2), Gan, Gross and Prasad associate a triple (G, H, ). Here, G is equal to the product
U(W) x U(V) of the unitary groups of W and V', H is a certain algebraic subgroup of G and
£ : H(F) — S! is a continuous unitary character of the F-points of H. In the case where
dim(W+) = 1, we just have H = U(W) embedded in GG diagonally and the character ¢ is
trivial. For the definition in codimension greater than 1, we refer the reader to Section 6.2
We call a triple like (G, H, &) (constructed from an admissible pair (W, V)) a GGP triple.

Let m be a tempered irreducible representation of G(F'). By this, we mean that 7 is an irre-
ducible unitary representation of G(F') whose coefficients satisfy a certain growth condition
(an equivalent condition is that 7 belongs weakly to the regular representation of G(F)).
We denote by 7 the subspace of smooth vectors in 7. This subspace is G(F)-invariant and
carries a natural topology (if F' = R, this topology makes 7> into a Fréchet space whereas if



F'is p-adic the topology on 7 doesn’t play any role but in order to get a uniform treatment
we endow 7°° with its finest locally convex topology). Following Gan, Gross and Prasad, we
define a multiplicity m(7) by

m(m) = dim Homg (7%, €)

where Hompy (7%, ¢) denotes the space of continuous linear forms ¢ on 7 satisfying the
relation ¢ o w(h) = £(h)¢ for all h € H(F). By the main result of [JSZ] (in the real case)
and JAGRS] (in the p-adic case) together with Theorem 15.1 of [GGP], we know that this
multiplicity is always less or equal to 1.

The main result of this paper extends this multiplicity one result to a whole L-packet of
tempered representations of G(F'). This answers a conjecture of Gan, Gross and Prasad
(Conjecture 17.1 of [GGP]). Actually, the result is better stated if we consider more than
one GGP triple at the same time. In any family of GGP triples that we are going to consider
there is a distinguished one corresponding to the case where G and H are quasi-split over
F. So, for convenience, we assume that the GGP triple (G, H, &) we started with satisfies
this condition. The other GGP triples that we need to consider may be called the pure
inner forms of (G, H,£). Those are naturally parametrized by the Galois cohomology set
HY(F,H). A cohomology class o € H'(F, H) corresponds to a hermitian space W, (up to
isomorphism) of the same dimension as W. If we set V,, = W, &+ W+, then (W,,V,) is an
admissible pair and thus gives rise to a new GGP triple (G, Hq,&,). The pure inner forms
of (G, H, &) are exactly all the GGP triples obtained in this way.

Let ¢ be a tempered Langlands parameter for G. According to the local Langlands cor-
respondence (which is now known in all cases for unitary groups, cf. [KMSW] and [Mok]),
this parameter determines an L-packet I1% () consisting of a finite number of tempered rep-
resentations of G(F). Actually, this parameter also defines L-packets 1% () of tempered
representations of G (F) for all « € HY(F, H). We can now state the main result of this
paper as follows (cf. Theorem [12.4.T]).

Theorem 1 There exists exactly one representation w in the disjoint union of L-packets

|| 1%y

a€H(F,H)

such that m(m) = 1.

As we said, this answers in the affirmative a conjecture of Gan-Goss-Prasad (Conjecture
17.1 of |[GGP]). The analog of this theorem for special orthogonal groups has already been
obtained by Waldspurger in the case where F' is p-adic [Wal]. In [Beul], the author adapted
the proof of Waldspurger to deal with unitary groups but again under the assumption that
F is p-adic. Hence, the only new result contained in Theorem [l is when F' = R. However,
the proof we present here differs slightly from the original treatment of Waldspurger and we
feel that this new approach is more amenable to generalizations. This is the main reason
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why we are including the p-adic case in this paper. Actually, it doesn’t cost much: in many
places, we have been able to treat the two cases uniformly and when we needed to make a
distinction, it is often because the real case is more tricky.

As in [Wal] and subsequently [Beul], Theorem [I follows from a formula for the multiplicity
m(m). This formula express m(m) in terms of the Harish-Chandra character of 7. Recall
that, according to Harish-Chandra, there exists a smooth function 6, on the regular locus
Gheg(F') of G(F') which is locally integrable on G(F') and such that

Trace 7(f) :/ O () f(x)dx

G(F)
forall f € C°(G(F)) (here C°(G(F)) denotes the space of smooth and compactly supported
functions on G(F')). This function €, is obviously unique and is called the Harish-Chandra
character of 7. To state the formula for the multiplicity, we need to extend the character 6,
to a function

cr: G(F) = C

on the semi-simple locus Gy(F') of G(F). If © € Gheg(F), then ¢, (z) = 6,(z) but for a
general element x € G (F'), ¢ () is in some sense the main coefficient of a certain local
expansion of 6, near x. For a precise definition of the function c,, we refer the reader to
Section 4.5 where we consider more general functions that we call quasi-characters and which
are smooth functions on Gee(F') sharing almost all of the good properties that characters
of representations have. As we said, it is through the function ¢, that the character 6, will
appear in the multiplicity formula. The other main ingredient of this formula is a certain
space I'(G, H) of semi-simple conjugacy classes in G(F'). For a precise definition of I'(G, H),
we refer the reader to Section 1.2l Let us just say that I'(G, H) comes naturally equipped
with a measure dx on it and that this measure is not generally supported in the regular locus.
For example, the trivial conjugacy class {1} is an atom for this measure whose mass is equal
to 1. Apart from these two main ingredients (the function ¢, and the space I'(G, H)), the
formula for the multiplicity involves two normalizing functions DY and A. Here, DY is the
usual discriminant whereas A is some determinant function that is defined in Section [11.2]
We can now state the formula for the multiplicity as follows (cf. Theorem [M1.4.2]).

Theorem 2 For every irreducible tempered representation m of G(F'), we have the equality

m(m) = lim cx(2) D (2)V2 A ()Y dx
s—0t F(G,H)

The integral in the right hand side of the equality above is absolutely convergent for all s € C
such that Re(s) > 0 and moreover the limit as s — 07 exists (cf. Proposition T1.2.1]).

As we said, Theorem [I] follows from Theorem 2l This is proved in the last chapter of this
paper (Chapter [[2]). Let us fix a tempered Langlands parameter ¢ for G. The main idea of
the proof, the same as for Theorem 13.3 of [Wall, is to show that the sum
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(0.0.1) > oom

a€H(F,H) nellCa(p)

when expressed geometrically through Theorem [2] contains a lot of cancellations which
roughly come from the character relations between the various stable characters associated
to ¢ on the pure inner forms of G. Once these cancellations are taken into account, the
only remaining term is the term corresponding to the conjugacy class of the identity inside
I'(G, H). By classical results of Rodier and Matumoto, this last term is related to the num-
ber of generic representations inside the quasi-split L-packet I1%(). By the generic packet
conjecture, which is now known for unitary groups, we are able to show that this term is
equal to 1 and this immediately implies Theorem [Il Let us now explain in more detail how
it works. Fix momentarily o € H'(F, H). Using Theorem Bl we can express the sum

as

(0.0.2) lim Cpo(x) DG (2)Y2A(2)*2da

s—0t [(Go,Ho)

where we have set ¢, o =
sum of characters ,, = >

¢x. One of the main properties of L-packets is that the
reTIGa () 0, defines a function on G, yeg(F') which is stable, which

here means that it is invariant by G, (F)-conjugation. In Section T2l we define a notion
of strongly stable conjugacy for semi-simple elements of G, (F). This definition of stable
conjugacy differs from the usually accepted one (cf. [Kottl]) and is actually stronger (hence
the use of the word “strongly”). The point of introducing such a notion is the following:
it easily follows from the stability of 6, that the function c,, is constant on semi-simple
strongly stable conjugacy classes. This allows us to further transform the expression
to write it as

m€llCe ()

lim |p;15tab(:):)|c%a(x)DG“(x)l/QA(x)s_l/Qd:z

s—0F Fstab(GOuHa) ’
where Lgian (Go, Hy) denotes the space of strongly stable conjugacy classes in I'(G,, H,) and
Pastab Stands for the natural projection I'(Gy, Hy) = Ustan(Ga, Hy) (thus |p;7lstab(x)| is just
the number of conjugacy classes in I'(G,, H,) belonging to the strongly stable conjugacy
class of z). Returning to the sum [0.0.I] we can now write it as

(003) > Jim b (@) ) D% (@) 2 A 2)* 2

+
OcEHl(F,H) s—0 Fstab(GouHa)



A second very important property of L-packets is that the stable character 6, is related in
a simple manner to the stable character 6, on the quasi-split form G(F’). More precisely,
Kottwitz [Kott2] has defined a sign e(G,) such that we have 6, ,(y) = e(Gq)0,1(x) as soon
as Y € Gareg(F) and x € Gee(F) are stably conjugate regular elements (i.e., are conjugate
over the algebraic closure where G, (F) = G(F)). Once again, this relation extends to the
functions ¢, and c,; and we have ¢, o(y) = €(Ga)cy,1(x) for all strongly stably conjugate
elements y € G, s5(F) and © € Gg(F). As it happens, and contrary to the regular case,
there might exist semi-simple elements in G, (F') which are not strongly stably conjugate
to any element of the quasi-split form G(F'). However, we can show that the function ¢, ,
vanishes on such elements = € G, ss(F'). Therefore, these conjugacy classes don’t contribute
to the sum and transferring the remaining terms to G(F'), we can express as a
single integral

s—0+

= < Z e(Ga(w)) o1 (2) DY (2) 2 A ()" da
F(G’H) Y~stab®

where the sum

(0.0.4) > e(Gay)

Y~stab®

is over the conjugacy classes y in the disjoint union | | HL(F.H) I'(G,, H,) that are strongly
stably conjugate to x and a(y) € H'(F, H) denotes the only cohomology class such that
y lives in I'(Ga(y), Ha(y)). There is a natural anisotropic torus 7, C H associated to x €
[stan(G, H) such that the set of conjugacy classes in | | . () ['(Ga, H,) lying inside the
strongly stable conjugacy class of z is naturally in bijection with H*(F,T},) (cf. Section
for the definition of 7). Moreover, for y € H'(F,T,), the cohomology class a(y) is just the
image of y via the natural map H'(F,T,) — H'(F, H). Hence, the sum [.0.4] equals

(0.0.5) > eGag)

yeH (F,Ty)

In order to further analyze this sum, we need to recall the definition of the sign e(G,).
In [Kott2], Kottwitz constructs a natural map H'(F,G) — H?*(F,{£1}) = Bry(F) from
HY(F,G) to the 2-torsion subgroup of the Brauer group of F'. Since F'is either p-adic or real,
we have an isomorphism Bry(F) ~ {+1}. The sign e(G,) for « € H'(F, H) is now just the
image of o by the composition of this map with H*(F, H) — H'(F,G). Following Kottwitz’s
definition, it is not hard to see that the composition H'(F,T,) — H'(F,G) — Bry(F) is a
group homomorphism. Moreover, it turns out that for x # 1 this homomorphism is surjective
and this immediately implies that for such an x the sum is zero. Going back to [0.0.3],
we are only left with the contribution of 1 € I'(G, H) which is equal to

cpa(1)
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By a result of Rodier |[Ro| in the p-adic case and of Matumoto [Mat] in the real case, the
term c,1(1) has an easy interpretation in terms of Whittaker models. More precisely, this
term equals the number of representations in the L-packet I19(¢) having a Whittaker model,
a representation being counted as many times as the number of types of Whittaker models
it has, divided by the number of types of Whittaker models for G(F'). A third important
property of L-packets is that I1% () contains exactly one representation having a Whittaker
model of a given type. It easily follows from this that c,,(1) = 1. Hence, the sum
equals 1 and this ends our explanation of how Theorem [2 implies Theorem [Il

The proof of Theorem Pl is more involved and takes up most of this paper. It is at this
point that our strategy differs from the one of Waldspurger. In what follows, we explain
the motivations and the main steps of the proof of Theorem 2l Consider the unitary repre-
sentation L*(H(F)\G(F),&) of G(F). Tt is the L*induction of the character ¢ from H(F)
to G(F) and it consists in the measurable functions ¢: G(F) — C satisfying the relation
w(hg) =&(h)p(g) (h € H(F), g € G(F)) almost everywhere and such that

/ |g0(:£)|2dx < 00
H(F)\G(F)

The action of G(F) on L*(H(F)\G(F),¢) is given by right translation. Since the triple
(G, H,¢) is of a very particular form, the direct integral decomposition of L*(H(F)\G(F), &)
only involves tempered representations and moreover an irreducible tempered representation
7 of G(F') appears in this decomposition if and only if m(7) = 1. It is thus natural for our
problem to study this big representation L?*(H(F)\G(F),&). A function f € C*(G(F))
naturally acts on this space by

/ f(9)o(ag)dg, o€ LEHF\G(F).£), « € G(F)

Moreover, this operator R(f) is actually a kernel operator. More precisely, we have

(R(f)g) (x) = / o i VRN, 0 € LHINGR).O), € G(F)

Ky(x,y) = fathy)&(h)dh, x,y € G(F)

H(F)
is the kernel function associated to f. In order to study the representation L?(H (F)\G(F),¢),
we would like to compute the trace of R(f) (because for example it would give some informa-
tions about the characters of the representations appearing in L2(H (F)\G(F),€)). Formally,
we may write

(0.0.6) “Trace R(f) :/( . K(f,z)dz”



where K (f,z) = K¢(z,x), v € H(F)\G(F), is the restriction of the kernel to the diagonal.
Unfortunately, neither of the two sides of the equality makes sense in general: the
operator R(f) is not generally of trace class and the integral of the right hand side is not
usually convergent. The first main step towards the proof of Theorem Pl is to prove that
nevertheless the expression in the right hand side of still makes sense for a wide range
of functions f. A function f € C°(G(F)) is said to be strongly cuspidal if for every proper
parabolic subgroup P = MU of GG, we have

(mu)du =0, for all m € M(F)
U(F)

In Chapter B, we prove the following (see Theorem B.1.T)).

Theorem 3 For every strongly cuspidal function f € C°(G(F)), the integral

/ K(f,z)dz
H(F\G(F)

1s absolutely convergent.

We actually prove more: we show that the above integral is absolutely convergent for every
strongly cuspidal function in the Harish-Chandra Schwartz space C(G(F')) rather than just
C*(G(F)). This seemingly technical detail is in fact rather important since in the real
case the author was only able to construct enough strongly cuspidal functions in the space
C(G(F)) and not in C°(G(F)).

Once we have Theorem [3] we can consider the distribution

froath=[ (s

H(F)\G(F)

which is defined on the subspace Cgeusp (G (F')) of strongly cuspidal functions in C(G(F')). The
next two steps toward the proof of Theorem [2] are to give two rather different expressions
for the distribution J(.). The first expansion that we prove is spectral. It involves a natural
space X (G) of tempered representations. In fact, elements of X' (G) are not really tempered
representations but rather virtual tempered representations. The space X' (G) is build up
from Arthur’s elliptic representations of the group G and of all of its Levi subgroups. We
refer the reader to Section 27 for a precise definition of X'(G). Here, we only need to know
that X (G) comes equipped with a natural measure dr on it. For all 7 € X'(G), Arthur has
defined a weighted character

feCG(F)) = Jum(T, f)

Here, M(m) denotes the Levi subgroup from which the representation 7 originates (more
precisely, 7 is parabolically induced from an elliptic representation of M (w)). When M () =
G, the distribution Jg(7,.) simply reduces to the usual character of 7, that is Jg (7, f) =

10



Trace m(f). When M (m) # G, the definition of the distribution Jys(x(7,.) is more involved
and actually depends on some auxiliary choices (a maximal compact subgroup K of G(F') and
some normalization of intertwining operators). However, it can be shown that the restriction
of Jui(n) (7, .) t0 Cocusp(G(F')) doesn’t depend on any of these choices. For f € Cyousp(G(F)),

o~

we define a function §; on X(G) by

O (m) = (—1)™ Jaym (7, f), 7€ X(G)

where ay;(r) is the dimension of A the maximal central split subtorus of M (7). The
spectral expansion of the distribution J(.) now reads as follows (cf. Theorem 0.1.1]):

Theorem 4 For every strongly cuspidal function f € Cseusp(G(F)), we have

J(f) = D(m)8;(wym(r)dx
X(G)

The factor D(w) appearing in the formula above is a certain determinant function which
comes from Arthur’s definition of elliptic representations. What is really important in the
above spectral expansion of J(.) is the appearance of the abstractly defined multiplicity m().
Its presence is due to the existence of an explicit description of the space Hompy (7%, £). More
precisely, for 7 an irreducible tempered representation of G(F'), we may define a certain
hermitian form £, on 7> by

Lofe,e) = / (e n(h)E(RYdh, e ¢ €

H(F)

The above integral is not necessarily absolutely convergent and needs to be regularized (cf.
Section [1]), it is why we put a star at the top of the integral sign. In any case, L. is
continuous and satisfies the intertwining relation

Lo(m(h)e,m(h)e) =E(R)EN)Lr(e,e), e e €n™ hh' € H(F)

In particular, we see that for all ¢ € 7 the linear form e € 7 +— L, (e,€’) belongs to
Hompy (7%, €). Hence, if £, is not zero so is m(7). In Chapter [, we prove that the converse
is also true. Namely, we have (cf. Theorem [7.2.T])

Theorem 5 For every irreducible tempered representation m of G(F), we have
Lr#0& m(m)#0

This theorem has already been established in [Beul] when F' is p-adic (Théoréme 14.3.1
of [Beul]). An analogous result for special orthogonal groups was proved previously by
Waldspurger in [Wad] (Proposition 5.7) and then reproved in a different manner by Y.
Sakellaridis and A. Venkatesh in [SV] (Theorem 6.4.1) in a more general setting but under

11



the additional assumption that the group is split. The proof given in [Beul| followed closely
the treatment of Sakellaridis and Venkatesh whereas here we have been able to give an
uniform proof in both the p-adic and the real case which is closer to the original work of
Waldspurger.

As already explained, Theorem [ is a crucial step in the proof of the spectral expansion
(Theorem M]). Actually, once Theorem [lis established, Theorem @ essentially reduces to the
spectral expansion of Arthur’s local trace formula [A1] together with an argument allowing
us to switch two integrals. This step is carried out in Chapter [0l

We now come to the geometric expansion of J(.). It involves again the space of conjugacy
classes I'(G, H) that appears in the formula for the multiplicity (Theorem [2)). The other
main ingredient is a function cy: Gg(F) — C that is going to take the role played by the
function ¢, in the multiplicity formula. The definition of ¢; involves the weighted orbital
integrals of Arthur. Recall that for every Levi subgroup M of G and all x € M (F)NGieg(F),
Arthur has defined a certain distribution

feCG(F)) = Ju(z, [)
called a weighted orbital integral. If M = G, it simply reduces to the usual orbital integral

Ja(e, f) = / f(g'xg)dg, | € C(G(F))
Gz (F)\G(F)

When M # G, the distribution Jys(x,.) depends on the choice of a maximal compact sub-
group K of G(F'). However, as for weighted characters, the restriction of Jy(x,.) to the
subspace Cseusp(G(F')) of strongly cuspidal functions doesn’t depend on such a choice. For
[ € Cocusp(G(F)), we define a function 6 on G, (F') by

Op(z) = (=1)™M@ Jyp) (@, f), 7 € Greg(F)

where M (z) denotes the minimal Levi subgroup of G containing = and ajs,) denotes, as
before, the dimension of Ajs(,) the maximal central split subtorus of M(z). The function 6
is invariant and we can show that it shares a lot of the good properties that characters of
representations have. It is what we call a quasi-character (cf. Chapter ). In particular, as
for characters, there is a natural extension of 6; to a function

Cy: GSS(F) — C

and we can now state the geometric expansion of J(.) as follows (cf. Theorem TT.4.1]).

Theorem 6 For all strongly cuspidal functions f € Cseusp(G(F)), we have

J(f) = lim c;(x)DC(x) 2 A ()~ da

s—07t I(G,H)

12



Once again, the expression of the right hand side of the equality above is absolutely con-
vergent for all s € C such that Re(s) > 0 and the limit as s — 07 exists (cf. Proposition
IT.2.7).

It is from the equality between the two expansions of Theorem [l and Theorem [@ that we
deduce the formula for the multiplicity (Theorem [2). To be more precise, we first prove the
spectral expansion (Theorem []) and then we proceed to show the geometric expansion (The-
orem [0) and the formula for the multiplicity (Theorem []) together in a common inductive
proof. The main reason for proceeding this way and not in a more linear order is that we
use the spectral expansion together with the multiplicity formula for some “smaller” GGP
triples in order to show that the distribution J(.) is supported in the elliptic locus G(F)en
of G(F'). This fact is used crucially in the proof of Theorem [6] and the author was not able
to give an independent proof of it.

We now give a quick description of the content of each chapter. The fist two chapters are
mainly intended to set up the notations, fix some normalizations and remind the reader of
some well-known results. In particular, the second chapter contains the basic material we will
be using on tempered representations. It includes a strong statement of the Harish-Chandra
Plancherel theorem sometimes called matricial Paley-Wiener theorem which in the p-adic
case is due to Harish-Chandra [Wa2] and in the real case is due to Arthur [A2]. In Chapter
Bl we recall the Harish-Chandra technique of descent. There are two: descent from the group
to the centralizer of one of its semi-simple elements (semi-simple descent) and descent from
the group to its Lie algebra. In both cases, the descent takes the form of a map between some
function spaces. We will be particularly concerned by the behavior of invariant differential
operator (in the real case) under these two types of descent and we collect the relevant results
there. The last Section (B.4) is devoted to a third type of descent that we may call parabolic
descent. However, we will be mainly interested in the dual of this map which allows us to
“induce” invariant distributions of Levi subgroups. In Chapter [, we define the notion of
quasi-characters and develop the main features of those functions that in many ways looks
like characters. The main results of this chapter are, in the p-adic case, already contained
in [Wal] and so we focus mainly on the real case. Chapter [l is devoted to the study of
strongly cuspidal functions. In particular, it is in this chapter that we define the functions
0 and 07 to which we alluded before. This chapter also contains a version of Arthur’s local
trace formula for strongly cuspidal function (Theorems [B.5.1] and 5.5.2)). The proof of these
two theorems, which are really just slight variation around Arthur’s local trace formula, will
appear elsewhere [Beu2]. In Chapter [6] we define the GGP triples, the multiplicity m(w) and
we show some estimates that will be needed in the proof of the main theorems. Chapter [1is
devoted to the proof of Theorem[Bl In Chapter 8, we establish Theorem [3as well as an analog
for the Lie algebra g(F) of G(F). This allows us to define two distributions J(.) and J%¢(.)
on the group G(F') and its Lie algebra respectively. Chapter [0 concentrates on the spectral
expansion of the distribution J(.) (Theorem [). As already explained, the main ingredient
in the proof is Theorem [5l In Chapter [I0, we establish some “spectral” expansion for the Lie
algebra analog J™°. More precisely, we express J"¢(f) in terms of weighted orbital integrals

of J?, the Fourier transform of the function f. Chapter [[1] contains the proofs of Theorem
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and Theorem 21 As we said, these two theorems are proved together. The last chapter,
Chapter [[2] is devoted to the proof of the main result of this paper (Theorem [I]) following
the outline given above. Finally, I collected in two appendices some definitions and results
that are used throughout the text. Appendix[Alis concerned with locally convex topological
vector spaces and particularly smooth and holomorphic maps taking values in such spaces
whereas Appendix [Bl contains some general estimates.
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reflect the views of the National Science Foundation.

1 Preliminaries

This is a preparatory chapter. We mainly set up notations, conventions and recall some
standard results from the literature. In more details, Section [LI] fixes general notations,
Section is devoted to a certain notion of norm on algebraic varieties over local fields due
to Kottwitz [Kott3] that we will use extensively, in Section [[3we prove some useful estimates
that will be needed later, in Section [[.4 we introduce the most common spaces of functions
that will appear in this paper, Section discusses the very important Harish-Chandra
Schwartz space of functions and its basic properties, Section explains our normalizations
of measures, in Section [[.7] we introduce some spaces of conjugacy classes that we equip
with topologies and measures, in Section [I.8 we set up notations for orbital integrals and
recall some of their properties, finally in Sections and [LT0] we recall Arthur’s notions of
(G, M)-family and weighted orbital integral respectively.

1.1 General notation and conventions

Throughout this paper, we fix a field [F] which is either p-adic (i.e., a finite extension of Q,)
or R the field of real numbers. We denote by |.| the normalized absolute value on F i.e.,
for every Haar measure dr on F' we have d(ax) = |a|dz, for all a € F. We fix once and
for all an algebraic closure [F for F and let [ = Gal(F/F) be the corresponding absolute
Galois group. We will also denote by |.| the unique extension of the absolute value to F. All
varieties, schemes, algebraic groups will be assumed, unless otherwise specified, to be defined
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over F. Moreover we will identify any algebraic variety X defined over F or F with its set of
F-points. For G a locally compact separable group (for example the F-points of an algebraic
group defined over F'), we will usually denote by dpg (resp. drg) a left (resp. a right) Haar
measure on GG. If the group is unimodular then we will usually denote both by dg. Finally
dc will stand for the modular character of G that is defined by dz(gg'™!) = dg(g’)drg for all
g €G.

We fix, until the end of Chapter [Bl, a connected reductive group G over F. We denote by g
its Lie algebra and by

GXxg—g

(9,X)— gXg™

the adjoint action. A sentence like “Let P = MU be a parabolic subgroup of G” will mean
as usual that P is defined over F', U is its unipotent radical and that M is a Levi component
of P defined over F. We define an integer |0(G)| by

§(G) = dim(G) — dim(T)

where T is any maximal torus of G. It is also the dimension of any regular conjugacy class

in G.

Let us recall some of the usual objects attached to G. We shall denote by [Z] the center of
G and by [Ag] its split component. We define the real vector space

= Hom(X*(G),R)

and its dual

L= X"(G)®R

where X*(G) stands for the module of F-rational characters of G. We have a natural
homomorphism

Hy: G(F) = Ag
given by

(x;Ha(g)) =log (Ix(9)]), g€ G(F), x € X*(G)
Set = Hg(G(F)) and — Hg(Ag(F)). In the real case, we have Agp = Agp =
Ag. In the p-adic case, Ag r and Ag r are both lattices inside Ag. We also set =
Hom(Ag r, 27Z) and |AY ,| = Hom(Ag r, 27Z). In the p-adic case, .Z%F and AY, o are

this time lattices inside A7, whereas in the real case we have A, = A = 0. We set
= A/ A¢ p and we identify iAf  with the group of unitary unramified characters of
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G(F') by mean of the pairing (), g) € iAG p X G(F) — eMH6(9) - We shall also denote by
A o] and [AF | the complexifications of Ag and Ag,.

Let P = MU be a parabolic subgroup of GG. Of course, the previous constructions apply to
M. We will denote bythe set of roots of Ay, in the unipotent radical of P. If K is a
maximal compact subgroup of G(F') which is special in the p-adic case, we have the Iwasawa
decomposition G(F') = M(F)U(F)K. We may then choose maps mp: G(F) — M(F),
up: G(F) — U(F) and kp: G(F) — K such that g = mp(g)up(g9)kp(g) for all g € G(F).
We then extend the homomorphism Hj; to a map [Hp|: G(F) — Ay by setting Hp(g) =
Hy(mp(g)). This extension depends of course on the maximal compact K but its restriction
to P(F') doesn’t and is given by Hp(mu) = Hy;(m) for allm € M(F) and allu € U(F). By a
Levi subgroup of G we mean a subgroup of G which is the Levi component of some parabolic
subgroup of G. We will also use Arthur’s notation: if M is a Levi subgroup of G, then we
denote by [P(M)|, [C(M)| and [F(M)| the finite sets of parabolic subgroups admitting M as a
Levi component, of Levi subgroups containing M and of parabolic subgroups containing M
respectively. If M C L are two Levi subgroups, we set = Ay /Ar. We have a canonical
decomposition

AM:ALEB.Aﬁ/I

and its dual

=A@ (Af)

If H is an algebraic group, we shall denote by H° its neutral connected component. For
x € G (resp. X € g), we denote by (resp. |Z¢(X)|) the centralizer of x (resp. X) in G
and by [G]= Zg(z)° (resp. [Gx]= Z5(X)?) the neutral component of the centralizer. Recall
that if X' € g is semi-simple then Z¢(X) = Gx. We will denote by [Gyand [Greg] (resp. [fzg and
the subsets of semi-simple and regular semi-simple elements in G (resp. in g). For any
subset A of G(F) (resp. of g(F')), we will denote by A, the intersection AN Gieg(F) (resp.
ANgreg(F)) and by Ay the intersection ANGgs(F') (resp. ANgss(F)). We will usually denote
by a set of representatives for the conjugacy classes of maximal tori in G. Recall that
a maximal torus T of G is said to be elliptic if A7 = Ag. Elliptic maximal tori always exist
in the p-adic case but not necessarily in the real case. An element x € G(F) will be said
to be elliptic if it belongs to some elliptic maximal torus (in particular it is semi-simple).
Similarly, an element X € g(F') will be said to be elliptic if it belongs to the Lie algebra of
some elliptic maximal torus. We will denote by |G'(£')en| and |g(f)en| the subsets of elliptic
elements in G(F') and g(F’) respectively. We will also set = G(F)en N Greg(F) and
= g(F)en N Greg(F). For all x € Gg(F) (resp. all X € g(F)), we set

: ‘det(l — Ad(2)))gq.| (resp. = ‘det ad(X)lg/gx})

If a group H acts on a set X and A is a subset of X, we shall denote by Normy(A) the
normalizer of A in H. For every Levi subgroup M and every maximal torus 7" of G, we will
denote by W (G, M) and [W (G, T')| the Weyl groups of M (F') and T'(F') respectively, that is
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W(G, M) = Normgpy(M)/M(F) and W(G,T) = Normg ) (T)/T(F)

If fis a function on either G(F') or g(F), for all ¢ € G(F) we will denote by [f] the
function f o Ad(g). We shall denote by [Rl and [I] the natural actions of G(F') on functions
on G(F) given by right and left translation respectively. That is (R(g)f) (v) = f(vg) and

(L(9)f) (v) = f(g~1y) for every function f and all g,y € G(F).

Assume that ' = R. Then, we will denote by the enveloping algebra of g = g(C)
and by its center. The right and left actions of G(F') on smooth functions on G(F)
of course extend to U(g). We still denote by R and L these actions. For z € Z(g), we will
simply set zf = R(2)f (= L(z*)f with a notation introduced below) for all f € C*(G(F)).
We will also denote by and the symmetric algebras of g and g* respectively. We
will identify S(g*) with the algebra of complex-valued polynomial functions on g and we
will identify S(g) with the algebra of differential operators on g with constant coefficients.
More precisely for u € S(g), we shall denote by the corresponding differential operator.
We denote by [[(g)| and |I(g*)| the subalgebras of G-invariant elements in S(g) and S(g*)
respectively. We will also need the algebra of differential operators with polynomial
coefficients on g(F'). We will denote by u —[u* the unique C-algebra automorphism of both
U(g) and S(g) that sends every X € g to —X. We then have

(/ (M@ﬁﬂ@ﬁ@ﬂg:/“ F1(9) (R(u)fa) (9)dg, for all fu, fo € CX(G(F)),u € U(g)
G(F) G(F)

/(F) (O(u) f1) (X) fo(X)dX = /(F) f1(X) (0(u™) f2) (X)dX, for all fi, fo € CZ(g(F)),u € S(g)

For each maximal torus T of G, the Harish-Chandra homomorphism provides us with an
isomorphism

2() = Sy

z = Ef

where W (Gc,Tc) denotes the Weyl group of T¢ in Ge. Assume that H is a connected
reductive subgroup of G of the same rank as G, for example H can be a Levi subgroup
or the connected centralizer of a semi-simple element. Let 7' C H be a maximal torus.
Since W (H¢, Tc) € W(Gc, 1t), the Harish-Chandra isomorphism for 7" induces an injective
homomorphism

Z(g) = Z(b)

z — ol

which is in fact independent of 7" and such that the extension Z(h)/Z(g) is finite. Similarly,
over the Lie algebra we have isomorphisms

17



[(g*) ~ S(t*)W(G@,TC) [(g) ~ S(t)W(chTC)

p =[Pl u — [0

The first one is just the “restriction to t” homomorphism, the second one may be deduced
from the first one once we choose a G-equivariant isomorphism g ~ g* (but it doesn’t depend
on such a choice). As for the group, if H is a connected reductive subgroup of G of the same
rank as G, we deduce from these isomorphisms two injective homomorphisms

I(g") = I(b*) I(g) — I(h)
pl—> U — x|

which are such that the extensions 1(h*)/I(g*) and I(h)/I(g) are finite. Also the two iso-
morphisms Z(g) ~ S(t)"V(@eTe) and I(g) ~ S()"(@T0) induce an isomorphism Z(g) ~ I(g)
that we shall denote by z +— u,.

We will also adopt the following slightly imprecise but convenient notation. If f and g are
positive functions on a set X, we will write
f(z) < g(x) for all x € X
and we will say that f is essentially bounded by g, if there exists a ¢ > 0 such that
f(z) < eg(z), for all z € X
We will also say that f and g are equivalent and we will write

f(x) ~ g(x) for all x € X

if both f is essentially bounded by ¢ and g is essentially bounded by f.

1.2 Reminder of norms on algebraic varieties

All along this paper, we will assume that g = g(F') has been equipped with a (classical)
norm |.|g, that is a map |.|; : g — Ry satisfying |AX|; = [N | X|g [ X +Y|; < | X+ |Y]q
and | X|; = 0 if and only if X =0 for all A € F and X,Y € g. For any R > 0, we will denote
by the closed ball of radius R centered at the origin in g(F).

We will make an heavy use of the notion of norm on varieties over local field introduced by
Kottwitz in [Kott3]. Actually, we will use a slight variation of Kottwitz’s norms that is more
convenient for us and that we will call log-norms because these are essentially logarithms of
Kottwitz’s norms. For the convenience of the reader, we will recall here the definitions and
main features of these log-norms.
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First, an abstract log-norm on a set X is just a real-valued function = — o(z) on X such
that o(z) > 1, for all x € X. For two abstract log-norms oy and o2 on X, we will say that
oo dominates oy if

01(z) < o9(x)

for all z € X in which case we shall write o1 < 05. We will say that o; and o, are equivalent
if each of them dominates the other and in this case we will write oy ~ o9.

Let X be an affine algebraic variety over F and denote by O(X) its ring of regular functions.
Choosing a set of generators fi,..., f,, of the F-algebra O(X), we can define an abstract
log-norm gx]on X by setting

ox(z) = 1+log (maz{L, [fi(z)],.... [fm(x)]})

for all x € X. The equivalence class of ox doesn’t depend on the choice of fi, ..., f,, and by
a log-norm on X we will mean any abstract log-norm in this equivalence class. Note that if
U is the principal Zariski open subset of X defined by the non-vanishing of @ € O(X), then
we have

ou(x) ~ ox () +log (2 + Q)| ™)
for all x € U.

More generally, let X be any algebraic variety over F. Choose a finite covering (U;) ier of X
by open affine subsets and fix log-norms oy, on U;, ¢ € I. Then

ox(z) = inf{oy,(z);i € I such that x € U;}

defines an abstract log-norm on X the equivalence class of which doesn’t depend on the
various choices. An abstract log-norm in this equivalence class will be just called a log-norm
on X.

Let f: X — Y be a morphism of algebraic varieties over F' and oy be a log-norm on Y. We
define the abstract log-norm on X by

[roy(z) = oy (f(z))
for all x € X. The following lemma will be used without further notice throughout the text

(cf. Proposition 18.1(1) of [Kott3])

Lemma 1.2.1 Let ox be a log-norm on X. Then f*oy < ox. If f is moreover a finite
morphism (in particular if it is a closed immersion), then f*oy ~ ox.

Let this time f: X — Y be a morphism of algebraic varieties over F' and let ox be a log-
norm on X (but we will only consider its restriction to X (F")). Define an abstract log-norm
on Im(X(F) = Y (F)) by
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e = inf ox(x
Jrox(y) e X (F); f(x)=y x(®)

Let oy be a log-norm on Y. By the previous lemma, f.ox dominates oy (as abstract log-
norms on Im(X (F') — Y (F'))). We say that f has the norm descent property if oy and f.ox
are equivalent as abstract log-norms on Im(X (F) — Y (F)). Of course, if f*oy and ox are
equivalent, then f has the norm descent property, and so this is the case in particular if f is
finite. We state here the basic facts we will be using regarding to the norm descent property
(cf. [Kott3] Proposition 18.2).

Lemma 1.2.2 (i) The norm descent property is local on the basis. In other words if
f: X =Y is a morphism of algebraic varieties over F' and (U;),.; is a finite covering
by Zariski-open subsets of Y defined over F, then f has the norm descent property if
and only if each of the f;: f~1(U;) — U;, i € I, has the norm descent property.

(i1) If f admits a section, then it has the norm descent property.
We will also need the following nontrivial result (cf. [Kott3] Proposition 18.3).

Proposition 1.2.3 Let G be a connected reductive group over F and T an F-subtorus of
G. Then the morphism G — T\G has the norm descent property.

In order not to confuse the reader, we remark that this last proposition is a statement of
equivalence of log-norms on T'(F)\G(F') (which is the image of G(F') in (T\G)(F')) and not
on the full of (T\G)(F) (which in general can be slightly bigger).

We will assume that all algebraic varieties X in this article (be they defined over F' or F)
are equipped with a log-norm ox. Note that if X = V is a vector space over F, then we
may take

oy(v) =log(2+ Jv]), veV
where |.| is a classical norm on V. We will usually assume that it is the case. Also, we will
denote o¢ simply by @ and all closed subvarieties of G will be equipped with the log-norm
obtain by restriction of o. Note that we have
ozy) < olz)+oly) <o(r)o(y)

for all (z,y) € G x G. It follows from the last proposition that we may assume, and we will
throughout the paper, that we have

(1.2.1) ona(9) = tel%l(fp) o(tg)

for all g € G(F). We will also need the following
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(1.2.2) For every maximal torus 7' C G, we have
olg™'Xg) +1og (24 DO(X) ) ~ ag(X) + opalg) + log (2 + DE(X) )
for all X € t,oo(F') and all g € G(F)).

Indeed, this follows from Lemma [[2T] and the fact that the regular map T\G X t;eg — Greq,
(g9,X) — g1 Xg is finite.

As we said, our log-norms are essentially the logarithm of Kottwitz’s norms. For G and its
Lie algebra g, it will be convenient at some points to work with norms instead of log-norms.
We therefore set

[old=e¢"", gea

[XTd= e, X eg

Let X be an algebraic variety over F' on which a log-norm oy has been chosen. We will also
use the following notation

K[ZC)= {x € X(F); ox(x) < C)
:: {r e X(F); ox(x) > C}

for all C' > 0. We have the two following estimates. The first one is easy to prove and the
second one is due to Harish-Chandra (cf. Theorem 9 p.37 of [Va]).

(1.2.3) Let V be a finite dimensional F-vector space and @) be a polynomial function on V.
Set V' = {Q # 0} and let wy C V be a relatively compact subset. Then, for all &k > 0,
there exists 0 > 0 such that

/ log (2 + |Q(X)|‘1)k dX < €
V/[<elnwy

for all € > 0.

(1.2.4) Let T C G be a maximal torus. Then, for all Ny > 0 there exists N > 0 such that
Do) [ Xl < X
T(F)\G(F)

for all X € t,oo(F).
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1.3 A useful lemma

Fix a minimal parabolic subgroup Puin = MuinUmin of G and let Ay, = Ay, be the
maximal split central subtorus of M,,;,. Set

: {a S Amin(F); ‘a(a)‘ > 1Va e R(Amim?mirJ}
Let Q = LUz be a parabolic subgroup containing Proin, where L is the unique Levi component
such that M;, € L. For all 6 > 0, we define

AT ()= {a € At :la(a)] = e Vo € R(Amin, Ug)}

min min’

Let @ = LUg be the parabolic subgroup opposite to @ with respect to L.
Lemma 1.3.1 (i) Let € > 0 and 0 > 0. Then, we have an inequality
o(a) < sup (a(g), a(a_lga))
for all a € Ag’i:(é) and all g € G(F) \ (Q[< ea(a)]aUq[< ea(a)]a™?).

(i1) Let 0 < 0" < & and cg > 0. Then for e > 0 sufficiently small, we have

alUg [< ea(a)]a™* C exp (B(O, coe 7@ N uQ(F)>
for all a € AQ’+(5).

min

Proof:

(i) Let us set

WG = W(Ga Mmin)> WL = W(La Mmin)

for the Weyl groups of M,,;, in G and L respectively. We have the following decompo-
sition:

(1.3.1) G= |J QUow

weWI\WGC

Indeed, if we let Ppin = MpinUmin be the parabolic subgroup opposite to P, with
respect to M, we have PpinUnin € QUq. Thus [L3T]is clearly a consequence of the
decomposition

G = U FminUminw

weWG
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which itself follows from the Bruhat decomposition
G = |_| Fmin'LUUmin
weWE
and the fact that PpinwUmin € PminUminw, for all w € WE.

Fix a set W C WY of representatives of the left Wl-cosets in W and assume (as we
may) that 1 € W. Set U, = QUqw for all w € W. These are affine open subsets
of G which are all naturally isomorphic to @ x Ug. For all w € W, we may define a
log-norm o,, on U,, by

(1.3.2) 0w (quw) = sup{o(q), o(u)}

for all g € Q and all u € Ugy. By [L3J] the family (U) peyy is a Zariski open cover of GG
and so we have

(1.3.3) o(g) ~ inf{o,(g); w € W such that g € U, }

for all g € G.

Obviously we may assume that € as small as we want: if we replace € by another positive
constant € < e then the assertion of the proposition becomes stronger. Moreover, the
following is easy to see

(1.3.4) If € is sufficiently small (depending on 0), there exists a bounded subset Cz C Q
such that B
a”'Q[< eo(a)]a C CxL(F)
for all a € A% (5).

min

Henceforth, we will assume e sufficiently small so that it satisfies [.3.4l For all w € W
and ¢ > 0, we set

Uy[< o] = {g € Uy; 0u(g) < c}

We now show the following
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(1.3.5) Let w € W. Then, we have
o(a”"ga) ~ a,(a”"ga)
for all a € Agg(é) and all g € U, [< ea(a)].
Indeed, by [[.3.4] we have
a” Uy (< eo(a)la C CoL(F)Uqg(F)w

min

point [1.3.5] follows.

for all a € AQJ“((S) and moreover o and o, are equivalent on CzL(F)Uq(F)w. The

By L33l there is an inequality

o(a) < o(g)

for all a € Ay and all g € G\ U, ey Un|< €0(a)]. Combining this with [L3.5] we see
that the estimate of the proposition is a consequence of the following claims:
(1.3.6) We have
o(a) < o1(a"tga)
for all a € AE;Z(&) and all g € Uy [< eo(a)]\ (Q[< eo(a)] aUq [< ea(a)] a™r).

(1.3.7) If € is sufficiently small, then for all w € W such that w # 1, we have an
inequality
o(a) < oy,(a " ga)

for all a € Agg(é) and all g € U, [< ea(a)].
Claim [L.3.0lis a simple consequence of the definition of the log-norm oy and the inclusion

U< ea(a)]\ (Q[< eo(a)] aly [< eo(a)] a‘l) C Q(F) (Ug(F)\aUq [< eo(a)] a‘l)

We now prove [[3.7 Fix w € W such that w # 1. For all ¢ = quw € U,, with § € Q,
u € Ug and for all a € Ay, we have

a”'ga=a""qu(a) (w(a)Muw(a)) w

Here a~'qw(a) € Q and w(a) luw(a) € Ug. Thus by 3.2, we have
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ow (e ga) = o (a 'qu(a))

For all ¢ > 0, we have U,[< c] = Q[< c|Ug[< cJw. Consequently, to prove [L3.1 it is
sufficient to establish the following

(1.3.8) If € is sufficiently small,we have
o(a) < o (a 'qu(a))

for all a € Agg(é) and all g € Q[< ea(a)].
We have an inequality

|H5(@)| < o(q)
for all g € ). Hence,
| Hg (w(a)) — Hyla)| — [Hg(@)| < [Hg (w(a)) — Hyg(a) + Hg(@)|
= | @( ) a)\
<<a(a qu(a )

for all @ € A and all § € Q. Therefore, to prove [[L3.8 it suffices to establish that

(1.3.9) o(a) < |Hg (w(a)) — Hg(a)|, for all a € AL (d)
Set Amin = Antyy, and Huwiw = Hyg,,,. Denote by A C R(Amin, Puin) the subset of

simple roots and by AV C A, A C A . the corresponding sets of simple coroots
and fundamental weights respectively. The coroot and fundamental weight associated
to a € A will be denoted by " and w, respectively. Set Ag=AnN R(Amnin, UQ). We
have

(@a, H@(a» = (@Wa, Hmin(a))

for all « € Ay and all a € Ayn. Therefore, to get [L3.9it is sufficient to establish the
following claim:

(1.3.10) There exists o € Ag such that
O'(CL) < <wo¢a Hmin(a) - Hmin(w(a))>

for all a € AY, 6).

min
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Let w = 84, ... 84, be a minimal decomposition of w as a product of distinct simple
reflections (thus with a; € A for all 7). Let X € Ap;,. We have the following identity
which is easy to establish by induction

Hence for a € A, we have

(o, X —w(X)) = Z<O‘i>X><wa> Say - - Sai—l(a;/)>

i=1

Notice that (a, Say - - - Say_, (a)) = 0 for all 1 < i < k. Consequently, if X € A*, |
meaning that (a, X) > 0 for all @ € A, we have

(o, X — w(X)) = (i, X)W, Say - - - Sa,_, (@)

i

forall 1 <14 < k. Since w ¢ W there exists ¢ such that a; € AQ. Let ¢ be the minimal
such index and set a = «;. By the above, we have

(@a, X —w(X)) = (a0, X){(Tas Say - - - Say_, ("))

for all X € A"

min*

Since o # a for 1 < j <7 — 1, we have

(@Way Say - - Say_, (@) = (a, ”) =1

So finally

(@a, X —w(X)) = (a, X)

Now [L.3.10 follows immediately since by definition of AG’JF((S), we

min

for all X € A

min*
have

(@, Hiin(a)) 2> d0(a)
for all a € A@’J’(é).

min

If 0(a) < €' then the left hand side is empty and there is nothing to prove (as o(g) > 1
for all ¢ € G(F)). So we shall only prove the inclusion for o(a) > €. There exists

a > 0 such that
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[log(u)]y < 7™

for all u € Ug(F'). Also, there exists § > 0 such that
}aXa_l‘g < 56_6"(“) |X|g

for all X € ug(F) and all a € AS;: (0). It follows that for a given € > 0, we have

o < Be W log(u)ly

llog (aua™")|q = |alog(u)a B
66 ae—d)o(a)
= fe

g

NN

(ae—6+8")o(a) —6’0((1)

for all a € AQ+(5) and all u € Ug [< eo(a)]. Now, it suffices to choose € sufficiently

min

small such that we have Be(*<=9+87(@) < ¢ for all a € A, (F) such that o(a) > e ' W

1.4 Common spaces of functions

Let X be a locally compact Hausdorff totally disconnected topological space and let M be a
real smooth manifold. In this paper the adjective smooth will have two meanings: a function
from X to a topological vector space E is smooth if it is locally constant whereas a function
from M to a topological space E is smooth if it is weakly C* in the sense of Appendix [A.3]
We shall denote by [C™°(X)| and |C'*(M)| the spaces of all smooth complex-valued functions
on X and M respectively and by |C2°(X)| |C'>°(M)| the subspaces of compactly-supported
functions. We equip C°(M) and C*°(M) with their usual locally convex topology. Then
C*(M) is a Fréchet space whereas C°(M) is an LF space. We endow C2°(X) with its finest
locally convex topology. If X admits a countable basis of open subsets, C2°(X) is also an
LF space (since it admits a countable basis). Restrictions to compact-open subsets induces
an isomorphism

C(X) = lim C°(K)
K

where IC runs through the compact-open subsets of X. We shall endow C*°(X) with the
projective limit topology relative to this isomorphism. We also denote bythe space
of all smooth differential operators on M which are globally of finite order and by ,
k € N, the subspace of smooth differential operators of order less than k. DiffZ (M) carries
a natural locally convex topology and if M is countable at infinity, it is a Fréchet space. We
endow Diff™ (M) with the direct limit topology relative to the natural isomorphism

Diff* (M) = lim Diff, (M)
k
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(so that if M is countable at infinity, Diff**(M) is an LF space). We denote by and
the topological duals of C2°(M) and C2°(X) respectively and we call them the spaces
of distributions on M and X respectively. If we have fixed a regular Borel measure dm on
M (resp. dx on X), then for every locally integrable function " on M (resp. on X)), we will
denote by [T the associated distribution on M (resp. on X) i.e., we have

(Tp, f) = /M F(m) f(m)dm, | € C=(M)

(resp. (Te.5) = [ Pl fe 050<X>)

Let V be a finite dimensional F-vector space. Then, for all f € C*(V) and all A € F*, we
will denote by [fy] the function defined by

L) =fA ), veV

We extend this action of F* to the space of distributions D'(V) by setting (T3] f) =
INEVNT £y ) for all T € D'(V), all f € C(V) and all A € F*. Moreover, we will
say that a distribution T € D'(V') is homogeneous of degree d if

T\ = \T
for every A\ € (F*)? (where (F*)? denotes the set of squares in F™*).

We will also need the Schwartz spaces |S(g(F'))| and |S(G(F)). If F is p-adic, we have
S(g(F)) = CX(g(F)) and S(G(F)) = C*(G(F)). Assume that FF = R. Then, S(g(F)) is
the space of all functions f € C*°(g(F')) such that

aval(f) = sup [ X[ (0(u)f) (X)] < o0

Xeg(F)

for all N > 1 and all u € S(g). We endow S(g(F')) with the topology defined by the semi-
norms ¢, for all N > 1 and all u € S(g). It is a Fréchet space. The natural inclusion
C>®(g(F)) € S(g(F)) is continuous with dense image. We will say that a distribution T
on g(F') is tempered if it extends to a continuous linear form on S(g(F')). We denote by

S’ (g(F))| the space of tempered distributions on g(F).
Similarly, we define S(G(F)) to be the space of all functions f € C°°(G(F')) such that

T /) = sup [z [(L(u)R(v)f) (z)] < o0
z€G(F)

for all N > 1 and all u,v € U(g). We endow S(G(F)) with the topology defined by the
semi-norms gn,,., for all N > 1 and all u,v € U(g). It is also a Fréchet space.

Assume that a non-degenerate symmetric bilinear form B and a measure have been fixed on
g(F) (this will be done in Section [[.6]). Then we define the Fourier transform on S(g(F')) by
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Hx) = o JOWBECY)AY. ] € S(F).X € o(F)

and we extend this definition to tempered distributions by setting

B 5= 7
for all T € S'(g(F')) and all f € S(g(F')). In the real case there exist two isomorphisms
S(g) = S(g"), u— Pz and S(g*) = S(g), p = @y such that
W = p,T and pT = O(up)f

for all T' € S'(g(F)), all w € S(g) and all p € S(g*). Note that if B is chosen to be G-
invariant, then these isomorphisms restrict to give isomorphisms (g) ~ I(g*) and I(g*) ~

I(g).

1.5 Harish-Chandra Schwartz space

We will denote by [E%] the Harish-Chandra function. Let us recall its definition. Let Py, be a
minimal parabolic subgroup of G and let K be a maximal compact subgroup of G(F") which
is special in the p-adic case. Then we have G(F') = Ppn(F)K (Iwasawa decomposition).
Consider the (smooth and normalized) induced representation (cf. Section 2.3))

i%, . (1) :={e € C®(G(F)); e(pg) = Omin(p)"/?e(g) Vp € Puin(F), g € G(F)}

that we equip with the scalar product

(e,¢') = /Ke(k:)e’(k)dl{:, e, el € z’%’mm(l)“

Let ex € 4% (1)™ be the unique function such that ex(k) = 1 for all k € K. Then the
Harish-Chandra function =€ is defined by

=%g) = (% (1,9)ex.ex), g € G(F)

Of course, the function =¢ depends on the various choices we made, but this doesn’t matter
because different choices would yield equivalent functions and the function =¢ will only be
used to give estimates. The next proposition summarizes the main properties of the function
=¢ that we will need. We indicate references for these after the statement.

Proposition 1.5.1 (i) Set

M, = {m € Muin(F); a(m)| <1Va € R(Any,, Puin)}

Then, there exists d > 0 such that
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(5pmin(7’n)l/2 < EG(m) < op (m)l/Qa(m)d

min

for allm € M

min *

(i1) Let mp_, : G(F) — Mun(F) be any map such that g € mp_, (9)Unin(F)K for all
g € G(F). Then, there exists d > 0 such that

E9(g) < Opn(mp,,(9)) o (g)”
for all g € G(F).

(111) Let P = MU be a parabolic subgroup that contains Pyi,. Let mp: G(F) — M(F') be
any map such that g € mp(g)U(F)K for all g € G(F). Then, we have

=6(g) = /K 5 (mp(kg))V2E (mp (kg) )k

for all g € G(F).

(iv) Let P = MU be a parabolic subgroup of G. Then, for all d > 0, there exists d' > 0
such that

5p ()2 /U  EE o) du < 2 o)

for allm € M(F).

(v) There exists d > 0 such that the integral

18 convergent.

(vi) (Doubling principle) We have the equality

/ =6 (g1kga)dk = =€ (g1)ZC (g2)
K

for all g1,92 € G(F).
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Proof: Most of these are due to Harish-Chandra. A convenient reference is [Wa2] in the p-
adic case (see Lemme II.1.1 for (i), Lemme I1.4.4 for (ii), Lemme II.1.6 for (iii), Proposition
I1.4.5 for (iv), Lemme II.1.5 for (v) and Lemme II.1.3 for (vi)) and [Va] in the real case
(see Theorem 30 p.339 for (i), Proposition 16(iv) p.329 for (iii), Theorem 23 p.360 for (iv),
Proposition 31 p.340 for (v) and Proposition 16(iii) p.329 for (vi)) except concerning point
(ii) of the Proposition for which we refer the reader to [HCI] Lemma 85 and Corollary 1
p.108. W

Using the function ¢ we can define the Harish-Chandra Schwartz space|C(G(F))|as follows.
For every function f € C(G(F)) and all d € R, we set

pad(f) == S )If (9)IE%(g9) "o(9)?

If F' is p-adic then
C(G(F)) = JCw (G(F))

where K’ runs through the open-compact subgroups of G(F') and Ck/(G(F)) is the space of
functions f € C'(K'\G(F)/K') such that ps(f) < oo for all d > 0. We endow the spaces
Cx:/(G(F)) with the topology defined by the semi-norms (ps)4=o. These are Fréchet spaces
and we equip C(G(F')) with the direct limit topology. Thus C(G(F)) is an LF space in this
case.

If F' =R then C(G(F)) is by definition the space of all f € C*(G(F)) such that

Puwdl f) = pa(R(u)L(v)f) < o0

for all d > 0 and all u,v € U(g). We equip C(G(F)) with the topology defined by the
semi-norms py, , 4, for all u,v € U(g) and all d > 0. In this case, C(G(F)) is a Fréchet space.

Lemma 1.5.2 Assume that F = R. Let f € C(G(F)), d >0 and B C g(F) be a compact.
Then, we have

|f(e¥ge”) = fl9)] < E%(g)a(9) ™ (IX]s + [Yo)
for all g € G(F) and all X,Y € B.

Proof: We have

fle*ge’) — flg) = fle¥ge”) — flge") + f(ge") — f(g)

1

_ / (L(=X)f)(eXge¥ )dt + | (ROY)f)(ge™ )t

0
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for all g € G(F) and all X,Y € B. Hence,
1 1
(e ge™) = flg)] < / [(L(=X)f)(e"" ge")|dt +/ [(ROY)f)(ge™)ldt
0 0

< pulL(—-Y)]) / =6(X ge¥ Yo (X ge¥ )t + pa(R(Y) ) / =6 (ge" o (ge!™ ) dt

< [Pa(L(=Y)f) + pa(R(Y) /)| Z(g)a(9) ™
< sup  [pa(L(Z)f) + pa(R(Z) )] (1 X g + [Y]g) Z(g)o(9)™

Zeg(F);|Z]g=1
for all g € G(F) and all X,Y € B. The lemma follows. l

We now define what we will call the weak Harish-Chandra Schwartz space|C*(G(F'))l This
topological space is important since it is the natural home for coefficients of tempered rep-
resentations. Moreover, fixing a Haar measure on G(F), this is precisely the smooth part of
the space of tempered distributions. Again, the definition of C*(G(F)) differs in the p-adic
and the real case.

If F' is p-adic, we have
c*(G(F)) = |Jer(G(F))
K/
here again K’ runs through the open-compact subgroups of G(F') and

Ciar(G(F)) = | Cir a(G(F))

d>0

where C%, ,(G(F')) denotes the space of functions f € C'(K'\G(F)/K’) such that p_4(f) <
o0. Equipped with the norm p_g4, Cg 4(G(F)) is a Banach space. We endow C,(G(F)) and
C*(G(F)) with the direct limit topologies. These are LF spaces. We will also set

CTG = Jc a(G(F))
Kl
and we will equip this space with the direct limit topology. It is also an LF space.
If F =R, we have
c(G(F) = | Jci(G(F)

d>0

where |CY (G(F))| denotes the space of functions f € C°°(G(F)) such that

pu,v,—d(f) ‘=P-d (R(U)L('U)f) <00

for all u,v € U(g). We equip Cy(G(F)) with the topology defined by the semi-norms p,, , —d,
for all u,v € U(g). It is a Fréchet space. Finally, we endow C*(G(F')) with the direct limit
topology so that it becomes an LF space.
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In any case, the natural inclusion C(G(F')) C C¥(G(F)) is continuous and we have the
following

(1.5.1) C(G(F)) is dense in C*(G(F)).

Indeed, we may even prove that C°(G(F')) is dense in C*(G(F)). For all ¢ > 0, denote by
k¢ the characteristic function of {g € G(F); o(g) < t}. Let p € C°(G(F)) be any positive
function such that / ©(g)dg =1 and set p; = @ * Ky x @ for all t > 0. Then we leave to
G(F)

the reader the task to prove that for all f € C*(G(F')) we have

lim @ f = f

t—o0
in C*(G(F)). This proves the claim.

We end this section with a lemma that will be useful for us. The second part of this lemma
gives a criterion for a function taking values in C*(G(F)) to be smooth.

Lemma 1.5.3 (i) Let d > 0 and let v be a continuous semi-norm on Cy(G(F')). Then

(a) In the p-adic case, for all gy, ps € CX(G(F)), there exists a continuous semi-norm
Vipy oo 0N CY(G(F')) such that

v (R(1)L(02) R(91) L(92) ) < Vipr 00 (F)Z(91)2%(92) 0 (91) 0 (92)"
for all f € CY(G(F)) and all g1, 92 € G(F).

(b) In the real case, there exists k > 0 (which depends on v) such that for all 1, ps €
C*(G(F)), there exists a continuous Semi-norm Vy, 4, on C¥(G(F)) such that

v (R(p1) L(92) R(91) L(g2) f) < Vipyo0 (/)E(91)E (92) 0 (91) 0 (g2)*
for all f € CY(G(F)) and all g1, g2 € G(F).

(i1) Let V' be a real vector space and let ¢: V x G(F) — C be a function such that

(a) In the p-adic case: for all g € G(F) the function A € V. — (A, g) is smooth
and there exists a compact-open subgroup K' of G(F') such that for all X € V the
function p(A,.) is K'-biinvariant.

(b) In the real case: for all A\ € V, the function g € G(F) — @(A, g) is smooth and
for all u,v € U(g) and all g € G(F) the function X\ € V +— (R(u)L(v)p) (X, g) is
smooth.
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(c) In the p-adic case: for every differential operator with constant coefficients D €
S(V), there exist two constants C,d > 0 such that

(D) (A, 9) < CE(g)a(g)”
forall g e G(F) and all A € V.

(d) In the real case: for every differential operator with constant coefficients D € S(V'),
there exists d > 0 such that for allu,v € U(g) there is a positive continuous function
Cuv(.) on' V' such that

[(DR(u)L(v)2) (X, 9)] < Cuuw(NE(9)o(g)”
forall g e G(F) and all A € V.

Then, the map X\ — @(A,.) takes value in C*(G(F')) and defines a smooth function
from V' to C*(G(F)).

Proof:

(i) We will only prove (b), the proof of (a) being similar and easier. We may assume with-
out loss of generality that v = p,,,, _q for some u,v € U(g). Set k = max (deg(u), deg(v)).
Then, we have

v (R(p1)L(p2) R(91)L(g2) f) = p—a (R (up1) L (vpa) R(g1)L(g2) f)

for all 1, o € C*(G(F)), all g1, 92 € G(F) and all f € C¥(G(F)), where up; and v,
stand for L(u)p; and L(v)es respectively. Hence, we may assume that v = p_4. Let
1,02 € Co(G(F)). Then, we have

(R(¢1)L(2)R(g1)L(g2) f) (9) = /G e e1(71)e2(12) f (9372 "97191) dydye

for all f € CY(G(F)) and all g,¢1, 92 € G(F). Since o(xy) < o(z)o(y) for all z,y €
G(F), it follows that

|(R(¢1)L(p2)R(g91)L(g2) f) (9)] <

p-a(f)o(g)o(g1) %0 (g2)" /G e o1 (1) 12 (12) Z€ (9275 gmign) o (72) o (1) dyids

for all f € CY(G(F)) and all g, 1,92 € G(F). Moreover, by the doubling principle
(Proposition [L5.1(vi)), we have
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1.6

/ o1 (7)) [02(12)| 2 (95175 L9m01) 0(72) 0 (1) dyidys < Z9(9)Z%(91)2%(g2)
G(F)xG(F)

for all g, g1, g0 € G(F). So finally, we get

p-a (R(1)L(2)R(g1) L(g2) ) < p-a( )= (91)=%(g2)0(91) o (g2)"
for all f € CY(G(F)) and all g1, g2 € G(F') and this ends the proof of (i).

Assume first that F'is p-adic. Let K’ be as in (a). Then the condition (c¢) implies that

for all k& > 0 there exists d > 0 such that A — ¢(},.) defines a strongly C*¥ map from
V to C k., (G(F)) and the result follows.

Assume now that F© = R. Then, by the condition (d), for all u € U(g) and for all
D € S(V) the function

(A g) € V X G(F) = (DR(u)) ¢(A, )

is locally bounded. It follows that ¢ is smooth (as a function on V' x G(F)). In
particular, for all u,v € U(g) and all D € S(V'), we have

DER(u)L(v)¢ = R(u)L(v) D

Let £ > 0 be an integer. It now follows from (d) that there exists d > 0 such that
(D) (A,.) € CY(G(F)) for all A € V and all D € S(V) of degree less than k. From
this we easily deduce, using (d) again, that the map X — (), .) defines a strongly C*
map from V to CY(G(F')). The result follows. W

Measures

We fix once and for all a (unitary) continuous non-trivial additive character [{J]: F' — S' and
we equip I’ with the autodual Haar measure with respect to ). We also fix a Haar measure
d*t on F* to be [t|~'dt where dt is the Haar measure on F that we just fixed.

Fix a G(F')-invariant nondegenerate bilinear form B on g(F). If ' = R, we choose B so
that for every maximal compact subgroup K of G(F') the restriction of B to ¢(F") is negative
definite and the restriction to €(F)% (the orthogonal of &(F) with respect to B) is positive
definite. We endow g(F’) with the autodual measure with respect to B, it is the only Haar
measure dX on g(F) such that the Fourier transform

o) = / L TR BEY)IX, [ e Sl
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satisfies f (X) = f(—=X). We equip G(F) with the unique Haar measure such that the
exponential map has a Jacobian equal to 1 at the origin. Similarly, for every F-algebraic
subgroup H of G such that the restriction of B(.,.) to h(F) is non-degenerate, we equip h(F")
with the autodual measure with respect to B and we lift this measure to H(F') by means of
the exponential map. This fixes for example the Haar measures on the Levi subgroups of G
as well as on the maximal subtori of G. For other subgoups of G(F’), for example unipotent
radicals of parabolic subgroups of GG, we fix an arbitrary Haar measure on the Lie algebra
and we lift it to the group, again using the exponential map.

For every Levi subgroup M of G, we equip A, and @A}, with Haar measures as follows. In
the real case we choose any measures whereas the p-adic case, we choose the unique Haar

measures such that meas (.AM/AVMJJ‘) =1 and meas (ZA?W/ZAVXJF) =1

Let T" be a maximal subtorus of G. Besides the Haar measure dt that has been fixed above
on T(F), we will need another Haar measure that we shall denote by d.t. First, we define a
Haar measure d.a on Ap(F') as follows. If F' is p-adic, it is the unique Haar measure such
that the maximal compact subgroup of Ar(F) is of measure 1. In the real case, d.a is the
unique Haar measure such that the surjective homomorphism Hrp: Ap(F) — Az is locally
measure preserving (note that Az coincide with A, for a certain Levi subgroup M so that
a Haar measure has already been fixed on A7). Finally, in both cases d,t is the unique Haar
measure on T'(F) such that the quotient measure d.t/d.a gives T'(F')/Ar(F) the measure 1.
To avoid confusions, we shall only use the Haar measure dt but we need to introduce the
only factor > 0 such that d.t = v(T")dt.

Denote by the set of nilpotent orbits in g(F'). Let O € Nil(g). Then, for all X € O
the bilinear map (Y, Z) — B(Y,[X, Z]) descends to a non-degenerate symplectic form on
9(F)/gx(F) that is the tangent space of O at X. This defines on O a structure of symplectic
F-analytic manifold. Using the Haar measure on F', this equips O with a natural “autodual”
measure. This measure is obviously G(F)-invariant.

The following considerations will be useful for Chapter [[0l only. Let V' be an F-subspace of
g = g(F). Even if V is not defined over ' we can talk of Haar measures on V: these are
elements of (A" V)*\ {0} modulo multiplication by an element of norm 1 in F' (Indeed, in
the case V is defined over F' the autodual additive measure on F' allows to interpret such a
class as a Haar measure on V(F')). Assume that a Haar measure p has been fixed on V' (for
example one of the measures that we fixed above). There is a natural notion of dual Haar
measure[uy] on V*: it is the unique Haar measure on V* such that the image of py ® i, by
the natural pairing (A" V)*®@ (A" V*)* — Fis of norm 1. Let V* be the orthogonal of V'
with respect to B. Then, we may associate to py a Haar measure i on V* as follows. Using
the form B we have a natural isomorphism (A™* g)* ~ (A" V*)* @ (A™* V*+)*. Then [u]
is the unique Haar measure on V+ such that via this isomorphism we have p, = uj, ® pi:
(modulo a scalar of norm 1) where y; denotes the autodual Haar measure on g that we fixed
above. If V' is defined over F, we have the formula
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(16.1) [, st = [ Feteh

for all f € S(g(F')). We easily check that

(1.6.2) ()" = nv

Also, if we have a decomposition g =V} & V5 and two Haar measures py,, iy, on Vi and V5
such that

Mg = Hvy @ [y

then we also have the equality

(1.6.3) Ho = [, @ Hi,

relative to the decomposition g = V= @ Vit

Finally, suppose that V and W are F-subspaces of g and that 7: V ~ W is a linear
isomorphism. Then 7T induces an isomorphism (A™* T)*: (A" V)* ~ (A" W)* and if
py is a Haar measure on V' then we will denote by T,y the image of 1, by this isomorphism
(a measure on W). Notice that if V' =W then T,uy = |det(T)|uy .

1.7 Spaces of conjugacy classes and invariant topology

If H is a connected linear algebraic group defined over F', we will denote by |I'(H )| the set of
semi-simple conjugacy classes in H(F'). Thus, we have a natural projection

Hy(F) - I'(H)

and we endow I'(H) with the quotient topology. Then, I'(H) is Hausdorff and locally com-
pact. Moreover for every connected linear algebraic group H’ over F' and every embedding
H' — H the induced map I'(H') — I'(H) is continuous and proper. We define similarly the
space m of semi-simple conjugacy classes in h(F'). This space satisfies similar properties.

We will say of a subset A C h(F') (resp. A C H(F)) that it is completely H(F')-invariant if it
is H(F)-invariant and if moreover for all X € A (resp. g € A) its semi-simple part X (resp.
gs) also belongs to A. Closed invariant subsets are automatically completely H (F')-invariant.
We easily check that the completely H(F')-invariant open subsets of h(F') (resp. of H(F'))
define a topology. We will call it the invariant topology. This topology coincides with the
pull-back of the topology on I'(h) (resp. on I'(H)) just defined by the natural map

b(F) = I'(b) (resp. H(F) —I'(H))
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which associates to X € h(F') (resp. g € H(F')) the conjugacy class of the semi-simple part
of X (resp. of g). In particular, we have the following property which will be used many
times implicitly in that paper: If w C h(F) (resp. Q C H(F)) is a completely H (F)-invariant
open subset and w’ C w (resp. ' C Q) is invariant open and contains wgs (resp. () then
W = w (resp. = Q). We will say of an invariant subset L C §(F) (resp. L C H(F))
that it is compact modulo conjugation if it is closed and if there exists a compact subset
K C h(F) (resp. K C H(F)) such that L = K, it is equivalent to ask that L is completely
H(F)-invariant and that for every maximal torus 7" C H the intersection L N t(F) (resp.
LNT(F)) is compact, it is also equivalent to the fact that L is compact for the invariant
topology.

We will denote by [I'en(G)| and |yee (G)| (resp. [an(g)| and [I'ee(g)) the subsets of elliptic and
regular conjugacy classes in I'(G) (resp. in I'(g)) respectively. The subset I'y(G) (resp.
Len(g)) is closed in I'(G) (resp. in I'(g)) whereas I'ieg(G) (resp. I'ieg(g)) is an open subset
of I'(G) (resp. of I'(g)). Let T(G) be a set of representatives for the conjugacy classes of

maximal tori in G. We equip I'(G) and I'(g) with the unique regular Borel measures dx and
dX such that

1(x)dr = WG,T_l 1(t)d
/F(G)“‘)“ Z)\( ) /T(F>“”“”

TeT(G

/ pa(X)dX = ) |W(G,T>|—1/ 0o X)dX
I'(g) )

TeT(G tF)

for all p; € C.(I'(G)) and all vy € C.(I'(g)). We have the Weyl integration formula
fais= [ DEw et e (v [ pxax = [ po00RIe(x, pax)
IN(E) a(F) I'(g)

G(F)

for all f € S(G(F)) (resp. for all f € S(g(F))). We deduce from this and the local bound-
edness of normalized orbital integrals the following fact

(1.7.1) The function = + D% (z)~Y/2 (resp. X — D%(X)~1/2) is locally integrable on G(F)
(resp. on g(F)).

We define an abstract norm on I'(g) as follows. Fix a set of tori 7(G) as above. Then,
we define ||.||r¢) by

IXlr@ = inf 14X, X €T(g)

where the infimum is taken over the set of X’ € |_|TeT(G) t(F') that belong to the conjugacy
class of X. We will need the two following estimates
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(1.7.2) For all k£ > 0 and for all N > 0 sufficiently large, the integral
1K _
/F( )log (2+ DYX) )" IX I dX
g

is absolutely convergent.

(1.7.3) Assume that F' = R. Then, for all N > 0, there exists a continuous semi-norm vy
on S(g(F)) such that
[Ja(X, Nl < vw(DIXIEY

for all f € S(g(F)).

We say that an element x € G(F) is anisotropic if it is regular semi-simple and G, (F) is

compact. We will denote by |G( )| the subset of anisotropic elements and by [[',,,;(G)| the
set of anisotropic conjugacy classes in G(F'). We equip I'y,;(G) with the quotient topology

relative to the natural projection G(F) g = T'ani(G). Let Toni(G) be a set of representatives
for the G(F')-conjugacy classes of maximal anisotropic tori of G (a torus 7' is anisotropic if
T(F) is compact). We equip [',;(G) with the quotient topology and we endow it with the
unique regular Borel measure such that

/F_(G)%O(@dx: ST WG T w(T) / ()t

Tenni (G) (F)

for all p € Co(I'4ni(G)), where the factor v(T') has been defined in Section [L6l Note that if
Ag # 1 then T, (G) = 0.

1.8 Orbital integrals and their Fourier transforms

For x € Geg(F) (resp. X € greg(F')), we define the normalized orbital integral at x (resp. at
X) by

al@ )= D ()" / flg'zg)dg, f € C(G(F))

G (FN\G(F)
(vesp. ZDG(X)W/ . )f(g_ng)dg, fesS(e(F)))
Gx (F)\G(F

the integral being absolutely convergent for all f € C(G(F')) (resp. for all f € S(g(F))).
This defines a tempered distribution Jg(z,.) (resp. Jo(X,.)) on G(F) (resp. on g(F')). For
all f € C(G(F')) (resp. f € S(g(F))), the function x € Gyeg(F) — Ja(z, f) (resp. X €
Oreg(F) — Ja(X, f)) is locally bounded on G(F') (resp. on g(F')).

Similarly, for O € Nil(g), we define the orbital integral on O by
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e /O (X)X, feS(e(F))
We have

(1.8.1) Jo(fr) = AT o (f)

for all O € Nil(g) and all A\ € F*? (recall that fy(X) = f(A7'X)). Denote by the
subset of regular nilpotent orbits in g(#"). This set is empty unless G is quasi-split in which
case we have dim(O) = §(G) for all O € Nil,,(g). By the above equality, the distributions
Jo for O € Nil,¢,(g) are all homogeneous of degree 6(G)/2 — dim(g). This characterizes the
distributions Jo, O € Nil,s(g), among the invariant distributions supported in the nilpotent
cone. More precisely, we have

(1.8.2) The invariant distributions on g(F') supported in the nilpotent cone and homogeneous
of degree §(G)/2 — dim(g) are precisely linear combinations of the distributions Jo for
O € Nil,g(9)-

This follows from Lemma 3.3 of [HCDS]| in the p-adic case and from Corollary 3.9 of [BV] in
the real case (there is a sign error in this last reference, n — «a should be replaced by oo — n

and the inequality o > "= should be replaced by o < *5%).

According to Harish-Chandra, there exists a unique smooth function m 0N Greg(F') X Greg(F)
which is locally integrable on g(F') x g(F') such that

JolX.P= [ Yy
9(F)
for all X € greg(F) and all f € S(g(F)). We have the following control on the size of J:
(1.8.3) The function (X,Y) € greg(F) X greg(F) = DE(Y)/%j(X,Y) is globally bounded.

cf. Theorem 7.7 and Lemma 7.9 of [HCDS] in the p-adic case and Proposition 9 p.112 of [Va]
in the real case. We will need the following property regarding to the non-vanishing of the
function j

(1.8.4) Assume that G admits elliptic maximal tori. Then, for all Y € g, (F') there exists
X € greg(F)en such that j(X,Y) # 0.
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In the p-adic case, this follows from Theorem 9.1 and Lemma 9.6 of [HCDS| whereas in the
real case, it is a consequence of Theorem 4 p.104 and Theorem 11 p.126 of [Val.

Similarly, for any nilpotent orbit O € Nil(g), there exists a smooth functionon Oreg (F)
which is locally integrable on g(F") such that

~

Jo(f) = / LT X)f(X)ax

for all f € S(g(F)). We know that the function (D%)/2j(0,.) is locally bounded on g(F)
(Theorem 6.1 of [HCDS] in the p-adic case and Theorem 17 p.63 of [Va] in the real case).
By [L81] the functions j(O,.) satisfy the following homogeneity property

(1.8.5) J(O,AX) = A7 5500, X)

for all O € Nil(g), all X € g,o(F') and all A € F*. Recall also that for every nilpotent orbit
O € Nil(g), we have A\O = O for all A € F*2,

1.9 (G, M)-families

We collect here some useful facts from Arthur’s theory of (G, M)-families as developed for
example in JA3] Section 17.

Let M be a Levi subgroup of G and V' a locally convex topological vector space. A (G, M)-
family with values in V' is a family (cp)pepr) of smooth functions on A}, taking values
in V such that for all adjacent parabolic subgroups P, P’ € P(M), the functions cp and cpr
coincide on the hyperplane supporting the wall that separates the positive chambers for P
and P’. Arthur associates to any (G, M)-family (cp)pepn) (taking values in V') an element
cyr of V' as follows. The function

W) = D ep(NIp(N)!

PeP(M)

where

Op(\) = meas (A%/ZA})_I H AaY), PeP(M)
aEAp
extends to a smooth function on ¢4}, and we have ¢y = cp(0). Here, Ap denotes the set of
simple roots of Ay, in P, AY, denotes the corresponding set of simple coroots and for every
a € Ap we have denoted by oV the corresponding simple coroot. For all P € P(M), Arthur
also constructs an element ¢ € V' from the (G, M)-family (cp)pep(ary. This element is the
value at A = 0 of the function

dp(N) = D (=1)" " ep(Ag) IR (M) Mg(Ag) !
PCcQ
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where the sum is over the parabolic subgroups () = LoUg containing P, g is defined as
above, A\g denotes the projection of A onto @A} 0 & and

-1
~ \%
02 (\) = meas (Aff/Z (Ag) ) H Ao
aeA,QD
where this time A% denotes the set of simple roots of Ay in P N Ly, K% denotes the

corresponding set of simple coweights and for every a € Ag we have denoted by w. the
corresponding simple coweight.

Let L € L(M) and Q = LoUqg € F(L). Starting from a (G, M)-family (cp)pep(ar), We can
construct a (Lg, L)-family (c%)RePLQ (1) as follows: for all R € PLa(L) and all X € A3, we
set ¢2(\) = cp(\) where P is any parabolic subgroup in (M) such that P ¢ Q(R) = RUy.
Applying the previous formal procedure to this new (Lg, L)-family, we obtain an element

¢? € V. We will usually simply set ¢;, = ¢§. Notice that using the (G, L)-families (cq)oer(r)
L € L(M), we may define as above elements c;, € V' for all Q € F(M).

Assume now that V' is equipped with a continuous multiplication V' x V' — V making it into
a C-algebra. Starting from two (G, M)-families (cp)pepry and (dp)pepry We may form
they product ((c¢d)p)pep(ar, given by (cd)p = cpdp, which is again a (G, M)-family. We
have the following splitting formulas (cf. Lemma 17.4 and Lemma 17.6 of [A3])

(1.9.1) (cd)yr = Y cdy
QeF(M)
and
Ly,LaeL(M)

where in the second formula @1 € P(L1), Q2 € P(Ly) are parabolic subgroups that depend
on the choice of a point X € Ay in general position and d§;(L;, Ly) is a non-negative real
number that is nonzero if and only if A7 & A7 = A§,. Moreover, we have d; (G, M) =
d§;(M,G) = 1. Starting from only one (G, M)-family, we also have the following descent
formula (cf. Lemma 17.5 of [A3])

(1.9.3) = > d§(L,L)e

L'eL(M)
A (G, M)-orthogonal set is a family (Yp)pepr) of points in Ay such that for all adjacent
parabolic subgroups P, P’ € P(M) there ex1sts a real number rpp such that Yp — Yp =

rppa’, where « is the unique root of Ay, that is positive for P and negative for P’. If
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moreover we have rpp > 0 for all adjacent P, P’ € P(M), then we say that the family is
positive. Obviously, if (Yp)pepa) is a (G, M)-orthogonal set, then the family (cp)pepan
defined by cp(A) = e*?) is a (G, M)-family. If the family (Yp)pep(ar is positive then there
is an easy interpretation for the number cy;: it is the volume in A§, of the convex hull of
the set {Yp, P € P(M)}.

1.10 Weighted orbital integrals

Let M be a Levi subgroup of . Choose a maximal compact subgroup K of G(F') that is
special in the p-adic case. Recall that using K, we may construct for every P € P(M) a
map

Hp: G(F) —>AM

(cf. Section [LI)). For every g € G(F'), the family (Hp(g))pepu) is a positive (G, M)-
orthogonal set. Hence, it defines a (G, M)-family (vp(g,.))pepr) and the number vy (g))
associated to this (G, M)-family is just the volume in A§; of the convex hull of the Hp(g),
P € P(M). The function g — vps(g) is obviously invariant on the left by M(F) and on the
right by K.

Let © € M(F) N Greg(F'). Then, for f € C(G(F)), we define the weighted orbital integral of
f at x to be

— DO(a)? / F(g™ 2g)or(g)dg

Ga(F)\G(F)

(note that the above expression is well-defined since G, C M). The integral above is abso-
lutely convergent and this defines a tempered distribution Jy,(z,.) on G(F'). More generally,
we have seen in the last section how to associate to the (G, M)-family (vp(g,.)) pep(ar) com-
plex numbers for all L € L(M) and all @ € F(L). This allows us to define tempered
distributions J¢(z,.) on G(F) for all L € £L(M) and all Q € F(L) by setting

770 /)= DC () / g 21 (g)dg, | € C(G(F))

G (F\G(F)
The functions & € M(F) N Gyeg(F) — JE(x, f) are easily seen to be M (F)-invariant.

Let X € m(F) N greg(F). We define similarly weighted orbital integrals J*(X,.), L € L(M),
Q € F(L). These are tempered distributions on g(F') given by

T7(X. )= DO(X)"? /G o JOXO0B )y, f < S(a()

When Q = G, we will simply set J& (X, f) =[J.(X, f)l Forall L € L(M) and all Q € F(L),
we have an inequality v%(g) < oang(g) for all g € G(F). Using and [[2.4] we easily
deduce the following
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(1.10.1) Assume that F' = R. Then, there exists & > 0 such that for all N > 0 there exists
a continuous semi-norm vy on S(g(F')) such that

TR, )| <owl)108 (24 DO X

for all f € S(g(F)).

We will need the following lemma regarding to the behavior of weighted orbital integrals
under the action of invariant differential operators (cf. Proposition 11.1 and Lemma 12.4 of
[A6]).

Lemma 1.10.1 Assume that F' =R and let T C M be a mazimal torus. Then, we have

(i) For all f € C(G(F)) the function x € Te(F) — Ju(x, f) is smooth and for all
z € Z(g), there exist smooth differential operators 0% (., z1) on Treg(F) for all L €
L(M)\{M} such that

Tnlw,2f) = zrdulz, ) = Y (e, z0) iz, f)

LeL(M)
LAM

for all f € C(G(F)) and all z € Treg(F).

(i) For all f € S(g(F)) the function X € tee(F) — Ju(X, f) is smooth and for all
u € I(g), there exist smooth differential operators 0% (.,ur) on teg(F) for all L €
L(M)\{M} such that

LeL(M)
LAM

for all f € S(g(F)) and all X € tee(F).

2 Representations

This chapter contains some background on representations of G(F') that will be used ex-
tensively in the rest of the paper. Here is a more precise description of the content of each
section. In Section 2.l we collect some basic facts on smooth representations. In Section
2.2 we recall the fundamental notion of tempered representations as well as some important
properties of those. Sections and [2.4] concern parabolic induction of smooth represen-
tations and (normalized) intertwining operators on them. These are used in Section
to define, following Arthur, weighted characters which are distributions on the group G(F')
generalizing the usual characters and are spectral counterparts to the weighted orbital inte-
grals defined in Section [[LT0l In Section 2.6] we recall two fundamental results of harmonic
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analysis on G(F') which are the matricial Paley-Wiener theorem and the Harish-Chandra
Plancherel formula. They together give a full spectral decomposition of the Harish-Chandra
Schwartz space C(G(F')) and an inversion formula allowing to recover a function from its
Fourier transform. Both are due to Harish-Chandra (a convenient reference being [Wa2| in
the p-adic case) except for the matricial Paley-Wiener in the Archimedean case which was
proved by Arthur |AS8]. Finally, in Section 2.7 we collect some facts on the so-called elliptic
representations in the sense of Arthur [A4].

2.1 Smooth representations, Elliptic regularity

Recall that a continuous representation of G(F') is a pair (m, V) where V} is a locally convex
topological vector space and 7w: G(F') — GI(V) is a morphism such that the resulting action

GF)xVy =V,
(9,0v) = m(g)v

is continuous. If V; is complete or even quasi-complete, we get an action of (C.(G(F)), *)
on V, given by

m(f)v = )f(g)ﬂ(g)vdg, feC(G(F)),veV;

G(F

A vector v € V, is said to be smooth if the orbit map

Yo: g € GF)— 7m(g)v eV,

is smooth (i.e., it is locally constant in the p-adic case and weakly infinitely differentiable
in the real case). We will denote by the subspace of smooth vectors. This subspace is
G(F)-invariant and, if F' = R, it carries a natural action of U(g). These two actions will
be denoted by [™] or even by 7 is there is no risk of confusion. For all f € C*(G(F)), the
image of m(f) is included in V,>°. A continuous representation (, V) is said to be smooth if
Ve =V,

Let (7, V) be a smooth representation of G(F). In the p-adic case we always have

m(CE(G(F)Va = Vr

In the real case it is not always true. By a theorem of Dixmier-Malliavin [DM], it is at least
true when V. is a Fréchet space. For example C(G(F)) is a smooth Fréchet representation
of G(F) for the action given by left translation. Hence, we have a factorization

(2.1.1) C(G(F)) = C2(G(F)) * C(G(F))

where * denotes the convolution operator. Assume that F' = R and let H be an algebraic
subgroup of G. Fix a basis X, ..., X} of h(F) and set
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Ag=1-X2— ... —X?cU(h)

The differential operator R(Ag) on H(F) is elliptic. Hence, by elliptic regularity (cf. [BK]
Lemma 3.7), for every integer m such that 2m > dim(H), there exists a function ¢; €
Cfm_dlm(H)_l(H(F)) and a function ¢, € C°(H(F')) such that

(2.1.2) 1% AT+ 2 = 6y

where d; denotes the Dirac distribution at the identity and A%} is viewed as a distribution

supported at the origin. It follows in particular that for every smooth representation (m, V;)
of G(F), we have

()T (AR) + 7(pa) = Ldv,

2.2 Unitary and tempered representations

Recall that a unitary representation of G(F') is a continuous representation (m, H,) of G(F)
on a Hilbert space H, such that for all g € G(F) the operator 7(g) is unitary. A unitary
representation (7, H.) is rreducible if H, is nonzero and has no nontrivial closed G(F)-
invariant subspace. We will only consider unitary representations that are of finite length.
Such representations are finite direct sums of irreducible unitary representations. To avoid
multiple repetitions of the words “finite length” we will henceforth say “unitary represen-
tation” to mean “unitary representation of finite length”. There is an action of i A7, on

unitary representations given by (A, 7) +— mry where 7, acts on the same space as m and
ma(g) = HcWx(g), for all g € G(F). We will denote by the stabilizer of 7 for this

action. Notice that we always have iAY, p C iAY . C Z./Zé p. For (m,H,) an unitary rep-
resentation, we will denote by (Iﬁ the complex-conjugate representation which identifies
naturally (using the scalar product on #,) to the dual representation.

Let us fix a compact maximal subgroup K of G(F'). We will denote by [K] the set of equiv-
alence classes of irreducible representations of K. For p € K , we will denote by its
dimension. For (7, H,) a unitary representation of G(F') and p € K, we will denote by
H.(p) the p-isotypic component of H,. Every irreducible unitary representation (m, H,) of
G(F) is admissible in the sense that

dimH.(p) < o0

for all p € K. In the real case, we even have

(2.2.1) dim H,(p) < d(p)?
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for all p € K. Still in the real case, let us choose a basis X,..., X, of ¢(R) such that
B(X;,X;) = =0, fori,j = 1,...,n (recall that we choose the bilinear form B such that By
is negative definite) and set [Ax]=1—X? —... — X2 € U(€). Then, A is in the center Z(¥)
of U(®) and doesn’t depend on the basis chosen. It follows that for all p € K, Ak acts by a
scalar on the space of p. We always have ¢(p) > 1 and there exists & > 1 such that the
sum

> elp)*

peR

converges absolutely. Moreover, there exists £ > 1 such that d(p) < c(p)¢ for all p € K.
Hence the sum

> d(p)*c(p)"

peR
is convergent for k sufficiently large. By 2.2.1] it follows that for k£ > 1 sufficiently large
there exists C}, > 0 such that

(2.2.2) > e(p)™F dim Ha(p) < Ci

pEK

for every unitary irreducible representation (m, H,) of G(F).

Let (m,H,) be a unitary representation. We endow the subspace of smooth vectors H>
with its own locally convex topology which is defined as follows. In the p-adic case, H° is
equipped with its finest locally convex topology. If F' = R, we endow H2° with the topology
defined by the semi-norms

leflu = [[7>(u)ell, e e HF

for all u € U(g), where ||.|| is the norm derived from the scalar product on H,. In this case,
H:° is a Fréchet space. A vector e € H, is smooth if and only if it is smooth for the K-action.
Moreover, if F' = R, the semi-norms , u € U(E), already generate the topology on He.
More precisely, the topology on H:° is generated by the family of semi-norms (||.|[an )n>o
and we have ||.[|an < [[.[[an for m < n.

We will denote by the topological dual of H>° which following our convention of Ap-
pendix [Al is equipped with the strong topology (in the p-adic case this is just the algebraic
dual of H, with the weak topology on it) and by the natural representation of G(F)
on that space. It is a continuous representation. The scalar product on H, gives a natural
embedding H, C H-* and we have

T (CE(G(F) 1™ CHY
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(we even have an equality by Dixmier-Malliavin). We will always use the slight abuse of
notation of denoting by 7, 7, 7% and 7~ both the representations and the spaces on which
these representations act. Also, we will always denote by the scalar product on a given
unitary representation (linear in the first variable) and by ||.|| the induced norm.

Let again 7 be a unitary representation of G(F'). Then we will denote by [End ()| the space
of continuous endomorphisms of the space of w. It is naturally a Banach space for the
operator-norm

[Tl = sup |Tefl, T € End(r)

llell=1

Moreover End(7) is a continuous representation of G(F') x G(F') for the action given by left
and right translations. We will denote by the subspace of smooth vectors and we
will equip it with its own locally convex topology as follows. In the p-adic case we endow
this space with its finest locally convex topology whereas in the real case we equip it with
the topology defined by the semi-norms

: |7 (uw)Tm(v)||, u,veU(g), T € End(m)>

in which case it is a Fréchet space. Once again, the topology on End(7)* is generated
by the semi-norms (|||‘|||A?<,A’;()n>1 and we have |||‘|||A§7A’K" < |||.|||A%7A?( for m < n. Every
T € End(m)® is traceable and for all f € C°(G(F')), the operator 7(f) belongs to End(m)>.
Moreover, by Harish-Chandra, there exists a smooth function [f] on Gee(F) which is locally
integrable on G(F’) such that

Trace(n(f)) = /G CEOHOL

for all f € C*(G(F)). We call 0, the character of 7.

We have a natural embedding 7°° ® 7> C End(7)* which sends e ® €’ to the operator
given by

eo € T (e, €)e

In the p-adic case, we even have an equality End(7m)® = 7°° ® 7 whereas in the real case
7 ® 7 is only a dense subspace of End(7)* and we have End (7)™ = 7°®,7> where ®,
denotes the projective topological tensor product (cf. Appendix[A.5). Tt is easy to infer from
this description that any 7" € End(7)> extends to a continuous linear map 7T': 7= — 7,
the extension being necessarily unique since 7> is dense in 7—°°. This induces a natural
linear map

End(7)* — Hom(r=, 1)

which is continuous, where we equip Hom (7=, 7°°) with the strong topology.
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We will say that a unitary representation 7 is tempered if for all e,e¢’ € 7 we have an
inequality

(2.2.3) [(m(g)e, ¢)| < Z%(g)

for all g € G(F). This inequality extends to End(7)° in the sense that for all T € End(m)>°
we have an inequality

(2.2.4) | Trace(n(g)T)| < Z%(g)

for all ¢ € G(F). In the p-adic case, this is well-known and follows from [CHH] Theorem
2 as the function g — Trace(m(g)T) is a finite sum of coefficients of 7. If F = R and =
is moreover irreducible (which we can assume without loss of generality), we actually have
a more precise inequality which follows from [Sun|. Indeed, from loc. cit. and we
easily infer that there exists n > 0 and C' > 0 such that for every irreducible tempered
representation 7 and for all 7" € End(7)>, we have

(2.2.5) | Trace(r(9)T)| < CEX(OTll ay ap

for all g € G(F). In particular, we have

(2.2.6) [(m(g)e. )] < CE%(g)llellaylle']

for all e,e’ € 7 and all g € G(F) (still assuming that 7 is an irreducible tempered repre-
sentation).

Twists by unitary characters preserve tempered representations. We will denote by
the set of isomorphism classes of irreducible tempered representations. If 7 is a tempered
representation, then we may extend the action of C°(G(F)) on 7> to an action of C(G(F'))

by setting
Je, ') / flg ,€)dg

for all e,¢’ € C(G(F)) and all f € C(G(F) Note that the vector 7(f)v a priori belongs to
7~ (in the real case this follows from m the fact that it actually belongs to 7> follows
from the factorization 2Tl This factorization also implies that we have 7 (f) € End(m)> for
all f € C(G(F)). In the real case, it is easy to infer from that there exists a continuous
semi-norm v on C(G(F')) such that

n
AK

(2.2.7) lm(Fell < v(f)llel
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for all tempered representations 7w of G(F'), all e € m and all f € C(G(F)).

Let 7 be an irreducible unitary representation of G(F'). By Schur’s lemma Z(G)(F') acts by
a unitary character on . We call it the central character of m and we denote it by oz We
say that an irreducible unitary representation m is square-integrable if for all e,e¢’ € 7 the
function

9 € G(F)/Ac(F) = |(m(g)e, €)|
is square-integrable. We will denote by the set of isomorphism classes of square-
integrable representations of G(F'). Square-integrable representations are obviously pre-
served by unramified twists. We will denote by [Ty (G) /i AL 4| the set of orbits for this action.
For m € IIy(G), we define the formal degree |d(m)| of m to be the only positive real number
such that

/ (m(9)eo, ep)(e1,m(g)ey)dg = d(m) " (o, €1) (€1, )

G(F)/Ag(F)

for all eg, e, €1, €] € m. Square-integrable representations are tempered, hence we have an
inclusion IIy(G) C Temp(G).

Assume now that F© = R. Let 7 € Temp(G). Recall that Z(g) denotes the center of
the enveloping algebra U(g). By Schur’s lemma, Z(g) acts by a character on 7°°. This
is the infinitesimal character of m. We will denote it by It is convenient to introduce
a norm T on Temp(G) as follows. Fix a maximal torus 7" C G. We have the
Harish-Chandra isomorphism

2(g) = Sy

Hence, the set of characters of Z(g) gets identified with t*/W (Gc,T¢). Fix an hermitian
norm |.| on t* which is W(G¢, Tt )-invariant. Then, we set

NY(m) =1+ [ x|
for all 7 € Temp(G). Note that although the definition of N%(7) depends on some choices,
two different choices would give two norms that are equivalent. Since the norm N¢(.) will
only be used for the purpose of estimates, the precise choices involved in its definition won’t
really matter and we will always assume implicitly that such choices have been made. We
extend the norm NY(.) to all tempered representations by

T=m&...®m — NOr) =max (N“(m),...,N(m))

where 71, ..., m are irreducible tempered representations of G(F') (recall that all our unitary
representations have finite length). Later, we will need the following inequality

(2.2.8) There exists an integer £ > 1 such that
d(m) < NY(m)F
for all m € IIy(G).
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2.3 Parabolic induction

Let P = MU be a parabolic subgroup of G and ¢ a tempered of M(F'). We extend o to
a representation of P(F) trivial on U(F'). We will denote by the unitary parabolic
induction of o. Tt is a tempered representation of G(F). The space on which i%(c) acts may
be described as the completion of the space of continuous functions e: G(F') — o satisfying
e(mug) = 6p(m)2a(m)e(g) for all m € M(F), u € U(F) and g € G(F) for the topology
defined by the scalar product

e, €)= e(q), € (g))d
(e.) /P o €00

The action of G(F') is given by right translation. The smooth subspace of i%(0)
is exactly the space of smooth functions e: G(F) — o satisfying the equality e(mug) =

Sp(m)2a(m)p(g) for all m € M(F), u € U(F) and g € G(F). The isomorphism class of

i%(o) only depends on M and o and not on P. When we only consider this representation

modulo isomorphism, we will denote it by .

If F = R, recall that in the previous section we have introduced a norm N¢ on the set of
(isomorphism classes of ) tempered representations of G(F'). Of course, this construction also
applies to M and yields a norm N* on Temp(M). It is not hard to see that we may choose
NM in such a way that

(2.3.1) NC(@i§, (o)) = NM (o)

for all o € Temp(M).

Let K be a maximal compact subgroup of G(F') that is special in the p-adic case. By the
Iwasawa decomposition, restriction to K defines a K-equivariant isomorphism between i%(o)
and if,(0k,), where Kp = K N P(F) and ok, denotes the restriction of o to Kp. This
isomorphism restricts to an isomorphism of topological vector spaces i%(0)>® ~iff (o, )>.

&

Note that if A € iA}, then (o)) k, = 0k,. Hence we get topological isomorphisms i3 ()™ =~
i, (0x,) for all X € iA},.

Lemma 2.3.1 (i) For every tempered representation © of G(F'), the linear map

Tr,: End(7m)> — CY(G(F))

T +— (g — Trace(w(g)T))
18 continuous.

(i1) Let P = MU be a parabolic subgroup of G and o € Ily(M). Let K be a mazimal
compact subgroup of G(F) which is special in the p-adic case. Set mx = if-x(0)paK)
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and 7 = i%(0y) for all X € iA3,. Consider the isomorphism 75° ~ 7%, X\ € iA3,,

given by restriction to K as an identification. Then the map

iAy; — Hom (End (7 ), C*(G(F)))

A= Ty,

1s smooth.

Proof: (i) follows from 225l We prove (ii). Let us denote by (.,.) the scalar product on mx
given by

(e.¢)) = /K (e(k). €' (k) dk

(where the scalar product inside the integral is the scalar product on o). Using this
scalar product we have an inclusion 7% ® 7% C End(7x)> which induces an identifica-
tion End(mx)® = 12®,m%. Hence, by [A.5.1], it suffices to show that for all e, e’ € 73 the
map

A€ idy = (9= (m(g)e,€)) € C*(G(F))

is smooth. Fix two vectors e, e’ € 7% and set

(A, g) = (ma(g)e, ¢)

for all ¢ € G(F) and all A € i4},. We are going to apply Lemma [[.5.3[(ii) to this function
. We need to check the various hypothesis of this lemma. The condition (a) in the p-adic
case, is obvious. Let us show that, in the real case, the condition (b) holds. Let u,v € U(g).
Then, we have

(2.3.2) (R(u)L(v)@) (A, ) = (ma(g)ma(u)e, ma(v)€’)

for all A € i4}, and all g € G(F) and it suffices to show that the two maps

(2.3.3) A €iAy — ma(g)ma(u)e € TR

(2.3.4) A€ iAy — mi(v)e € ny

are smooth. Denote by £ the orthogonal of £ in g for the form B(.,.). Fix a basis X1, ..., X}
of ¢(R) such that B(X;, X;) = —&;; for i,5 = 1,...,k and fix a basis Y,...,Y, of £-(R)
such that B(Y;,Y;) =4, fori,5 =1,...,p. Set
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Ag=1-X}— ... —X?ecU(t)

Ag=Ax—Y2—.. . —Y2cU(g)

Using elliptic regularity 2.1.2] we easily see that the smoothness of 2.3.3] and 2.3.4] follows
from the following claim

(2.3.5) For all f € C.(G(F)), the maps
A €iAy — ma(Ag) € End(7y)

A €iAy — ma(f) € End(ny)

are smooth.

The difference Cg = 2A ) — Ag is in the center Z(g) of U(g) and the map

A€ iAl — xn (Co)

is easily seen to be smooth. This shows the first point of [2.3.5] since the map \ € i A}, —
m\(Ag) = 7 (Ak) is constant. For the second point, we first notice that

(2.3.6) m(f) = . f(g)ma(g)mo(g)dg

for all A € iA},, where m,(g) is the operator that multiply a function ey € 7% by the
function

Ee K eNHp(kg))

where Hp: G(F') — Ay is the extension of Hy to G(F') associated to K. The function
g € G(F) — Hp(g) is easily seen to be smooth. It follows that the map A\ € A}, —
mx(g) € End(7%) is smooth and its derivatives are easy to compute. By2.3.6land the general
theorem of differentiation under the integral sign, we deduce that the map A € i A}, — m\(f)
is smooth. This ends the proof of 2.3.5

Next we need to check the conditions (c) (in the p-adic case) and (d) (in the real case) of
Lemma [[53 Let D = 9(A\1)...0(\,) where Ay,... ;A\, € iA},. In the real case, by what
we just saw, the functions A — m\(u)e and A\ — m\(v)e’ are smooth for all u,v € U(g).
Hence, in both the p-adic and the real case it suffices to show the existence of a continuous
semi-norm v on 7wy such that

(2.3.7) [ Da(ma(g)eo, e1)| < v(eo)v(er)=%(g)a(9)"
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for all A € i4},, all g € G(F') and all eg, e; € 7. We have

(ma(g)eo, 1) = /K€<A’HM(mP(kg))>5P(mP(k‘9))l/2 (o (mp(kg))eo (kp(kg)), ei(k)) dk

for all A € iA},, all g € G(F), all eg,e; € % and where mp: G(F) — M(F) is as before
and kp: G(F) — K is any map such that g € mp(g)U(F)kp(g) for all g € G(F). It follows
that

n

Dx(ma(g)eos €1) :/ H(AiaHM(mP(kg))>€<A’HM(mP(kg))>5P(mP(k‘9))1/2

_ (o (mp(kg)) co (kp(kg)) , ex(k)) dk

for all A € iA},, all g € G(F) and all eg, e; € 7. Obviously we have an inequality

n

LTI Har(me(kg)))| < o(9)"

i=1
for all g € G(F) and all k € K. Hence,

| Da(ma(g)eo, e1)] < 0(9)"/I(5P(mp(kg))l/2 (o (mp(kg)) eo (kp(kg)), er(k))| dk

forall A € 1A}, all g € G(F') and all eg, e; € 7%, ByR2.2.3 and 2.2.6 there exists a continuous
semi-norm v, on o> such that |[(a(m)vy, v1)| < vy (v9)ve(v1)ZM(m) for all vy, v; € 0> and
all m € M(F). It follows that

[Da(ma(g)eo, e1)| < sup [vg (eo(k))] sup [vo (e1 (k)] o(g)" /K Op(mp(kg))/?EM (mp(kg))dk

= sup Vs (eo(k))] sup [vo(e1 (k)] E%(g)a(9)"

for all A € A}, all g € G(F) and all ey, e; € 7%, where in the last equality we used
Proposition [L51l(iii). By the standard Sobolev inequality the semi-norm

¢ = sup [v, (e(k))]

is continuous on 7¢. This proves 237 and ends the proof of the lemma. B
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2.4 Normalized intertwining operators

Let M be a Levi subgroup of G, ¢ be a tempered representation of M(F') and fix K a
maximal compact subgroup of G(F') which is special in the p-adic case. The definition
of the representations i%(0))>, P € P(M), actually still makes sense for any A € A}, ¢
(although these are not anymore unitary representations in general). Moreover, restriction
to K still induces K-equivariant isomorphisms i(0x)> ~ if,(0k, )™ for all X € A}, ¢ and

all P € P(M) (recall that Kp = P(F) N K).
Let P = MU, P’ = MU' € P(M). For Re()) in a certain open cone, the expression

e(u'g)du’

[Te1p(02)F) (9) :=

is absolutely convergent for all e € i%(0y)> and defines a G(F)-equivariant continuous linear
map

/(U(F)OU’(F))\U’(F)

Tp1p(02): ip(02)> = i%(02)>

Via the isomorphisms i3(0x)> = i, (0x,)> and i% (0x) = i (0, )%, we can view the

map A — Jp|p(0y) as taking values in Hom <z§P (0Kp)™ %, (UKP,)OO> the space of contin-

uous linear maps between if (0, ) and iﬁp/ (0k,,)>°. This function admits a meromor-
phic continuation to Aj, ¢ (see [Wall2] Theorem 10.1.6 in the Archimedean case and [Wa2)
Théoreme IV.1.1 in the p-adic case).

Let P = MU € P(M) be the parabolic subgroup opposite to P = MU. Assume that
the Haar measures du and du on U(F) and U(F) have been normalized so that dg =
dp(m)~tdudmdu where dg and dm denotes the Haar measures on dg and dm respectively.
Then the meromorphic function A — = JpE(0x) 5 p(02) is scalar-valued and doesn’t
depend on the choice of P. Moreover this function takes on A}, positive real values (in-
cluding oo). We will need the following:

(2.4.1) Assume that F' = R. Then, there exists an integer k£ > 1 such that
j(o) "t < N¥(a)*
for all o € Temp(M).
We will also need normalized intertwining operators. In the Archimedean case, such normal-
izations have been defined and extensively studied by Knapp and Stein in [KS1] and [KS2].
However, in this paper we shall prefer Arthur’s normalization [A5] which better fits our
purposes and takes care of both the Archimedean and non-Archimedean cases. The general

construction is as follows. There exist complex-valued meromorphic functions A — 7p/p(0)),
for all P, P" € P(M), such that if we set

: TP’\P(UA)_le’|P(UA)7 P, P e P(M),\ € Aic
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these operators satisfy the conditions (R1)-(R8) of the Section 2 of [A5]. The most important
conditions for us will be the following:

(242) RP//‘P/(O‘A)RPI‘P(O‘A) = Rp//‘p(O')\) for all P, P/,P” S P(M)7
(2.4.3) A= Rp/p(0y) is holomorphic and unitary on iAj, for all P/, P € P(M);

(2.4.4) If X € @AY, then Rpyp(0y) = Rpp(0), via the natural isomorphisms i%(0y) =~
i%(0)x and i, (o)) >~ 1% (0);
(2.4.5) For P, P" € P(M), if QQ = LU denotes the parabolic subgroup generated by P and
P' then Rpip(0oy) = 28 (Rp/nupm(a,\)) via the isomorphisms of induction by stages
i@(on) =g (iBap(0n)) and i (0r) ~i& (ifnL(00));
(2.4.6) Forallg € G(F)and all P, P' € P(M), we have Rypg-14pg-1(90g™") = Api(g)Rpp(0)Ap(g) "

where Ap(g) is the isomorphism % (o) =~ i%, 1 (gog™") given by (Ap(g)e)(7) = e(g7"7)
(and Ap/(g) is defined similarly).

(2.4.7) Assume that F' = R. Then, for every differential operator with constant coefficients
D on iA}, and for all P, P" € P(M), there exist k,r > 1 such that

| DARpp(0x)e|| < [liE(on, Al )el[NY (a4)"
for all o € Temp(M), all A € iA3, and all e € i%(0y)*>.

Properties 2.4.2], 2.4.3] and correspond to Arthur’s conditions (R3), (R4) and (R6)
respectively. Property 2.4.4]is a direct consequence of the requirement (r.1) p.171 of [A5] on
the normalizing factors 7p/p(0) (in that they only depend on the projection of A to (A§; ¢)*).
The identity also follows from the same requirement (r.1) of [A5] on normalizing factors
together with the analogous property of unnormalized intertwining operators. Finally, the
last condition 2.4.7is a consequence of Lemma 2.1 of [A5].

2.5 Weighted characters

We keep the notation and assumptions of the previous section : M is a Levi subgroup of G,
o a tempered representation of M(F') and K a maximal compact subgroup of G(F') that is
special in the p-adic case. Fix P € P(M). For all P’ € P(M), we may consider the function
Rpi(o, P) on iA}, defined by

,R/p/(>\, g, P) = Rp/|p(0')_1RP/‘p(O')\)
The family (Rp/(0, P))prepr is a (G, M)-family taking values in End(if, (0k,)) ([A9]
p.43). Following Arthur, we may associate to this family operators R (o, P) in End(if, (0k,)>)

forall L € £L(M) and all Q € F(L) (cf. Section[L.9). Then, for all f € C(G(F)) all L € L(M)
and all @ € F(L), we set
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JC (o, )= Trace(R%(a, P)iS(a, f))

The trace is well-defined in the p-adic case since then i%(c, f) is a finite rank operator.
To see that it is also well-defined in the real case, we may proceed as follows: by the
factorization 211 and by linearity, we may assume that f = f; % fo where f; € C°(G(F))
and f, € C(G(F)). Then RY(c, P)i%(c, f1) extends continuously to an endomorphism of
i%(0) and since iG(0, f,) is traceable so is RS (o, P)i% (o, f) = R$ (0, P)i% (0, f1)i% (0, f2).

This defines a family of tempered distributions <Jg(a, )) o on G(F') which doesn’t depend

on P but depends on K and the way we normalized the iﬁtertwining operators. Note that
if L = (@ = G, this reduces to the usual character, that is

JG (0, f) = Trace(ify (0, f))
for all f € C(G(F)).

Lemma 2.5.1 Assume F = R. Let L € L(M) and Q € F(L). Then, for all k > 0, there
exists a continuous semi-norm v, on C(G(F')) such that

7200, < w(FIN(0)*
for all o € Temp(M).

Proof: For all z € Z(g), we have

JE(0.2f) = Xo (2m1) T (0. f)
for all o € Temp(M) and all f € C(G(F')). Moreover, there exist z1,. .., 2, € Z(g) such that

Xo (20)] + -+ [Xo(20)| = NY(0)
for all o € Temp(M). Consequently, we only need to show the following

(2.5.1) There exists £ > 0 and a continuous semi-norm v on C(G(F')) such that
IR, )| < v (o)

for all 0 € Temp(M) and all f € C(G(F)).

It follows from 2.4.7 that we may find two integers k£ > 0 and r > 0 such that

|RE (@ Pre|| < I, A )ell V¥ (o)

for all o € Temp(M) and all e € i%(0)>.
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Let o € Temp(M) and f € C(G(F)). For all p € K, let us fix an orthonormal basis B,(0)
of i%(c)(p) (the p isotypic component of i%(c)). Then, for every integer £ > 1, we have

’Jg(a,f ’ = | Trace (RM(U, P)i%(o, f))]

Z Z (o, P)i%(o, f)e, e)}

peKeeBp(U)
M)y D |liflo, L(AK) el
pEI?eEBp(U)
Mo ST ST elp) i o, LIAK)R(AY) e
pej?eeBp(U)

By 2.2.7], there exists a continuous semi-norm 1, on C(G(F')) which doesn’t depend on ¢ and
such that the sum above is bounded by

Mo_)kz Z c
pEI?eeBp(U)

and by 2.2.2] if ¢ is sufficiently large the sum above is absolutely convergent and bounded
by a constant independent of o. This shows 2.5.1] and ends the proof of the lemma. B

2.6 Matricial Paley-Wiener theorem and Plancherel-Harish-Chandra
theorem

Let us define [Xiemp (G)| to be the set of isomorphism classes of tempered representations of

G(F) which are of the form i§,(0) where M is a Levi subgroup of G and o € Ily(M) is
a square-integrable representation. According to Harish-Chandra two such representations
i§; (o) and 4§, (0’) are isomorphic if and only if the pairs (M, o) and (M’, o) are conjugate
under G(F'). Let M be a set of representatives for the conjugacy classes of Levi subgroups

of G. Then, Xiemp(G) is naturally a quotient of
Xiewp(G) = | | || o
MeM Oelly (M) /iA},

which has a natural structure of real smooth manifold since each orbit O € {IIy(M)} is a
quotient of 24}, - by a finite subgroup hence is naturally a real smooth manifold. We equip
Xemp(G) with the quotient topology. Note that the connected components of Xiemp(G) are
the image of unramified classes O € {II,(M)}, M € M. The following is due to Harish-
Chandra (cf. Theorem VIII.1.2 of [Wa2])

(2.6.1) If F is p-adic, then for every compact-open subgroup K C G(F') the set

{7 € Xiewp(G); 7" # 0}
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is relatively compact in Xemp(G) (i-e., is contained in the union of a finite number of
components).

Let V be a locally convex topological vector space. We will say of a function f: Xiemp(G) —
V that it is smooth if the pullback of f to )acmp(G) is a smooth function. We will denote
by |C*°(Xiemp(G), V)| the space of smooth functions on Xiemp(G) taking values in V. We will
also simply set [ (Xiemp (G))| = C°°(Xiemp(G), C).

We define a regular Borel measure [dzl on Xiemp(G) by requesting that

/X = ST WO iy il / (1(ox)) A

MeM O€lly (M) /iA}, WA F

for all ¢ € C.(Xiemp(G)), where for all M € M we have fixed P € P(M) and for all
O € {II5(M)} we have fixed a base-point o € O.

For all 7 = i§;(0) € Xiemp(G), we set = d(0)j(o)~". This quantity really only depends
on 7 since another pair (M’ ¢’) yielding 7, where M’ is a Levi subgroup and o’ € TI(M’),
is G(F)-conjugate to (M, o).

Assume that F© = R. Recall that we defined in Section a norm N on the set of
(isomorphism classes of) tempered representations of G(F"). By Z.2.8 2.4.1] and 2.3.T], there

exists k > 0 such that p(m) < N%(m)F for all 7 € Xiemp(G). The following basic estimate
will be used several times:

(2.6.2) There exists an integer k& > 1 such that the integral

/ NY(m)dr
Xiemp (G)

is absolutely convergent.

We are now going to define a space of functions |C*°(Xiemp(G), E(G))l The elements of
that space are certain assignments 7: 7 € Temp(G) — T, € End(m)> (notice that for
all 7 € Temp(G), the space End(7)* is well-defined up to a unique isomorphism). First,
we extend such an assignment to all (isomorphism classes of) tempered representations by
T=m®..0m— T, =T @&...0T,; € End(r)> where the m;’s are irreducible. Let us
fix a maximal compact subgroup K of G(F') which is special in the p-adic case. We may now
define C°°(Xiemp(G), £(G)) as the space of functions 7 € Temp(G) — T, € End(7)* such
that for any parabolic subgroup P = MU and for all o € TI5(M), setting mx = z'f.me(qme)
and 7y = i%(0y) for all A € i A%, the function

A €iAy, — T, € End(m))> ~ End(mg)™
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is smooth.

We define a subspace |C(Xiemp(G), E(G))| of C°(Xiemp(G), E(G)) as follows. This is the
subspace of sections 7' € C°(Xiemp(G), £(G)) such that

e in the p-adic case: Supp(T') = {7 € Xiemp(G); T # 0} is compact (i.e., is contained
in a finite union of connected components);

e in the real case: for every parabolic subgroup P = MU and for every differential
operator with constant coefficient D on A}, the function

DT: o € TL,(M) ~ Dy <>\ = Tig(oy) € End(z;an(g))oo)

has the property that

Poupi(T) = sup [[(DT)ll, ,N(0)* < o0
o€llz (M)

for all u,v € U(¢) and all k € N.

We equip the space C(Xiemp(G), E(G)) with a locally convex topology as follows. If F' =R,
it is the topology defined by the semi-norms pp, ,x for all D,u,v and k as above. If F'is
p-adic, we remark that C(Xiemp(G), E(G)) is naturally a subspace of

(2.6.3) @ @ C* (1A, End(i%, (0k,))™)

MeM Oe{Ilz(M)}

where for all M € M we have fixed a parabolic subgroup P € P(M) and for all O € {II,(M)}
we have fixed a base-point o € O. The spaces C* (A}, p, End(if,(0k,))>°) have natural

locally convex topologies. We endow the space with the direct sum topology and
C(Xiemp(G), E(G)) with the subspace topology.

We will need the following strong version of the Harish-Chandra Plancherel formula also
called matricial Paley-Wiener theorem (cf. Theorem VII.2.5 and Theorem VIII.1.1 of [Wa2]
in the p-adic case and [A2], [A§] in the real case).

Theorem 2.6.1 (i) The map f € C(G) — (7 € Temp(G) — 7(f) € End(7)*) induces a
topological isomorphism C(G) =~ C(Xiemp(G), E(G)).

(11) The inverse of that isomorphism is given by sending T € C(Xiemp(G),E(G)) to the
function fr defined by

o) = | . Tace (x(g™)T2) p(re

Remark: The last integral above is absolutely convergent by 2.2.5] and 2.7.2]
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2.7 Elliptic representations and the space X (G)

Denote by the space of complex virtual tempered representations of G(F'), that is
Riemp(G) is the complex vector space with basis Temp(G). We may extend almost all our
constructions to virtual representations. In particular:

We extend the action of z'.A*G, # by linearity to Riemp(G);

Let M be a Levi subgroup of G. Then the functor i, extends by linearity to give
a linear map §;(.) : Riemp(M) — Riemp(G). Also, we extend the weighted character
o J%0,.) (L e L(M), Q € F(L)) of Section 5l by linearity to Ryemp(M);

o If ' =R, we extend the norm N to Riemp(G) by

NEm+ 4 Nemg) = max (|M|NC(my), ..., [\ N (1)

We will denote by 7 — 7 the unique conjugate-linear extension of 7 € Temp(G) —
7 € Temp(G) t0 Riemp(G).

In [A4], Arthur defines a set Tty (G) of virtual tempered representations of G(F), that we
will denote by in this paper. The elements of Xy (G) are actually well-defined
only up to a scalar of module 1. That is, we have Xu(G) C Riemp(G)/S'. These are
the so-called elliptic representations. Let us recall their definition. Let P = MU be a
parabolic subgroup of G and o € Ily(M). For all ¢ € G(F), we define go to be the
representation of gM (F)g~" given by (go)(m’) = o(g~'m’g) for all m’ € gM (F)g~'. Denote
by Normgp)(o) the subgroup of elements g € Normg ) (M) such that go ~ o and set
W (o) = Normg(py(o)/M(F). Fix P € P(M). Then, we may associate to every w € W (o) an
unitary endomorphism Rp(w) of the representation i% (o) that is well-defined up to a scalar
of module 1 as follows. Choose a lift w € Normgp)(0) of w and an unitary endomorphism
A(w) of o such that o(w 'mw) = A(w) 'o(m)A(w) for all m € M(F). We define the

operator Rp(w) : i%(0)™ — i%(0)> as the composition Rpj,p,-1(c) o A(W) o A(W), where

e \(w) is the isomorphism i%(0) ~ %, _,(wo) given by (A(w)e)(g) = e(wg);

e A(w) is the isomorphism ¢, _,(wo) ~i%,, _.(c) given by (A(w)e)(g) = A(w)e(g);

® Rpjwpuw-1(0) i85, 1(0)® — i%(0)™ is the normalized intertwining operator defined
in Section 2.4

We immediately check that Rp(w) is G(F')-equivariant and that it depends on all the choices
(w, A(w) and the normalization of the intertwining operator Rpj,p,-1(0)) only up to a scalar
of module 1. We associate to any w € W (o) a virtual tempered representation i§, (o, w),

well-defined up to a scalar of module 1, by setting
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i (o, w) = Z X iG(o,w, \)

AeC

where for all A € C, i%(o,w, \) denotes the subrepresentation of i%(c) where Rp(w) acts
by multiplication by A (as is indicated in the notation this definition doesn’t depend on
the choice of P). Let Wy(o) be the subgroup of elements w € W (o) such that Rp(w) is
a scalar multiple of the identity and let W (o),e be the subgroup of elements w € W (o)
such that A% = Ag. We will say that the virtual representation i{; (o, w), w € W (o), is
elliptic if Wy(o) = {1} and w € W(0)eg. The set Xo(G) is the set of all virtual elliptic
representations (well-defined up to multiplication by a scalar of module 1) that are obtained
in this way. Let m € Xy (G) and write 7 = i§;(0, w) with M, 0 and w € W(0),eq as before.
Then we set

[D(@)] = Idet (1 — w)4g, | W (0)u| ™

where W (o), denotes the centralizer of w in W (o). This number doesn’t depend on the
particular choice of M, o and w representing m because any other choice yielding 7w will
be G(F)-conjugate to (M, o, w). The set X (G) satisfies the following important property.
Denote by the subspace of Riemp(G) generated by Xei(G) and denote by
the subspace of Riemp(G) generated by the image of all the linear maps i, : Riemp(M) —
Riemp(G) for M a proper Levi subgroup of G. Then we have the decomposition

(2.7.1) Riemp(G) = Rina(G) ® Ran(G)

The set Xy (G) is invariant under unramified twists. We will denote by |Xui(G) /1.AF pf the
set of unramified orbits in Xy (G). Also, we will denote by |[X 1(G)| the inverse image of
Xa1(G) in Riemp(G). This set is invariant under multiplication by S'.

We define to be the subset of Riemp(G)/S* consisting of virtual representations of the
form i§;(0) where M is a Levi subgroup of G and o € Xy (M). Also, we will denote by
the inverse image of X(G) in Riemp(G). Hence, the fibers of the natural projection
X(G) — X(G) are all isomorphic to S'. Let M be a set of representatives for the conjugacy
classes of Levi subgroups of G. Then, X(G) is naturally a quotient of

Ly o

MeM OeXen(M)/iAy, ¢

This defines, as for Xemp(G), a structure of topological space on X(G). We also define a
regular Borel measure dr on X(G) by requesting that

/X L@ = S WG ST iy, i) / (G (03))dA

MeM OEXoi (M) /iy AN F
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for all ¢ € C.(Xa(G)), where we have fixed a base point ¢ € O for every orbit O €
Xan(M) /Ay p- We will need the following:

(2.7.2) If F =R, there exists an integer k > 0 such that the integral

NC(m)*dr
X(G)

is absolutely convergent.

Finally, we extend the function 7 — D(7) to X(G) by setting D(w) = D(o) for m = i§, (o),
where M is a Levi subgroup and o € Xy (M).

3 Harish-Chandra descent

In this chapter, we collect some well-known facts concerning Harish-Chandra’s technique
of descent which are scattered over the literature. In this paper, we will use three types
of descent. First, there is the semi-simple descent for the group or its Lie algebra which
allows to localize functions or distributions near a semi-simple conjugacy class. This is the
object of Section Then, there is the descent from the group to its Lie algebra which
is covered in Section 3.3l Finally, in Section [3.4] we will discuss Harish-Chandra’s notion
of parabolic descent or more precisely its dual form which allows to parabolically induce
invariant distributions. In Section B.I, we set up notations and record basic properties of
spaces of invariant functions/distributions and algebras of differential operators acting on
those.

3.1 Invariant analysis

Let w C g(F) (resp. 2 C G(F)) be a completely G(F')-invariant open subset (see Section

[L.7 for this notion). We will denote by (resp. [C>=(Q)%)) the space of smooth and

G(F)-invariant functions on w (resp. €2). It is a closed subspace of C*°(w) (resp. C*°(£2)) and
we endow it with the induced locally convex topology. The notation (resp. [D'(Q2)%)

will stand for the space of G(F')-invariant distributions on w (resp. §2). We will also denote

by [S(w)| (resp. [S(Q)) the space of all functions f € S(g(F)) (resp. f € S(G(F))) such that
Supp(f)“ € w (resp. Supp(f)“ € Q).
Assume now that I = R. For each integer n > 0, we will denote by [Diff, (w)®| (resp.

Diff> (2)¢)) the space of smooth invariant differential operators on w (resp. on Q) that are
of order less than n. It is a closed subspace of DiffZ, (w) (resp. of DiffZ},(€2)) and we endow

it with the induced locally convex topology. We will set

— | DIfIZ, ()€ (resp. - | bifz, (©)9)

n=0 n>0
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and we equip this space with the direct limit topology. We define

T®(w)|= {D € Diff*(w)%; DT =0VT € D'(w)“}

<resp. 7= = {D € Diff*(Q)%; DT =0VT € D’(Q)G})

and set

= Diff*(w)¢/T™(w) (resp. = Diff*(Q)°/T=(%))
Note that we have a natural action of Diff**(w)& (resp. Diff>*(Q)%) on D' (w)¥ (resp. D'(Q)%).

For all n > 0, we will also denote by the space of invariant differential operators
with polynomial coefficients on g(F") of order less than n and we will set

= | Diff<u(g)°

n=0

Note that I(g) and I(g*) are both naturally subalgebras of Diff(g)“. We define

T(g)={D € Diff(g)”; DT = 0VT € D'(g(F))“}
and we will denote by the quotient Diff(g)¢/J (g).

Proposition 3.1.1 (i) Let w C g(F) (resp. Q C G(F)) be a completely G(F)-invariant
open subset. Then, there exists a sequence (wp)n>1 (1€sp. (n)n>1) of completely G(F)-
invariant open subsets of w (resp. Q) such that

o w= an (resp. Q0 = UQn),
n>1 n>1
o Foralln>1, @, (resp. Q,) is compact modulo conjugation and included in w1
(765p-52n+1)-

(11) Let (w;)icr (resp. (Qi)ier) be a family of completely G(F)-invariant open subsets and
L Cg(F) (resp. L C G(F)) an invariant compact modulo conjugation subset such that

L C Uwi (resp. L C UQZ>

el i€l

Then, there exist a finite subset J C I and functions p; € C®(w;)¢ (resp. ¢; €
C>(Q;)%) such that

o Forallje J, 0< p; <1 and Suppwj(goj) (resp. Suprj(%)) is compact modulo
conjugation.
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. Zgoj =1 on some invariant neighborhood of L.
jed

(111) Let L C g(F') (resp. L € G(F')) be invariant and compact modulo conjugation. Then,
there exist two constants ¢ > 0 and m > 1 and a compact subset K C g(F') (resp.
K C G(F)) such that for all X € L (resp. g € L) there exists an element v € G(F)
satisfying the two following conditions

o [yl <l Xi™ (resp. |yl < cllgl™):
o V' XyeK (resp. v 'gy € K).
(iv) Let o € C®(g(F))¢ (resp. ¢ € C®(G(F))¢) be compactly supported modulo conju-
gation. Then, multiplication by ¢ preserves S(g(F')) (resp. preserves S(G(F'))), that

is: for all f € S(g(F)) (resp. for oall f € S(G(F))), we have of € S(g(F)) (resp.
pf e S(G(F))).

(v) Assume that F' = R and let w C g(F) be a completely G(F)-invariant open subset.
Then, for every integer n > 0, there exists a finite family {Dy, ..., Dy} C Diff,(w)%
such that the linear map

(C=(w)®)" - DiffX, (w)¢
((pl,...,(pk) |—>g01D1++g0ka

is a topological isomorphism (in particular the C*™(w)“-module DiffZ, (w)“ is free of
finite rank).

(vi) Still assuming that F = R. the C-algebra Diff(g)C is generated by the image of I1(g)
and I(g*).

Proof: (i) is contained in Lemma 2.2.1 of [Bou2] and Lemma 2.2.2 of [Boul] whereas (ii)
follows from Lemma 2.3.1 of [Bou2] and Lemma 2.3.1 of [Boul].

(iii) We prove it for the group the proof for the Lie algebra being similar and easier. Let
Prin = MyinUnin be a minimal parabolic subgroup of G and A, = A, be the split
part of the center of M;,. Set

mln_{a'eA ) | ( )| <:[\v/aER(félmiumin)}

min’

Then by the Cartan decomposition, there exists a compact subset Cg C G(F) such
that

G(F) = CgAr. Cq

min
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Let L C G(F) be invariant and compact modulo conjugation and fix a compact subset
Kg € G(F) such that L = (Kg)¢. Replacing Ko by (Kg)®¢ if necessary, we may
assume that L = (ICG)ALnCG. Since Cg is compact, it suffices to show the following

(3.1.1) There exists a constant ¢ > 0 such that for all g € K¢ and all a € A, | there
exists ' € At satisfying the three following conditions

min

a'ae At o(d) < co(a " ga) and o(d'a " gad' ") < ¢

min’

We prove this by induction on dim(G), the case where G is a torus being trivial. Denote
by Puin = MupinUmin the parabolic subgroup opposite to Py, with respect to Miy.
Choose ¢ > 0 and set

AZL©0) ={a e Al |a(a)] = € Va € R(Api, Ug)}

min min’

for every parabolic subgroup @ = MUz 2 Poin. If 6 is chosen sufficiently small, and
we will assume that it is so in what follows, the complement of

U A%ro)

ﬁmin g©7éG

in A, is compact. Hence, to get BTl it suffices to prove the following for every

parabolic subgroup Py, € Q # G

(3.1.2) There exists ¢ = c5 > 0 such that for all g € K¢ and all a € Agg(cS), there
exists a’ € AT, satisfying the three following conditions

min

alae Al o(d) <co(atga) and o(d'a"'gad ") < ¢

min’

Fix such a parabolic subgroup Q = M Ug, where M is the only Levi component of
@ containing My, and let Q = MUg be the parabolic subgroup opposite to @ with
respect to M. Fix also € > 0, that we will assume sufficiently small in what follows,
and set

K2, = K¢ N (Ugl< ea(a)|M[< eo(a)alg[< eo(a)la™)

for all a € Apin(F). By Lemma [L.3.1(i) and since K¢ is compact, there exists ¢g > 0
such that o(a) < coo(a'ga) for all a € A%T(8) and all g € Kc\KE,. Hence, we

only need to prove the existence of ¢ > ¢y such that 3.1.2 holds for all a € Agg((?)

and all g € IC?G (otherwise, we just take @’ = a). Choosing ¢ > 0 sufficiently small,
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we may assume that the subsets alUg[< eo(a)la™ remain uniformly bounded as a

varies in A@’J’(é). Then, there exists compact subsets Kz C Ug(F), Ky € M(F) and

min

Ku C Ug(F) such that

K2, C KgKuKy

J’_

min’

for all a € A§’+(5). Since the subsets a~!'Kga remain uniformly bounded for a € A

min

to get B.1.2] we only need to show the following

(3.1.3) There exists ¢ > 0 such that for all m € Ky, all u € Ky and all @ € AT, | there
exists @’ € Al satisfying the three following conditions

min

1

o(d) < co(a " 'mua) and o(d'a ‘muad ") < ¢

Since o(mu) ~ o(m)+o(u) for allm € M(F) and all u € Ug(F) and o(aua™") < o(u)
for all u € Ug(F) and all a € A}, , the last claim will follow from the combination of
the two next facts

(3.1.4) There exists ¢y > 0 such that for all w € Ky and all @ € A*. | there exists
a' € AT, satisfying the three following conditions

min

1

a 'ae At o(d) < cyolatua) and o(d'a tuad ) < ey

min’

(3.1.5) There exists ¢y > 0 such that for all m € Ky and all a € A, | there exists
a' € At satisfying the three following conditions

min
ad tae AF o(a') < cpro(atma) and a(a’a_lmaa’_l) < ey

min’

The proof of BI4 is easy and left to the reader. The point follows from the
induction hypothesis applied to M. Indeed, by the induction hypothesis there exists
cyr > 0 such that for all m € K,y and all a € AT | there exists a’ € AMT guch that

min? min

(3.1.6) alae AMY . o(d) < eyo(a ma) and o(d'a 'mad ") < ear

min

where we have set

AnAfl: ={a € Apnin(F); |a(a)| < 1Va € R(Apin, M N Puin)}
Denote by A C R(Amin, Pmin) the subset of simple roots and set Ag = ANR(Amin, Ug).
Let A§, = {a € Ay; x(a) = 1 Vx € X*(G)} and ASe — {a € Apin; afa) = 1Va €

min
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(vi)

3.2

Ag}. The multiplication map A§; x Aﬁﬁl — Amin is an isogeny. Hence, since A§,(F)

is in the center of M (F'), up to increasing the constant c); we see that for all m € Ky,
and all a € At we can find o/ € AS2T = A22(F) N AM+ satisfying BLG But

min’ min min min

obviously A2 C AT and foralla € AT and @’ € A2 the first condition of L0l
is equivalent to @/ 'a € A%, . This proves B and ends the proof of (iii).

This is clear in the p-adic case. Assume that ' = R. Then the result will follow at
once from the following fact which is an easy consequence of (iii)

(3.1.7) For all uw € I(g) (resp. u € U(g)), there exists N > 1 such that we have

|(0(uw)g) (X)| < IX]™ (vesp. [(R(uw)e) (9)] < [lgll™)

for all X € g(F) (resp. for all g € G(F)).

By Corollaire 3.7 of [Bou3], the C*°(w)“-module Diff¥ (w) is free of finite rank and
we can find a basis consisting of elements of Diff, (g)¢. Fix such a basis (Dy, ..., Dy)
then the linear map
(C=(w))* = DIfi, (w)¢
((pl,...,(pk) |—>g01D1+—|—(kak

is continuous and bijective. Since both (C"X’(w)G)k and DiffZ, (w)“ are Fréchet spaces,
by the open mapping theorem, this is a topological isomorphism.

This follows from Theorem 1, Theorem 3 and Theorem 5 of [LS] W

Semi-simple descent

Let X € gs(F). An open subset wxy C gx(F) will be called G-good if it is completely
G x(F)-invariant and if moreover the map

(3.2.1) wx XX G(F) — g(F)

Y,9)— g 'Yy

induces an F-analytic isomorphism between wx x X G(F) and w§, where wy x X G(F)
(the contracted product) denotes the quotient of wx x G(F') by the free Gx(F')-action given

by

gx - (Y,9) = (9xY g5, 9x9), 9x € Gx(F),(Y,g) € wx x G(F)
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The Jacobian of the map B2 at (Y, g) € wx x“*F) G(F) is equal to

ENY) = [detad(Y) g gy |

It follows that an open subset wy C gx(F') is G-good if and only if the following conditions
are satisfied

e wx is completely Gx (F)-invariant;

e Forall Y € wy, we have n$(Y) #0

e For all g € G(F), the intersection g 'wygNwy is nonempty if and only if g € Gx(F).
Let wx C gx(F) be a G-good open neighborhood of X and set w = w§. Then w is completely
G(F)-invariant (since wy is completely G x (F')-invariant). Moreover, the completely G(F)-

invariant open subsets obtained in this way form a basis of neighborhood for X in the
invariant topology. We have the integration formula

(3.2.2) / F)dY = /G e / A Y o)y dg

for all f € L'(w). For every function f defined on w, we will denote by the func-
tion on wy given by fx.,(Y) = n¢(Y)Y2f(Y). The map f +— fx., induces topological
isomorphisms

COO(M)G ~ Coo(wx)GX Coo(wreg>G ~ COO(WX’ng)GX

ote that wx N gx re = wx N Gre so that the notation wx e is unambiguous). We
Note that wx N gx.reg(F N greg(F) so that the notati reg | bi W
also have an isomorphism

D' (W) ~ D' (wx )9
T Txwy

where for T' € D'(w)Y, Tx uy is the unique Gx (F)-invariant distribution on wyx such that

.= (T ox () xiox )
Gx (F)\G(F)
for all f € C®(w). If f is a locally integrable and invariant function on w, then by the
integration formula B.2.2 fx,, is also locally integrable and we have
(Tf)X’wX = TfX,wX

Let © € Gg(F). We define similarly the notion of G-good open subset of G,(F'). More
precisely, an open subset Q, C G,(F) is G-good if it is completely Zg(x)(F')-invariant and
if moreover the map
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(3.2.3) Q, xZ@E) Q(F) - G(F)

(v,9) = 9 'yg

induces an F-analytic isomorphism €2, x%¢@F) G(F) ~ Q% where this time €, xZ¢@)

x )

G(F) denotes the quotient of €, x G(F') by the free Zg(z)(F') action given by
9o (¥,9) = (929951, 929), 9 € Za(2)(F), (y,9) € QU x G(F)

The Jacobian of the map at (y,g) is given by

(3.2.4) nly) = )det (1= Ad(Y)) 4/,

Thus, an open subset Q, C G,(F) is G-good if and only if the following conditions are
satisfied

e ), is completely Zg(x)(F')-invariant;
e For all y € Q,, we have n%(y) # 0

e Forall g € G(F), the intersection ¢g~',gNQ, is nonempty if and only if g € Zg(z)(F).

Let Q, C G,(F) be a G-good open subset and set 2 = QY. We have the integration formula

(3.2.5) / fly)dy = / f(g™ yg)ns (y)dydg
Q Zg(x)(F)\\G(F) JQq
— [Za(@)(F) : Go(F)] ™ / 19~ yg)nC (y)dydg
Gz (F)\G(F) J Qg

for all f € LY(). For every function f on €2, we will denote by the function on
Q, defined by foa.(y) = n(y)"?f(y). Again, the map f — f,q, induces topological
isomorphisms

COO(Q)G ~ COO(QI)ZG(SC) COO(Qreg)G ~ OOO(Qx,reg)ZG(x)

which extend to an isomorphism

D'(Q) ~ D'(Q,) %@

Finally if FF = R, we may also descend invariant differential operators. The result is sum-
marized in the next lemma. We just need to introduce first some notation. Recall that
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for all X € g(F) and all € G(F'), the Harish-Chandra isomorphisms induces injective
C-algebra homomorphisms

I(g") = I(gx) I(g) = I(gx) Z(9) — Z(g.)
pl—)pGX ’UJI—>UGX 2= 2q,

(cf. Section [[T)). We shall denote these homomorphisms simply by p — u — @x) and
2 > [zg respectively. Note that the image of z + 2, is included in Z(g,)%¢®).

Lemma 3.2.1 Assume that ' = R.

(i) Let X € gg(F) and let wxy C gx(F) be a G-good open subset. Set w = w§. Then, there
exists a unique topological isomorphism

Diff**(w)¢ ~ Diff*(wy)&x
D
such that for all T € D'(w)® and all D € Diff>*(w)%, we have

(3.2.6) (DT)X,wX = DxwTxwy

Moreover, we have

(3.2.7) (O(u) xwy = Oux) and  (p)xwy = Px

for alluw € I(g) and all p € I(g*). In particular, by Proposition 31 1(vi), the image of
Diff(g)¢ by the map D — Dx ., lies in Diff(gx)&x.

(i) Let x € Gy(F) and let Q, C G,(F) be a G-good open subset. Set Q = QY. Then, there
exists a unique topological isomorphism

Diff>*(Q)¢ ~ Diff*° (£, )%c@)
Do
such that for all T € D'(Q)Y and all D € Diff**(Q)¢, we have
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Moreover, we have

(3.2.9) (2)e,0, = %

for all z € Z(g).

Proof:

(i) Since T+ T is an isomorphism D'(w)¢ ~ D'(wx)¢x, for all D € Diff**(w)% there
exists at most one operator Dy, € Diff™(wx)@x such that the relation [3.2.6/is satisfied
for all T € D'(w)“. Moreover, such an operator is constructed in Theorem 11 p.30
of [Va] (although in this reference only analytic differential operators are considered,
the construction applies equally well to smooth differential operators). This yields an
injective linear map

Diff™® (w)C — DIff™ (wy)Cx

D DXWJX

and we need to prove that it is a topological isomorphism. Since both Diff**(w)& and
Diff**(wx )&x are LF spaces, by the open mapping theorem, we only need to construct a
continuous right inverse to the previous linear map. Actually, we are going to construct
a continuous linear map

Diff* (wx )% — Diff** (w)“
Dw— D,

such that

(D“’)X,wx =D
for all D € Diff>°(wyx )%, where we have denoted by D and D,, the image of D and D,
in Diff**(wx)¥x and Diff>(w)¥ respectively. The construction is as follows. A smooth
differential operator D on wx (resp. on w) may be seen as map Y € wx — Dy € S(gx)
(resp. Y € w— Dy € S(g)) which has its image in a finite dimensional subspace and
is smooth, the action of D on smooth functions being given by

(DNHY) = @Dy)f)(Y)

for all f € C®(wx) (resp. f € C®(w)) and all Y € wx (resp. Y € w). Let D €
Diff*°(wx )“* be an invariant and smooth differential operator on wy. We first associate
to D a differential operator D}, on w by setting
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D%y =g 'Dyg € S(g)

for all Y € w, where g € G(F) and Y’ € wx are any elements such that Y = ¢g~'Y"g.
Since D is invariant and wy is G-good, this definition doesn’t depend on the choice
of g and Y’ and DY is a smooth invariant differential operator on w. The function
n§ € O%(wx)¥* uniquely extends to a smooth and invariant function on w. Still
denoting by 7§ this extension, we now set

Dy = (n%) oDk o (n§)"

for all D € Diff>*(wx)®. Then it is easy to see that the linear map D + D,, has all the
desired properties.

The second equality of B.2.7] is obvious whereas the first one follows from Theorem 15
p.30 of [Va].

Once again, there exists at most one linear map

(3.2.10) DIff=(Q)C — DI ™ (Q2,) %@
D — DLQZ

such that the relation B.2.8 is satisfied for all D € Diff**(Q)% and all T € D'(Q)% and
such a linear map, if it exists, is necessarily injective. The construction of Proposition
4 p.224 of [Va] proves the existence of such a map, where once again the extension
of the construction of that reference from the analytic case to the smooth case is
straightforward. Moreover, we may construct explicitly, analogously to what has been
done in the proof of (i), a right continuous inverse to Since both Diff*(©2)¢ and
Diff*(Q,)%c(*) are LF spaces, this proves by the open mapping theorem that B.2.10 is
a topological isomorphism. The equality follows from Theorem 12 p.229 of [Va].
|

Consider the particular case where Gx = T, X € gi(F), is a maximal torus. Then, if
F =R, the lemma provides us with a morphism Diff(g)® — Diff(t) that we shall denote by
D — [Dq]in this particular case. For w C g(F') a completely G(F')-invariant open subset and
f an invariant function on w,, we will denote by [f7] the function on t(F') N wyes given by

fT(Y) = DG(Y)I/zf(Y)a Y e t(F) M Wreg

Hence, we have

(Df)r = Drfr
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for all f € C™(wee)® and all D € Diff(g)¥. Note that an invariant function f on wye is
smooth if and only if fr is a smooth function for every maximal torus T' C G.

Remark: We can extend the definition of G-good open subsets to the case where G is not
necessarily reductive (but is still a connected linear algebraic group over F'). The definition
is as follows. Let x € Gg(F), an open subset Q, C G,.(F) is G-good if it is invariant by
translation by G, .(F'), where G,, denotes the unipotent radical of G,, and if moreover
its image in G.(F)/G..(F) = (G/G,).(F) is a G/G,-good open subset, where this time
G, denotes the unipotent radical of G. If Q, C G,(F) is a G-good open subset, then
the map still induces an F-analytic isomorphism onto Q = QF whose Jacobian at
(y,9) € Q, x%@F) G(F) is again given by the formula 324 It follows in particular that
the integration formula is still valid in this more general setting.

3.3 Descent from the group to its Lie algebra

We will say of an open subset w C g(F') that it is G-excellent, if it satisfies the following
conditions

e w is completely G(F')-invariant and relatively compact modulo conjugation;

e The exponential map is defined on w and induces an F-analytic isomorphism between
w and Q = exp(w).

For all X € 3¢(F) (in particular X = 0), the G-excellent open subsets containing X form a
basis of neighborhoods of X for the invariant topology.

Let w C g(F) be a G-excellent open subset and set {2 = exp(w). The Jacobian of the
exponential map

exp :w — ()
X e
at X € wg is given by
(3.3.1) 9 X) = DE(eX)DY (X))

Hence, we have the integration formula

(3.3.2) / f(g)dg = / F(e¥)50(X)dx

for all f € L'(Q). For every function f on €, we will denote by [f] the function on w defined
by f.,(X) = j%(X)Y2f(eX). The map f > f, induces topological isomorphisms
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C2(Q) 2 CF(w)  C%(Lheg) = C%°(Wreg)
We will also denote by

D'(Q) ~ D' (w)
T —[L]

the isomorphism defined by the relations

<va fw> = <T7 f>

forall T'e D'(2) and all f € C(Q). By B3.2 if f is a locally integrable function on €, we
have

(Tf)w =T},

There also exists a unique topological isomorphism

Diff**(Q) ~ Diff**(w)

D —[D]

such that (DT, = D,T,, for all D € Diff**(§2) and all T' € D'(2). By Theorem 14 p.231 of
[Val, we have

(3.3.3) (2)w = O(uy)

for all z € Z(g) (recall that we are denoting by z +— u, the Harish-Chandra isomorphism
Z(g) = 1(g))-
We will denote by f — [fo], T — [[g] and D — [Dg] the inverse of the previous isomorphisms.

So for example fo(g) = j%(log(g))~2f(log(g)) for all f € C*(w) and all g € Q, where
log : 2 — w denotes the inverse of exp.

The exponential map actually also induces an isomorphism between the corresponding
Schwartz spaces. This is the object of the next lemma.

Lemma 3.3.1 Let w C g(F) be a G-excellent open subset and set Q = exp(w). Then, the
map [ — f, induces a linear isomorphism

Proof: This is clear in the p-adic case. We assume from now on that F' = R. We need to
prove the two following facts
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(3.3.4) For all f € §(Q2), the function f, belongs to S(w).
(3.3.5) For all f € S(w), the function fq belongs to S().

We will prove [3.3.4] the proof of being analog (it suffices to replace exp by log and log
by exp in what follows). Let f € S(2). Since w is relatively compact modulo conjugation,
Supp(f)¢ is compact modulo conjugation. Hence, there exists a compact subset Ky C 2
such that Supp(f)¢ = K§. Then, we have

Supp(f,)¢ C exp (ko)

where of course exp™! (Ky) C w is compact. Since w is completely G(F)-invariant, the closure
of exp™ (Ko)“ in g(F) is still contained in w. Hence, we have

Supp(f,)¥ Cw

and it only remains to show that f, belongs to S(g(F)) i.e., that f, and all its derivatives
are rapidly decreasing. Set Lg = Supp(f)“ and Ly = Supp(f,)¢ so that L and L, are
invariant and compact modulo conjugation subsets of G(F') and g(F’) respectively and exp
realizes an homeomorphism Ly ~ L. We start by proving that

(3.3.6) 04(X) ~ a(e"), for all X € L,

Since L¢ is compact modulo conjugation, by Proposition BI[iii), we may find a compact
subset K C Lg and two maps

g€ Lg vy € G(F)

g€ Lg—g. €K
such that

9 =", "' 9.7 and o(y,) < o(g)

for all g € Lg. Since log(K) is compact, we have

0g(X) = 0q (73 1og ((e¥)c) 7ex) < o(7ex) < o(e¥)
for all X € Ly. This proves one half of 3.3.6l The other half can be proved similarly, using
Proposition B.1.11(iii) for the Lie algebra rather than for the group.

The function j¢ is bounded on w (since it is an invariant function on g(F) and w is relatively
compact modulo conjugation) and hence, it already follows from that the function f,
is rapidly decreasing. Let u € S(g). We want to show that the function d(u)f, is rapidly
decreasing. Since we have
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(u) fo = (O(w)af),
by what we just saw it suffices to prove that the function 0(u)qf is rapidly decreasing (as

a function on G(F')). For all D € Diff**(2) and all g € ©, let us denote by D, € U(g) the
unique element such that

(Df)(g) = (L(Dg)f") (9)
for all f' € C*°(£2). Obviously, if u is of degree k, then we have 0(u)q, € U<k(g) for all
g € Q. Let us fix a classical norm |.| on U<k (g). Then, since f is a Schwartz function, to
show that O(u)qf is rapidly decreasing we only need to prove that there exist ¢ > 0 and
m > 1 such that

(3.3.7) [0(w)aql < cllgl™

for all g € L. We have the following easy to check equality

(W19, =7~ 0(yur™ gy
for all g € Q and all v € G(F'). Let us introduce a compact subset L C L and functions
g — 7, and g — g. as before. Then, by the previous identity, for all g € Q2 we have

O(uw)ag =7, 0(vguy ). g
for all g € Lg. The inequality B:37is now easy to deduce from this (note that for all v € S(g),
the function g — 0(v)q,, is bounded on K and for all g € Q the function v € S(g) — 9(v)a,
is linear). W

Remark: We can extend the definition of G-excellent open subsets to the case where G is
not necessarily reductive (but is still a connected algebraic group over F'). The definition
is as follows: an open subset w C g(F) is G-excellent if it is invariant by g,(F), where
g. denotes the Lie algebra of the unipotent radical of G, and if moreover its image in
9(F)/gu(F) = (g/g.) (F) is a G/G-excellent open subset. If w C g(F') is a G-excellent
subset, then the exponential map still induces an F-analytic isomorphism between w and
) = exp(w) whose Jacobian at X € wy is again given by the same formula B3l It follows
in particular that the integration formula [3.3.2] is still valid in this more general setting.

3.4 Parabolic induction of invariant distributions

Let M be a Levi subgroup of G. Choose a parabolic subgroup P = MU € P(M) and
a maximal compact subgroup K of G(F') which is special in the p-adic case. Fix a Haar
measure on K such that

/G(F)f (9)dg = /M(F) /U . /K F (muk)dkdudm
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for all f € C(G(F')). We define a continuous linear map

CX(G(F)) — CZ(M(F))
fe

by setting

FP m) = 6p(m)'/? /K /U . F(k~ muk)dudk

Dually, this defines a linear map

D'(M(F)) — D(G(F))
T —[Tp

which is uniquely determined by the relations

(Tp, f) = (T, )

forall T € D'(M(F)) and all f € C*(G(F)). For T € D'(M(F)) an invariant distribution,
the distribution Tp is also invariant and doesn’t depend on the choices of P or K. In this
case, we shall denote this distribution by and call it the parabolic induction from M
to G of T. If F =R, we have

(3.4.1) 2i$(T) = i$; (2 T)

for all T € D'(M(F))™ and all z € Z(g) (Recall that z + zj; denotes the homomorphism
Z(g) — Z(m) deduced from the Harish-Chandra isomorphism, cf. Section [L.T]).

If T = Tp,, where F; is an invariant and locally integrable function on M (F), then the
distribution i, (7T') is also representable by an invariant locally integrable function Fg on
G(F). We shall also write Fg = i§;(Fy). The function Fiz admits the following description
in terms of F);. Let us denote by the subset of strongly regular elements in G (i.e., x €
Gareg if Zg(x) is a torus) and let us fix for each © € Gyee(F) a set of representatives
for the M (F)-conjugacy classes of elements in M (F') that are G(F)-conjugate to x. Then,
we have the equality

(3.4.2) D) PFg(x) = Y DM(y)*Fuly)

for almost all © € Ggeg(F).
If 0 € Temp(M) and 7 = i§,(0), then we have

78



(3.4.3) 0. =1i5,(05)

We define similarly an induction map 4§, from the space of invariant distributions on m(F)
to the space of invariant distributions on g(F'). Once again, if F), is an invariant and locally
integrable function on m(F), the distribution i§,(Fy,) is also representable by an invariant
function F; and we have

(3.4.4) DY(X)PFa(X)= Y DM(Y)'2Fy(Y)

YexM(X)

for almost all X € guee(F), where this time X (X) is a set of representatives for the
M (F)-conjugacy classes of elements in m(F’) that are G(F)-conjugate to X. We have for
example

i (VX)) = 79X, )

for all X € m(F) N greg(F). In particular, if G is quasi-split, B is a Borel subgroup of G' and
Ty C B is a maximal torus, it follows from B.4.4] that we have

G 1/27G _ EweW(G,qu)¢(B(qu’wY)) ifyej‘qd,reg(F)
345) D)) = { o

for all Xqq € tqareg(F) and all Y € gyee(F). Still assuming that G is quasi-split,we have

ig,L= > j,)

O€Nileg (9)

from which it follows that

A W(G, Toa)|]  if X € tqaeg(F)
3.4.6 DS (X)1/? 0, X :{| Taa)l ad e
( ) ( ) Oel%g(g)]( ) 0 if X ¢ tqd,reg(F)G

for all X € gree(F). On the maximal torus Ty, we even have the following more precise
equality
(3.4.7) DY(X)"?5(0, X) = |[W(G, Tya)||Nilseg (g)| "

for all X € tqqreg(F) and all O € Nil,ee(g). Indeed, by it suffices to show that for all
01, O,y € Nllmg(g) we have j((?l, X) = j(OQ, X) forall X € tqd,reg(F)- Fix 01, 0, € Nllmg<g)
Then, there exists guq € Gua(F') such that g;dl(’)lgad = (,, where G, denotes the adjoint

79



group of G. Up to multiplying g,q by an element in Im (G(F) — G.q(F)), we may assume
that g;dlBgad = B and ga_lengad = Tyq. But then g,4 belongs to Tqq .q the image of T4 in
Goq. Hence,we have

3(017 X) = ./j\(ga_dlolgada ga_legad) = }.\(027 X)
for all X € tqqree(F') and this proves the claim.

4 Quasi-characters

The goal of this chapter is to define and establish some crucial properties of what we call
quasi-characters on the group G(F') and its Lie algebra. These are invariant functions which,
in some sense, “locally look like a character”. In the p-adic case, the notion is due to
Waldspurger [Wal] and in Section 1] we recall, following loc. cit., the definition of quasi-
characters and their main properties in this case. The definition in the real case is more
technical and is the object of Sections (for the Lie algebra) and [£4] (for the group). In
Section 4.3 we show (still in the real case) that quasi-characters are locally asymptotic to
linear combinations of Fourier transforms of regular nilpotent orbital integrals (as do usual
characters). In Section .5, we associate to any quasi-character 6 a function cy on the set of
semi-simple conjugacy classes and study some of its properties. This should be regarded as a
regularization of the quasi-character at non-regular elements (where it is not usually defined)
and is simply given by averaging the coefficients in the local expansions of 6. In Section (4.6,
we study homogeneous distributions on spaces of quasi-characters of the Lie algebra and
prove some automatic continuity result for them. In Section [4.7, we study the effect of
parabolic induction in the sense of Section [3.4] on quasi-characters. Finally, in Section [4.§
we collect some properties of characters of tempered representations (as special cases of
quasi-characters) and more precisely we recall a well-known link between the coefficients of
the local expansion of such a character at 1 and the existence of Whittaker model for the
corresponding representation (a result due to Rodier [Ro] in the p-adic case and Matumoto
[Mat] in the real case).

4.1 Quasi-characters when F' is p-adic

In this section we assume that F' is p-adic. The definition and basic properties of quasi-
characters in this case have been established in [Wal]. We recall them now. Let w C g(F)
be a completely G(F)-invariant open subset. A quasi-character on w is a G(F)-invariant
smooth function 6 : wy,ee — C satisfying the following condition: for all X € ws, there exists
wx C gx(F) a G-good open neighborhood of X such that w§ C w and coefficients ¢y o(X)
for all O € Nil(gx) such that we have

oY) = Z co.0(X)j(0,Y)

OeNil(gx)
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for all Y € wy eq. Note that if 6 is a quasi-character on w and f € C*(w)® then f0 is also
quasi-character on w. We will denote by the space of all quasi-characters on w and
by the subspace of quasi-characters on w whose support (in w) is compact modulo
conjugation. We will endow QC,.(w) with its finest locally convex topology. Note that we
have a natural isomorphism

QC(w) = im QC.(w")

where w’ runs through the completely G(F')-invariant open subsets of w that are compact
modulo conjugation, the maps QC(w) — QC.(w') being given by 6 — 1,,6. We equip QC'(w)
with the projective limit topology relative to this isomorphism. To unify notation with the

real case, we will also set |[SQC (g(F'))|= QC.(g(F)) and we will call elements of that space

Schwartz quasi-characters on g(F).

Let Q C G(F) be a completely G(F)-invariant open subset. A quasi-character on € is
a G(F)-invariant smooth function 6 : ., — C satisfying the following condition: for
all z € Qg, there exists w, C g.(F) a G-excellent open neighborhood of 0 such that
(z exp(w,))® C Q and coefficients for all O € Nil(g,) such that we have the equality

O(ze’) = Z Ce,o(l)f)}(oay)

O€eNil(ge)

for all Y € wyye. As before, we will denote by the space of quasi-characters on
2 and by [QC.(Q))| the subspace of quasi-characters that are compactly supported modulo
conjugation. We again endow QC.(Q2) with its finest locally convex topology and QC(f2)
with the projective limit topology relative to the natural isomorphism

QC() =~ lim QC.(%Y)

Ql
where ' runs through the completely G(F)-invariant open subsets of € that are compact
modulo conjugation.

Proposition 4.1.1 (i) For all X € guee(F), 7(X,.) is a quasi-character on g(F). For
all O € Nil(g), j(O,.) is a quasi-character on g(F'). For every irreducible admissible
representation m of G(F'), the character 0, is a quasi-character on G(F').

(ii) For all € QC(G(F)) (resp. 0 € QC(g(F))) the function (D)2 is locally bounded.

(i1i) The Fourier transform preserves SQC(g(F)) in the following sense: for alld € SQC(g(F)),
there exists 6 € SQC(g(F)) such that Ty = Ty. Moreover, for all § € SQC(g(F')), we
have the equality

0= [ D%X)0(X)j(X,.)dX
I'(g)
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the integral being absolutely convergent in QC(g(F)).

(iv) Let w C g(F') be a G-excellent open subset. Set ) = exp(w). Then, the linear map

60— 0,
induces topological isomorphisms QC(2) ~ QC(w) and QC.(2) ~ QC.(w).

(v) Let X € go(F) and let wx C gx(F) be a G-good open neighborhood of X. Set w = w§.
Then, the linear map

0 — QX,MX
induces topological isomorphisms QC(w) ~ QC(wx) and QC.(w) ~ QC.(wx).

(vi) Let x € Gg(F) and let Q, C G,(F) be a G-good open neighborhood of x. Set Q = QF.
Then, the linear map

60— HLQI

induces topological isomorphisms QC () ~ QC(Q,)?¢ @) and QC.(Q) ~ QC,(Q,)?c@ ),

Proof:

(i) The first part follows from Theorem 4.2 of [Wal] and the second from Theorem 16.2
of [HCDS].

(ii) This follows from the fact that the functions X — DY(X)Y25(0, X) are locally
bounded for all O € Nil(g) (cf. Section [L.g]).

(iii) By Theorem 4.2 of [Wall, the Fourier transform Ty of a compactly supported modulo
conjugation quasi-character 6 is representable by a quasi-character 0. To see that 0
is again compactly supported modulo conjugation we may appeal to Lemma 6.1 and
Proposition 6.4 of [Wal]. Indeed, by Proposition 6.4 of loc. cit there exists a strongly
cuspidal function f € C2°(g(F')) such that 6 = 6; (cf. Chapter [ for the definition of
strongly cuspidal functions and of the associated quasi-character 6;). Now, by Lemma
6.1 of loc. cit we have 9f = (9/? where f denotes the usual Fourier transform of the
function f (again a strongly cuspidal function). But, by its very definition, the quasi-
character 0 +is clearly compactly supported modulo conjugation. Hence, so is 0. Finally,

we sketch quickly the proof of the integral formula for 0 since we are going to prove an
analogous result over R (cf. Lemma [{.2.3(iii)). By Weyl’s integration formula and the
definition of the functions j(X,.), X € geg(F), for all o € C°(g(F)) we have
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(4.1.1) / . 0(Y)p(Y)dY = / . 0(X)P(X)dX

_ / DE(X)'20(X) Ja(X, B)dX
I'(g)

_ / DE(X)20(X) / T, Y)p(Y)dYdX
I'(g) a(F)

_ /g . < /F . DY(X) 20X F(X, Y)dX) o(YV)dY

By (ii), the function (D%)'/26 is locally bounded. Hence, by [L8.3 and the fact that the
function (D%)/20 has compact support modulo conjugation, the function

Y € guslF) = | DECOY (X)) [§(X,Y)| dX
I'(g)

is well-defined (i.e., absolutely convergent) and locally essentially bounded by (D%)~1/2,

Consequently, by [LT.1] the expression [L.I.T] above is absolutely convergent as a double
integral. This justifies the above computation and moreover shows that we have an
equality

a(Y) = / D(X)Y20(X)j(X,Y)dX
I'(g)
almost everywhere. To conclude, it suffices to prove that the integral
/ DE(X)20(X)j(X,.)dX
I'(g)

is absolutely convergent in QC(g(F')). By definition of the topology on this space, it
suffices to show that for every compact modulo conjugation open subset w C g(F') the
integral

I'(g)

is absolutely convergent in QC.(w). But by Howe conjecture, the space spanned by the
quasi-characters j(X, Jws X € Supp() N greg(F), is finite dimensional and so the ab-
solute convergence of the above integral reduces to the pointwise absolute convergence
already established.

(iv) and (v) are obvious from the definitions. l
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4.2 Quasi-characters on the Lie algebra for F' =R

In this section and until the end of Section 4] we assume that F' = R. Let w C g(R) be a
completely G(R)-invariant open subset. A quasi-character on w is a function € C°°(wyee)®
which satisfies the two following conditions

e For all u € I(g), the function (D%)Y20(u)f is locally bounded on w (so that by [L7.1],
the function d(u)6 is locally integrable on w);

e For all u € I(g), we have the following equality of distributions on w

8(U)T9 = Ta(u)g

Notice that the notion of quasi-character is local for the invariant topology: if § € C°°(wyee)®
then @ is a quasi-character on w if and only if for all X € wy there exists w’ C w a completely
G-invariant open neighborhood of X such that 6., is a quasi-character on w’. We will say
that a quasi-character 6 on w is compactly supported if its support (in w) is compact modulo
conjugation. Finally, a Schwartz quasi-character is a quasi-character € on g(R) such that for
all u € I(g) and for any integer N > 1, we have an inequality

DY(X)10(u)0(X)] < [1X ]I

for all X € g,s(R). Note that a compactly supported quasi-character is automatically a
Schwartz quasi-character.

Any invariant distribution 7" on some completely G(R)-invariant open subset w C g(R)
such that dim(/(g)7") < oo is the distribution associated to a quasi-character on w. This
follows from the representation theorem of Harish-Chandra on the Lie algebra, cf. Theorem
28 p.95 of [Va]. In particular, the functions j(X,.), X € Oreg(R), and the functions 7(0,)),
O € Nil(g), are quasi-characters on g(R). In our study of quasi-characters, we will need the
following lemma which reduces essentially to Proposition 11 p.159 of [Va] using semi-simple
descent to maximal tori (cf. the remark after Lemma B.2.T]).

Lemma 4.2.1 Let w C g(R) be a completely G(R)-invariant open subset. Let J C I(g) be
a subalgebra such that the extension I(g)/J is finite. Let us define the following topological
vector spaces

e [

loc

(w, (D%)Y2 Diff) is the space of all invariant functions 6 € C(wreg)® such that

q.0(0) = sup DY(X)"*[DO(X)| < oo

X€ELreg

for all D € Diff(g)¢ and each invariant compact modulo conjugation subset L C w.
We equip LS (w, (D92 Diff)¢ with the topology defined by the semi-norms qrp for

all D and L as before.
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o L2 (w,(D%Y2 1C is the space of all invariant functions 8 € C™(wyes)¢ such that
loc g

qL7u(9) < 0

for all w € 1(g) and each invariant compact modulo conjugation subset L C w. We
equip L2 (w, (D%)Y2 1) with the topology defined by the semi-norms qy,., for allu and

loc

L as before.
o [

loc

(w, (DE)Y2 )Y is the space of all invariant functions 6 € C*(wyee)€ such that

qL7u(9) < 0

for all uw € J and each invariant compact modulo conjugation subset L C w. We equip
L (w, (DE)Y2, ) with the topology defined by the semi-norms qr,, with L and u as
before.

o [®

loc

(w, (DE)Y2,T)C is the space of all invariant functions 0 € C™(wyeg)® such that

qru,Ly = sup |0(u)fp(X)| < oo
XeLT,reg

for every maximal torus T C G, all u € S(t) and every compact subset Ly C wr
(recall that wr = w N (R) and O7(X) = DE(X)V20(X) for all X € wryreg). We equip
L2 (w, (D9YY2 TG with the topology defined by the semi-norms qr.r, with T, u and
Lt as before.

Then, we have the following equalities of topological vector spaces

00
Lloc

(w, (D9)V2, Diff) = Lig,(w, (D9)?, 1) = L

loc

(w, (D)2, )G = L, (w, (D92, T)¢

Proposition 4.2.2 1. Let € C®(ges(R))¢ and assume that there exists k > 0 such
that for all N > 1 we have an inequality

DY (X)V210(X)| < log (2 + DE(X) ™))" | XI5
for all X € greg(F'). Then

(i) The function 0 is locally integrable, the distribution Ty is tempered and there exists
a quasi-character 6 on g(R) such that

T,=T;
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Moreover, we have

)

(V) = DE(X)20(X)j(X,Y)dX
I'(g)

for all Y € g,s(R), the integral being absolutely convergent, and the function
X € greg(R) — DY(X)V20(X) is (globally) bounded.

(i1) Assume moreover that 0 is a quasi-character and that for all w € 1(g) there exists
k > 0 such that for all N > 1 we have an inequality

DY()Y[0(w)f(X)] < log (2+ DY(X) ™)1

for all X € ge(F'). Then the function 0 is a Schwartz quasi-character and so is
0.

(11i) The Fourier transform preserves the space of Schwartz quasi-characters on g(R),
that is: for every Schwartz quasi-character 6 on g(]R) the distribution Ty is tem-

pered and there exists a Schwartz quasi-character 0 such that Tg 1.

(iv) For every Schwartz quasi-character 6 on g(R) and for all D € Diff(g)“, the
function DO is a Schwartz quasi-character and we have DTy = Tpy.

2. Letw C g(R) be a completely G(R)-invariant open subset and let € C™(wyeg)®. Then

(1) Let X € g(R) and wx C gx(R) be a G-good open neighborhood of X. Assume
that w = w$. Then 0 is a quasi-character on w if and only if Ox ., s a quasi-
character on wx.

(i1) Let J C I(g) be a subalgebra such that the extension 1(g)/J is finite. Assume
that 6 satisfies the two following conditions

e For allu € J, the function (D%)Y20(u)8 is locally bounded on w;
o For all uw € J, we have the equality of distributions on w

O(w)Ty = Thwe
Then, 0 is a quasi-character on w.

(iii) Assume that 0 is a quasi-character on w. Then for all D € Diff**(w)¢ the func-
tion DO is also a quasi-character on w and we have the following equality of
distributions on w

DTy = Tpe

Proof:
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1.

(i) First, note that the function 6 is locally integrable and the distribution T} is

tempered by and [L73l Let ¢ € C°(g(R)). Then, by the Weyl integration

formula, we have

/ BX)F(X)AX = [ DO(X)20(X)J6(X, §)dX
(R) T'(g)

Moreover, by definition of the function 3(, .), we have

Je(X.3) = / Iy

for all X € gyee(R). Hence, we get

(4.2.1) /(R 0(X)B(X)dX — /F ( / DE(X)20(X)F(X, V) (V)dY dX

If we introduce an absolute value inside the double integral above we get an
expression which by [[.8.3is essentially bounded by

DEX)2O(X)dX | DEY) 2 p(Y)]dY
I'(g) 9(R)
This product is finite by [L7.1] and Hence the double integral .2 is
absolutely convergent. Switching the two integrals, we get

/ N 0(X)P(X)dX = N 0(Y)p(Y)dY

where

0(Y)= | DEX)V*(X)j(X,Y)dX
I'(g)

for all Y € gyee(R), the integral being absolutely convergent. This shows that fg
is represented by the locally integrable function 0. It follows from [[8.3 and [[.7
that the function (D%)'/20 is globally bounded. Let us now show that @ is a qua81—
character. For this, it suffices to show that for all u € I(g) the distribution d(u)T}

is representable by a function which is locally essentially bounded by (DY)~ 2.
Let u € I(g). Since Ty = Ty, the distribution O(u)Ty is the Fourier transform of
puly = T},0. But it is not hard to see that p,0 satisfies the same hypothesis as 6
and so its Fourier transform is also representable by a function which is (globally)
essentially bounded by (D%)~'/2. This shows that 0 is indeed a quasi-character.
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(ii)) Let w € I(g) and p € I(g*). Then the function pd(u)f satisfies the same hypoth-
esis as 0 in 1.(i) and we have Tpo)9 = pO(u)Ty (since ¢ is a quasi-character).
Hence, by 1.(i), the Fourier transform of pd(u)Ty is representable by a function,
which is necessarily 0(up)(pu§), and moreover the function (D)"Y 2O(up)(pué’A) is
globally bounded. Let us show

(4.2.2) For all u € I(g) and all p € I(g*), the function
X € greg(R) = D(X) 2 [p(X)][0(w)f(X)|

is bounded.

Let u and p be as above. Since p is bounded (in absolute value) by an element in
I(g*) which is positive and bounded by below on g(R) (just take 1+ pp), we may
assume that p has this property. By what we just saw, for every integer & > 1 the
function (D%)Y29(u)(p*0) is bounded. Consider the endomorphisms R(p), L(p)
and ad(p) of Diff (g) given by R(p)D = Dp, L(p)D = pD and ad(p) = L(p)—R(p).
They all commute with each other and ad(p) is locally nilpotent. Hence, there
exists an integer M > 1 such that ad(p)™(d(u)) = 0. It follows that for every
integer n > M, we have

The last sum above stays in a subspace of dimension less than M as n varies. It
easily follows that we may find two integers n,m > 1 and scalars A\y,..., \,, € C
such that
pr(u) = Mp" T O(u)p + A p O (w)p™
Because the functions (DG)1/28(u)(pk5), 1 < k < m, are all globally bounded,
we get an inequality
DE(X)M2[p(X)" M 0(u)B(X)| < [p(X)[" T+ [p(X)]"

for all X € g,ee(R). Since |p| is bounded by below, the last sum above is essentially
bounded by [p(X)|"*™~!. Then, after dividing by |p(X)|"™™ !, we obtain [L.2.2]

It is easy to see that we may find p € I(g*) such that || X|pq < [p(X)], for
all X € g(R). Hence, it follows from and 1.(i) that 0 is a Schwartz quasi-
character. It implies in particular that 6 satisfies the same condition as ¢, hence
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its Fourier transform, which is just the function X — 6(—X), is also a Schwartz
quasi-character. This shows that 6 is itself a Schwartz quasi-character.

(iii) This follows directly from 1.(ii) (Note that a Schwartz quasi-character 6 satisfies
the assumptions of 1.(ii)).

(iv) Denote by A the subalgebra of Diff(g)“ consisting of the operators D such that
for every Schwartz quasi-character #, the function D@ is also a Schwartz quasi-
character and DTy = Tpy. We want to show that A = Diff(g)®. Obviously
we have I(g) C \A. Since the Fourier transform preserves the space of Schwartz
quasi-characters, it easily follows that I(g*) is also included in .A. By Proposition

B.IT(vi), it follows that A = Diff(g)°.

2. We are going to prove 2.(i), 2.(ii) and 2.(iii) by induction on dim(G). If dim(G) = 1,
then G is a torus and everything is obvious. We henceforth assume that 2.(i), 2.(ii)
and 2.(iii) hold for every connected reductive groups G’ with dim(G’) < dim(G).

We first establish 2.(i). The direction 6y, quasi-character = 6 quasi-character is
easy using Lemma B.2.T(i). So assume that 6 is a quasi-character. If Gx = G, there is
nothing to prove. If Gx # G, by Lemma B.2.1[(i), we see that fx, satisfies 2.(ii) for
J C I(gx) the image of I(g) by the morphism u +— wux. By the induction hypothesis,
it follows that €y, is indeed a quasi-character and this ends the proof of 2.(i).

We now prove 2.(ii) and 2.(iii) together. That is, we take # and J as in 2.(ii) and we
are going to prove that for all D € Diff*°(w)® the function D is a quasi-character on
w and that we have the equality DTy = Tpg of distributions on w. By definition, this
amounts to showing the two following facts

(4.2.3) For all D € Diff**(w)“ the function (D%)/2D# is locally bounded on w.
(4.2.4) For all D € Diff*(w)% we have the equality DTy = Tpg of distributions on w.

By Proposition B.III(v), we are immediately reduced to proving [£.2.3]and 2.4 only for
D € Diff(g)¢. By Lemma2.T] we already know that for all D € Diff(g) the function
(D%)Y2D4 is locally bounded on w. Hence, we only need to show the following

(4.2.5) For all D € Diff(g)®, we have the equality DTy = Tpg of distributions on w.

Let D € Diff(g)¥. The question is local for the invariant topology i.e., we only need
to prove that the equality holds near every X € wy. So let X € wg. Assume first that
Gx # G. In this case, we can use semi-simple descent and the induction hypothesis
on Gx. More precisely, let wx C gx(R) be a G-good open neighborhood of X such
that w§¢ C w. Then, by Lemma B.ZTi), the function fx,,, satisfies the assumptions
of 2.(ii) on wx with J replace by its image in I(gx) via the morphism u +— uyx. Since
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the two extensions I(gx)/I(g) and I(g)/J are finite, so is I(gx)/J. Hence, applying
2.(ii) to G'x, we see that fx,, is a quasi-character on wyx. Then applying 2.(iii) to
Gx, we see that we have the equality of distributions DxTp, , = Tbyoy,, On wx.
By Lemma B211(i), this implies that the equality of distributions DTy = T holds
on w§. This proves the claim near X in this case. Now assume that Gx = G.
This condition is equivalent to X € 35(R) N w, where 3¢ denotes the Lie algebra of
Za. Let Ggor be the derived subgroup of G and let g4, denote its Lie algebra. We
have the decompositions g = 3¢ @ gder and 1(g) = S(3¢)I(gaer). The question being
local at X, we may replace w by any completely G(R)-invariant open neighborhood
of X that is contained in w. In particular, we may assume without loss of generality
that w = w; X wWaer Where w; C 3¢(R) and wger € gaer(R) are open and completely
G(R)-invariant. Note that we have wWyeg = W; X Werreg- L€t faer € C™(waer)® be such
that

e Supp(wyer) is compact modulo conjugation;

® fqor = 1 near 0.

Then, we claim that the function fq..0 satisfies the same hypothesis as 6, that is:

(4.2.6) for all u € J, the function (D%)Y20(u)( f4erf) is locally bounded on w and we
have the equality 0(u)TY,..0 = Tow)(f..0) Of distributions on w.

This is true near w; x {0} since on some neighborhood of it fg.,8 coincide with 6. For
X € ws\w; x {0}, we can use semi-simple descent and the induction hypothesis (note
that Gx # G) to show that holds near X. Indeed, we already saw that there
exists wx C w a G-good open neighborhood of X such that 0, is a quasi-character
on wy. By the property 2.(iii) applied to G, it follows that (faer)xwyOx.wy 1S also a
quasi-character on wyx. Hence, by 2.(i), the function fy.0 is a quasi-character on w§

and so a fortiori L2, is satisfied on w§.

Since fge 6 and € coincide near X, we may replace 6 by fge0 (recall that we want to
show that the equality DTy = Tpp holds near X). Doing this, the function 6 will now
satisfy the following additional assumption

(4.2.7) There exists a G(R)-invariant compact modulo conjugation subset Lge, C w
such that Supp(#) C w; X Lger-

Let us now show the following

(4.2.8) For all u € S(3¢) and all v € J, we have O(uv)Ty = Tyvys on w.
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Indeed, for all u € S(3¢), all v € J and all p € C®(w), we have

[ee e mpmiy = [ @w)om)ewe iy

w

_ / (D)) (Y, + Yaer) (O(0)0) (V; + Yaaer) dYd Yar

Wder,reg

— [ [ el Yau) @)Y + Vi) 4Yid Yo

Wder,reg

- / o(V)(0(ur)f) (YV)dY

where in the first equality we have used the equality 0(v)Ty = Ty)e, in the third
equality we have used the fact that the function Y; € w; — (9(v)0)(Y; + Yer) is smooth
for all Yyer € Waerreg and in the fourth equality we have used the fact that the function
O(uv)@ is locally integrable (since it is locally bounded by (D%)~1/2). This proves £.2.8]
Up to replacing J by S(3¢)J, we may now assume that S(3¢) C J.

Choose f; € C>(w;) such that f; = 1 near X. Then, the function f;6 coincides
near # with X. By 1.(iv), we thus only need to show that f,0 is a Schwartz quasi-
character on g(R). Since, by L.2.7], the support of this function in w is compact modulo
conjugation, we even only need to prove that it is a quasi-character. Actually, we are
going to prove this for all f; € C2°(w,). For all N > 1, the function |||, (D%)"/f,6
is globally bounded (since it is locally bounded, invariant and compactly supported
modulo conjugation). Hence, the function f;f satisfies the assumption of 1.(i) (with
k = 0) and so we know that the distribution Ty is tempered and that its Fourier
transform is representable by a quasi-character f;@ on g(R) which is globally bounded
by (D%)~/2. We claim that we have the following

(4.2.9) For all p € I(g*), the function
Y € gueg(R) = DY) 2p(Y) (V)

is bounded.

Since u +— p, is an isomorphism I(g) ~ I(g*) and I(g) = S(3¢)I(gder), We only need
to prove when p is a product py py,., Wwith u; € S(3¢) and uger € (gaer). Note

that the function pué(f;?) is the Fourier transform of d(u;)f;Tp. Since S(3¢) C J and
the function f;0 is supported in w, this distribution is represented by a function of the
form
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N

> (0u) f;)(0(v:)0)

1=1

with u;,v; € S(3¢), 1 < ¢ < N. Note that the function 9(v;)0 satisfies the same
assumptions as @ (including A.2.7) and that the functions d(u;)f; belong to C2°(w;).
Hence O(uy) f;0 is a sum of functions of the same type than f;0. It follows that we
only need to prove for p = p, with u € I(gqer). Since p is bounded (in absolute
value) by an element of I(g,,) that is positive and bounded by below on g(R), we may
assume that p has this property. Because the extension I(g)/J is finite, we may find
an integer n > 1 and elements vy, ...,v,_1 € J such that

ut = v, u" T 4L+ vu+ v

The function pZ(f;?) is the Fourier transform of

n—1 n—1
") fyTo = [0 Ty = 3 £0)Ow) Ty =S ) fyTouns
=0 =0

Note that, although the equality 0(v;)Ty = Tp(y,)9 only holds on w, we can use it here
as if it holds everywhere since the support of f;6 in g(R) is contained in w. Applying
the Fourier transform to this equality, we obtain

n—1

(4.2.10) PTro =Y i Trow0
=0

Note that for all 1 < i < n — 1, the function f,0(v;)6 is globally bounded by (D%)~%/2
and compactly supported modulo conjugation. Consequently, its Fourier transform
is also representable by a function that is globally bounded by (D%)~/2 (by 1.(i)).
Hence, by [4.2.10] we get an inequality

D)2 |p (X" F0(X)] < 1+ [pu(X)] + ... + [pu(X)|"

for all X € gee(R). Since |p,| is bounded by below, we easily deduce that the function
(D)Y2p,,(f,0) is bounded. This proves

Since there exists p € I(g*) such that | X||rg < [p(X)| for all X € g(R), it follows

from [.2.9] that the function f,f satisfies the assumptions of 1.(i). Hence, its Fourier
transform, which is the function Y +— (f;0)(=Y), is a quasi-character. This proves the
claim that f,0 is a quasi-character and ends the proof of 2.(ii) and 2.(iii). W
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Let w C g(R) be a completely G(R)-invariant open subset. We will denote by [(QC(w)| the
space of quasi-characters on w and by |QC.(w)| the subspace of compactly supported quasi-
characters on w. If L C w is invariant and compact modulo conjugation, we will also denote
by QCL(w) C QC.(w) the subspace of quasi-characters with support in L. Finally, we will

denote by |SQC (g(R))| the space of Schwartz quasi-characters on g(R).

We will endow these spaces with locally convex topologies as follows. For L C w as before
and u € I(g), we define a semi-norm on QC(w) by

qr.(0) = sup DY(X)V2|0(u)8(X)], 0 € QC(w)

Then, we equip QC(w) with the topology defined by the semi-norms (qr v )uer(y) and QC(w)
with the topology defined by the semi-norms (g .)r. where L runs through the invariant
compact modulo conjugation subsets of w and w runs through I(g). We have a natural
isomorphism

QC(w) = lim QC, ()

and we endow QC.(w) with the direct limit topology. Finally, we put on SQC(g(R)) the
topology defined by the semi-norms

Fem(0) = sup [ X7 D(X)20(w)0(X)], 0 € SQC(g(R))

X €greg(R)

where u runs through 7(g) and N runs through all positive integers.

Lemma 4.2.3 Let w C g(R) be a completely G(R)-invariant open subset and L C w be
wmvariant and compact modulo conjugation. Then

(1) QC(w), QCL(w) and SQC(g(R)) are Fréchet spaces whereas QC.(w) is an LEF space.
The inclusions QC.(w) C QC(w) and SQC(g(R)) € QC(g(R)) are continuous and
moreover QC.(w), QCL(w) and QC(w) are nuclear spaces.

(i1) Let X € go(R) and wx C gx(R) be a G-good open neighborhood of X. Assume that

w=w§. Then the linear map

6 — GX,wX
induces topological isomorphisms QC(w) ~ QC(wx) and QC.(w) ~ QC.(wx).
(i1i) The Fourier transform 0 +— 0 is a continuous linear automorphism of SQC(g(R)) and
for all 8 € SQC(g(F)), we have
0= [ DYX)0(X)j(X,.)dX
I'(g)
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the integral above being absolutely convergent in QC(g(F')). Moreover, for all D €
Diff(g)¢ the linear map

0 € SQC(g(R)) — Db € SQC(g(R))

1S continuous.

(iv) The two bilinear maps

Diff (w)€ x QC,(w) — QC.(w) Diff*(w)% x QC(w) = QC(w)
(D,0) — DO
are separately continuous.

(v) QC.(w) is dense in QC(w) and QC.(g(R)) is dense in SQC(g(R)).

Proof:

(i) The claim about inclusions is obvious. Using Proposition B.I1[i), it is clear that the
topologies on QC(w), QCL(w) and SQC(w) may be defined by a countable number of
semi-norms and that QC.(w) is the direct limit of a countable family (QCp, (w))n>1
where (Ly,,)n>1 is an increasing sequence of invariant compact modulo conjugation sub-
sets of w. Moreover, QCp(w) is a closed subspace of QC(w) and the topology on
QCL(w) is induced from the one on QC(w). Hence, it suffices to show that QC'(w) and
SQC(g(R)) are complete and that QC(w) is nuclear. Let (6,,),>1 be a Cauchy sequence
in SQC(g(R)). Then, it is also a Cauchy sequence in QC(g(R)). If this sequence ad-
mits a limit 6 in QC(g(R)), then it is clear that 6 belongs to SQC(g(R)) and that
it is also a limit of the sequence (6,,),>0 in SQC(g(R)). Hence, we are only left with
proving that QC(w) is nuclear and complete. Let T (G) be a set of representatives for
the G(R)-conjugacy classes of maximal tori in G. For all T € T(G) set wr = w Nt(R),
Wrreg = W N teg(R) and define Cp°(wrreg, wr) to be the space of all smooth functions
[t wrree — C such that O(u)f is locally bounded in wy for all v € S(t). We endow
this space with the topology defined by the semi-norms

qruL(f) = sup |(O(w) /)X, [ e CF(Wrreswr)

XELT’ng

for all u € S(t) and every compact subset Ly C wp. Then by Lemma [AL5.2] the spaces
C(Wrreg, wr), T € T(G), are all nuclear Fréchet spaces (note that since wr e is the
complement in wy of a finite union of subspaces of t{(R), the pair (W eq, wr) trivially
satisfies the assumption of Lemma [A.5.2]). Moreover, by Lemma [L.2.T], the linear map

0 — (0r)reT ()
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(i)

where 07(X) = DY(X)Y20(X) for all X € wr e, induces a closed embedding

QCw) = B Cr(wrieg: wr)
TeT(G)

The result follows.

By Proposition B.2.2(i), the map 6 — 6x,, induces linear isomorphisms QC(w) ~
QC(wx) and QC.(w) ~ QC.(wx). Moreover, the inverses of these isomorphisms are
easily seen to be continuous. By the open mapping theorem, it follows that these are
indeed topological isomorphisms.

First we prove the claim about the Fourier transform. By the closed graph theorem
and Proposition [.2.2(i), it is sufficient to prove that for all § € SQC(g(R)) the integral

(4.2.11) /F . DE(X)'20(X)j(X,.)dX

is absolutely convergent in QC/(g(R)) and that the linear map

SQC(g(R)) = QC(g(R))
= / DE(X)20(X)j(X,.)dX
I'(g)

is continuous. Let L C g(R) be invariant and compact modulo conjugation and let
u € I(g). Since d(u)j(X,.) = pu(—X)j(X,.), by [L83 we have

/F( )DG(X)”QI@(X)|qL,uG(X, ))dX < o DE(X)2|pu(~X)0(X)|dX

< () / Ol
g

for all § € SQC(g(R)) and all N > 1. There exists Ny > 0 such that |p,(—X)| <
| X ||]Fv(og) for all X € g(F') and so by [L7.2] the last integral above is absolutely conver-

gent for N sufficiently large (depending on w). This proves the convergence and the
continuity in # € SQC(g(R)) of the integral L.2.11]

We now prove the claim about differential operators. Let us denote by A the subalge-
bra of differential operators D € Diff(g)“ that induce a continuous endomorphism of
SQC(g(R)). It is obvious that I(g) C A. Since the Fourier transform exchanges the
actions of I(g*) with the action of I(g), it follows that we also have I(g*) C A. Hence,
by Proposition BII(vi), we have A = Diff(g)¢.
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(iv)

By the closed graph theorem, we only need to prove that the bilinear map

Diff*(w)¢ x QC(w) — QC(w)
(D, 0) — DO
is separately continuous. Since for all u € I(g) multiplication by d(u) is a continuous
endomorphism of Diff**(w)%, it suffices to prove that the bilinear map above is sepa-
rately continuous when the target space is equipped with the topology defined by the

semi-norms (gz,1)z. By definition of the topology on Diff*(w)?, it is even sufficient to
prove the following

(4.2.12) For each invariant and compact modulo conjugation subset L C w and all
n > 1, there exist a continuous semi-norm v, ;, on DiffZ (w)® and a continuous
semi-norm /i, ;, on QC/(w) such that

qr.1(D0) < vn,£(D)pin,1.(0)
for all D € Diff®,(w)® and all § € QC(w).

By Proposition B.II(v), to prove 212, we only need to show that for all D € Diff(g)“
the linear map

QC(w) = QC(w)
60— Do

is continuous. This follows from Lemma A.2.1].

The density of QC.(w) in QC(w) follows from the existence, for every invariant compact
modulo conjugation subset L C w, of a function ¢, € C®(w) that is compactly
supported modulo conjugation and such that ¢, = 1 on some neighborhood of L. Let
now ¢ € C*=(g(R))¥ be compactly supported modulo conjugation and such that ¢ = 1
in some neighborhood of 0. Let us set ¢;(X) = ¢(¢t7*X) for all t > 0 and all X € g(R).
The density of QC.(g(R)) in SQC(g(R)) will follow from the following claim

(4.2.13) For all 8 € SQC(g(R)), we have
tlim il =0

in SQC(g(R)).
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We need to see that for all u € I(g) and all integers N > 0, we have

lim g, n(0 — @) =0

t—o0
Of course, it is sufficient to deal with the case where u is homogeneous. We henceforth
fix an element u € I(g) which is homogeneous. Let w C g(R) be a completely G(R)-
invariant open neighborhood of 0 on which ¢ equals 1. It is not hard to see that

-1 -1
[Xrq <
forall ¢ > 0 and all X € g(R) —tw. Since for all £ > 0 the function § — ¢, is supported
in g(R) — tw, it follows that for all integers N,k > 0, we have an inequality
QU,N(Q - @te) < t_kqu,N-l—k(e - @te)

for all t > 0. Hence, it suffices to show the existence of an integer d, such that for
every integer N > 1, we have an inequality

(4.2.14) qun () <t

for all t > 1. We define an action of R% on Diff**(g(R)) as follows: for all (¢, D) €
R* x Diff**(g(R)), we define D, € Diff**(g(R)) by

D f = (thfl)t

for all f € C*(g(R)), where as before f;(X) = f(¢t'X) for all t € R* and all f €
C>*(g(R)). Let N > 1 be an integer. Then, we have

(4.2.15) Gun (9:0) = an (0(u) (0e)) =t~ 95 g ((8(u) © ¢),0)

for all t > 0, where we have set gy = ¢1 v and where 0(u) o ¢ denotes the differential
operator obtained by composing d(u) with the multiplication by ¢. By Proposition
B.IT(v), there exists an integer n > 1, functions o1, ..., v, € C®(g(R))¢ and operators
Dy,..., D, € Diff(g)¢ such that

O(u)op =1 D1+ ...+ ¢,D,

Of course, we may assume that the functions ¢q,..., ¢, are compactly supported
modulo conjugation and that for all 1 < ¢ < n there exists an integer d; such that
(D) = t% Dy, for all t € R* . It then easily follows from 217 that
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Gu,n (p10) < Z thimdee gy (D;6)

i=1

for all t > 0. Since the functions D;f, 1 < i < n are Schwartz quasi-characters, the semi-
norms ¢y (D;0) are finite. We deduce that [.2.14] holds for d,, = max;<;<,(d;) — deg(u).
This proves [£.2.13 and ends the proof of (v). B

4.3 Local expansions of quasi-characters on the Lie algebra when
F=R

Let w C g(R) be a completely G(R)-invariant open subset and 6 a quasi-character on w.
Recall that, for 7' C G a maximal torus, we denote by 07 the function on wNt.es(R) defined
by

Or(X) = DE(X)20(X), X € wNtey(R)

Lemma 4.3.1 (i) LetT C G be a mazimal torus. Then, for any connected component " C
W N teg(R) and all u € S(t) the function X € I' — (0(u)0r)(X) extends continuously
to the closure of I in w N ¢(R).

(11) Let X € wys. Then, there exist constants cpo(X) for O € Nilyeg(gx) such that

DYX +Y)POX +Y)=DYUX+Y)? > o(X)j(0,Y)+0(]Y])

O€Nileg(9x)

for allY € gx reg(R) sufficiently near 0.

Proof:

(i) This follows directly from Lemma[£.2.1] and the mean value theorem (Note that t,e,(R)
is the complement in t(R) of a finite union of subspaces).

(ii)) By Lemma [L23)(ii), we are immediately reduced to the case where X € 34(R). By
translation, we may even assume that X = 0. Define a function 6, on g,e(R) by

DE(X)20y(X) = lim, DE(tX)29(tX)
t—

for all X € g,ee(R). Note that for ¢ > 0 sufficiently small, we have tX € w, and

that the limit exists by (i). Moreover, the function 6 is invariant and homogeneous of
degree —6(G)/2, that is
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(4.3.1) Bo(tX) = t79D/2g,(X)

for all X € gyee(R) and all ¢ > 0. Also, the function (D%)Y26, is (globally) bounded
since (D%)/20 is bounded near 0. By (i) again, for any maximal torus 7 C G and any
connected component I' C g, (R), we have

DE(X)!20(X) = DU(X)"205(X) + O(|X])

as X € I'Nw goes to 0. Since there are only finitely many conjugacy classes of maximal
tori, that for all of them t,.,(R) has only finitely many connected components and that
| X] < |g7t X g| for all g € G(R) and all X € t(R), it follows that for some completely
G(R)-invariant neighborhood w’ C w of 0, we have

(4.3.2) DE(X)29(X) = DY(X)Y?6,(X) + O(|X])

for all X € w],. It remains to show that the function fy is a linear combination

of functions j(0,.) for O € Nil,z(g). Since the function (D9)"/20, is bounded, the
function 6 is locally integrable and so it defines a distribution Ty,. Let I*(g) C
I(g) denote the subalgebra of elements without constant term. We first establish the
following

(4.3.3) For all u € I (g), we have d(u)Ty, = 0.

Let u € I"(g) be homogeneous of degree d > 0. It follows easily from [31] that the
distribution 0(u)Tp, is homogeneous of degree —d — §(G)/2 in the following sense: for

all f € C*(g(R)), we have

(4.3.4) (O(w) Ty ) (fr) = @42 (D) Ty, ) (f)
for all t > 0 and where f;(X) = f(t"'X). Since the function (D%)/29(u)d is locally

bounded and (D%)~!/2 locally integrable, it is easy to see that for all f € C=(g(R)),
we have

(4.3.5) OIS = [Taw )] < E1m@=G)/2

for all ¢ > 0 sufficiently small (in particular so that Supp(f;) C w). Set R = Ty_q,. It
is a distribution on w. By E3.2) we know that X + |X|71D%(X)Y2|0(X) — 0y(X)] is
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bounded on some neighborhood of 0. It follows easily that for all f € C°(g(R)), we
have

(1.3.6) (B(u)R)(f)] < tHHimia) =52

for all t > 0 sufficiently small. Since we have (u)R = 0(u)Ty — O(u)Tp,, the equality
(434 and the inequalities and cannot be compatible unless d(u)7Ty, = 0.
This proves [£.3.3l

By Lemma 2.2 of [BV], every homogeneous distribution is tempered. Hence, Tp, is
tempered. Consider its Fourier transform 7j,. It is an invariant and homogeneous

distribution of degree —dim(g) — 0(G)/2. Also, by B33 we have pﬂ/}; = 0 for all
u € I*(g). Since the common zero locus of the polynomials p,, for all u € I7(g) is the

o~

nilpotent cone N of g(R), it follows that Supp(fg\o) C N. Hence, by [L82 Tj, is a
linear combination of the distributions Jo for O € Nil,¢s(g) and we are done. H

4.4 Quasi-characters on the group when F' =R

In this section we still assume that F' = R. Let Q C G(R) be a completely G(R)-invariant
open subset. A quasi-character on ) is a function § € C™(Qe)% that satisfies the two
following conditions

e For all z € Z(g), the function (D%)Y/226 is locally bounded on € (so that by [L7.1] the
function z6 is locally integrable on 2);

e For all z € Z(g), we have the following equality of distributions on (2

2Ty =T,

We say that a quasi-character 6 is compactly supported if it is compactly supported modulo
conjugation. We will denote by the space of quasi-characters on 2 and by [QC.())]
the subspace of compactly supported quasi-characters. If L C €2 is invariant and compact
modulo conjugation we also introduce the subspace QCL(€2) C QC.(2) of quasi-characters
supported in L. We endow QC(2) with the topology defined by the semi-norms

gE0) = sup DO(2)2:0(x)
xeLreg
for all z € Z(g) and we equip QC(2) with the topology defined by the semi-norms (qr,.)r. -
where L runs through the invariant compact modulo conjugation subsets of €2 and z runs
through Z(g). Finally, we put on QC.(£2) the inductive limit topology relative to the natural
isomorphism
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QCL(Q) = i QC1(2)

As in the case of the Lie algebra, by the representation theorem of Harish-Chandra, any
invariant distribution 7" defined on some completely G(R)-invariant open subset 2 C G(R)
such that dim(Z(g)T") < oo is the distribution associated to a quasi-character on 2. In
particular, for every admissible irreducible representation 7w of G(R) the character 6, of 7 is
a quasi-character on G(R).

Proposition 4.4.1 Let Q) C G(R) be a completely G(R)-invariant open subset and let L C Q
be invariant and compact modulo conjugation. Then

(i) Let w C g(R) be a G-excellent open subset and assume that Q2 = exp(w). Then the
linear map
0~ 06,

induces topological isomorphisms QC(Q) ~ QC(w) and QC.(Q) ~ QC.(w).
(i) QC () and QCL(R) are nuclear Fréchet spaces and QC.(2) is a nuclear LF space.
(111) Let © € Gx(R) and Q, C G.(R) be a G-good open neighborhood of x. Assume that

Q= QY. Then the linear map

60— 95,;791

induces topological isomorphisms QC () ~ QC(Q,)?¢ @) and QC.(Q) ~ QC,(Q,)?c@ )
(iv) For all D € Diff*(Q)¢ and all 0 € QC(RQ), the function DO is a quasi-character on €

and we have DTy = Tpg. Moreover, the two bilinear maps

Diff*(Q)“ x QC(Q) — QC(Q), Diff>*(Q)¢ x QC.(N) — QC.(Q)
(D,0) — DO
are separately continuous.

(v) If G = G1 x Gy with Gy and Gy two reductive connected groups over F', and € = Qq x
where Q1 C G1(R) (resp. Q2 C Ga(R)) is a completely Gy (R)-invariant (resp. com-
pletely Gy (R)-invariant) open subset then there is a canonical isomorphism of topolog-
ical vector spaces

QC(R) ~ QC () ®,QC ()

101



(vi) For all 0 € QC(QQ) and all © € Gx(R), there exist constants € C, for O €
Nilyeg(g), such that

D (ze¥) 29 (zeY) = D (xe¥)1/? Z Ce,o(if);(oa Y)+O(]Y])

OENilreg (Qx )

for allY € g, .eq(R) sufficiently near 0.

Proof: (i) is a straightforward consequence of B33l (vi) follows from (i), (iii) and Lemma
4.31](ii). Before proving (ii)-(v), we need to show the following

(4.4.1) Let J C Z(g) be a subalgebra such that the extension Z(g)/.J is finite. Assume that
0 € C™(Qreg)” satisfies the two following conditions

e For all z € J, the function (D%)'/220 is locally bounded on €;
e For all z € J, we have the equality of distributions on €2

2Ty =T

Then, 6 is a quasi-character on €.

The proof is by induction on dim(G), the case of a torus being obvious. Let 6 and J be as
in 4.4.7. We need to show that 6 is a quasi-character near every semi-simple point z € (.
If G, # G, then we can use semi-simple descent (cf. Lemma B.2.1ii)) and the induction
hypothesis for G, to conclude. Assume that G, = G i.e., © € Zg(F), then translating 0
and Q by z, we may assume that z = 1. But then the result follows from (i), and the
analogous result for the Lie algebra (Proposition 1.2.212.(ii)).

We may now proceed to the proof of (ii)-(v).

(ii) Using Proposition BII[(i), it is easy to see that the topology on QC(f2) is defined by
a countable number of semi-norms and that QC.(2) is the direct limit of a countable
family (QC1, (Q))n>1 where (L, ),>1 is an increasing sequence of invariant and compact
modulo conjugation subsets of Q. Moreover, QCL(€2) is a closed subspace of QC(f2)
and its topology is induced from the one on QC(£2). Hence, we only need to show that
QC(Q) is nuclear and complete. For every z € (), choose w, C g,(F) a G -excellent
open subset such that 0, = rexp(w,) C G,(F) is a G-good open neighborhood of z
such that Q¢ C Q. The linear map

QC() — ] ecs)

(EGQSS
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0 (0jg)

TE€Qss

is a closed embedding. Hence, it suffices to show that the spaces QC(Q5), = € Q, are
nuclear and complete. Let z € ()i and consider the map

(4.4.2) 0 € QC(NS) = (b20,),, € O (Wg reg )26

Set J = {u,,; z € Z(g)}. It is a subalgebra of I(g,) with the property that the
extension [(g,)/J is finite. By B.4.1], (i) and Proposition 4.2.212.(ii), we see that the
linear map induces a linear isomorphism QC(Q%) ~ QC(w,)?¢™. By Lemma
E27], it is even a topological isomorphism. Hence, by Lemma EZ3(i), QC(QS) is a
nuclear Fréchet space and this ends the proof of (ii).

(iii) Once again, by 4Tl (where we take J = {z,, 2z € Z(g)}) and Lemma[B3.2.1](i), the linear
map 0 + 0,¢, induces linear isomorphisms QC() ~ QC(€2,)%¢®@ and QC.(Q) =~
QC.(Q,)%9@ The inverse of these isomorphisms are obviously continuous. Hence, by
the open-mapping theorem these are topological isomorphisms.

(iv) The first part of (iv) follows easily from (i), (iii) and Proposition [£.2.212.(iii). Choose,
as in the proof of (i), for every x € Q) a G-excellent open subset w, C g,(F') such that
Q, = zexp(w,) C G,(F) is G-good and Q¢ C Q. Then, by the closed graph theorem,
it suffices to show that for every x € () the bilinear map

Diff*(Q9)¢ x QC(QS) — QC(QY)
(D,8) — Do

is separately continuous. But by (i), (iii) and Lemma B.2.11(ii), we have topological
isomorphisms

QC() ~ QC(w,) %™
0 (R(x)0,0,)

Wx

Diff**(Q%)¢ ~ Diff > (w,)%c @)
D — (R(z)D;q,)

Wx

Hence, we are reduced to show that the bilinear map

Diﬁm(wm)ZG(m) % QC(Wm)ZG(m) N Qc(wm>ZG($)
(D, 0) — Db

is separately continuous. This follows from Lemma [23(iv).
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(v) The natural bilinear map

QU () x QC(22) — QC(Q)
(01,02) — [(91, g2) — 01(91)02(g2)]

is continuous. Hence it extends to a continuous linear map

QC(2)®,QC(Q) — QC(Q)

and we would like to show that this is a topological isomorphism. By the open mapping
theorem and Proposition [A.5.] of the appendix, this amounts to proving that for all
6 € QC(Q) the two following conditions are satisfied

(4.4.3) For all g1 € Q4 1eq, the function gy € Qe — (91, g2) belongs to QC(£s);
(4.4.4) For all A € QC(£)y)’, the function g; — A(6(g1,.)) belongs to QC(£2y).

The first condition is easy to check and left to the reader. Let § € QC(2). In order
to prove that the condition .44l is satisfied, it is obviously sufficient to establish the
following

(4.4.5) The function g1 € Q veg — 0(g1,.) € QC(€22) is smooth, for all 2z € Z(g;) and
every invariant and compact modulo conjugation subset L; C €, the set

{D (g1)"* (R1(21)0) (91,.), g1 € Lieg}

is bounded in QC(2y) and for all p; € C°(€), we have the equality

/Q (Ra(2)6) (1. o1 (91)dgs = / 6or. ) (i) (2)dgn

Q1

in QC(Qy).

(the index 1 in R;(z;) is here to emphasize that we are deriving in the first variable).
Note that if the function g1 € Qe — 0(g1,.) € QC(€) is smooth then for all
u € U(g), the derivative R(u) (g1 0(g1,.)) (1) € QC(£22) is necessarily equal to
(Ry(u)0) (g1,.), which is why we are using the function (R;(z1)€) (g1,.) above. The
second claim in is obvious and the last equality of need only to be checked
after applying to it the continuous linear forms

0y € QC() = 02(g2)p2(g2)dg2, P2 € CZ (o reg)

Qo
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(because these linear forms separate elements of QC'(23)) where then it is an obvious
consequence of § being a quasi-character. Hence, we are only left with proving that the
map g1 € U reg — 0(g1,.) € QC(2) is smooth. This fact follows easily from the next
claim

(4.4.6) For all u € U(gy) and all g1 € €2 seq, the function (R;(u)0)(g1,.) is a quasi-
character on {2, and for every compact subset K C ) 1o, the family

{(R1(u)0)(g1,-), g1 € K1}
is bounded in QC(€).

Let uw € U(g1). In order to get 4.0 we only need to check the following

(4.4.7) For all z5 € Z(gs), all compact subsets K1 C €2, and each invariant and
compact modulo conjugation subset Ly C (s, there exists C' > 0 such that

D% (g2)""? |(Re(22) R1(u)0) (g1, 92)| < C
for all (g1, 92) € K1 X L yeg.

and

(4.4.8) For all gy € C°(9Qy) and for all z, € Z(gs), we have the equality

/Q(R2(Z2)R1(U)9)(91,92)%(92)@2:/ (Ri(u)0) (g1, g2) (R(23)p2) (92)dga

Qo
for all g1 € 4 req-

If 447 is satisfied, then both sides of the equality 1.4.§ are continuous in g; € € yeq.
Hence, the equality need only to be checked after integrating it against a function
1 € C°(8 reg) Where it is again an easy consequence of § being a quasi-character.
Let us prove 47 Fix zo € Z(g2) and an invariant and compact modulo conjugation
subset Ly C €. Then the functions (R2(22)0) (., g2), g2 € Lo req, are all quasi-characters
on €2y and the family

{D(g2)""* (R2(22)0) (-, 92), g2 € Layes}

is bounded in QC(£2;). Hence, to get [4.4.1 it suffices to see that for every compact
subset Ky C € ;eq, the linear forms

01 € QC() = (R(u)bh) (91), g1 € Ky

form a bounded subset of QC(€2)". This follows from example from (iii) (where we
take points x € € which are regular). This ends the proof of (v). B
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4.5 Functions ¢y

We henceforth drop the condition that F' = R so that F' can be p-adic as well. Let 6 be a
quasi-character on G(F). Then, for all z € G(F') we have a local expansion

DY (xe®)?0(xe™) = DY (xe™) > " cpo(2)i(0, X) + O(|IX])
OENilreg(gx)

for all X € g, ee(F) sufficiently near 0 (in the p-adic case, this follows from the fact that

DY (X)Y?5(0, X) = O(]X|) near 0 for all O € Nil(g)\ Nil,s(g)). It follows from the homo-
geneity property of the functions j(O,.) and their linear independence that the coefficients
cp,0(x), O € Nilyeg(gs), are uniquely defined. We set

1
@(QE) = Z 097(9(:1:)
|N11reg(gl‘)| OENilreg(gI)

for all z € G (F'). This defines a function

Cy : GSS(F) —C

Similarly, to any quasi-character 6 on g(F') we associate a function

Cp : gSS(F) - C

Proposition 4.5.1 1. Let 0 be a quasi-character on G(F') and let © € Gg(F'). Then

(1) If G, is not quasi-split then cy(x) = 0.

(1) Assume that G, is quasi-split. Let B, C G, be a Borel subgroup and Tya . C B,
be a mazimal torus (both defined over F). Then, we have

DG(x)l/zcg(:c) = |W(Ga, Toae)| ™ lim DG(x’)l/QH(x’)
o' €Tqq,0(F)—=x

(in particular, the limit exists).

(i) The function (D%)2cy is locally bounded on G(F). More precisely, for any
invariant and compact modulo conjugation subset L C G(F'), there exists a con-
tinuous semi-norm vy, on QC(G(F)) such that

sup D(2)2|eo()] < v1.(0)
IEGLSS

for all 0 € QC(G(F)).
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(iv) Let Q, C G.(F) be a G-good open neighborhood of x. Then, we have

D (y)"2ca(y) = D% (y) o, . ()

for ally € Q4.
2. Let 0 be a quasi-character on g(F') and let X € gs(F'). Then

(1) If Gx is not quasi-split then co(X) = 0.

(11) Assume that Gx is quasi-split. Let Bx C Gx be a Borel subgroup and Tya x C Bx
be a mazximal torus (both defined over F'). Then, we have

DE(X)2cy(X) = |W(Gx, Toax)|™"  lim DY X")Y?9(X")

X’Efqd,x(F)—)X

(in particular, the limit exists).

(iii) The function (D%)Y2cy is locally bounded on g(F). More precisely, for any invari-
ant and compact modulo conjugation subset L C g(F'), there exists a continuous
semi-norm vy, on QC(g(F')) such that

sup D(X)"[eg(X)| < v (6)
XGLSS

for all 0 € QC(g(F)).

(iv) Forall\ € F* let[MyP be the quasi-character defined by (MA0)(X) = |A\|2@/2(A\71X)
for all X € greg(F'). Then we have

DY (X)) 2ep0(X) = DYOATTX) (A 1X)
for all X € gs(F') and all X € F*.

(v) Assume that G is quasi-split. Let B C G be a Borel subgroup and Tgq C B be a
mazimal torus (both defined over F'). Then, for all X € tqqres(F), we have

Proof: 1.(i) and 2.(i) are obvious since for G, not quasi-split, Nil,e,(g,) is empty. 1.(ii) and
2.(ii) follow easily from B.4.7 whereas 1.(iii), 1.(iv), 2.(iii) and 2.(iv) are direct consequences
of the preceding points and the fact that the function (D%)'/20 is locally bounded by a
continuous semi-norm on QC(G(F)) (resp. on QC(g(F))) for all § € QC(G(F)) (resp. for
all 0 € QC(g(F))). Finally, 2.(v) follows from 2.(ii) and B.4.5. W
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4.6 Homogeneous distributions on spaces of quasi-characters

For all A € F*, let us denote by M, the continuous operator on QC.(g(F’)) (resp. on
SQC(g(F)), resp. on QC(g(F))) given by

M0 = |N797%05, 0 € QCe(g(F)) (resp. 0 € SQC(g(F)), resp. 0 € QC(g(F)))
(recall that ) (X) = 0(A'X) for all X € gree(F)).

Proposition 4.6.1 Let A € F* be such that |\| # 1. Then, we have the following:

(1) For all 8 € QC.(g(F)) (resp. 0 € SQC(g(F))) such that cgo(0) = 0 for all O €
Nilieg(g) and for any integer d > 1, there exist 01,0, € QC.(g(F)) (resp. 61,0 €
SQC(g(F))) such that

o 0= (M)\ — 1)d91 + Oy,
e 0 ¢ Supp(fy).

(i1) Let € be a continuous linear form on QC.(g(F)) such that

(M) = £(0)

for all § € QC.(g(F)). Then ¢ extends by continuity to SQC(g(F)).

Proof:

(i) Let A € F* such that |A\| # 1. Since MyM,-1 = Id, we may assume that |A| > 1.
Denote by QCy(g(F')) the space of quasi-characters § € QC(g(F')) such that cg»(0) =0
for all O € Nil,eg(g(F')). It is a closed subspace of QC(g(F')). Obviously, we only need
to prove that (M, — 1) is a linear bijection of QCy(g(F)) onto itself. This will follow
from the next claim

(4.6.1) For all § € QCy(g(F")), the series

o

> (M)

n=0

converges in QCy(g(F)).
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Let 0 € QCy(g(F')). Assume first that F' is p-adic. Then, we need to show that for any
open invariant and compact modulo conjugation subset w C g(F'), the series

(4.6.2) f: 1.,(M,)"0

n=0

converges in QC.(w). In some invariant neighborhood of 0, we have

0X)= > c0(0)j(0,X)

OeNil(g)

Hence, for n sufficiently large, by [L8.5l we have

(M)"0(X) = [A7O2 3" ¢y 0(0)j(0,A7"X)
OeNil(g)
— Z |)\|"(dim(o)_5(G)/2)0970(0)3()\"(’), X)
OeNil(g)

for all X € wyeg. This shows that the family of quasi-characters {1,(M))"8; n > 1}
generates a finite dimensional space. Moreover, by the hypothesis made on 6 and since
dim(O) < §(G)/2 for any nilpotent orbit O that is not regular, we see that the series
converges in that finite dimensional space.

Assume now that ' = R. Then, we need to show that for any invariant and compact
modulo conjugation subset L C g(F') and all u € I(g), the series

> aru((My)"9)

converges. Actually, we are going to show that

(4.6.3) qru(Mrnl) < [A[T"

for all n > 0. Obviously, we may assume that u is homogeneous. We distinguish two
cases. First assume that deg(u) > 0. Enlarging L if necessary, we may assume that
AL C L. Then, for all n > 1, we have

Gra(Myn0) = [N sup DE(ATX)2|(O(u)0) (A" X))

XGchg

= A7 sup  DY(X)V2((0(u)f) (X))
XEA ™ Lyeg

< |>\‘—ndeg(u)qL7u(0>
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and this proves £.6.3] in this case. Now assume that v = 1. Since ¢y o(0) = 0 for all
O € Nilg(g), we have DY(X)¥/20(X) = O(| X|) for X in some invariant neighborhood
of 0. Hence, L being compact modulo conjugation, we have

qr1(Myn0) = sup DG(A_"X)1/2|9()\_"X)| < AT
X€ELreg

for all n > 0. This proves [4.6.3] in this case too and this ends the proof of d.6.1

There is nothing to prove in the p-adic case (since SQC(g(F)) = QC.(g(F))) so we
assume F' = R. Fix A € F* such that |A\| < 1. Consider the series

[e.e]

S(0) == (M,)"6

n=0

for all # € SQC(g(F')). Then, it is not hard to prove as above that this series converges
in QC(g(F) — 0) and that this defines a continuous linear map S : SQC(g(F)) —
QC(g(F) —0). Let p € C°(g(F))“ be compactly supported modulo conjugation and
such that ¢ =1 near 0. Then, we claim that

(4.6.4) For all # € SQC(g(F')), the quasi-character (1 — ¢)S(f) is a Schwartz quasi-
character.

Let 0 € SQC(g(F')). By Proposition 2.(iii), (1 — ¢)S(0) is a quasi-character on
g(F). Denote by L the support of ¢. Let u € I(g) and N > 1. Since (1—¢)S(6) = S(0)
outside L, we only need to show that

(4.6.5) DY(X)"((8(u)S(0)) (X)| < | X[Ir

for all X € gueg(F) — L. Of course, we may assume that u is homogeneous and
N > deg(u). We have

DE(X)2(@()SONX)] < 3 DY(X)2 (0w} (M) (X)
= I DO X) 2 (9 w)6) (X))

< qnau(0) YT EO AT X

n=0
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for all X € gyee(F)—L. Since L is an invariant neighborhood of 0, we have an inequality
| X ) < 1l X | rq for all X € g(F)—L and all 4 € [ such that |u| < 1. Hence,
the last sum above is essentially bounded by

n=1

for all X € gyeq(F) — L. Since we are assuming that N > deg(u) and |A| < 1, this last
term is finite and this shows .6.5l This ends the proof of [1.6.4]

Consider the linear map

Ly - SQC(g(F)) — QC.(g(F))
Ly(0) =0+ (My— 1) [(1 — ¢)S(0)]
It indeed takes value in QC.(g(F")) since (M, —1) [(1 — ¢)S(0)] = —6 outside Supp().
Moreover, it is continuous by Lemma [£.2.3)(iv) and the closed graph theorem. Let ¢ be a

continuous linear form on QC.(g(F")) that satisfies £(M,0) = ¢(0) for all § € QC.(g(F)).
Then, we can extend £ to a continuous linear form on SQC(g(F')) by setting

for all @ € SQC(g(F')). It is indeed an extension since (1 — )S(0) € QC.(g(F)) for all
0 € QC(g(F)) M

4.7 Quasi-characters and parabolic induction

Let M be a Levi subgroup of G. Let us fix for all z € G(F) a system of representa-
tives XM (z) for the M (F)-conjugacy classes of elements in M (F) that are G(F)-conjugate
to z. Recall that in Section B4 we have defined a parabolic induction morphism §; :
D' (M(F))™ — D'(G(F))Y which sends distributions representable by locally integrable in-
variant functions on M (F) to distributions representable by locally integrable invariant func-
tions on G(F). In particular, for any quasi-character " on M (F), i§,(0™) is a well-defined
locally integrable invariant function on G(F').

Proposition 4.7.1 Let 0™ be a quasi-character on M(F). Then,
(i) i§(0M) is a quasi-character.

(ii) Let 6 = i§,(6™). Then, we have

D ()" Peg(w) = [Za(x)(F) : Go(F)] Y [Zn(y)(F) : My(F)] 7 DY ()" Pequ (y)

yexM(z)
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for all x € G(F).

Proof:

(i)

If F' is p-adic, this is proved in [Wal]. Assume that F' = R. We already know (cf.
Section B.4) that i§;(6*) is representable by a smooth function 6 on Geeg(F). It
is not hard to see using 3.4.2] that 6 extends to a smooth function on G,e(F) and
that the function (D%)Y20 is locally bounded. Moreover, by B.4.1] and since # is a
quasi-character, for all z € Z(g) the distribution z7} is represented by the function
i§ (200M). Tt easily follows that 6 is a quasi-character.

Assume first that G, is not quasi-split. Then, by Proposition E.5.111.(i), both sides
are easily seen to be zero (notice that for y € M (F'), M, is a Levi subgroup of G,).
Assume now that G, is quasi-split. Let us fix B, C G, a Borel subgroup and 74,4, C B,
a maximal torus (both defined over F'). Then, by Proposition E5.111.(ii), we have the
formula

(4.7.1) DC(x)co(z) = |W(Gy, Toae)| ™ lim  DY")%0(a")

' €Tqq,0(F)—=x

Moreover, by B.4.2] we know that for all 2’ € T4, (F) N Ggeg(F') we have

(4.7.2) DY) 20(x"y = Y DM(y)*eM(y)

y’EXM(x’)

For all y € XM(x), the group G, is quasi-split and M, is one of its Levi subgroup.
Hence, we may fix for all y € XM (z) a Borel subgroup B, C G, and a maximal torus
Tyay C By (both again defined over F') such that Ty, C M,. Let us also fix for all
y € XM (z) an element g, € G(F) such that g, 'zg, = y and g, ' Toa .9y = Toay We
claim the following

(4.7.3) Let 2/ € Tyao(F) N Gaeg(F). Then, for all y € XM (2), there exist y € XM (z)
and g € Normy, ) r)(Tqa,y) such that y' and g‘lgy_la:’gyg are M (F')-conjugate.
Moreover, for all yi,y. € XM(x) and all g; € Normy,y)r)(Tody), ¢ = 1,2,
the elements g; g, '2'g,, 01 and g, 'g, ' gy, 9o are M(F)-conjugate if and only if
y1 =y2 and g2 € g1 Normz,, y,)(r) (Tod,u)-

Let ' € Tya2(F)NGyreg(F) and y' € XM (2'). Choose v € G(F') such that y' = v~ 12/,
Then the centralizer of y' in G is the maximal torus 7 '7T,q,7 which is contained in
M. Tt follows that y~lzy € M(F). By definition of X (z), up to translating v by
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an element of M(F') (and conjugating y’ by the same element), we may assume that
there exists y € XM (x) such that y = y~*2y. Then v !B, is a Borel subgroup of
G, and v 'Tyq .7 is a maximal torus of v~ B,y which is the centralizer of y~'2’y and
so is contained in M,. Hence, up to translating v by an element of M,(F) we may
further assume that v~'Tyq.y = Tgay. Consider the element g = g, 'v. It centralizes
y and normalizes Tqq,. It follows that g € Normy, ) #)(Tqa,y) and this proves the
first part of the claim. Let w1, 12, g1 and go be as in the second part of the claim
and assume that g, 1gy_11I/gy191 and g, 1gy‘21:£’ Gy,92 are M(F)-conjugate. These two
elements are conjugate by m = gy 1gy‘1 '9,,92. Since the centralizer of gy 1gy_11x’ Gy 01
is the torus Tyq,, which is contained in M, we have m € M(F). But, we easily
check that mysm™ = y;. By definition of X (z), it follows that ; = y» and hence
m = gy 'g2 € Normy, ) r)(Tuay ) N M(F) = Normy,, )7 (Tydy, ) and this ends the
proof of A.7.3

Let us fix for all y € XM(z), a set N§(y) of representatives for the left cosets of
Normy,, ) (7)(T4ay) in Normy,, oy r)(Toa,y). By B3l we may assume that for all 2’ €
Toaz(F) N Ggeg(F') we have

XM’y = {979, ' 99; v € XM (x) g € Nyj(y)}
Hence, by L.7.2, we get
(4.7.4) D)0y = Y Y DM(g7'g, el g,9) 20" (97 g, 2 g,9)
yeXM(z) N (y)
for all 2’ € Tyq.(F) N Gyreg(F). Notice that for all y € XM (z) and all g € N (y), we

have ¢7'g, ' Toa.29y9 = Taay and g~ 'g, '2'g,g — y as 2’ — x. Hence, taking the limit
in 74 as ' — x, we get, by .71 and Proposition 5.111.(ii),

DY ()" Peg(a) = W (G, Tuaa)l " D INGHW)IIW (My, Toa,) | DM () 2cne (y)

yexXM(z)

To conclude, it suffices now to show that for all y € X (z), we have

(4.7.5)
(W (Ga, Taw) | INST W (My, Toa )| = [Zo(2)(F) 2 Go(F)][Zu(y)(F) = My(F)]™

Let y € XM (x). By definition, we have
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|N1\Cj(y)| = ‘NormZG(y)(F)(quy)/NormZM(y)(F)(quvy)‘
-1
= ‘NormZG(y)(F) (qu,y)/qu@(F)‘ X ‘NormZM(y)( ) (Taay) /Taay(F ‘

Since the pairs (z, Tya,) and (y, Tya,) are G(F')-conjugate, we have

[Normz, ) (7) (Taay) / Taay (F)| = [Normyzg )y (Tya.e) / Taa e (F)]

Hence, the left hand side of [4.7.5 is the product of the two following terms

(W (Ga, Toao)| ™" |[Normzg uyr) (Tuae) / Taa,e (F)|

and

|W(My>qu,y)| }NormZM(y)( )( ad,y / }_

Let us look at the first term above. Every coset of G.(F') in Zg(z)(F) contains an
element that normalizes T,q,. Indeed, for all z € Zg(z)(F) the torus zTyq,27" is
also a maximal torus of G, which is contained in a Borel subgroup, hence there exists
g € G.(F) such that ngqd,gcz_lg_1 = Tydz- It now follows easily from this that we
have

(4.7.6)  [W(Ga, Tyao)| ™" [Normzg ey (Tua) /Taaa(F)| = [Za(2)(F) : Go(F)]

We similarly prove that

(4.7.7)  [W(My, Toay)| ‘NormZM(y)( ) (Taay) /Ty ‘_ y)(F): My(F)]™

Now follows from and .77 and this ends the proof of the proposition. W

4.8 Quasi-characters associated to tempered representations and
Whittaker datas

Recall that a Whittaker datum for G is a G(F')-conjugacy class of pairs (Ug, § p) where Up is
the unipotent radical of a Borel subgroup B of G, defined over F, and ép : Ug(F) — S' is a
generic character on Ug(F') (generic means that the stabilizer of {5 in B(F’) coincides with
Za(F)Ug(F)). Of course, Whittaker data for G exist if and only if G is quasi-split. Using
the bilinear form B(.,.) and the additive character 1, we can define a bijection O — (Up, o)
between Nil,o,(g) and the set of Whittaker data for G as follows. Let O € Nil,es(g). Pick
Y € O and extend it to an sly-triple (Y, H, X). Then X is a regular nilpotent element
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and hence belongs to exactly one Borel subalgebra by of g that is defined over F. Let
Bp be the corresponding Borel subgroup and Up be its unipotent radical. The assignment
u € Up(F) = &o(u) =9 (B(Y,log(u))) defines a generic character on Up(F'). Moreover, the
G(F)-conjugacy class of (Un,£p) only depends on O and this defines the desired bijection.

Let 7 be a tempered irreducible representation of G(F). For O € Nil,o(F), we will say
that m has a Whittaker model of type O if there exists a nonzero continuous linear form
¢ : > — C such that £ om(u) = {p(u)l for all u € Up(F'). Recall that the character 6, of 7
is a quasi-character on G(F'). For all O € Nil,,(g), we set = ¢p, 0(1). In Section 2.7]
we have defined a space X(G) of virtual tempered representations of G(F'). The character
of a virtual representation is defined by linearity.

Proposition 4.8.1 (i) Let m € Temp(G). Then, for all O € Nil,e(g), we have

ero(l) = 1 if m has a Whittaker model of type O
OV T 0 otherwise

(i) The map

m € X(G) — 0, € QC(G(F))

is smooth. Moreover, if F = R, for every continuous semi-norm v on QC(G(F)), there
exists an integer k > 0 such that

v(0,) < N(m)*

for all m e X(G).

Proof:

(i) In the case where F'is p-adic and G is split, this is due to Rodier [Ro]. The same proof
works equally well for general quasi-split groups and is contained in the more general
results of [MW]. Finally, when F' = R it is a theorem of Matumoto ([Mat] Theorem
C).

(ii) The first part is easy to prove. Indeed, this amounts to showing that for every Levi
subgroup M of G and for all ¢ € X ;;(M) the map

A €idl, e 0n € QC(G(F))

is smooth, where we have set m\ = i§;(0y) for all A € iA},. By B-43 we have 0,, =
i$(0,,) for all A € iA%,. The linear map
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i, : QC(M(F)) - QC(G(F))

is easily seen to be continuous using B.4.1] and 3.4.2] whereas the map

A €iAy — 0, € QC(M(F))
is obviously smooth. This handles the first part of the proposition.

Let us now prove the second part of the proposition. So assume that F' = R. Let M
be a set of representatives for the conjugacy classes of Levi subgoups of G. Recall that
by definition of X'(G), we have

xX(@) = | i (Xa(M)

MeM

Let M € M be such that M # G. Then, by induction, we may assume that the result
is true for M. As we just saw, the linear map i, : QC(M(F)) — QC(G(F)) is con-
tinuous. It immediately follows that for every continuous semi-norm v on QC(G(F)),
there exists &k > 0 such that

v(0;) < N(m)F
for all 7 € i§; (X (M)). Combining these inequalities for all M € M, M # G, we are
left with proving the inequality of the proposition only for m € Xy (G), that is
(4.8.1) For each continuous semi-norm v on QC(G(F)), there exists k > 0 such that
v(0) < N(n)*
for all 7 € X (G).
For all z € Z(g) we have 20, = x,(2)0, and there exists kg > 0 such that |y,(z)| <

N(m)* for all m € Xy(G). Hence, it clearly suffices to prove the existence of C' > 0
such that

(4.8.2) sup D)2 |0.(x)] < C
2E€Gheg (F)
for all 1 € X (G). Harish-Chandra has completely described the characters 6, of

elliptic representations m € Xy(G). More precisely, let T' be a maximal torus of G
which is elliptic (if such a torus doesn’t exist then G has no elliptic representations).
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Denote by T'(R)* the group of continuous unitary characters of T'(R). Then, to each
element b* € T(R)*, Harish-Chandra associates a certain function €y« on Gpeg(R) (cf.
Theorem 24 p.261 of [Va]). These are invariant eigendistributions on G(R) and some of
them might be equal to zero. Moreover, by Theorem 24 (c) p.261 of [Val, there exists
C > 0 such that

(4.8.3) sup  D(2)V2 |0y (z)] < C
2E€Greg(F)

for all b* € T(R)*. Now let 7 € Xg(G). Recall that 7 is a linear combination of
constituents of a certain induced representation (o), M a Levi subgroup of G and
o € II;(M). Let us denote, as in Section 27, by W (o) the stabilizer of o in W(G, M).
Then, by the first equality after Theorem 13 of [HC2|, there exists b* € T'(R)* such
that the equality

Or = [W(0)|0)-

holds up to a scalar of module one (recall that 7 itself is defined up to such a scalar).
Of course the term |W (o)| is bounded independently of 7. Hence, follows from
and this ends the proof of the proposition. H

5 Strongly cuspidal functions

This chapter is devoted to the study of the so-called strongly cuspidal functions; a notion
that we borrow from the work of Waldspurger [Wal]. These are functions f on the group
G(F) or its Lie algebra satisfying a certain geometric condition; namely that for every
proper parabolic subgroup P = MU the function on M (F) defined by integration over
U(F) vanishes identically. Their importance stems from the fact that the simple local trace
formulas to be developed in Chapter 8 to [Tl are functionals on the space of strongly cuspidal
functions.

In Section B, we define strongly cuspidal functions and derive their basic properties.
Following Waldspurger, we study the weighted orbital integrals of such functions in Section
62 In Sections (.3 and 5.4l we give a spectral characterization of the strongly cuspidal
functions and study their weighted characters. Section recalls the local trace formula of
Arthur in the particular case where one of the test functions is strongly cuspidal (it then takes
a particularly nice form). Section contains a very important construction that allows to
associate to any strongly cuspidal function a quasi-character in the sense of Chapter @ (this
construction is also due to Waldspurger [Wall). Finally in Section 5.7, we prove a technical
proposition which allows to replace a strongly cuspidal function f by another one with the
same associated quasi-character but whose semi-simple descents to elliptic elements is again
strongly cuspidal. This proposition will play a crucial role in the proof of the geometric
expansions of our local trace formulas (Theorem [T.4.1] and Theorem TT.4.3)).
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5.1 Definition, first properties

For every parabolic subgroup P = MU of G, we define continuous linear maps

feC(GF)—[fllec(m

¢ € S(g(F)) =[] € S(m
by setting

ff(m) = 5p(m)1/2/ f(mu)du and o (X) = / o(X 4+ N)dN

U(F) u(F)
We will say that a function f € C(G(F)) (resp. ¢ € S(g(F))) is strongly cuspidal if f¥' =0
(resp. ¢ = 0) for every proper parabolic subgroup P of G. We will denote by ,
Sscusp (G(F))| and Seeusp (g(F))| the subspaces of strongly cuspidal functions in C(G(F)),
S(G(F)) and S(g(F)) respectively. More generally, if Q@ C G(F) (resp. w C g(F)) is a
completely G(F)-invariant open subset, we will set = 5(2) N Scusp(G(F)) (resp.
Sscusp(W)| = S(W) N Sseusp (§(F))) (the subspaces S(2) and S(w) have been defined in Section
B.1). In the real case, we have (z2f) = 2y, fF and (0(u)@)” = d(un)” for all f € C(G(F)),
all z € Z(g), all ¢ € S(g(F)) and all u € I(g). Hence, the action of Z(g) preserves the
spaces Cscusp(G(F)), Sseusp(G(F)) and Seeusp(2) and the action of I(g) preserves the spaces
Sucusp (B(F)) and S ).

Let f € C(G(F)). By the usual variable change we see that

fP(m) :DG( )1/2DM 1/2/ f u mu

for every parabolic subgroup P = MU and all m € M(F) N Gy (F'). Hence, an equivalent
condition for f to be strongly cuspidal is that the integral

fu " 'mu)du
U(F)
is zero for every proper parabolic subgroup P = MU and all m € M(F)NGieg(F'). Similarly,
a function ¢ € S(g(F')) is strongly cuspidal if and only if the integral

/ o(u " Xu)du
U(F)

is zero for every proper parabolic subgroup P = MU and all X € m(F') N gree(F). It follows
from these descriptions and Proposition B.II(iv) that for every function ¢ € C*(G(F))%
(resp. p € C(g(F))%) which is compactly supported modulo conjugation, multiplication by
¢ preserves Sseusp(G(F)) (resp. Sseusp(9(F))). Moreover, choosing ¢ € C*(g(F))% compactly
supported modulo conjugation and such that ¢ = 1 in a neighborhood of 0, it is not hard to
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see that )\lim onf = fin S(g(F)) for all f € Ssusp(g(F)) (recall that py(X) = p(A1X)).

Hence, we have

(5.1.1) The subspace of functions f € Ssusp(g(F')) that are compactly supported modulo
conjugation is dense in Sseusp (§(F)).

Let w C g(F') be a G-excellent open subset and set € = exp(w). Then the map f — f,
induces an isomorphism

SscuSP (Q) = SSCUSP (w)

(this follows from Lemma [3.3.]). Finally, we leave to the reader the simple task of checking
that the Fourier transform preserves Sseusp(9(£)).

5.2 Weighted orbital integrals of strongly cuspidal functions

Let M be a Levi subgroup of G. Recall that in Section [LI0] we have defined a family
of tempered distributions J2(z,.) on G(F) for all € M(F) N Gyeg(F), all L € L(M)
and all Q € F(L). We have also defined tempered distributions J&(X,.) on g(F) for all
X em(F) N greg(F), all L € L(M) and all ) € F(L). These distributions depended on the
choice of a maximal compact subgroup K which is special in the p-adic case.

Lemma 5.2.1 Let f € Coeusp(G(F)) (resp. [ € Sseusp(9(F))) be a strongly cuspidal function
and fix v € M(F) N Greg(F) (resp. X € m(F) N greg(F') ). Then

(1) For all L € L(M) and all Q € F(L), if L # M or Q # G, we have

JP(x, f) =0 (resp. J2(X, f)=0)

(i) The weighted orbital integral J$;(x, f) (resp. J$ (X, f)) doesn’t depend on the choice of
K;

(117) If © ¢ M(F)en (resp. X ¢ m(F)ay), we have

Tip(x, f) =0 (resp. Jy(X, f) =0)

() For ally € G(F'), we have

JyGMyfl(yxy_lv f) = JZ\CZ}(']‘” f) (’1"65]7. ']yGMyfl(yXy_lv f) = JZ\C}<X7 f))
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Proof: This is proved in [Wal] when F' is p-adic. The proof works equally well for F' = R.
|

For all € Gee(F'), let us denote by [M (x)| the centralizer of A, in G. It is the minimal
Levi subgroup of G containing . Let f € Cycusp(G(F)). Then, we set

i) = (~1) m@n(G,) D ()2 T ) (2, f)

for all z € Geg(F') (where we recall that v(G,) is a normalizing constant making the Haar
measure on the torus G, (F') of total mass 1, see §1.0]). By the point (iv) of the above lemma,
the function 6, is invariant. We define similarly an invariant function 6 on g,es(F) for all

[ € Sscusp(9(F)), by setting

FAX) = (=1) e u(Gx) " DY(X) "2 T 0 (X, f)
for all X € gyee(F), where |[M (X)| denotes the centralizer of Ag, in G.

Lemma 5.2.2 Assume that F = R. Then,

(i) Forall f € Sscusp(9(F)), 05 is a smooth function on greg(F') and we have O(u)fr = Op(u)y
for all w € I(g). Moreover, there exists k > 0 such that for all N > 1 there ezists a
continuous semi-norm vy on Sseusp(8(F')) such that

D)6, < v () log (24 DO ™) X1y
for all X € gueg(F') and all f € Sseusp(9(F)).
(1t) For all f € Coeusp(G(F)), by is a smooth function on Gieg(F') and we have 28y = 6,5
for all z € Z(g).

Proof: By semi-simple descent (Lemma B.2.1]), the first point of (i) and (ii) follow directly
from Lemma [[.T0.] and the point (i) of the last lemma. The estimates in (i) is a direct
consequence of [L10.1l W

5.3 Spectral characterization of strongly cuspidal functions

Let P = MU be a parabolic subgroup of G and o a tempered representation of M (F).

We have a natural isomorphism End(i%(0))* ~ i%X%(End(c))*® sending a function ¢ €

i5XS(End(0))™® to the operator

e€ib(o) (g — / s@(g,g’)e(g’)dg’)
P(P\G(F)

Let f € C(G(F)). A direct computation shows that the operator i%(o, f) € End(i%(0))*
corresponds to the function i%(a, f)(.,.) € %% (End(0))> given by

120



20, £)(9.9) = o [LORGN"]. 9.9 €GF)

In particular, we have o(f¥) = i%(o, f)(1,1). Since the function f” is zero if and only if it
acts trivially on every representation in Xiemp(M) (by Theorem [2.6.1)), we deduce that

(5.3.1) A function f € C(G(F)) is strongly cuspidal if and only if for every proper parabolic
subgroup P = MU and all ¢ € X;emp(M), we have i%(o, f)(1,1) = 0.

Recall that in Section 2.6 we have defined a topological space C(Xiemp(G), E(G)) of smooth
sections m € Xemp(G) — T € End(7)*> and that the map that associates to f € C(G(F))
its Fourier transform 7 € Xiemp(G) — 7(f) induces a topological isomorphism C(G(F)) =~
C(Xemp(G), E(GQ)) (Theorem Z6.1]). Let us denote by Cocusp(Xiemp(G), E(G))| the image by
this isomorphism of Cseusp(G(F')). Then, we have the following

Lemma 5.3.1 (i) The subspace Cscusp(Xtemp(G), E(G)) is stable by multiplication by func-
tions ¢ € C°(Xiemp(G));

(11) The subspace of functions f € Cseusp(G(F')) having a Fourier transform m € Xiemp(G) +—
7(f) that is compactly supported is dense in Cseusp(G(F)).

Proof:

(i) This follows directly from the above characterization of strongly cuspidal functions;

(ii) There is nothing to say on the p-adic case since every function f € C(G(F')) has a
compactly supported Fourier transform. In the real case this follows from (i) once we
observe that there exists a sequence (¢n)y>1 of functions in C2°(Xiemp(G)) such that

lim oNT' =T

N—oo

for all T' € C(Xiemp(G), E(G)). A

5.4 Weighted characters of strongly cuspidal functions

Let M be a Levi subgroup of G and ¢ a tempered representation of M (F'). Recall that in
Section [Z5, we have defined tempered distributions J%(o,.) on G(F) for all L € £(M) and
all @ € F(L). These distributions depended on the choice of a maximal compact subgroup
K which is special in the p-adic case and also on the way we normalize intertwining operators

(cf. Section 2.4)).

Lemma 5.4.1 Let f € C(G(F)) be a strongly cuspidal function.
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(i) For all L € L(M) and all Q € F(L), if L# M or Q # G, then we have

J2(0,f) =0

(ii) The weighted character J (o, f) doesn’t depend on the choice of K or on the way we
normalized the intertwining operators;

(15i) If o is induced from a proper parabolic subgroup of M then

Tii(o, f) =0
() For all x € G(F), we have

Torra—r (@ow ™ f) = Jyi(o, f)

Proof:

(i) First we do the case where @) = SUj is different from G. Following the definition, we
see that

T2 (0, f) = J2(i% (o), f)

Hence, we may assume without loss of generality that L = M. We will treat the natural
isomorphisms i%(0y) ~ if, (0k,) for P .€ P(M) and X € iA},, where Kp = KN P(F),
as identifications. Choose P € P(M) such that P C (). We have

Tyi(o, f) = Trace(Rf; (0, P)ig (0, f))

where the operator RY, (o, P) € End(if, (0k,)>) is associated with the (S, M)-family

R\, 0, P) = Roryp(0) ' Romyp(on), R € PI(M),\ € iAy,

where Q(R) = RUg € P(M). Let Kg be the projection of Ko = K N Q(F) onto
S(F) and for all R € P5(M), set Kr = KgN R(F). Then Kg is a maximal compact
subgroup of S(F') that is special in the p-adic case. Hence, we have isomorphisms
i%(03) = i3 (0x,) for all A € iA}, and all R € PS(M). Also, for all R € P5(M), we
have the isomorphism of induction by stages if, . (Tkqn) = ik, (ixS (0Ky)). In all
what follows, we will treat these isomorphisms as identifications. Setting P = P NS,
by we have the equality Rgr)p(ox) = i%Q(RR‘pS(a,\)) for all A € iAj},; and all
R € P5(M) (meaning that the K-homomorphism Rgg)p(cy) is deduced from the Kg-
homomorphism Rpgp(0y) : z§§5 (Orp )™ — zgi (0ky)™ by functoriality). We deduce
immediately that
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(5.4.1) R (0, P) =i, (R3(0, Ps))

where RS, (0, Ps) € End(igis(aKPS)oo) = End(if, (0)>) is associated with the (S, M)-
family
R%()‘a g, PS) = RR\PS(O_)_lRR\PS(O_)\% R e PS(M)> A E Z"Ll}k\/[
Recall that we have a natural isomorphism End(i%(0))> ~ zgig (End(ifgs(a)))oo (cf.
Section [5.3]) which sends the operator i%(c, f) to the function
ig(@ g, 92) = i}qu (U> (L(gl)R(g2)f)Q) . 01,92 € G(F)

It follows from this and [5.4.0] that the action of the operator R% (o, P)i%(o, f) on

ipep (Orp)® ig@ (zfis (0Kp,))> is given by

(RE (0, PYi€i(o, e) (k) = /K R0 P o (LR Pk
Q
for all e € z'[[gQ(igis(aKps))‘x’ and all £ € K. We may now write

T30, f) = Trace (RS, (o, P)ifi(c. /)
= /K Trace (R}, (o, Pg)i}qgs(a, *£)9) dk =0

This proves the vanishing (i) in the case ) # G. Assume now L # M but Q = G,
applying the descent formula [[L9.3], we see that

I, )= > dS(L, L)Y (o, f)

L'eL(M)

By what we just saw, the terms in that sum corresponding to L' # G vanish. Since
L # M, we also have d§,(L,G) = 0. Hence all terms in the sum above are zero.

First we prove the independence in K. Let K be another maximal compact subgroup
that is special in the p-adic case. Let P € P(M). Using K instead of K , we may define
another (G, M)-family (Rp (o, P))prep(u) taking values in End(i%(0)>). We deduce
from this (G, M)-family another weighted character j]\G/[(a, .). For all P € P(M) and
all A € i4},, we have a chain of natural isomorphisms
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i% (o) ~ ng,(gﬁpl) ~ G () ~ iﬁp/(a) ~ ip/(0)

where Kpr = K N P'(F). We will denote by Ip/()\ o) :i% (o i% (o) their com-

) =~
position and we set Dp/(X, 0, P) = Rpyp(0) ' Ip/(A, O')RP/|P(O') Then the family
(Dpi(o, P))prepuy is a (G, M)-family (taking values in End(i%(0))) and we have
Rp(\, 0, P) = Dp/(\ 0, PYRpi(\, 0, PYIp(\, o)
for all P" € P(M) and all A € i4},. We remark that the term A\ — Ip(A, o) doesn’t
depend on P’ and satisfies Ip(0,0) = Id. Applying the splitting formula [L91] we get
Ru(o,P)= > Dplo, P)R$ (0, P)
QeF(M)
Hence, we have
JM(U f)= Z Trace <DQ(O' P)YR%, (0, P)i%(o, f))
QeF(M)

and the term indexed by Q = G is precisely J$; (o, f) (the weighted character defined
using K). Consequently, it suffices to show the following
(5.4.2) Trace (D'Q(a, PYRS, (o, P)iS(o, f)) —0

for all @ € F(M) such that Q # G. Fix such a parabolic subgroup @) = SUy. Notice
that for all P’ € P(M), we have

Dgy (0, P) = Rpp(0) "' Diy(0, P')Rpr p(0)
R$ (o, P) = Rpiyp(0) 'R (0, P)Rpyp(0)

i5(0, f) = Rpip(a) " Vi%i(0, f)Rpp(0)

so that the trace [5.4.2] doesn’t change if we replace P by P’. Hence, we may assume
without loss of generality that P C Q. The operator Dg (o, P) then only depends
on the function A\ — Dp(\ 0, P) = Ip(A\,0). We now use again the isomorphism

i%(0) ~ ik, (0k,) as an identification. Direct computation shows that
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(Ip(\, o)e) (k) = 6<A,HM(ﬁ1p(k))>e(k)

for all e € i} (0k,), all A € iA}, and all k € K, where mp : G(F) — M(F) is any

map such that mp(g)~'g € U(F)K for all g € G(F). It follows casily that there exists
a smooth function d (o, P) : K — C such that

(D0, P)e) (k) = dy(k, o, P)e(k)

for all e € iﬁP(UKP) and all £ € K. We have the isomorphism of induction by stage
iep (050 ) > = i, (i3 (0) k)™ and we saw during the proof of (i) that RY (o, P) is
obtained by functoriality from the Kg-endomorphism Rf; (o, Ps) of i} (o). The
image of i%(o, f) via the natural isomorphism End(i%(c))> ~ if;fKQ (End(i}qpsa)KQ)oo
is the function given by

iG(0, ) ki, k) = i (0, (L(k)R(k2) £)9)

for all ki, ky; € K. Hence, we see that the operator Dg (o, P)R]?/[(U, P)i%(o, f) acting

on iflgp(a) ~ Z'IIEQ(Z'}GDS(U)KQ) is given by

(D (o, PYRE (0, P)i%(o, f)e) (k)
- /K \K d/Q(kvav P>R§/[(U, Ps)ilsps (U, (L(/{;)R(k;’)f)@) e(K)dkK

for all e € iﬁQ (i3, (0) k) and all k € K. Consequently, we have

Trace (Db(a, PYRS, (0, P)i%(o, f))
— / dy(k, 0, P) Trace (R (0, Ps)i, (o, (*f)?)) dk =0
KQ\K
This proves the vanishing and ends the proof of the independence in K.

We now prove that J§; (o, f) does not depend on the way we normalized the intertwining
operators. Assume we choose different normalization factors X\ — 7p/p(0y), P, P’ €
P(M), yielding new normalized intertwining operators épq plon) (A € iAy, PP €
P(M)). Using these new normalized intertwining operators, we construct new (G, M)-
families (Rp: (o, P)) prepny (P € P(M)) from which we derive a new weighted character
JC (0, f). Fix P € P(M). For all P’ € P(M), the quotient rpqp(ox)Tpp(on) ! is well-
defined and nonzero for all A € iA%,. Let us set
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(iii)

dp/(\, 0, P) = 7’Pf|P(U)_17P'\P(U)TP'\P(U,\)FP/\P(U,\)_l

for all P’ € P(M) and all A € iA};. Then the family (dp/(o, P))pepr) is a scalar-
valued (G, M)-family and we have

Rp (N 0, P) = dp(\ o, P)Rp(X, o, P)

for all P" € P(M) and all A\ € iA;,. Hence by the splitting formula [L97] and the
definition of the weighted characters, we have

TG0 )= dyJg(o.f)
QeF (M)

The term indexed by @ = G in the above sum is equal to J$ (o, f) whereas by (i)
all the other terms vanish. Hence we have the equality J& (o, f) = JS (o, f). This
proves indeed that J$(a, f) doesn’t depend on the way we normalized the intertwining
operators.

Assume that there exists a proper Levi subgroup M; C M and a tempered representa-
tion o1 of M;(F) such that o = i}] (c1). Following the definition, we have

J]\Cj[((j"f) = J]\Cj[(o-lvf)
and by (i) the right hand side above is zero.

By (ii), we may assume that to define J&, ,(zoz™', f) we have used the maximal
compact subgroup Kz~ and normalization factors given by r,p, -1z prp—1 ((zoz™1),) =
rpip(oy) (for P, P € P(M) and A € iAj};). Then by “transport de structure”, we have
the equality

JmGMx71(ZL'O'ZL'_1, .f) = JAGJ(Ua f)
|

In Section 7] we have defined a set X(G) of virtual tempered representations of G(F').
Let 7 € X(G). Then, there exists a pair (M,o) where M is a Levi subgroup of G and
o € X (M) such that 7 = i§,(0). We set

pm) = (—1)= v IS (o, f)

for all f € Cyeusp(G(F)) (recall that the weighted character J§ (o, .) is extended by linearity
to all virtual tempered representations). This definition makes sense by the point (iv) of the
lemma above since the pair (M, o) is well-defined up to conjugacy.
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Lemma 5.4.2 (i) If F is p-adic, then for every compact-open subgroup K C G(F)), there
exists a compact subset Qx C X(G) and a continuous semi-norm vk on Ckx(G(F))
such that

16;(m)| < vic(f)1qy ()
for all f € Cseusp.x (G(F)) and all m € X(G).

(i) If F = R, then for every integer k > 1 there exists a continuous semi-norm vy on
Cscusp(G(F)) such that

16(m)| < vk(f)N(m)

for all f € Cseusp(G(F)) and all m € X(G).

Proof: The point (i) follows from 2.2.3 and [2.6.1] whereas the point (ii) is a consequence of
Lemma [2.5.1] together with 2.3.7. W

5.5 The local trace formulas for strongly cuspidal functions

Let us set

K7 X1, 92) = /G . Flg7a92) f'(9)dg

for all f, f' € C(G(F)) and all g1, g2 € G(F'). The integral above is absolutely convergent by
Proposition [L5.1l(v). We also define

K7l ) = (z7' X2)f(X)dX

9(F)
for all f, f" € S(g(F)) and all z € Ag(F)\G(F).

The two theorems below are slight variations around the local trace formula of Arthur (cf.
[A1]) and its version for Lie algebras due to Waldspurger (cf. [Wa3]). The proof of these two
theorems will appear elsewhere [Beu2].

Theorem 5.5.1 (i) For all d > 0, there exists d > 0 and a continuous semi-norm vg g
on C(G(F)) such that

K2 (g1, 92)| < vaa (F)vaa (f)EC (91)0(g1) "2 (g2)o(g2)”

and
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|Kﬁf/(91,g2)| < vaa (f)vae(f)ZE%(g1)0(91) = (g2) 0 (g2) ™
for all f, f" € C(G(F)) and for all g1, 92 € G(F).

(11) For all d > 0, there exists a continuous semi-norm vy on C(G(F)) such that

|K2ff(55,93)| < va(f)va(f)EC(x) o ac\c(x) ™
for all f € Coeusp(G(F)), all f' € C(G(F)) and all x € Ac(F)\G(F).
(111) Let f, f' € C(G(F)) with f strongly cuspidal. Then, there exists ¢ > 0 such that for all
d > 0 there exists d > 0 such that
[Kfip (9. hg)| < E9(9)°0u\c(9) e Ma(h)?

for all h,g € G(F).

By the point (ii), the function © € Ag(F)\G(F) — K}, (x,z) is integrable as soon as [ is
strongly cuspidal. We set

JAf) = / K (o, 2)de

Ag(F)\G(F)
for all f € Coeusp(G(F)) and all f" € C(G(F)).

(iv) We have the geometric expansion

PG = [ DO o) o(e. f)da
r(G)
for all f € Coeusp(G(F)) and all f' € C(G(F)), the integral above being absolutely
convergent.
(v) We have the spectral expansion
JAL L) = | D(mBs(m)o=(f )
X(G)

for all f € Coensp(G(F)) and all f' € C(G(F)), the integral above being absolutely
convergent.
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Theorem 5.5.2 (i) For all N > 0, there exists a continuous semi-norm vy on S(g(F))
such that

\Kﬁf,(x, z)| < VN(f)VN(f/)HxH;xéV\G

for all f € Sscusp(9(F)), all f' € S(g(F)) and all x € Ac(F)\G(F).

In particular the function v € Ag(F)\G(F) — Kﬁf,(x,x) is integrable as soon as f is
strongly cuspidal. We set

JAF, ) :/ Kﬁf,(:c,x)dx

Aq(FO\G(F)
for all f € Sscusp(9(F)) and all f" € S(g(F)).

(ii) We have the “geometric” expansion

JAf ) = o DY(X)"20;(X) Ja(X, f)dX

for all f € Seeusp(9(F)) and all f' € S(g(F)), the integral above being absolutely con-
vergent.

(111) We have the “spectral” expansion

G = [ DO 0 Ja( X, Prax
I'(g)

for all f € Seusp(8(F)) and all f' € S(g(F)), the integral above being absolutely con-
vergent.

5.6 Strongly cuspidal functions and quasi-characters

Proposition 5.6.1 (i) For all f € Ssusp(9(F)), the function 0 is a Schwartz quasi-

character and we have 05 = Gf. Moreover, if G admits an elliptic mazimal torus, then
the linear map

Secusp(8(F)) = SQC(g(F))
[0y

has dense image and for every completely G(F)-invariant open subset w C g(F') which
15 relatively compact modulo conjugation, the linear map

Sscusp (W) — QCG (w)

129



[ b
also has dense image.

(it) Let f € Cseusp(G(F)). Then, the function 0 is a quasi-character on G(F') and we have
an equality of quasi-characters

0; = / D(m)0;(m)0,dr
X(Q)

where the integral above is absolutely convergent in QC(G(F)).

Proof:

(i) If F is p-adic, all of these is contained in [Wal] (Note that for p-adic group there always
exists a maximal elliptic torus). Let us assume now that F' = R. Let f € Scusp(g(F)).
By the estimates of Lemma [B.2.2(i), the function 6, satisfies the assumption of Propo-

sition 221 1.(i). Hence, by this proposition, there exists a quasi-character ﬁf such that
Ty, = Tp,. By Theorem [5.5.2((ii) and (iii) and the Weyl integration formula, we have

| 007e0ax = [ o05000x
9(F) 9(F)

for all f" € C*(g(F)). It follows that HAf = 07 Applying this to the inverse Fourier
transform of f, we see that 0 is a quasi-character. In particular for all u € I(g), we
have O(u)Ty, = To(uye,- For all u € I(g), d(u)f is also strongly cuspidal and by Lemma
[£.2.2(i) we have O(u)f; = 0. Hence, applying the estimates of Lemma [5.2.2(i) to
the functions Oy, v € I(g), we see that ¢y satisfies the assumption of Proposition
1.(ii). It follows from this proposition that 6 is a Schwartz quasi-character.

Let us now assume that G admits an elliptic maximal torus, hence greg(F)en # 0. We
first show that the linear map

(5.6.1) Sscusp(9(F)) = SQC(g(F))
[0

has dense image. We start by proving the following

(5.6.2) For all X € gyes(F), there exists f € Sseusp(g(F)) such that 6,(X) # 0.
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Let X € gue(F). Every function f € S(g(F)) which is supported in greg(F)en is
strongly cuspidal. Let f be such a function. Since 6y = 67, by Lemma [4.2.3((iii), we
have

(5.6.3) 0 (X):/F ()DG(Y)1/29f(Y)}(Y,X)dY

By [L.84] there exist Yy € greg(F)en such that ;(Y[),X) # 0. Now, the term 6(Y))
is just the orbital integral of f at Y; and it is not hard to see that we may choose
f such that this orbital integral is nonzero (just take f € C°(g(F')en) positive and
such that f(Yy) # 0). Up to multiplying f by a well chosen invariant function ¢ €
C>(g(F))% that is positive, equals 1 near Y, and is supported in a small compact

modulo conjugation invariant neighborhood of Y, we see that we may arrange the
right hand side of 5.6.3 to be nonzero. This proves (.6.2,

We now prove the following

(5.6.4) For all 8 € SQC(g(F)) and every integer N > 1, there exists a constant ¢y > 0
such that for every invariant and compact modulo conjugation subset L C gyeq(F)
there exists a function f € Sseusp(g(F)) such that

DE(X)10(X) — 0;(0)] < en | X7 1oe(X)

for all X € greg(F') (where 17 denotes the characteristic function of ges(F') — L).

From[(.6.2and the existence of smooth invariant partition of unity (Proposition BI.1I(ii)),
we easily deduce that for all § € QC.(g(F)) whose support is contained in g, (F') there
exists f € Sseusp(9(F)) such that 8 = 6;. Now let § € SQC(g(F')) and L C g,ee(F) be
an invariant compact modulo conjugation subset. Choose ¢ € C*®(g(F))“ such that
0< ¢ <1 ¢ =1o0n L and the support of ¢ is contained in g, (F) and compact
modulo conjugation. Then, by what we just saw, there exists f € Sscusp(g(F')) such
that 0y = 0. Since

|0(X) = 0;(X)| = [(1 = (X))O(X)] < [6(X)]

for all X € gyee(F), we have

DE(X)210(X) = 05(X)| < el Xl Lee(X)

for all N > 1 and all X € gyeq(F'), where
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ey = sup [|X[R DY (X)?10(X)]
X€greg (F)

This ends the proof of £.6.4.

With notation of Section B2l we set ¢, = quo for all u € I(g) (these are continuous
semi-norms on SQC(g(F))). We now deduce from [£.6.4] the following

(5.6.5) For all 8 € SQC(g(F)), every finite family {u,...,ur} C I(g) and all € > 0,
there exists f € Sscusp(g(£F)) such that

forall 1 <¢<k.

Let € SQC(g(F)) and let us fix a finite family {uy,...,ux} C I(g). By Lemma
M.2.3(iii), for all f € Sscusp(g(F')), we have

~

6(X) — 07(X) = / D) O) 6, X)aY

for all X € greg(F). Forall 1 < i <k, let p; € I(g*) be such that u,, = u;. Applying
the above equality to p;6 and p; f for all 1 <7 < k, we obtain

o) (7= 07) (X) = | D) () (600) = (0 ) 30V, X)a¥

for all X € greq(F), all f € Seeusp(9(F)) and all 1 < i < k. Hence, by [L83] we get

qui(g— 9]?) < /

. )Ipui(Y)|D("(Y)”2 6(Y) = 6;(Y)[dY

for all f € Sseusp(9(F)) and all 1 < ¢ < k. Of course, there exists Ny > 1 such that
I, (V)| < ||Y||§V(°g) for all Y € g(F) and 1 < i < k. Hence, it follows from [£.6.4] that
for all N > 1 we have an inequality

(5.6.6) inf sup qui(é—ef) <<inf/ ||Y||;(N)1LC(Y)dY
Lirg Y

.....

where L runs through the invariant and compact modulo conjugation subsets of gres (F).
Choose N > 1 such that the function ¥ ~— HY||1?(]Z) is integrable on I'(g). Then it is
not hard to see that
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inf/ |V |[eY 1 (Y)dY =0
I I'(g) I'(g)

Hence, replacing 6 by 5, 5.6.5] follows from the inequality [5.6.6] above.

We are now in position to prove that the image of the linear map [5.6.1] is dense. By
Lemma [A.2.3|(v), it suffices to prove that the intersection

(5.6.7) QC(a(F) N {bf; [ € Sscusp(8(F))}

is dense in QC.(g(F)) (for its own topology). Let 8 € QC.(g(F)). Then, it follows
directly from that we may find a sequence (f,,)n>1 I Sscusp(8(F)) such that

lim an = 9

n—oo

in QC(g(F)). Let o € C>®(g(F)) be compactly supported modulo conjugation and
such that ¢ =1 on Supp(#). Then, by Lemma [£.2.3|(iv) and the closed graph theorem,
we have

lim @8y, = @ =0
n—o0

in QC.(g(F)). But pby, = 0,5, and ¢f, € Secusp(9(F)) for all n > 1 (by Proposition
B.11(iv)). Hence, the subspace (5.6.17 is indeed dense in QC.(g(F")) and this ends the
proof that the linear map [5.6.11 has dense image. Let w C g(F') be a completely G(F)-
invariant open subset which is relatively compact modulo conjugation. The argument
we just used actually also show that the linear map

Sscusp ((.U) — QCC(W)
[0y

has dense image since for 6 € QC.(w), we can choose ¢ as before which is supported
in w, hence the functions ¢f,, for n > 1, will belong to Sseusp(w). This ends the proof
of (i).

Let f € Cocusp(G(F')). By Theorem [5.5.T[(iv) and (v) and the Weyl integration formula,

we have
| o= [ Do in
G(F) X(Q)
— [ Dmiym) [ s e)dudn
X(G) G(F)
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for all f/ € C*(G(F)). By Proposition [4.81](ii), Lemma and the above
double integral is absolutely convergent. It follows that

| owrwan= [ D)y () @il f ()
G(F) G(F) Jx(G)

for all f' € C*(G(F)). Hence, we have

,(x) = /X ., D)

for almost all z € Ge(F). Consequently, to prove the point (ii), it suffices to show
that the integral

D(m)0;(n)8dn
X(G)

is absolutely convergent in QC(G(F')). But this follows easily from Proposition F.8.1(ii)
combined with Lemma 5.2.2. W

5.7 Lifts of strongly cuspidal functions

Proposition 5.7.1 Let © € G(F)ey be elliptic and let Q, € G,(F') be a G-good open neigh-
borhood of x which is relatively compact modulo conjugation. Set Q = QF. Then, there exists
a linear map

Sscusp (QSL‘) - SSCUSP (Q)

fef
such that

(1) For all f € Sscusp(€2:), we have
(0p)z0. = > 0y
2€Z¢(x)(F)/Ga(F)
(11) There exists a function a € CX(Zg(x)(F)\G(F)) satisfying
/ a(g)dg =1
Zg(x)(F)\G(F)

and such that for all f € Sseusp(2z) and all g € G(F), there exists z € Zg(x)(F) such
that

(e, = (g)f
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Proof: Let us denote by 7 : G(F) — Zg(x)(F)\G(F') the natural projection. It is an F-
analytic locally trivial fibration. Let us fix an open subset U C Zg(x)(F)\G(F') and an
F-analytic section

s:U— G(F)
Since €2, is a G-good open subset, the map
B:Qy xU— G(F)

(y.9) = By.g) = s(9) "ys(g)

is an open embedding of F-analytic spaces. For all f € S(€2,) and all ¢ € C°(U), we define
a function f, on G(F) by

£(7) = f)plg) if v=s(g)"tys(g) for some g € U and some y € Q,
27700 otherwise.

Let us now prove the following

(5.7.1) For all ¢ € C*(U) and all f € S(€,), the function f, belongs to S(2).

This is almost straightforward in the p-adic case. Assume that F' = R. Let ¢ € C°(U) and
f € 8(,). The only thing which is not obvious is to prove that for all u € U(g) the function
L(u)f, is rapidly decreasing. This follows at once from the two following facts

(5.7.2) The function f, is rapidly decreasing i.e., for all N > 1 we have

[foI < Il
for all v € G(F).

(5.7.3) For all X € g(F), there exist an integer k > 1, functions ¢1,...,¢r € CX(U) and
Schwartz functions fi, ..., fr € S(€);) such that

L(X)fso = (fl)cm +.oF (fk)cpk

The claim B.7.2] follows from the fact that there exist constants c¢;,co > 0 and integers
N1, Ny > 1 such that

eyl < |s(g)  ys(9) || < eollyl|™

for all g € Supp(p) and all y € Q, together with the fact that f is itself rapidly decreasing.
Let us focus on E.73 now. Fix X € g(F'). Using a partition of unity if necessary, we may
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assume that U is parallelizable (i.e., its tangent bundle is trivial). Assume this is so and let
us fix a trivialization of the tangent bundle of U

TU ~U XV

where V' is some finite dimensional R-vector space. Let us also fix trivializations T'G(F") =~
G(F) x g(F) and TG,(F) ~ G.(F) x g,(F) using right translations. For all v € G(F'), we
have

(5.7.4)

(LX) fe) () =

0(d8,4)(0) (Fe )| (1.9) i 7= s(9)ys(g) for some g €U, y € O,
0 otherwise.

where df(y.q) : 9x(F) @V ~ g(F) denotes the differential of 5 at (y,g). A painless compu-
tation shows that

By (Y, Z) = Ad(s(g)) " [Y + (Ad(y) — 1) dsy(2))]

for all (y,9) € Q, xU and all (Y,Z) € g,(F) @V, where ds, : V — g(F') denotes the
differential at g of the section s. It is obvious from this description that there exist an
integer r > 1, polynomials P, ..., P. € R[G,], smooth functions 91, ...,¢, € C®°U) and
vectors Xi,..., X, € g.(F) @V such that

T

(5.7.5) A, (X) =0 ()™ ) Pily)vi(9)X;

1=1

for all (y, g) € Q, xU, where we have set 73"(y) = det (1 — Ad(y)),, ,,- Writing X; = Y;+Z;
where Y; € g,(F) and Z; € V for all i = 1,...,r, we get from (.74 and 575 that

T

(LX) fo) =D (s + ()

i=1
where f/ = (i)' P (L(Y)) f), fI' = n"9) "' Pif, ¢} = thip and @] = 1 (0(Z:)p) for i =
1,...,r. The claim E.7.3 follows once we remark that multiplication by (n29)~! preserves

S(2,) (this is a consequence of Proposition[3.1.1[(iv), here we use the fact that €2, is relatively
compact modulo conjugation so that functions in S(€2,) are compactly supported modulo
conjugation).

We now construct a linear form as in the proposition. The construction is as follows. Choose
a function o € C°(U) such that
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/ a(g)dg =1
Zg (@) (F)\G(F)
and set f = ((nf )_1/ 2 f) for all f € Sseusp(€22). The second point of the proposition is

obvious from this definition. We need to check the two following facts

(5.7.6) For all f € Sseusp(€2s), the function fis strongly cuspidal.

(5.7.7) For all f € Sseusp(£2), we have

(0p)z0, = > Oy

2€26(@)(F)/Ca(F)

Let us prove Let [ € Sscusp(€2:) and let P = MU be a proper parabolic subgroup of
G. Let m € M(F) N Gyeg(F). We want to show that

flu™ 'mu)du =0
U(F)

If the conjugacy class of m does not meet €, then the function u € U(F) — f(u"'mu) is
identically zero. Assume now that m = g~'m,g for some g € G(F) and some m, € €,.
Set M' = gMg=', U = gUg™! and P’ = gPg~' = M'U’. Then, x belongs to M'(F) and
P! = M!U. is a parabolic subgroup of G, which is proper (since z is elliptic). We may now
write

f(u‘lmu)du = / gf(u’_lmmu')du'

"(F)

:/ / (“9 )00, (' gl ) dudl dud!
UL(F)\U'(F) JUL(F)

By (ii), for all v/ € U'(F) there exists z € Zg(2)(F) such that the function (“9f),q, is a
scalar multiple of #f. Since f is strongly cuspidal, it follows that the inner integral above is
zero. This ends the proof of

We now prove BT Let y € Quuee. Set M(y) = Zg(Ag,) and M(y), = Za,(Ag,).
Returning to the definitions, we need to show that

U(F)

(5.7.8) T (Y. f) = > Tue.w )

2€G(F)\Zg (z)(F)

By definition, we have
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(5.7.9) Tay(y, f) = D ()" / . Flo™ yg)vare)(9)dg

-, >
Zg(x)(F)\G(F)

G (F)\Za ()(F)
/ (gf> (7' 9, y9:2) vy (9229)dg.dg
Gy (F)\Ga(F) 8k

Let g € G(F). By (ii), up to translating ¢g by an element of Zg(x)(F'), we have <9f) 0 =

a(g)f. Hence, the inner term of the last expression above becomes

2€G4(F)\Zg (z)(F) Gy (F)\Gz(F)

By Lemma 3.3 of [Wal], we have the descent formula

v () = > > v (ga)uq (Ho(9ey) — Ho.(92))

LeL(M(y)z) QeEP(L)

for all g, € G.(F) and all v € G(F'), where L(M((y),) denotes the set of Levi subgroups of
G, containing M (y), and for L € L(M(y),), L denotes the centralizer of Ay in G (a Levi
subgroup of ), the other terms appearing in the formula above have been defined in Section
(they depend on the choice of two maximal compact subgroup K and K, of G(F') and
G.(F) which are special in the p-adic case). We may thus decompose the expression [B.7.10]
further as a sum over L € L(M(y).), Q € P(L) and z € G,(F)\Zg(x)(F) of

o(g) D% (y) 2 / o yae)vS, (0 00 (Holge29) — Ha,(9.)) do
Gy(F)\Gz(F)

Since the function g, — UM( 1o (92)uq (Hq(9229) — Hq,(g2)) is invariant by left translation
by Ugq,(F) (the unipotent radical of Q.(F")), y € Q.(F) and *f is strongly cuspidal, this
last term is zero unless @, = G,. As z is elliptic in G(F'), this last condition is equivalent
to @ = G and L = G,. In this case the expression above reduces to a(g)Ja (). (y,*f), hence

is equal to
a(g) > I (Y, " f)

2€G2(F)\Zg (z)(F)

Going back to B.7.9 and recalling that we choose a so that fZ (@) ENG(E )a(g) =1, we
immediately get m This ends the proof of 5. 7.7 and of the proposition. W
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Corollary 5.7.2 Assume that G admits an elliptic mazximal torus and that the center of
G(F) is compact. Then

(i) There exists Q C G(F) a completely G(F)-invariant open subset which is relatively
compact modulo conjugation and contains G(F ) such that the linear map

f € Sscusp(Q) — Hf c QCC(Q)
has dense image (in particular in the p-adic case this map is surjective).

(i1) If F is p-adic, then for all 8 € QC(G(F)), there exists a compact subset Qg C Xen(G)
such that

/ DY(x)0(2)0,(x)dz = 0
Len(G)

for all m € X1 (G) — Qq, the integral above being absolutely convergent.

(1)) If F = R, then for all k > 0 there exists a continuous semi-norm v on QC(G(F))
such that

< vip(0)NE (m)~F

/ DO (2)0(2)0 (z)da
Ten(G)

for all m € Xy(G) and all 0 € QC(G(F)), the integral above being absolutely conver-
gent.

(iv) For all m € X1(G) there ezists f € Cseusp(G(F)) such that for all 7' € Xy (G) we have
§f(7r’) A0 =7

Proof:

(i) For all € G(F)en, choose Q, C G.(F) a G-good open neighborhood of = which is
relatively compact modulo conjugation and such that there exists w, C g,(F) a G-
excellent open subset with Q, = xexp(w,). Since G(F')e is compact modulo conjuga-
tion, we may find z1, ...,z € G(F)e such that the family (Qgi)lgigk covers G(F ).
Let us set

Q=0 u...UQ¢

By the existence of smooth invariant partition of unity (Proposition B.I1[(ii)), we see
that the natural continuous linear map
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(iii)

P ec.f) = ec.()

i=1

is surjective. Hence, it is sufficient to show that for all z € G(F)y, the linear map

f S SscuSp(Q:(c;> = ef S QCC(Qf)

has dense image. Let x € G(F')q1. By Proposition 1.4.1](iii) and the previous proposi-
tion, it suffices to prove that the linear map

f € Sscusp(Qx> — ef c QCC(QQU)

has dense image. We have the following commutative diagram

Sscusp(Qx) - QCC(Q$>

| |

Sscusp (Wm> - QCC (ww)

where the two vertical arrows are given by f — (R(z)f)., and 0 — (R(z)#),, respec-
tively and the two horizontal arrows are both given by f +— 6. By Proposition [5.6.11(i),
the bottom map has dense image.On the other hand, by Lemma [3.3.1] and Proposition
MAT](i) the two vertical maps are topological isomorphisms. Hence the top map also
has dense image. This ends the proof of (i).

The integral is absolutely convergent since for every quasi-character 6 the function
(D%)/20 is locally bounded. We may of course assume that 6 € QC,(Q), where ( is
as in (i) so that we may find f € Sseusp(€2) such that § = ;. But then, by the Weil
integration formula, we have

/ DS (2)0(2)6, ()dz = 0, (f)
Cen(G)

for all m € X(G) and the result follows from [Z.6.1]

The integral is absolutely convergent for the same reason as before. Let (2 be as in (i)
and let p € C*(G(F))¢ be an invariant function that is supported in  and equals 1 in
some neighborhood of G(F')q. By Proposition L4Tl(iv) and the closed graph theorem,
the linear map

0 € QC(G(F)) — b € QC.(Q)
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is continuous. Hence, we only need to prove the estimate for § € QC.(2). Since for all
0 € QC.(Q) the function (D%)'/20 is locally bounded by a continuous semi-norm, for
all m € X_;(G), the linear map

0 € QC.(Q) — /F o D (x)Y20()0, (x)dx

is continuous. Hence, by (i), we only need to prove the estimates for § = 6y with
[ € Sscusp(£2). By the Weyl integration formula and Lemma [5.2.2(ii), for all z € Z(g)
and all f € Sseusp(€2), we have

G = G X Iz X lax
XW(Z)deKG)l) <x>9f<x>eﬂ<x>dx-—-jfdﬂg)z) ()07 () (20), (2)d
_ / DO(2)(2"0;) ()6 () da

Cen(G)

There exists 21, ..., 2, € Z(g) such that

Xr(2)| + - X (20)] = N ()
for all m € Xi(G) so that the estimates now follows from Proposition FL8Iii).

Let 7 € Xuq(G) and identify it with one of its preimage in X, (G). By (i) there
exists a sequence (fy)n>1 of functions in Ceusp (G(F)) such that the sequence of func-
tions ((D9)Y/20y,) _, converge uniformly to (D%)"/20, on Gieg(F)en. By Proposition
B.6.11(11), we have

>1

(5.7.11) 0= > mw%w&w/ D(")fy, (') dr’

7T’€Xeu (G) Xind (G)

for all n > 1. By the orthogonality relations of Arthur (Corollary 6.2 of [A4]), we have
that

G o o D(?T(])_l if o — T1
/Fcn(G) P (z)eﬂo (I) o (I)dI B { 0 otherwise.

for all mg, m € Xay(G). Moreover, all 7" € Xj,4(G) is properly induced and so has a
character that vanish identically on Geg(F')en. Hence, we deduce from [5.7.11] that

(5.7.12) lim 6y, (7') =

n—o0

D(r)™! ifr=nm
0 otherwise.
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Consider the map

(5713) Xell(G) — Xtemp(G)
7 I

where for all 7' € X (G), I denotes the unique element of Xiemp(G) such that 7' is
built up from the irreducible subrepresentations of I'. Let II € Xiemp(G) be the image
of m. Then there exists a compact neighborhood U of Il in Xjep(G) such that the
inverse image of U by (713 is a finite set {my = m,m,...,m} C Xa(G). By
we can certainly find a function f’ € Cyensp(G(F')) that is a finite linear combination of
the f,, n > 1, such that

éf/(m) 0 m ="

forall i = 0,...,n. Let ¢ € C2(Xemp(G)) be such that p(II) = 1 and Supp(yp) C U.
By Lemma [5.3.1(i), there exists a unique function f € Cycusp(G(F)) such that

'(f) = (I ()

for all II" € Xyemp(G). This function obviously has the desired property. B

6 The Gan-Gross-Prasad triples

In this chapter, we introduce the main characters of this paper that we call GGP triples.
These are certain triples (G, H,£) where G is a connected reductive group, H a closed
subgroup and £ a unitary character of H(F'). These GGP triples are themselves associated
to pairs (W, V) of hermitian spaces with W C V and W+ satisfying a certain condition.
We call such pairs admissible. The precise definitions of admissible pairs, GGP triples and
related objects are given in Section Section contains some purely group-theoretic
background on unitary groups. Given a GGP triple (G, H,¢), we associate in Section [6.3],
following Gan, Gross and Prasad, a multiplicity function m — m(7) on the set of admissible
irreducible representations 7w of G(F'). Fundamental results of Aizenbud-Gourevitch-Rallis-
Schiffmann and Jiang-Sun-Zhu, that we recall, state that this multiplicity is always less or
equal to 1. In Section [6.4], we show that H\G is a F-spherical variety which means that
there exists a minimal parabolic subgroup Py, with H P,;, open in GG. More generally, we
call a parabolic subgroup P good if HP is open in G and we list some properties of these
subgroups. Sections [6.5], and are devoted to the proof of certain estimates that will
be needed in Chapters [ B and @ Also crucial for these subsequent chapters, as well as
for the proof of the estimates, is the existence of a certain ‘weak Cartan decomposition’ for
the homogeneous variety H\G which is the subject of Section [6.6l Such a decomposition is
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known in some generality and in particular for split p-adic spherical varieties ([SV] Lemma
5.3.1), symmetric spaces ([BO], [DS]) and real spherical varieties [KKSS|. Strictly speaking,
these references do not cover the case at hand when the field F' is p-adic but, fortunately, in
this particular situation the author has already established the existence of a weak Cartan
decomposition ‘by hand’ in a previous paper [Beul].

6.1 Hermitian spaces and unitary groups

We will henceforth fix a quadratic extension [Elof F. We will denote by x +—{Z the nontrivial
F-automorphism of E and by and the norm and the trace of this extension
respectively. We also fix a nonzero element [ € E with zero trace. We will set [H=E®rF.
This is an étale 2-extension of F and as such is isomorphic to F x F but we won’t fix such
an isomorphism.

By an hermitian space we will mean a finite dimensional E-vector space equipped with a
non-degenerate hermitian form h which is linear in the second argument. For V' an hermitian

space, we will denote by [U(V )| the corresponding unitary group and by [u(V')| the Lie algebra
of U(V). Set Vz = V ®p F. Then h has a natural extension, still denoted by h, to

an E-sesquilinear form on V& Then U(V) is the group of E-linear automorphisms of Vi
preserving the form h. We will identify u(V') to the subspace of antihermitian, with respect
to h, elements in Endg(Vz). For v,v" € V&, we will denote by the element of u(V)
defined by

c(v,v")(v") = h(v,v")v" — h(v', 0" )v
The set {c(v,v'); v,v" € V'} generates u(V)(F) as a F-vector space.
Every parabolic subgroup P of U(V) is the stabilizer of a flag of totally isotropic subspaces

1 C 4y C...C Zy

If M is a Levi component of P, then there exists totally isotropic subspaces Z/,, 1 <i < k,
such that Z; = Z;_1 @ Z/ for 1 <i < kand Z;- = Z+, ® Z',_, for 0 < i < k — 1, where
we have set Zy = 0, such that M is the stabilizer in U(V') of the subspaces Z/,, 1 <i < k.
Then, for all 1 <7 < k, the form h induces a perfect conjugate-duality between Z; and 2’ ,.

k
If V denotes the orthogonal complement of @(Z{ @ Z',), we have a natural isomorphism
i=1
M~ GLg(Z}) % ... x GLg(ZL) x U(V)
where for 1 < ¢ < k, GLg(Z]) denotes the restriction of scalars from E to F' of the general
linear group of Z.

We are now going to describe the regular nilpotent orbits in u(V')(F). If U(V') is not quasi-
split then there are no such orbit. Assume that U(V) is quasi-split. If dim(V') is odd or
zero, then there is only one regular nilpotent orbits. Assume moreover that dim(V') > 0 is
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even. Then, there are exactly two regular nilpotent orbits. Since U(V') is quasi-split, there
exists a basis (z;)i—+1.. 4k such that h(z;, z;) = 6, _; for all 4,j € {£1,..., £k} (where §;_;
denotes the Kronecker symbol). Let B be the stabilizer in U(V) of the flag

<Zk> C <Zk, Zk_1> C...C <Zk, cee Zl>

Then, B is a Borel subgroup of U(V'). Denote by U its unipotent radical. For all p € E
with trace zero, define an element X (1) € u(F') by the assignments

X(u)zrg =0, X(u)z; = ziyq for 1 <i < k=1, X(p)zo1 = pzy, X(p)z_y = -2z for2<i <k

Then, for all p € E* with Trg,p() = 0, X () is regular nilpotent. Moreover the orbits
of X(u) and X (') coincide if and only if uNg/p(E*) = W Ng/p(E*). It follows that
for all A € F* \ Ng/p(E*), the elements X (1) and X (A7) are representatives of the two
regular nilpotent conjugacy classes. Notice that in particular multiplication by any element
of F* \ Ng,p(E*) permutes the two regular nilpotent orbits in u(V)(F).

6.2 Definition of GGP triples

Let |(W, V)| be a pair of hermitian spaces. We will call (W, V') an admissible pair if there
exists an hermitian space [Z] satisfying

o VW alZ;

e 7 is odd dimensional and U(Z) is quasi-split.

This last condition admits the following more explicit translation: it means that there exist

€ F* and a basis (z_;,...,2_1, 20, 21, - - -, 2r) of Z such that
(621) h(ZZ', Zj) = V(Si,—j

for all 4,5 € {0,+1,...,+r}.

Let (W, V) be an admissible pair. Set [Gl = U(W) x U(V). We are going to associate to
(W, V) a triple (G, H,§) where H is an algebraic subgroup of G and £ : H(F) — C* is a
continuous character of H(F) and this triple will be unique up to G(F)-conjugacy. Fix an
embedding W C V and set Z = W+. We also fix v € F'* and a basis (where
dim(Z) = 2+ 1) of Z satisfying Denote by [Py] the stabilizer in U(V') of the following
flag of totally isotropic subspaces of V

(2r) C .o C{2py.nny21)

Then, Py is a parabolic subgroup of U(V'). We will denote by [N its unipotent radical. Let
[My] the stabilizer in Py of the lines (z;) for ¢ = +1,...,4+r. It is a Levi component of Py .
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Set [Pl= U(W) x Py. Then, P is a parabolic subgroup of G with unipotent radical N and
= U(W) x My is a Levi component of it. Identifying U(W') with its image by the diagonal
embedding U(W) — G, we have U(W) C M. In particular, conjugation by U (W) preserves
N and we set

H=U(W)x N
It only remains to define the character £. Let us define a morphism N: N — G, by

r—1
An) =Trg/p (Z h(z_i_l,nzi)> , neN

i=0
It is easy to check that A is U (W )-invariant, hence it admits a unique extension, still denoted
by A, to a morphism H — G, which is trivial on U(W). We denote by Mg : H(F) — F
the morphism induced on the groups of F-points. Recall that we have fixed a non-trivial
continuous additive character ¢ of F'. We set

€h) = v(Ar(h))
for all h € H(F'). This ends the definition of the triple (G, H,&). We easily check that this
definition depends on the various choices only up to G(F)-conjugacy. We will call a triple

obtained in this way (i.e., from an admissible pair (W,V)) a Gan-Gross-Prasad triple or
GGP triple for short.

From now on and until the end of Chapter [[T], we fix an admissible pair of hermitian spaces
(W, V). We also fix data and notation as above, that is: an embedding W C V, Z = W+,
an element v € F* and a basis (2;)i—0 +1,.. +r of Z satisfying [6.2.1] the parabolic subgroup
P = MN, the algebraic character A and the character £&. We will denote by (G, H,&) the
GGP triple constructed as above. We will also use the following additional notation

o [d= dim(V) and mm= dim(WW)
o [Z = (2z,...,z1), and [Z|= (2_1,..., 2—);
o D= Ezy and V)= W & D;

o [Ho|=UW) and [Gg = UMW) x U(Vy). We consider Hy as a subgroup of Gy via the
diagonal embedding Hy < Gq. The triple (G, Hp, 1) is the GGP triple associated to
the admissible pair (W, V4);

e [T the subtorus of U(V') preserving the lines (z;), for i = 1,...,r and i = —1,...,—r
and acting trivially on V. We have M =T x GY;

e [Al the split part of the torus 7', it is also the split part of the center of M:;

e ¢ the character of h(F'), where hh = Lie(H), which is trivial on u(W)(F') and equal to
£ oexp on n(F).

145



° is the following non-degenerate G-invariant bilinear form on g:

B((Xw, Xv), (X, X)) = = (Trg/r (Trace(Xw Xyy)) + Trg/p (Trace(Xy X))

N —

We will use B(.,.) to normalize the Haar measures on both g(F') and G(F') as explained
in Section [L6l We also fix Haar measures on all algebraic subgroups of G(F') and their
Lie algebras as explained in Section

Note that when r = 0 (that is when Z = D is a line), we have G = Gy, H = Hy and £ = 1.
If this is the case, we will say that we are in the codimension one case.

We will need the following (cf. Section for the definition of norm descent property):

Lemma 6.2.1 (i) The map G — H\G has the norm descent property.

(ii) The orbit under M-conjugacy of X in (n/[n,n])* is a Zariski open subset.

Proof:

(i) We have a natural identification H\G = N\U(V), so that it is sufficient to prove that
U(V) — N\U(V) has the norm descent property. Since this map is U(V')-equivariant
for the obvious transitive actions, we only need to show that it admits a section over
a nonempty Zariski-open subset. If we denote by Py = My N the parabolic subgroup
opposite to Py with respect to My, the multiplication map N x My x N — U(V) is an
open immersion. The image of that open subset is open in N\U (V') and the restriction
of the projection U(V) — N\U(V) to that open set is N x My x N — My x N. This
map obviously has a section.

(ii) If r = 0, i.e., if we are in the codimension one case, we have n = 0 and the result is
trivial. Assume now that » > 1. It suffices to show that the dimension of the orbit
M - X is equal to the dimension of n/[n,n]. We easily compute

dim (n/[n,n]) = 2(m +r)

and

dim(M) = m? + 2r + (m + 1)

The stabilizer M, of X is easily seen to be M, = Z(G) (U(W) x U(W)) (where Z(G)
denotes the center of G). Hence, we have

dim(M,) = 1 + 2m?
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and the dimension of the orbit M - \ is

dim(M.\) = dim(M) — dim(My) = m® + 2r + (m + 1)> = 1 — 2m?* = 2(r + m)
which is the same as dim (n/[n,n}). B

6.3 The multiplicity m(n)

For 7 € Temp(G), let us denote by the space of all continuous linear forms
¢: 7 — C such that

((m(h)e) = &(h)L(e)

for all e € 7> and for all h € H(F). We define the multiplicity[m ()] to be the dimension of
that space of linear forms, that is

m(7) = dim Hompg(w, &), = € Temp(G)

We have the following multiplicity one result which is Theorem A of |[JSZ] in the Archimedean
case (for r = 0, it is Theorem B of [SZ]) and follows from the combination of Theorem (1’)
of [AGRS| (which treat the case r = 0) and Theorem 15.1 of [GGP] (showing how to extend
the result to general r) in the p-adic case.

Theorem 6.3.1 We have

m(m) < 1
for all m € Temp(G).
Note that we have
(6.3.1) m(m) = m(T)

for all 7 € Temp(G). Indeed, the conjugation map £ + ¢ induces an isomorphism

HOIIlH (71', 5) ~ Hom(ﬁv E)

and as we easily check, there exists an element a € A(F) such that &(aha™") = £(h) for all
h € H(F'), hence the linear map ¢ — ¢ o m(a) induces an isomorphism

Hom(7, £) ~ Hompy(7, €)
and follows.
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6.4 H\G is a spherical variety, good parabolic subgroups
We will say that a parabolic subgroup Q of G is good if HQ) is Zariski-open in G. This

condition is equivalent to H(F)Q(F') being open in G(F).

Proposition 6.4.1 (i) There exist minimal parabolic subgroups of G that are good and
they are all conjugate under H(F). Moreover, if Puin = MupinUmin 5 a good minimal
parabolic subgroup we have H N Uy, = {1} and the complement of H(F)P .y (F) in
G(F) has null measure;

(ii) A parabolic subgroup Q of G is good if and only if it contains a good minimal parabolic

subgroup;

(i4i) Let Puin = MpinUmin be a good minimal parabolic subgroup and let Ay = Apr.. be
the maximal split central subtorus of M. Set

At ={a € Apn(F); |a(a)| > 1 Va € R(Amin, Puin)}

Then, we have inequalities
(6.4.1) o(h) + o(a) < a(ha) for alla € Al , h € H(F).
(6.4.2) o(h) < o(a"tha) for alla € At.  he H(F).

Proof:

(i) Set wy = zp and choose a family (wq,...,w,;) of mutually orthogonal vectors in W

which is maximal subject to the condition

h(w;)) = (—1)'v, i=1,...,¢

Let [£] (vesp. |£]) be the smallest (resp. the largest) integer which is not less (resp.
not greater) than £. We define u;, fori =1,...,[£] by

U; = Waj_9 + Wai—1

and u, forizl,...,{éj,by

/
U; = Waj—1 + Woy;

Then, the subspaces



ZW:<U/1,...,U/£>
l3]

are maximal isotropic subspaces of Vo and W respectively. Let Py, and Py be the
stabilizers in U(Vy) and U(W) of the totally isotropic flags

<U1> Q <U1,U2> Q Q <U1,,U(%]>

and
(u) C (o) €. C G )

respectively. Then Py, and Py, are minimal parabolic subgroups of respectively U(Vp)
and U(W). Set

FO = FW X FV@
It is a minimal parabolic subgroup of Gy. Let W,, be the orthogonal complement in

W of (wy,...,w,). We claim the following

(6.4.3) We have HyN Py = U(W,,) and HyP, is Zariski-open in Gy (i.e., Py is a good
parabolic subgroup of Gy).

The second claim follows from the first one by dimension consideration. We prove the
first claim. Let ho € HyN Py. Consider the action of hy on V;. Since ho belongs to Hy,
ho must stabilize wy = 2. On the other hand, since hy belongs to Py, ho must stabilize
the line (wg + wq). Because wy is orthogonal to wy, it follows that hg stabilizes w;. We
show similarly that hg stabilizes ws, . .., w,, hence hy € U(W,,). This ends the proof
of

Let P = MN be the parabolic subgroup opposite to P with respect to M and set

?min == ?0 TN

it is a minimal parabolic subgroup of G. We deduce easily from [6.4.3] the following
(6.4.4) Py is a good parabolic subgroup and we have P, N H = U(W,,).

I%lis already proves that there exists minimal parabolic subgroup that are good._I/Jet
P_ ;. be another good minimal parabolic subgroup and let us show that P, and P_;,

are conjugate under H(F). Let g € G(F) such that P, ;, = ¢Pumg ". Set U = HP
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(i)

and Z = G —U. Then, Z is a proper Zariski-closed subset of GG which is obviously
H x Py-invariant (for the left and right multiplication respectively). If g € Z, then
we would have

Hﬁinin = Hgﬁming_l g Zg_l
which is impossible since ?;nm is a good parabolic subgroup. Hence, we have g €
UNG(F) =U(F). If we can prove that g € H(F)Puyn(F), then we will be done.
Hence, it suffices to show that

(6.4.5) U(F) = H(F)Pyin(F)

by a standard argument, this follows from
(6.4.6) The map H'(F, H N Pyyn) — H'(F, H) is injective.

By 6.4.4, we have HY(F, H N Ppy,) = HY(F,U(W,,)). Since H = U(W) x N with N
unipotent, we also have HY(F, H) = H'(F,U(W)). The two sets H*(F,U(W,,)) and
H'(F,U(W)) classify the (isomorphism classes of ) hermitian spaces of the same dimen-
sion as Wy, and W respectively. Moreover, the map H'(F,U(W,,)) — H'(F,U(W))
we are considering sends W/ to W/ & W where W denotes the orthogonal com-

plement of W,, in W. By Witt’s theorem, this map is injective. This proves [6.4.6] and
ends the proof that all good minimal parabolic subgroups are conjugate under H(F).

It only remains to show the last part of (i) that is: HNUu, = {1} and the complement
of H(F)Puin(F) in G(F) has null measure for every good minimal parabolic subgroup
Proin = MpinUmin. Since we already proved that all good minimal parabolic subgroups
are H(F)-conjugate, we only need to consider one of them. Choosing for P, the
parabolic subgroup that we constructed above, the result follows directly from [6.4.4]

and [06.4.51

Let @ be a good parabolic subgroup and choose P, € @ a minimal parabolic sub-
group. Set

G :={g € G; g ' Puing is good}

It is a Zariski-open subset of GG since it is the inverse image of the Zariski-open subset
{V € Gr,(g);V + b = g} of the Grassmannian variety Gr,(g), where n = dim(Pp,),
by the regular map g € G+ ¢ 'pming € Gr,,(g). Moreover, it is non-empty (since by
(i) there exists good minimal parabolic subgroups). Since @ is good, the intersection
QH N G is non-empty too. Hence, we may find g, € @ such that g, Puing, is a good
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(iii)

parabolic subgroup. This parabolic subgroup is contained in @ but it may not be
defined over F'. Define

Q = {7 € Q;7 ' Puing is good}

Then again Q is a Zariski-open subset of (Q and we just proved that it is non-empty.
Since Q(F) is Zariski-dense in @, the set Q(F') is non-empty. Then, for all § € Q(F)
the parabolic subgroup G !Ping has all the desired properties.

First we prove that both[6.ZTland[6.42.2 don’t depend on the particular pair (P i, Miin)
chosen. Let (Pmm,MI;m) be a similar pair, that is : P;mn is a good parabolic sub-
group and M! . is a Levi component of it. Then, by (i), there exists h € H(F') such

min

that P = hPninh~!' and obviously the inequalities [6.4.1] and [6.4.2 are true for the

min

palr (Prin, Miyin) if and only if they are true for the pair (hPuyinh™t, hMph™t) =
(P

hM inh™ ) Hence, we may assume without loss of generality that Py = Pl

min»

Then, there exists U € Upin(F) such that Mr/nln = UMyt and we have At =
uA:;m ~1. By definition of AL, | the sets {a 'ua; a € AL, } and {a " 'u"ta; a € Al }

are bounded. It follows that

o (huau™") ~ o(ha)

o (wa~"u 'huau™") ~ o(a"" ha)
for all a € A, and all h € H(F). We easily deduce that the inequalities and
6.4.2] are satisfied for the pair (P, Mnin) if and only if they are satisfied for the pair

(Prains Miin)-

min’ min

We now reduce the proof of 6.4.1land [6.4. 2 to the codimension one case. Let Py = MyU,
be a good minimal parabolic subgroup of Gy. Let Ay = Ay, be the split part of the
center of M, and let

Ay = {ao € Ao(F); |a(a)] > 1Va € R(Ap, Po)}

Set Puin = PoT'N and My, = MoT. Then, Py, is a good parabolic subgroup of G,
Mpin is a Levi component of it and A, C A( JAS. We have

min

o(nhopaag) > o(n) + o(a) + o(hoao)

for all h = nhy € H(F) = N(F)Hy(F) and all (a,ay) € A(F) x AZ. Since, o(aag) ~
o(a) + o(ag) and o(nhg) ~ a(n) + o(hg) for all (a,ao) € A(F) x A$ and all (n, ho) €
N(F) x Hy(F), the inequality will follow from
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(6.4.7) o(hgag) > o(hg) + o(ap), for all ag € Af and all hy € Ho(F).

On the other hand, we have o(a"'na) > o(n) for all a € A'. and all n € N(F).
Hence,

o(a 'nhoa) > o(n) + o(a  hea) = o(n) + o(ay "hoag)

for all (n,ho) € N(F) x Ho(F) and all a € AY, | where ag denote the unique element

min’

of AF such that aay' € A(F). Hence, the point will follow from
(6.4.8) o (aghoag) > a(hg), for all ag € AJ and all hy € Hy(F).

Of course, to prove and we may work with any pair (P, M) that we want.
Introduce a sequence (wy, . . ., w,) and a parabolic subgroup Py = Py x Py, of Gj as in
(i). ByB.43, Py is a good parabolic subgroup of Gy. Let My, be the Levi component
of Py, that preserves the lines

(ur), ..., <u[§]> and (u_1), ..., (u_[§1>

where we have set u_; = wg_y — wo_1 for i = 1,...,[%], and let My, be the Levi

- 2
component of Py, that preserves the lines

<u/1>7 ey <u/£ > and <ul—1>7 ceey <u/ £ >
LQJ _LQJ
where we have set v’ ; = wy; 1 —woy; fori=1,..., ng Set

MOIMW X MV@

It is a Levi component of Py. We are going to prove [6.4.7 and [6.4.8 for the particular
pair (Pg, My). We have a decomposition

Af = Afy x AF,

where Af;, and A, are deﬁnZed in the obvious way. For all ay, € Af, (resp. aw € Ay))
[51 l5]

let us denote by ay,,...,a,7 (resp. ayy,...,ay" ) the eigenvalues of ay, (resp. aw)
acting on ug, . .. S Ursg (resp. on uf, ... ,u’LgJ). Then, we have
2

£
by > > a2 > 1
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¢
jady] > > oy > 1
for all ay, € A‘J;O and all ay € Ay,

Of course we have

o(ho) + o(ag) < o(hoao) + o (ho)
o(ho) < ouvy)(hoav,) + ou ) (av,)
ou vy (hoav,) < o(hoao)

for all ag = (aw,ay,) € Ay = Ay, x A}, and all hy € Ho(F). Hence will follow
from

(6.4.9) ouwy) (av,) < ouy)(hoay,), for all ay, € A, and all hy € Ho(F).

We have

(6.4.10) o(av,) ~ log (1 + |ay,|)
for all ay, € A‘J;O. Moreover, for all ay, € A‘J;O and all hy € Ho(F') we have
h(hoay,uy, wo) = a%/oh(houl, wp) = a%/o (h(wo, wg) + h(howy, wy)) = a%/oy

Since oy 1) (g9) > log (1 + |h(gus, wo)|) for all g € U(W), follows.

We now concentrate on the proof of [6.4.8 Obviously, we only need to prove the
following

(6.4.11) For all v,v" € Vj, we have an inequality
log (2 + |h(hov,v")|) < o(ag  hoag)

for all ap € A and all hy € Hy(F).

By sesquilinearity and since |h(hov,v')| = |h(hg *v,v)|, it suffices to prove G.ZITlin the
following cases

o v=w; and V' € (w;,...,wp) ® Wy, for 0 <i < ¢;

153



e v,V €Wy,

(recall that W, denote the orthogonal complement of (wy,...,w,) in Vp). The proof
of in the second case is easy since we have h(ay, hoay,v,v') = h(hgv,v') for all
ay, € Ay (F), all hy € Ho(F) and all v,v" € W,,. Let us do the first case. The
proof is by induction on i. For ¢« = 0, the result is obvious since hqwy = wq for all
ho € Ho(F). Let 1 < i < ¢ and assume that is satisfied for v = w;_; and
all v/ € (w;_1,...,wp) ® Wyy,. If i is odd, then the subspace (w;_1,...,wy) @& W, is
preserved by Ay, (F'). Obviously, we only need to prove for v" an eigenvector for

the action of Ay, (F) on that subspace. For all ay, € Ay, the eigenvalue of ay, on v’

have an absolute value which is greater or equal to |a§f-0_1)/ 2|_1. Hence, we have

U(ao_lhoao) > log (2 + |h(a‘701h0av0u(,~_1)/2, ’Ul)|)
> log (24 [afy gy, avi') )
> IOg (2 —+ ‘h(hoU(i_l)/g, ’U/>|)

for all ag = (aw,ay,) € Ay = Ay, x Ay, and all hy € Hy(F). On the other hand we
have w; = wg_1)/2 — w;—1, so that

log; (2 + [(hows,v')]) < og (2 + [h(lote—1y2,0)]) + log (2 + [h(hgwi_1,v')

for all hy € Hy(F'). Combining the two previous inequalities and the induction hypoth-
esis we get the desired inequality. If 7 is even, the proof is similar using the action on
W rather than on V,. B

6.5 Some estimates

Lemma 6.5.1 (i) There exists € > 0 such that the integral

/ =90 (hg)ee ) dhy
Ho(F)

1s absolutely convergent.

(11) There exists d > 0 such that the integral

15 absolutely convergent.
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(15i) For all § > 0 there exists € > 0 such that the integral

/ =6 (R)e® (14 AB)|)° dh
H(F)

is absolutely convergent (where A\ : H — G, is the homomorphism defined in Section

62).
Let Prin = MpinUmin be a good minimal parabolic subgroup of G. We have the following

(iv) For all 6 > 0 there exists € > 0 such that the integral

I s (Min) = / 26 (hiigmin )™ (1 4 |A(R)]) " dh
’ H(F)
is absolutely convergent for all muyn € Muyin(F) and there exists d > 0 such that

16175(mmin> < 5ﬁmin (mmin)_l/za(mmin>d
for all My € Mpin(F).

(v) Assume moreover that A is contained in Ay, . Then, for all § > 0 there exists € > 0
such that the integral

I s(Minin) = / / ZC (hmunin )EC (W Wi ) €™M e (1 4+ |A(K)]) ™ di'dh
’ H(F) JH(F)

is absolutely convergent for all My € Muyin(F') and there exists d > 0 such that
Lz&(m) < 5ﬁmin (mmin>_1a(mmin>d

for all My € Mpin(F).

Proof:

(i) This follows from the following fact

(6.5.1) There exists € > 0 such that
= (ho) < =M (ho)?e™ ™)

for all hg € Ho(F).
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If F'is p-adic, this is proved in [Beul] (Lemme 12.0.5). The proof works equally well
in the real case.

(ii) Let d > 0. By Proposition [[L5.1iv), if d is sufficiently large, we have

/ =¢(h)o(h)~Ydh = / / =4 (hon)o (hon)~%dndhy
H(F) Ho(F) J N(F)

< / EGO(ho)dho
Ho(F)

(Note that 6p(hg) = 1 and =M (hg) = =% (hyg) for all hy € Hy(F)) and this last integral
is absolutely convergent by (i).

(iii) By (i) and since a(hon) < o(hg) +o(n) for all hy € Ho(F') and all n € N(F), it suffices
to establish

(6.5.2) For all § > 0 and all ¢y > 0, there exists € > 0 such that the integral
195(ho) = / =6(nhg)e ™ (1+ [A(n)]) dn
N(F)

is absolutely convergent for all hy € Ho(F') and satisfies the inequality
lgé(ho) < EGO(ho)EEOU(hO)

for all hyg € Hy(F).

Let 6 > 0, ¢¢ > 0 and € > 0. We want to prove that [6.5.2] holds if € is sufficiently small
(compared to § and €;). We shall introduce an auxiliary parameter b > 0 that we will
precise later. For all hg € Ho(F'), we have 125(ho) = I?5 o, (ho) 4 1255 (ho) where

s5,<p(ho) = / L,y (n)Z9 (nho)e™™ (1 + [A(n)])™° dn
N(F)

L5.4(ho) = / 1,(n)Z% (nho)e™ (1 + [A(n)]) ™" dn
N(F)

For all d > 0, we have

125 (o) < eb? / =% (nhg)o(n)"%dn
” N(F)

for all hg € Ho(F') and all b > 0. By Proposition [L51l(iv), we may choose d > 0 such
that the last integral above is essentially bounded by 0p(hg)Y/2ZM (hg) = Z%(hy) for
all hg € Hyo(F'). We henceforth fix such a d > 0. Hence, we have
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(6.5.3) [Eo,g,gb(ho) < 6€bdeGO(h0)

for all hy € Hyo(F) and all b > 0.

There exists a > 0 such that Z(g,99) < e*°92)=%(g,) for all gy, go € G(F). It follows
that

654)  Iplhe) € T [ SOl (1 )]

for all hg € Ho(F') and all b > 0. Assume one moment that the last integral above
is convergent if € is sufficiently small. Taking e that sufficiently small and combining

6.5.3 with [6.5.4] we get

105(ho) < ebT=90 (hg) 4 70—V

for all hg € Ho(F) and for all b > 0. There exists 8 > 0 such that e=#7(h0) < =G (h)

for all hg € Ho(F'). Plugging b = %a(ho) in the last inequality, we obtain

]so,a(ho) < e‘ﬁ(”ﬁﬂ)a(ho)gco(ho)
for all hg € Ho(F). Hence, for e < (o + 84 1)7% B.5.2 indeed holds.

It remains to prove the convergence of the integral on the right hand side of for
e sufficiently small. If P is a minimal parabolic subgroup of G then it follows from
Corollary [B.3.2] (since in this case A is a generic additive character of N). Assume
this is not the case. Then, we can find two isotropic vectors zp 1, 20— € Vi such that
20 = 20+ — 20,—. We have a decomposition A = Ay — A_ where

r—1
A(n) = Trgp <Z h(z-i-1,nz;) + h(Z—lanO&)) , nEN

i=1
A_(n) =Trg/p (h(2-1,n2,-)), neN

Note that the additive character A, is the restriction to N of a generic additive character
of the unipotent radical of a minimal parabolic subgroup contained in P. Hence,
Corollary B.3.2] applies to Ay. Choose a one-parameter subgroup a : G,, — M such
that Ay (a(t)na(t)™) = tA, (n) and A_(a(t)na(t)™) = t*A_(n) for all t € G,, and
all n € N (such a one-parameter subgroup is easily seen to exist). Let U C F* be a
compact neighborhood of 1. Then, for all ¢ > 0, we have
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/ =% (n)e ™ (1 + \)\(n)|)_(S dn < / =% (n)ec™ (1 + \)\(a(t)na(t)_l)\)_(S dn
N(F) N(F)

= [ EOe (14 fer ) = £ 0)))
N(F)

for all t € U. Integrating this last inequality over U, we get that for all € > 0, we have
/ =29 (n)e ™ (14 |A(n)])" dn < / =0 (1) o) / (14 [ths(n) — A (n)]) " dtdn
N(F) N(F) u

By Lemma [B.1.1l there exists ¢/ > 0 depending only on § > 0 such that the last
expression above is essentially bounded by

/ = (n)e ™ (14 [\ (n))) ™ dn
N(F)

Now by Corollary [B.3.2] this last integral is convergent if € is sufficiently small.

Let § > 0 and € > 0. We want to show that (iv) holds if € is sufficiently small (compared
to ). Since Z¢(g71) ~ ZE%(g), o(g7!) ~ o(g) and A(h™!) = —A(h) for all g € G(F)
and all h € H(F), it is equivalent to show the following

(6.5.5) If € is sufficiently small the integral
JEI,(;(mmin) = / EG(mminh)em(h) (1+ |)\(h)|)_6 dh
H(F)

is absolutely convergent for all my, € My, (F) and there exists d > 0 such that
ng,é(mmin) < 5ﬁmin (mmin>1/2a(mmin>d

for all muyin € Muyin(F).

Let K be a maximal compact subgroup of G(F') that is special in the p-adic case. Fix
amap mp_: G(F) — My (F) such that g € mp  (9)Unin(F)K for all g € G(F).
By Proposition [[L5.1(ii), there exists d > 0 such that we have

Tiimain) < Bp, (i) 2o [ 5y (g () o () (14 AR
H(F)
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for all Mupin € Mmin(F). Of course, for any € > € we have o(h)%e™ < ") for all
h € H(F'). Hence, we only need to prove that for e sufficiently small the integral

(6.5.6) / 05, (mp._ (b)) ™ (1 + IAR)|) ™ dh
H(F)

is absolutely convergent. Since P, is a good parabolic subgroup, we may find compact
neighborhood of the identity Ux C K, Uy C H(F) and Up C Ppin(F) such that
Uk C UpUp. We have inequalities

e < @™ and (14 A(kuh))) ™" < (L4 [A(R)) 7

for all h € H(F) and for all kg € Uy. Hence, we have

/ O (M7, ()27 (14 [A(R)) ™

H(F)

<O, (kp)"” / 5P, (M7, (ot )) 267 (1 |A(R)) ™"
H(F)

= [ g, Cephigh) 2 (1 [\
H(F)

for all kg € Uy and all ks € Up. It follows that

/ 0P (M7, ()27 (1t [A(R)[) ™
H(F)

A

/H / o5, (mp. (kRh))Y2dke™ (1 +|\(h)|)™° dh

(F) Z/{K min min

< /H / 05, (mp,, (kh)*dke™ (1+ |\(h)[)~° dh
(F) min min

By Proposition [L5((iii), the inner integral above is equal to =¢(h) (for a suitable
normalization) and the convergence of [0.5.6] for e sufficiently small now follows from

(ii).
(v) Let 6 > 0 and € > 0. We want to prove that (v) holds if € is sufficiently small (compared

to 0). After the variable change h' — h'h™!, we are left with proving that for ¢ > 0
sufficiently small the integral

I3 (M) = / / Z (himamin )26 (W mnin )M e ™) (1 4 |N(R') = A(R)]) " di'dh
’ H(F) J H(F)
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is absolutely convergent for all my, € My, (F) and that there exists d > 0 such that

(6.5.7) L 5(Mumin) < 05, (Munin) " 0 (1Mgin)?

for all muyin € Mpin(F). Let a : G,, — A be a one-parameter subgroup such that
Ma(t)ha(t)™') = tA(h) for all h € H and all t € G,,. Let U C F* be a compact
neighborhood of 1. Since A is in the center of M,,;,, we have the inequality

3
Ie ) mmln

< / / (Winin) E€ (B Mipgin )7 W o) / (1+ [Ma()Wa(t)™) = A(h)|) " dtdh'dh
H(F) JH(F)

u

- / / ZC (hmimin) 2 (W Mgy ) e W <) / (1+ [tA(R') = A(R)))~° dtdh' dh
H(F)JH(F u

for all myin € Muyin(F). By Lemma [B.1.1], there exists ¢’ > 0 depending only on ¢ such
that the last integral above is essentially bounded by

/ /H ; 26 (g )2 (B s )@ e (1 4 IR )™ (1 + IAR))) ™ didh

for all My, € Mopin (F'). This last integral is equal to [ 5175, (Mmin)?. Hence, the inequality
for e sufficiently small now follows from (iv). W

6.6 Relative weak Cartan decompositions
6.6.1 Relative weak Cartan decomposition for G

Recall that in Section[6.2], we have defined two subgroups Go and Hj of G and H respectively.
The triple (Go, Ho, 1) is a GGP triple which fall into the “codimension one case”. Of course,
Proposition[6.4.Tlapplies as well to this case. In particular, Gy admits good minimal parabolic
subgroups. Let = MyU, be such a minimal parabolic subgroup of G and denote by
[Ag] = Ay the maximal central split subtorus of My. Set

[45]= {a € Ag(F); |a(a)| > 1 Vo € R(A, Po)}
Proposition 6.6.1 There exists a compact subset Ko C Go(F') such that

GO(F) = HO(F)AS—ICO
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Proof: First, we prove that the result doesn’t depend on the particular pair (Py, M) that

has been chosen. Let (?g, M}) be another such pair i.e., ?g is a good minimal parabolic
subgroup of Gy and M is a Levi component of it. By Proposition [6.4.1]i), there exists
h € H(F) such that ?E) = hPyh~!. Obviously, the result of the proposition for (P, My)
implies the same result for the pair (hPoh~!, hMoh~') = (P,, hMoh~'). Moreover, there
exists a P € Py(F) such that hMeh™ = pyM}p/y". The result for the pair (P,, hMh™")
now implies the result for (ﬁg, M) because, by definition of At the set

{ag "Doap, ap € A5}
is bounded. Thus, it suffices to prove that the proposition holds for one particular pair
(Po, My). In the p-adic case, this follows from Proposition 11.0.1 of [Beul]. We could argue
that in the real case the same proof works. Instead, we prefer to rely on the main result of
[KKSS]. Fix a good minimal parabolic subgroup Py C Gy. By Proposition [6.4.1(i), there
exists a Levi component M, of Py such that Hy N Py € My. By Theorem 5.13 of [KKSS],
there exists a compact subset Ky C Go(R) such that

Go(R) = Hy(R)F" A5 K,

where A, is a certain submonoid of Ay(R) (the exponential of the so-called “compres-
sion cone” associated to the real spherical variety Z = Hy(R)\Go(R), cf. Section 5.1 of
[KKSS]) and F" is a subset of Ng,&)(Ho)F, F' being any set of representatives for the open
Hy(R) x Py(R) double cosets in Go(R). By Proposition 6.411(i), we can take F = {1}.
Moreover, we easily check that Ng,m)(Ho) = Ho(R)Zg,(R). As Zg,(R) is compact, up
to multiplying Ko by Zg,(R), we may also assume that F” = {1}. To end the proof of
the proposition, it only remains to see that A, C Aj (note that our convention for the
positive chamber is the opposite to that of [KKSS|, this is because we are denoting our
good parabolic subgroup by Py and not by F). But this follows from the fact that the
real spherical variety Z = Hy(R)\Go(R) is wavefront (cf. Definition 6.1 of [KKSS| not-
ing that here ay = 0, the notion of wavefront spherical variety has been first introduced
in [SV]). To see this, we can proceed as follows. Consider the complex homogeneous space
Zc = Hy(C)\Go(C) =~ GLy_1(C)\ (GL4_1(C) x GL4(C)). Tt is spherical (it follows for exam-
ple from Proposition [6.4.1](i) applied to GGP triples of codimension one with G quasi-split)
and wavefront by Remark 6.2 of [KKSS|. On the other hand, it is easy to see from the
characterization of the compression cone given in Lemma 5.9 of [KKSS] that a sufficient
condition for a real spherical variety to be wavefront is that its complexification is spherical
and wavefront. Thus Z is wavefront and this ends the proof of the proposition in the real
case. l

6.6.2 Relative weak Cartan decomposition for G

Let the quadruple (Fo, Moy, Ao, AY ) be as in the previous section. Denote by P = MN the
parabolic subgroup opposite to P with respect to M and define the following subgroups of
G:

161



Amin = AOA C Mmin = MOT C Fmin = FOTN

Then, P, is a parabolic subgroup, My, is a Levi component of it and A, is the maximal
split central subtorus of M,,;,. Moreover, it is easy to see that P.;, is a good parabolic
subgroup of G. Set

A-i—

min

= {a € Amin(F); |a(a)| 2 1 ‘v’a - R(Aminapmin)}

We will denote by P, the parabolic subgroup opposite to Py, with respect to Mpm. We
have P, € P. Let A be the set of simple roots of Ay, in Py, and [Ap]= AN R(Apin, N)
be the subset of simple roots appearing in n = Lie(N). For a € Ap, we will denote by n,
the corresponding root subspace. Recall also that we have defined in Section[6.2] a character

¢ of n(F).

Lemma 6.6.2 We have the following

(i)
At = {a € ATA(F); |a(a)] < 1Va € Ap}

(i1) There exists a compact subset Ko C G(F') such that

G(F) = H(F)AT A(F)K¢

(111) For all a € Ap, the restriction of & to ny(F') is nontrivial.

Proof: (i) is obvious, so we only provide a proof of (ii) and (iii).

(ii) Let K be a maximal compact subgroup of G(F') which is special in the p-adic case.
Then we have the Iwasawa decomposition

(6.6.1) G(F) = P(F)K = N(F)Go(F)T(F)K

Since A = Ar is the maximal split subtorus of 7', there exists a compact subset K7 C
T(F) such that

(6.6.2) T(F) = A(F)Kr

Also by Proposition [6.6.1] we know there exists a compact subset Ky C Gy(F') such
that
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Combining [6.6.1], [6.6.21 and [6.6.3] and since A and G centralize each other, we get

G(F) = H(F)AF A(F)K¢
where ]CG = ]C(]]CTK.

(iii) Let @ € Ap and assume, by way of contradiction, that £ is trivial when restricted to
n,(F). Recall that ¢ is the composition & = ¥ o Ap where A is an algebraic additive
character n — (G,. Since n, is a linear subspace of n, the condition that £ is trivial on
n,(F) amounts to saying that A is trivial on n,. This has the advantage of reducing
everything to a statement over F. Since \ is invariant by Hy-conjugation and n, is
invariant by both T-conjugation and Py-conjugation, it follows that \ is trivial on
mnym~" for all m € HyP,T. But P, being a good parabolic subgroup of Gy, HoPoT
is Zariski-dense in M = GoT'. Hence, ) is trivial on mn,m ™! for all m € M. This is a
contradiction in view of Lemma [6.2.1](ii) (since n, is not included in [n,n]). W

6.7 The function =7\
H\G

Let C' C G(F') be a compact subset with nonempty interior. We define a function =, " on
H(F)\G(F) by
20V (x) = volgg(xC) ™12

for all x € H(F)\G(F). It is not hard to see that if C" C G(F') is another compact subset
with nonempty interior, we have

—H\G —H\G
=5 (x) ~ 25 ()

for all z € H(F)\G(F). From now on, we will assume implicitly fixed a compact subset
with nonempty interior C' C G(F') and we will set
=) = 22 (a)

for all x € H(F)\G(F). The precise choice of C' won't matter because the function Zf\¢
will only be used for the purpose of estimates.

Proposition 6.7.1 (i) For every compact subset K C G(F'), we have the following equiv-
alences of functions

(a) = (ak) ~ 21 (2)
(b) UH\G(Ik) ~ UH\G(i’f)
for allz € H(F)\G(F) and all k € K.
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(i1) Let Py = MyUy C Gy be a good minimal parabolic subgroup of Gy and Ay = Ay, be
the split part of the center of My. Set

Al = {ag € A(F); |alag)| = 1 Va € R(Ag, Po)}
then there exists a positive constant d > 0 such that
(a) =% (ag)dp(a) %o (ag)~? < A\ (aag) < 29 (ag)dp(a)'/?
(b) omclaag) ~ oc(aay)
for all ag € A and all a € A(F).

(111) There exists d > 0 such that the integral

/ EH\G (LL’)2O'H\G (l’)_ddl’
H(F)\G(F)
s absolutely convergent.

(iv) For all d > 0, there ezists d > 0 such that

/ Ly e @) BN ()20 1 () e <
HF\G(F)
for all ¢ > 1.
(v) There exist d > 0 and d’' > 0 such that
/ =%z ha)og(a  ha) ~dh < EH\G(:ﬂ)zaH\G(a:)d/
H(F)
for all x € H(F)\G(F).
(vi) For all d > 0, there exists d > 0 such that
/ =9 (ha)o (ha)~ dh < =1\ (2)0 6 (x)
H(F)

for all x € H(F)\G(F).

(vii) Let 6 >0 and d > 0. Then, the integral

Isa(c,x) = / / 1ose(R)ZC (ha) 2% (W ha)o (ha) o (W ha)® (1 + [A(R)])° di'dh
H(F) JH(F)
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is absolutely convergent for all x € H(F)\G(F') and all ¢ = 1. Moreover, there exist
€ >0 and d > 0 such that

H\G

Lia(c,r) < EM9(z) o a(x) e

for all x € H(F)\G(F) and all ¢ > 1.

Proof: Since G — H\G has the norm descent property (Lemma [6.2.1l(i)), we may assume
(and we will) that

7.1 = inf
(6.7.1) ome () hgﬁ(F)"G(hf’f)

for all z € H(F)\G(F).

(i) is easy and left to the reader.

(ii) (a) Let P = MN be the parabolic subgroup opposite to P with respect to M. Fix
compact subsets with nonempty interior

Cx CN(F), Cr CT(F), Co C Go(F) and Cy C N(F)

Then C' = CyCrCyCy is a compact subset of G(F') with nonempty interior. We
have

=M\ (g) ~ volypg (H(F)gC)~ "2, for all g € G(F)
and there exists a d > 0 such that
EGO(go)U(go)_d < VOlGO (CY()g()Cto)_l/2 <K EGO (go), for all Jdo € G()(F)
So (ii)(a) is equivalent to
Sp(a) ! volg, (CoagCh) ~ volpg (H(F)aaoC)
for all ay € A$ and all a € A(F). We have
H(F)aaoC = H(F)GCLQCﬁ

for all ap € Ao(F') and a € A(F), where Cp = CrCyCy. Hence, we need to prove
that

(6.7.2) dp(a)tvolg, (CoagCo) ~ volm (H(F)aagCp), for all (ag,a) € Af x A(F).
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Let Cy, € Ho(F) be a compact subset with nonempty interior and set Cy =
CnCh,. It is a compact subset of H(F') with nonempty interior. We claim that

(6.7.3) volyg (H(F)aagCp) ~ volg (CraayCp), for all (ag,a) € A7 x A(F).

We have

VOlG (CHCLCL(]C?) = /

/ 1CH¢mOCﬁ(hSL’)dhdl’
H(F)\G(F) J H(F)

for all (ag,a) € A x A(F). The inner integral above is nonzero only if z €
H(F)aayCp and is then equal to

voly (H(F) N C’Haaonx_l) = voly (CH (H(F) N aaonx_l))
Hence, to get [6.7.3] it suffices to show that

VOIH (CH (H(F) N CLCL(]C?LL’_I)) ~1
for all (ag,a) € Aj x A(F) and all € aapCp. For such an z, we have Cy C
Cu (H(F)NaagCpz™), so that we easily get the inequality

voly (Cx (H(F) NaagCpz™")) > 1
for all (ag,a) € Ay x A(F) and all z € aagCp. Let O = Cf.C’%l. To get the
reverse inequality, it suffices to show that the subsets H(F) NaagCls(aag) ™" remain
uniformly bounded as (a, ap) runs through A x A(F). Since PN H = Hy, we have

H(F) N aaoCh(aag) ™" = Ho(F) N aChag*

for all (ag,a) € Ay x A(F), where Cj = C%; N Go(F). Now, the subsets Ho(F) N
agChag?t, ag € A, are uniformly bounded by Proposition 6.4.1((iii). This ends the
proof of

By 673 is now equivalent to
(6.7.4) dp(a)~tvolg, (CoagCh) ~ volg (CraagCy), for all (ag,a) € Af x A(F).

Recall that we have Cy = CnyCp, and Cp = CrCyCx. Hence

CHCLCL()Cﬁ = CN (CLCT) (CHOCLQCO) Cﬁ

for all (ag,a) € Ag(F) x A(F'). For suitable choices of Haar measures, we have the
decomposition dg = 6p(t) " 'dndtdgedn where dn, dt, dgy and dn are Haar measures
on respectively N(F), T'(F), Go(F') and N(F'). From these, it follows easily that
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VOIG (CHQG;OC?) ~ 5P(&)_1 VOIGO (CHOCLQCQ)
for all (ag,a) € Ag(F) x A(F). Hence, the last thing to show to get is

(6.7.5) volg, (CoagCh) ~ volg, (Cr,aoCy), for all ag € Ag.

The inequality volg, (Cr,a0Ch) < volg, (CoagCp) is obvious. So, we only need to
prove the reverse one. The choice of Cy doesn’t matter. Since Hy(F)Py(F) is open
in Go(F), we may assume that Co = Cp,Cp, where Cp, C Po(F) is a compact
subset with nonempty interior. By definition of AJ, the subsets ag 1Cp0a0 remain
uniformly bounded as ag runs through Aj. Hence, there exists a compact subset
C{ C Go(F') such that

-1
) CﬁO&QCQ Q C(,]

for all ag € Af. From this, we get

VOIGO (CQCLQCQ) < VOlGO (CHOCL006) <K VOlGO (CHOCLQCQ)
for all ag € Af. This ends the proof of and hence the proof of (ii)(a).

Obviously, we have the inequality oy\¢(9) < 0¢(g), for all g € G(F). So, we only
need to show that

og(apa) < omalaoa)
for all (ag,a) € Aj x A(F). Because of [6.7.] this is equivalent to the inequality
(6.7.6) og(aga) < og(haga), for all (ag,a) € Af x A(F) and all h € H(F).

Every h € H(F) may be written h = nhg where n € N(F'), hy € Hy(F), and we
have

oc(ngot) > 06,(90) + o6 (t)
for all n € N(F'), go € Go(F') and t € T'(F'). Hence, we have

oc(nhoapa) > og,(hoay) + o (a)

for all (ag,a) € Af x A(F), all n € N(F) and all hy € Hyo(F). Since, og(aga) ~
06, (ag) + 0(a) for all (ag,a) € Ag(F') x A(F), to get it suffices to show that

0, (ap) < og,(hoao)

for all ap € A and hg € Ho(F). But, this inequality is a straightforward conse-
quence of Proposition E.4T(iii).
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(iii) Let C € G(F') be a compact subset with non-empty interior. Let us first show that
(iii) follows from the following fact

(6.7.7) There exists a positive integer N > 0 such that for all R > 1, the subset
B(R) = {z € H(F)\G(F); omc(z) < R} may be covered by less than (1+ R)Y
subsets of the form zC, x € H(F)\G(F).

(we then say that H(F)\G(F) has polynomial growth following [Berl]). Indeed, set

MR, d) = / = ()20 ¢ () Mda
B(R+1)\B(R)

for all d > 0 and R > 1. Then we have

(6.7.8) / =G ()20 g (2) e = Z)\ (R, d)
H(F)\G(F)

for all d > 0. By 677, for all R > 1, B(R + 1)\B(R) may be covered by subsets
71C, ..., 13, C where kg < (R + 2)". Hence,

(6.7.9) AR, d) Z / =G (1) 20 (x)Mdx
for all d > 0 and all R > 1. By (i).(a) and (i).(b) and the definition of Z#\%  we have

/ EH\G(x)2aH\G(x)_dd:E < volme (yC') EH\G(?J)2UH\G(?/)_d
yC'
< oma(y)™

for all y € H(F)\G(F). Consequently, by [6.7.9, we get

kr

(6.7.10) MR, d) < ZUH\G(l’i)_d

i=1

for all d > 0 and all R > 1. We may of course assume that z;CN(B(R+ 1)\B(R)) # 0
forall R > 1 and all 1 <4 < kg. Then by (i).(b), we have
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o) < R

for all R > 1 and all 1 <7 < kg. Combining this with [6.7.10, we finally get

MR, d) < R % < (R+2)VR™

for all d > 0 and R > 1. Hence, for d > N + 1, [6.7.8] is absolutely convergent. This
ends the proof that [B.7.7 implies (iii).

Let us now prove .77l By Lemma [6.6.2/(ii), there exists a compact subset K C G(F)
such that

(6.7.11) G(F)=H(F)AfA(F)K
Thus by (i).(b) and (ii).(b), we see that there exists a constant ¢y > 0 such that

B(R) C H(F){aoa; ap € Ag a € A(F) og(aag) < coR}IK

for all R > 1. Set A,y = AgA. Using the above, it is easy to see that [0.7.7 is a
consequence of the following fact which is not hard to prove and left to the reader.

(6.7.12) Let Cpin € Amin(F) be a compact subset with nonempty interior. Then,

there exists a positive integer N > 0 such that for all R > 1, the subset {a €
Anin(F);0q(a) < R} may be covered by less than (1 + R)Y subsets of the form
aCin, @ € Amin(F).

(iv) By similar arguments, this also follows from [G.7.7
(v) By (i), (ii) and G710 together with the fact that Z¢(kgk™1) ~ 2%(g) and og(kgk™!) ~

oc(g) for all k € K and g € G(F'), we only need to show the existence of d > 0 such
that

(6.7.13) / =¢ (a™'ag" haoa) o (™ ag 'haga) “dh < =% (ay)%5p(a)
H(F)

for all (ag,a) € Af x A(F). We have
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/ =¢ (a_laalhaoa) oG (a_laglhaoa) “dh

H(F)

= / / =¢ (a‘laglhonaoa) oa (a_laglhonaoa) - dndhy
Ho(F) J N(F)

for all (ag,a) € Ag(F) x A(F) and all d > 0. After the variable change n — agana™'a,
the last integral above becomes

dp(a) / / =% (ag hoaon) o¢ (ag ' hoaon) ~ dndhy
Ho(F) JN(F)

By Proposition [L5T[(iv), for d > 0 sufficiently large, we have

/( ) =¢ (aalhoaon) oa (aglhoaon) ~dn < =6 (aalhoao)
N(F

for all ag € Ag(F') and all hy € Ho(F'). Hence, for d > 0 sufficiently large we have

/ =¢ (a'ag 'haga) o¢ (a " ag  haga) “an < Sp(a)™! / =G0 (ag " hoao) dhg
H(F) Ho(F)

for all (ag,a) € Ag(F) x A(F). Thus to get 6.7.13] it is sufficient to show that

(6714) / EGO (aalhoao) dho < EGO (&0)2
Ho(F)

for all ag € Aj. Let Up, C Ho(F) and Up, C Po(F) be compact neighborhood of the
identity. Since the subsets a, 1Z/{p0 ap remain uniformly bounded as ay runs through Af,
we have

/ EGO (a(;lhoao) dho <</ EGO <a61klpok}foh0k?{ok2ﬁoao> dho
Ho(F) Ho(F)

for all ay € Ag, all k. ky, € Un, and all ky, k5, € Up,. Let Ko be a maximal

compact subgroup of Go(F). Since Py is a good parabolic subgroup of Gy, there exists
a compact neighborhood of the identity Ux, C Ko such that Uy, C Up Un, N U, Up, -
From the last inequality above, we deduce
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(vi)

(vii)

/ 2% (ag " hoao) dhy < / / =% (ag 'K hok®ao) dkydkadho
Ho(F) Ho(F) JU,

<K / / EGO (aalklhok‘an) dk’ldk‘gdho
Ho(F) J K3

for all ay € Af. By the “doubling principle” (Proposition [L5.1)(vi)), this last integral
is essentially bounded by

EGO(CL())2/H(F) EGO(ho)dhO
0

for all ay € Af. By Lemma [6.5.11(i), the last integral above is convergent. This proves
67141 and ends the proof of (v).

By (i), (ii), and [6.7.11] it suffices to show the following

(6.7.15) There exist d > 0 such that
/ 2% (haag)o(haay) ~?dh < 5p(a)/*2 (ay)
H(F)
for all (ag,a) € A x A(F).

Using again Proposition [[5.1iv), this will follow from the following inequality
(6.7.16) / =29 (hoag)dhy < Z°°(ay), for all ag € Af.
Ho(F)

To obtain this last inequality, we can argue as in the end of the proof of (v), using the
“doubling principle” (Proposition [L5.1|(vi)) and the fact that Py is a good parabolic
subgroup of Gy to reduce it to the convergence of the integral

/ =% (hg)dhy
Ho(F)

which is a consequence of Lemma [6.5.1[(i).

By (i), (ii) and and since for all d > 0 and all € > 0 we have 1,-.(h)o(h)? <
ec?Me<c/2 for all h € H(F), it suffices to show the following
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(6.7.17) For all 6 > 0, there exist d > 0 and € > 0 such that

/ / (haag)ZC (W haag ) e ee™ (1 + |N(K')]) ™ dW dh
H(F)

< 6p(a)2%(ag)?o (aag)"

for all ap € Af and all a € A(F).

Let 6 > 0. Let P = M N be the parabolic subgroup opposite to P with respect to M
and set Py, = PoT'N, Myiw = MyT. Then P, is a good parabolic subgroup of G
and M, is a Levi component of it that contains A. Hence, by Lemma [6.5.1(v), there
exists € > 0 and d > 0 such that

/ / % (haao)Z% (W haag ) e e ™ (1 4 |N(R')])~° dh'dh < §p._ (aag) "o (aag)

for all ap € AJ and all a € A(F). We have dp_ (aag)™" = 0p(a)dp,(ao) and by
Proposition [5.(i), we have 05, (ag) < Z9°(ao)? for all ag € AJ. It follows that the
inequality is satisfied for such an € > 0 and such ad > 0. B

6.8 Parabolic degenerations

Let Q = LUy be a good parabolic subgroup of G (recall that it means that H Q is Zariski
open in G see §6.4). Let Prin = MpinUmin € Q be a good minimal parabolic subgroup of G
(Proposition [6.4.1](ii)) with the Levi component chosen so that My, C L. Let Apin = A,
be the maximal central split torus of M,,;, and set

At ={a € Apn(F); |ala)] = 1Va € R(Awmin, Pmin) }

min

Let Hg = HNQ and H;, be the image of Hg by the natural pojection Q — L. Let Q = LUg
be the parabolic subgroup opposite to @ with respect to L. We define H? = H;, x Ug.

Proposition 6.8.1 (i) Hg N Uz = {1} so that the natural projection Hg — Hp, is an
1somorphism;

(ZZ) (S@UL@) = 5H§(h§) and 5§(hL) = 5HL(hL) fO’f’ all h@ € H@(F) and all hy, € HL(F) In
particular, the group HP(F) is unimodular.
Fiz a left Haar measure dphy, on Hp(F) and a Haar measure dh®? on HO(F).

(11i) There exists d > 0 such that the integral
[ =)o), () e
Hyp (F)
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converges. Moreover, in the codimension one case (that is when G = Go and H = H,),
the integral

/ EL(hL)U(hL)d(SHL (hL)1/2dLhL
Hp(F)
is convergent for all d > 0.

(iv) There ezists d > 0 such that the integral

/ =9 (h9)o(h?)~dh?
HQ(F)

CONVETGES.

(v) We have o(h®) < o(a"*h%a) for all a € Al and all h° € HO(F).

(vi) There exist d >0 and d' > 0 such that

!

/ =%(a"'h?a)o(a " h9) ~dh? < EM\C (a)2om g (a)?
HO(F)
for all a € A

min *

Proof:

(i) This follows directly from Proposition E.4.1](i).

(ii) For hz € Hg(F) which maps to hy, € Hy(F) via the isomorphism Hg >~ Hp, we have
og(hg) = 0g(h) and dpy(hg) = 0p, (hr). Thus, it suffices to show that dg(hg) =
Oz (hg) or equivalently

(6.8.1) det (Ad(ig)gn, ) =1

for all hy € Hg(F'). We have g+ bh = g (because @ is a good parabolic subgroup) and
bg = b N4, hence the inclusion q C g induces an isomorphism q/ ho~g /b, from which
it follows that

det (Ad(h@)ﬁ/ha) — det (Ad(hg)igss) = det (Ad(hg)e) det (Ad(hg) ) "

for all hy € Hg(F). But since G and H are unimodular groups, we have det (Ad(hg))) =
det (Ad(hg)py) = 1 for all hg € Hy and follows.
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(iii) Let K be a maximal compact subgroup of G(F') which is special in good position with
respect to L in the p-adic case. Set K, = K N L(F') (a maximal compact subgroup of

L(F) which is special in the p-adic case), 7 = i%minm(l) and ™ = Z%(T) We will denote

by (.,.) and (.,.), invariant scalar products on 7 and T respectively. Let ex € 7 and
ex, € 7 be the unique K-fixed and K -fixed vectors respectively. Note that we have
er (k) = ek, for all k € K. We may assume that the functions Z¢ and = are given by

(6.8.2) =%(g) = (n(g9)ex,ex) , g€ G(F)

(6.8.3) =4 = (r(Dek,, ex,)r , 1 € L(F)

(Note that by the process of induction by stages, we have a natural isomorphism 7 ~

& (1)). If we choose Haar measures suitably, gives

=6(g) = / (ex(g'9), ex(g))rdg’

QUIN\G(F)

for all g € G(F). Since @Q is a good parabolic subgroup, by Proposition B.£1](i) (and
since g = g~ ' is an automorphism of G) the subset Hg(F)\H(F) C Q(F)\G(F) has a
complement which is negligible. Hence, by (i), if we choose Haar measures compatibly,
we have

/_ ¢(g)dg = / @(h)dh
QUFN\G(F) Hg(F)\H(F)

for all ¢ € L'(Q(F)\G(F), dg). In particular we get

(6.5.4) =6(g) = / (ex(hg), ex(h))sdh
Ho(F)\H(F)

for all g € G(F).

By Lemma [6.5.1[(ii), there exists d > 0 such that the integral
/ =6(h)o (h)~dh
H(F)
converges. Choose such a d > 0. Then by [6.8:4] we have
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/ =C(h)o(h)~4dh = / / (exc (WD), exc (W), do(h)~*dh
H(F) H(F) J Hg(F)\H(F)

Note that this last double integral is absolutely convergent. Indeed, since the integral
is convergent in that order, it suffices to check that (ex(h'h), ex(h')), is positive for all

h',h € H(F). But by the Iwasawa decomposition and [6.8.3the terms (ex (h'h), ex (h')),

are values of ZL hence positive. Switching the two integrals, making the variable

change h +— h/~'h and decomposing the integral over H(F) as a double integral over
Hy(F)\H(F) and Hg(F') ~ HL(F), by () we get that the expression

/(H (F)\H(F))2 /H ) (T(hL)eK(h), 6K(h/)>T U(h/_thh)_déHL(hL)l/zdLhthdh/
Q L

is absolutely convergent. By Fubini, it follows that there exist h, h’ € H(F') such that
the inner integral

/H (F) (r(hp)ex (h), ex(I)), o (k' hh)~%6n, (hp)?dihy

is absolutely convergent. Fixsuch h, i’ € H(F'). By the Iwasawa decomposition we may
write h = luk and b’ = "'k’ with [,I" € L(F'), u,u’ € Ug(F) and k, k" € K. Then, by
B33 we have (7(hp)ex(h), ex(h')), = dg(l'1)/*EX(I'"hl) for all hy, € HL(F). Since
EE(hy) < EE(I'"*hl) and o(W' " hph) < o(hy) for all hy, € Hp(F), it follows that the
integral

/ =" (hg)o(hg)"Suy(hg) ' dihg
HF(F)

is also absolutely convergent. This proves the first part of ({ll). The second part follows
from the same arguments using Lemma [6.5.1](i) instead of Lemma [6.5.11(ii).

(iv) This follows from (i), () and Proposition [L5T(iv).

(v) Every h® € HC(F) can be written h® = hpug where hy € Hp(F) C L(F) and
ug € Ug(F). Moreover, we have o(lug) ~ o(l) + o(ug) and o(ug) < o(a tuga) for
alll € L(F), ug € Ug(F) and a € At. . Thus, it suffices to show that

min*

(6.8.5) o(hr) < o(a " hya)
for all hy, € H(F) and a € A}

min*
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Let [ : Q — L be the unique regular map such that ((g)~'7 € Ug for all g € Q. By ()
the map hg +— [(hg) induces an isomorphism Hg =~ Hy.In particular, we have

(6.8.6) o(hg) ~ o(l(hg))

for all hg € Hg(F). Let A be the maximal split central torus of L and set A} =
AL MAL,. By definition of AT, . it is not hard to see that there exists a map g €

Q(F) — ar(q) € Af such that

(6.8.7) o(ar (@) a"'gaar(q)) < o(a”'U(7)a)

for all g € Q and all a € A, . Moreover, since Hg C H, by Proposition B.4T|iii), we
have

(6.8.8) o(hg) < o(a™ hga)

min*

for all hg € Hg(F) and all a € A} . From 686, 6.87 and 6.8, it follows that
o(hr) ~ o(hg) < o(ar(hg) ' a " hgaar(hg)) < o(a™ hra)

for all hg € Hg(F) and all a € Af

min

shows and ends the proof of ().

where we have set hy, = l(hg) € Hr(F). This

(vi) By (@), Proposition [6.7.1fii) and Proposition [[.5.11(i), it suffices to show the existence
of d > 0, such that

(6.8.9) / =% a " h%a)o(h9)~dh? < Z%(a)?
HQ(F)

for all a € Af. . As Py, is a good parabolic subgroup, it easily follows that P, H?
is Zariski open in GG. Using this, and the doubling principle (Proposition [L5.1(vi)), we

show as in the proof of Proposition [6.7.T|(v) that

/ =%a""h%)o(h?)1dh? < 2% (a)? / =9 (h9)a(h9) " dh®
HQ(F) HQ(F)

for all @ € At . This proves [6.8.9 since the right hand side is absolutely convergent

for d sufficiently large by (ivl). W

7 Explicit tempered intertwinings

We keep the notation of the previous chapter. Given a tempered representation 7 of G(F),
the present chapter is devoted to the study of a certain explicit (H,¢) x (H,§)-equivariant
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sesquilinear form £, on (the space of) 7, the main result being that £, is nonzero if and
only if the multiplicity m(m) is nonzero (Theorem [[.2.T]). This will be a crucial ingredient in
the proof of the spectral side of our local trace formula (Theorem Q.1.1). The sesquilinear
form L, is introduced in It is essentially defined by integrating matrix coefficients of
7 against the character & of H(F'). Unfortunately, this integral does not converge for all
tempered representations unless we are in the codimension one case (i.e. when £ = 1) but
the oscillatory nature of the integral allows to regularize it in some canonical way. This is
the content of Section [Z.]] (a similar regularization has actually been constructed, in greater
generality, by Sakellaridis-Venkatesh, see [SV] Corollary 6.3.3). In Section[[.3], we prove some
a priori estimates for (H, £)-equivariant linear forms on 7. Then, we discuss a certain relation
between the (non-vanishing of) sesquilinear form £, and parabolic induction in Section [7.4l
The proof of the main theorem is given in Section and in Section we draw some
consequences of this result.

7.1 The &-integral
For all f € C(G(F)), the integral

f(h)g(h)dh

H(F)
is absolutely convergent by Lemma[6.5.1(ii). Moreover, by Lemmal6.5.1[(ii) again, this defines

a continuous linear form on C(G(F)). Recall that C(G(F)) is a dense subspace of the weak
Harish-Chandra Schwartz space C*(G(F)) (by [L5T).

Proposition 7.1.1 The linear form

fecG n—>/ f(h

extends continuously to C*(G(F)).

Proof: Let us fix a one-parameter subgroup a : G,, — A such that A(a(t)ha(t)™') = t\(h)
for all t € G,, and all h € H (Recall that A : H — G, is the algebraic character such that
¢ =1 o Ap), such a one-parameter subgroup is easy to construct. We shall now divide the
proof according to whether F' is p-adic or real.

e If F' is a p-adic field, then we may fix a compact-open subgroup K C G(F') and prove
that the linear form

feCr(G(F)) = f(h)&(h)dh

H(F)

extends continuously to CE(G(F)). Set K, = a ' (KN A(F)) C F*. Then for all
f € Cx(G(F)), we have
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(7.1.1) /H T = meas(i / [, et ha(®)e(ana
= meas(K / f(h Kg a(t)ha(t)™")d*tdh

= meas(K, / f(h i W (EA(R)) |t dtdh

The function € F + [ o(tr)|t|"'dt is the Fourier transform of the function
|.|7'1x, € C°(F) hence it belongs to C°(F). Now by Lemma [B.5.11(iii), the last
integral of [[.T.T]is absolutely convergent for all f € Cj¥(G(F')) and defines a continuous
linear form on that space. This is the extension we were looking for.

Now assume that F' = R. Let us denote by Ad the adjoint action of G(F') on C*(G(F))
i.e., one has

(Ad(9)f) (z) = f(g'xg), feC(G(F)), g,z €G(F)

Set Ad, = Adoa. Then Ad, is a smooth representation of F* on C¥(G(F')) and
hence induces an action, also denoted by Ad,, of U (Lie(F'*)) on C¥(G(F)). Set A =

1— (¢ %) € U (Lie(F™)). By elliptic regularity ([2.1.2)), for every integer m > 1, there

exist functions ¢; € C?™72(F*) and ¢y € C°(F*) such that

Q1% A" + g = 0y

Hence, we have the equality

Ada(@l) Ada(Am) + Ada((pQ) =1d

It follows that for all f € C(G(F)), we have
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712
/ F(WE()dh = /H (o) Adu (A" (k) + / (Adu(i2)f) (WE(R) N

H(F)

(Ada(A™)f) (h)/ p1()€(alt)ha(t))dp(a(t))d" tdh

X

f(h)/ pa(t)(a(t)ha(t)™)dp (alt))d* tdh
(F) Fx

AL 0) [ o n(alt)le oo
/ 10) [ a5 a(O) ] v

Consider the functions f; : @ € F — [, ¢i(t)0p(a(t))|t| "¢ (tx)dt, i = 1,2. These are
the Fourier transforms of the functions ¢ — ¢;(t)dg(a(t))|t|™, i = 1,2, which both
belong to C*™~2(F). Hence, f; and f, are both essentially bounded by (1 + |:)3|)_2m+2
Now, by Lemma [G.5.11(iii), if m > 2 the two integrals in the last term of [[.1.2] are
absolutely convergent for all f € C*(G(F)) and define on that space continuous hnear
forms. The extension we were looking for is just the sum of these two integrals. B

The continuous linear form on C*(G(F")) whose existence is proved by the proposition above
will be called the &-integral on H(F') and will be denoted by

feCY(G(F)) — / f(h
or
feC(G(F)) —[Pudf)
We now note the following properties of the £-integral:

Lemma 7.1.2 (i) For all f € C*(G(F)) and all hy, hy € H(F), we have

Pre(L(ho)R(h1) f) = £(ho)&(h1) ™ Pre(f)

(ii) Let a : G,, — A be a one-parameter subgroup such that X(a(t)ha(t)™') = tA(h) for all
t € G, and all h € H. Denote by Ad, the representation of F* on C*(G(F)) given by
Ad,(t) = L(a(t))R(a(t)) for allt € F*. Let o € C°(F*). Set ' (t) = |t| " dp(a(t))p(t)
for allt € F* and denote by 42’ its Fourier transform, that is
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Then, we have

Prg(Ada(p) f) = f(R)¢'(A(h))dh

H(F)

for all f € C*(G(F)), where the second integral is absolutely convergent.

Proof: In both (i) and (ii), both sides of the equality to be proved are continuous in f €
CY(G(F)) (for (ii) this follows from Lemma [6.5.11(iii)). Hence it is sufficient to check the
relations for f € C(G(F')) where by straightforward variable changes we can pass from the
left hand side to the right hand side. W

7.2 Definition of L,

Let 7 be a tempered representation of G(F). For all T € End(7)*°, the function

g € G(F) ~ Trace (r(g~")T)

belongs to the weak Harish-Chandra Schwartz space C*(G(F')) by 2.2.4 We can thus define
a linear form [£,]: End(7)* — C by setting

L(T) = /H*(F) Trace (m(h™")T) &(h)dh, T € End(m)>

By Lemma [L.T.2(i), we have
La(m(h)Tr(h')) = E(h)E(N) LA (T)
for all h,h' € H(F') and T € End(7)*. By 2.2.5 the map which associates to 7" € End(r)>
the function
g+ Trace (w(g~")T)
in C*(G(F)) is continuous. Since the &-integral is a continuous linear form on CV(G(F)), it

follows that the linear form £, is continuous.

Recall that we have a continuous G(F') x G(F')-equivariant embedding with dense image
T ® 1 — End(m)®, e ® ¢ — T (which is an isomorphism in the p-adic case). In any
case, End(7)* is naturally isomorphic to the completed projective tensor product Ww®pﬁw.
Thus we may identify £, with the continuous sesquilinear form on 7 given by

Lo(e,e) =L (T, )
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for all e, ¢’ € 7. Expanding definitions, we have
Lale.d) = [ (emtiye)cmn
H(F)
for all e,/ € 7. Fixing ¢’ € 7, we see that the map e € 7 — L (e, €’) belongs to
Homp (7%, €). By the density of 7°° ® 7> in End(7)°, it follows that
Lr#0=m(r)#0

The purpose of this chapter is to prove the converse direction. Namely, we will show

Theorem 7.2.1 For all # € Temp(G), we have

L, #0& m(m)#0

As said in the introduction, this result has already been proved in [Beul] (Theorem 14.3.1)
in the p-adic case following closely the proof of the analogous result for special orthogonal
groups given by Y. Sakellaridis and A. Venkatesh (Theorem 6.4.1 of [SV]). The proof, that
goes through the 3 following sections, is closer to the original treatment of Waldspurger
(Proposition 5.7 of [Wad]).

To end this section, we will content ourself with giving some of the basic properties of L.
First, since L, is a continuous sesquilinear form on 7°°, it defines a continuous linear map

[L]: 7™ — 7=
e— Lr(e,.)

where we recall that 7—°° denotes the topological conjugate-dual of 7 endowed with the
strong topology. This operator L, has its image included in - Hompy (7%, €). By
Theorem [6.3.1], this subspace is finite-dimensional and even of dimension less or equal to 1 if
7 is irreducible. Let T' € End(m)*. Recall that it extends uniquely to a continuous operator
T : 7= — 7. Thus, we may form the two compositions

TL,: 7 — ™
L. T :m=° — q=x

which are both finite-rank operators. In particular, their traces are well-defined and we have,
almost by definition,

(7.2.1) Trace(TL,) = Trace(L,T) = L(T)
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Lemma 7.2.2 We have the following
(i) The maps

T € Xemp(G) — Lr € Hom(7>, 7-°°)

T € Xemp(G) — L, € End(m)™™

are smooth in the following sense: For every parabolic subgroup () = LUq of G, for all
o € lly(L) and for every mazimal compact subgroup K of G(F'), which is special in the
p-adic case, the maps

A€iA] — L, € End(my)™> ~ End(mg)™>

A €iA] — Ly, € Hom(7y, 7,°°) >~ Hom(7%, m>°)
are smooth, where we have set m\ = iG(0y) and T = i (0).
(i1) Let m be in Temp(G) or Xiemp(G). Then for all S,T € End(m)*®, we have SL, €
End(m)* and
L.(8)L(T) = L,(SL,T)

(111) Let S, T € C(Xiemp(G), E(Q)). Then, the section m € Temp(G) — S, LT, € End(m)>
belongs to C°(Xiemp(G), E(G)).

(iv) Let f € C(G(F)) and assume that its Fourier transform m € Xemp(G) — 7w(f) is
compactly supported (this condition is automatically satisfied when F' is p-adic). Then,

we have the equality

/ F(hE(R)dh = / L)) ()
H(F) Xiemp (G)

both integrals being absolutely convergent.

(v) Let f, f' € C(G(F)) and assume that the Fourier transform of f is compactly supported.
Then we have the equality

| e @mmdn = [ [ g fg)dag e n)an
Xiemp (G) H(F) JH(F) JG(F)

where the first integral is absolutely convergent and the second integral is convergent in
that order but not necessarily as a triple integral.
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Proof:

(i)

Let Q) = LUg, 0 € lI5(L) and K be as in the statement. Recall that our convention is
to equip all the spaces that appear in the statement with the strong topology.

We have End(7x)™ ~ 7%®, 7. Hence, the space End(7x)~> may be identified with
the space of continuous sesquilinear forms on 7 and we get a natural continuous
embedding

End(7g)™> — Hom(ng, m>)

Of course, the image of £, by this map is L., for all A € ¢A}. Consequently, it
suffices to prove the smoothness of the map A — L,.,. By Proposition [A3](iv), this
is equivalent to the smoothness of

A= L, (T)

for all T € End(mg)>°. Because the &-integral is a continuous linear form on C*(G(F')),
the smoothness of this last map follows from Lemma 23T](ii).

The two inclusions End(7)* € Hom(7=>, 7) and End(7)>* C Hom(m, 7°°) are contin-
uous. It follows that the bilinear map

End(7)* x End(7)* — End(7)
(S, T)— SL,T

is separately continuous. For all S,7" € End(7)>, the maps g € G(F) — m(g)S €
End(7)> and g € G(F) — T7(g) € End(m)™ are smooth. Hence, by Proposition

[A.3.1)(v) in the real case, we have SL,T € End(n)> for all S,T € End(7)>*. We now
prove the equality

L(S)Ln(T) = L(SL:T)

for all S,T" € End(m)>. Assume first that 7 € Temp(G). Then, this follows directly
from [.2.1] since the operators LS, LT : 7= — 7~ have their images contained
in the same line (which is Homy (7>, €)). Assume now that m € Xiemp(G). We may
then find a parabolic subgroup ) = LUy of G and a square-integrable representation
o € IIy(L) such that 7 = i%(0). Let K be a maximal compact subgroup of G(F)
which is special in the p-adic case and set Tx = ify,(0) and m\ = if(0y) for all
A € iA;. Then, we have isomorphisms End(my)® =~ End(mg)> for all A € iAj.
Let S,T € End(7)* and identify them to their images in End(mx)> by the previous
isomorphism. For A in a dense subset of A}, the representation m, is irreducible.
Hence, by what we just saw, for every such A € i A} we have
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(iii)

(iv)

‘CW,\(S)‘CWA (T) = ‘CW,\(SLWAT)

By (i), the left hand side of the above equality is continuous in A € i4;. To deduce
the equality at A = 0 (what we want), it thus suffices to show that the function

A €idl s Lo (SLy,T)

is continuous. We are even going to prove that it is a smooth function. By (i) and
Proposition [AZ3.T)(v), it suffices to show that for all A € A%, the trilinear map

(7.2.2) End(my)*> x Hom(75°, 7,>°) x End(my)> — End(my)>
(S,L,T)w— SLT

is separately continuous. As the inclusions End(my)> C Hom(7, >, 7)) and End(7))> C
Hom(my, 75°) are continuous, the trilinear map

End(my)* x Hom(7§°, 7,>°) x End(my)> — End(my)

(S,L,T)— SLT

is separately continuous fo all A € iAj. By definition of the topology on End(m))*,
this immediately implies that [7.2.2] is separately continuous for all A € A} . This ends
the proof of (ii)

This is also a direct consequence of (i) and of the fact that the trilinear map [7.2.2] is
separately continuous.

Let f € C(G(F)). The left hand side of (iv) is absolutely convergent by Lemmal6.5.T1(ii).
By Lemma 2.3.[(ii), the map

T € Xiemp(G) = @(f, m) € C¥(G(F))
where o(f,7)(g) = Trace(r(g~')m(f)), is continuous. By the hypothesis made on f,

this map is also compactly supported. It follows that the function 7 € Xienp(G) —
u(m)e(f,m) € C¥(G(F)) is absolutely integrable. Hence, the function

™ € Xiemp(G) = (M) Lr(7(f)) = p(m)Prep(f, 7))

where P ¢ : C¥(G(F)) — C denotes the &-integral, is also absolutely integrable, prov-
ing the convergence of the right hand side of (iv). We also have the equality
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f= p(f; m)pu(m)dm

Xtemp (G)

in C*(G(F)) (or its completion),indeed by the Harish-Chandra Plancherel formula both
sides are equal after applying the evaluation map at g for all g € G(F). It follows that

which is exactly the content of (iv).

The right hand side of (v) may be rewritten as

(723) [ et ms
H(F) JHF)
where fV(g) = f'(¢7"). The Fourier transform of f* x L(h™1)f is given by

T € Xiomp(G) = 7(f" % LB f) = w(f)m(h~")m(f)

In particular, it is compactly supported. Applying (iv) to f'* * L(h™')f, we deduce
that the integral

/H LD

is absolutely convergent and is equal to

/X “ Lo(m(fym(h ) (f))p()dm

By [[.2.1] this last integral is equal to

/X o Trace(ﬂ-(h_l)ﬂ-(f>L7r7T(flv)),u(7T)d7r

By (iii), the section T € Xiemp(G) = 7(f)Lm(f"") € End(7)> is smooth. Moreover,
it is compactly supported and so it belongs to C(Xiemp(G), E(G)). By the matricial
Paley-Wiener theorem (Theorem 2.6.]), it is thus the Fourier transform of a Harish-
Chandra Schwartz function. Applying (iv) to this function, we see that the exterior
integral of [[.2.3]is absolutely convergent and that the whole expression is equal to the
absolutely convergent integral
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/ Co(m(f) Lo () ()
Xtelnp (G)

which by (ii) is equal to

/X “ Lo(m(F)Ln(m () () dm

The point (v) now follows from this and the easily checked equality

Lo(m(f) = La(m (), 7 € Xiewp(G)
u

7.3 Asymptotics of tempered intertwinings

Lemma 7.3.1 (i) Let m be a tempered representation of G(F) and ¢ € Hompg (7>, &) be
a continuous (H, §)-equivariant linear form. Then, there exist d > 0 and a continuous
semi-norm vg on m° such that

[(m(2)e)| < va(e) =\ (@)omne(2)?
for alle € ©° and all x € H(F)\G(F).

(11) For all d > 0, there exists d > 0 and a continuous semi-norm vqqa on Cy(G(F)) such
that

Pre(R(x)L(y)e)| < vaa(9) =1 (@) 2N (Y)oma(@) omaly)”

for all p € CY(G(F)) and all x,y € H(F)\G(F).

Proof: We will use the notation of Section [6.6.2l Namely, we have

e Py = MyN, is a good parabolic subgroup of Gy, A, the split component of My;
AS_ = {CL c Ao(F), |a(a)| 2 1 Vo € R(A(),Fo)},

e P = MN is the parabolic subgroup opposite to P with respect to M;

Fmin = FOTN7 Mmin = MOT and Amin - AOAa

P, the parabolic subgroup opposite to P, with respect to Mopin;

A the set of simple roots of Ay, in Py, and Ap = AN R(Awin, P).
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Then, P, is a good parabolic subgroup of G and by Lemma[6.6.2(ii), there exists a compact
subset K C G(F') such that
(7.3.1) G(F)=H(F)AFA(F)K

(i) By [Z3.1l Proposition B.7.1)(i) and (ii) and since the family (7(k)), ., is equicontinuous
on 7, it is sufficient to prove the following

(7.3.2) There exists a continuous semi-norm v on 7> such that

for all e € 7 and all a € Aj A(F).
We divide the proof of according to whether F'is p-adic or real.

e Assume first that F'is p-adic. Since the topology on 7 is the finest locally convex
topology, we only need to show that for all e € 7*°, we have

(7.3.3) [U(m(a)e)| < E%(a)

for all a € AJ A(F). Let e € 7 and let K be a compact-open subgroup of G(F)
such that e € (7°)%. First, we show

(7.3.4) There exists ¢ = cx > 1 such that for all a € A (F), if there exists
a € Ap such that |a(a)| > ¢, then

l(m(a)e) =0

Since Ap is finite, it is sufficient to fix @ € Ap and prove that for a € A (F),
if |a(a)| is big enough then ¢(m(a)e) = 0. So, let &« € Ap and a € Ay (F). By
Lemma [6.6.2(iii), there exists X € n,(F) (where n, is the eigensubspace of n
corresponding to «) such that £(eX) # 1. Now, if |a(a)| is big enough, we will
have a 'eXa € K and so

E(e)l(m(a)e) = U(m(c™)m(a)e) = U(m(a)e)
From which it follows that ¢(m(a)e) = 0. This ends the proof of [[.3.4l
Let ¢ > 1 be as in[7.3.4] and set
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At (c) ={a € Apin(F);|a(a)] < cVa € A}

min

Note that we have |a(a)] < 1 for all a € AJA(F) and all « € A\Ap. Hence, by
[T.34) it is sufficient to prove the inequality [7.3.3] for a € A7, (c). By definition of
Ajin(c), there exists a compact-open subgroup K% of Ppyy(F) such that

min

! -1
Kﬁ i CaKa

mi

for all a € Ay, (c). Also, let K}, be a compact-open subgroup of H(F) on which

€ is trivial. Since P, is a good parabolic subgroup of GG, we may find a compact-
open subgroup K’ of G(F') such that K" C KK . Let k' = kiyks € K,
where kj; € Kjy and k%, € K5, then we have

i min

(K )m(a)e) = € (n(Ky)m(a)n(a Ky, a)e) = Ky )ir(@)e) = l(m(a)e)

for all a € AT,

min

(c). It follows that

U(r(a)e) = {(m(ex)m(a)e)
foralla € AT

T(0). We have for(ef) € T and the inequality [7.3.3for a € A, (c)
now follows from 2.2.3

Assume now that F' = R. Let us set for all I C A,

At (1) ={a € Anin(F);|a(a)] < 1Va € A\I and |a(a)| > 1Va € I}

min

Since |a(a)] < 1 for all a € AJ A(F) and all & € A\Ap, we have

(7.3.5) AFAR) = || ALaU

ICAp

Hence, we may fix I C Ap and prove the inequality .32 restricted to a € Af. (T).
Let Xi,...,X, be a basis of p,;,(F) and set

Apin =1— (X7 + ...+ X2) € U(Bpin)
Let k > dim(P,) + 1 be an integer. We will need the following

(7.3.6) There exists u = uyy € U(n) such that the two maps

a < Ar—ir_un(]) (Afmn )CL € Z/{(g)
ac At (I a 'ua € U(g)

have bounded images and d(u) = 1.
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This follows rather easily from Lemma [6.6.2(iii). We henceforth fix such an el-
ement u = uyy, € U(n). By elliptic regularity 2.1.2] there exist two functions
01 € C*(Prin(F)) and ¢y € C®°(Puin(F)), where ki = 2k — dim(P ) — 1, such
that

(1) m(Agyin) + 7(02) = Tdroc
Choose a function ¢y € CX(H(F')) such that fH(F) en(h)¢(h)dh = 1. Then, for

all e € 7 and all a € A, (I), we have
U(m(a)e) = d§(u)l(m(a)e) = {(m(u)m(a)e)
= (n(p0)m(Anu)m(a)e) + (W(wz)ﬂ(u)ﬂ(a)e)
=/ (ﬂ(gol)ﬂ(a) (a~ (Afnm e) + /¢ (7r po)m(a)m(a 1ua)e)
= (m(pm * p1)m(a)m(a” (A u)a)e) + £ (n( H*<P2) (a)m(a" ua)e)

Note that the functions ¢g * ¢; and g * s both belong to C* (G(F)). The
inequality for a € AL, (I) is now a consequence of and the equality

above if we choose k sufficiently large by the following fact

(7.3.7) There exists an integer k] > 1 such that for all ¢ € C’f/l(G(F)), there
exists a continuous semi-norm v, on 7 such that

[ (@)m(g)e)| < (€)= (g)

for all e € 7 and for all g € G(F).

(This is an easy consequence of the fact that ¢ is a continuous linear form and of

2.28).

(ii) Let d > 0. Again by [(.3.1] and Proposition [6.7.1](i) and (ii), we only need to prove the
following

(7.3.8) There exists a continuous semi-norm v, on Cy(G(F)) such that

|Pre(R(ar) L(az)p)| < valp)=(a1)=% (az)o(ar) o (az)?
for all p € C¥(G(F)) and all a;,ay € AJ A(F).

The proof of this fact is very close to the proof of [[.3.2l We shall only sketch it,
distinguishing again between the case where F'is p-adic and the case where F' is real.
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e Assume first that F' is p-adic. Then, we may fix a compact-open subgroup K C
G(F) and we are reduced to proving the following

(7.3.9) There exists a continuous semi-norm vy 4 on Cy ,(G(F)) such that

| Pre(R(ar) L(az)p)| < viea(9)=C (a1)E% (az)o(ar) o (az)!
for all ¢ € Cf; 4(G(F)) and all ay,ay € A7 A(F).

We prove as in the proof of (i) that there exists a constant ¢ = cx > 1 such that

Pre(R(a1)L(az)p) =0
for all ¢ € C 4(G(F)) as soon as a; € AJA(F) — Aj.(c) or ay € AFA(F) —

min

At. (c¢). We also prove as in the proof of (i) that there exists a compact-open

subgroup K’ C G(F') such that

Pre(R(ar)L(az)p) = Pue(R(exr) Lex) R(a1) L(as)p)

for all ¢ € Ci 4(G(F)) and all ay,ay € A, (c). The inequality now follows
from Lemma [L5.3(1)(a).

e Assume now that /' = R. Then, by [[.3.5, we may fix I, J C Ap and just prove

(7.3.10) There exists a continuous semi-norm vy 4 on Cy(G(F')) such that

|Pre(R(ar) L(az)p)| < v1,5a()E%(a1)= (az)o(a1) o (az)*
for all ¢ € C¥(G(F)), all a; € Af, (I) and all ay € At (J).

Let k > dim(?mm) + 1 be an integer and choose elements u; = uy g, uy = usi €
U(n) as in | Then, as in the proof of (i), we show that there exists functions
©1, P2, P3,Pa € C’fl(G( )), where k; = 2k — dim(Ppin) — 1, such that

Pre(R(ar)L(az2)p) = Pre [R(<P1)L(<P3)R(@1)L(02)R( mmufal)L(aglAﬁlmuJ@)ﬂ
R(ay mmufal)L(aQ_luJag)gp}
ay UI@I)L(% lAﬁnn“J%)@]

R(al_lulal)L(az_luJ@)@]

3

T

axY

=

AS)

S

=

_6\_/
&
\_/Ei\_/
2

=

=)
S e =
\_/Ei\_/

for all p € C¥(G(F)) and all (a1, as) € Al (I) X Apin(J)". The inequality [T3.10
now follows from Lemma [L5.3(i)(b). W
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7.4 Explicit intertwinings and parabolic induction

Let @) = LUg be a parabolic subgroup of G. Because G = U(W) x U(V'), we have decom-
positions

(741) Q = QW X QV and L = LW X LV

where Qw and Qy are parabolic subgroups of U(W) and U(V') respectively and Ly, Ly
are Levi components of these. By the explicit description of parabolic subgroups of unitary
groups (cf. Section [6.1]), we have

(7.4.2) Lw = GLp(Zyw) % ... x GLg(Zaw) x U(W)

(7.4.3) Ly = GLg(Zyy) % ... x GLg(Zyy) x U(V)

where Z;w, 1 <i < a (respectively sz, 1 < i < b) are totally isotropic subspaces of W
(respectively of V') and W (respectlvely V) is a non—degenerate subspace of W (respectively
of V). Let G = UW) x U(V). The pair (V W) is easily seen to be admissible up to
permutation, hence it defines a GGP triple (G H f) well-defined up to G( )-conjugation

where G = U (W) x U(V). For all tempered representations & of G(F), we may define as in
Section [[.2] a continuous linear form Lz : End(g)> — C.

Let o be a tempered representation of L(F') which decomposes according to the decomposi-

tions [[.41] [[.4.2] and [T.4.3] as a tensor product

(7.4.4) o=ow Xoy

(745) ow :Ul,W&---&O_a,ngVV

(746) oy :O'ng...&ab’v&gv

where 0, € Temp(GLg(Z;w)) for 1 <i < a, o,y € Temp(GLE(Z;y)) for 1 <i < b, ow

is a tempered representation of UW)(F ) and oy is a tempered representatlon of U (V)(F ).

Let us set ¢ = oy Woy. It is a tempered representation of G( ). Finally, let us set
T =1iS(0), Ty = z'U(W)(U ) and Ty = z'U(V)(
Q » AW Qw w v Qv

oy respectively. We have m = my Xy,

oy ) for the parabolic inductions of o, oy and

191



Proposition 7.4.1 With notation as above, we have

£7r7é0<:>£57£0

Proof: We will use the following convenient notation. If X is an E-vector space of finite
dimension, @ x = LxUyx is a parabolic subgroup of GLg(X) with

LX = GLE(Xl) X ... X GLE(XC)

and we have tempered representations o; x of GLg(X;) for 1 < i < ¢, then we will denote
by

O1,x X ... X 0¢x

the induced representation igf{E(X)(JLX X...Xo.x). Note that if all the 0, x, 1 <@ < ¢,
are irreducible so is o1 x X ... X 0. x. Similarly, if X is an hermitian space, Qx = LxUx is
a parabolic subgroup of U(X) with

LX = GLE(ZLX) X ... X GLE(Zd’X) X U(X)

and we have tempered representations o; x of GLg(Z; x) for 1 < i < d and a tempered

representation gx of U(X)(F), then we will denote by

O, x X ... X 0qx X&X
. . U(X ~ . . .
the induced representation ZQ; )(01, xX... Koy xXox). In particular, with these notation,
we have
TwW = 01,w X ... X OqWw X&W
and

7TV:O'17\/><...X0'1)7\/X5V

By the process of induction by stages, we also have Ty = oy, X ow and 7y = o, X oy,
where

O'{/V:O'LV[/X...XO'&W
Oy =01y X ... X Opy

These are tempered irreducible representations of general linear groups (over E). Hence, the
statement immediately reduces to the case where a < 1 and b < 1.

First, we treat the particular case where G = Gy, H = Hy (codimension one case) and
(a,b) = (0,1). Then @ = U(W) x Qy where Qy is a maximal proper parabolic subgroup of
G. Up to conjugating (), we may assume that it is a good parabolic subgroup (cf. Section
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6.4). Then, to fit with our general notation of Chapter [6, we will change our notation and
denote () by @ and Qv by Q. Set Hg = H N (). Clearly, we have a natural embedding
Hy — L.

Q

We may assume without loss of generality that the invariant scalar product on 7 is given by
(e,€) = / (e(g),€(g9))dg, e em
QFN\G(F)

where the scalar product in the integral is the scalar product on o. Since we are in the
codimension one case, the integral defining £, is absolutely convergent and we have

(7.4.7) (e,¢) /H - / \G(F ,€'(gh))dg& (h)dh

for all e, e’ € 7. Let us show
(7.4.8) The expression [T.4.7is absolutely convergent for all e, ¢’ € 7.

Let e,¢’ € 7 and choose a maximal compact subgroup K of G(F') which is special in the
p-adic case. Then, for a suitable choice of Haar measure on K, we have

(gh))|dg = k‘h dk
/Q(F)\ " |( ( ) 9 | g = / | |
= / 0~ (l—(kh))1/2 ‘( (k),o (Z—Q(kh)) (/{:Q (kh) )) ‘ dk

for all h € H(F). Here, as usual I : G(F') — L(F) and k7 : G(F)) — K are maps such

that I5(g)~'gkg(g)™" € Ug(F) (the unipotent radical of Q(F)) for all g € G(F). Since o
is tempered and the maps k € K — e(k) € 0, k € K — ¢/(k) € o have bounded image, it
follows that

/ |(e(g), €'(gh))| dg < / 0g(lg(kg)) ' P= (Ig(kh))dk = ¢ (h)
QUNG(F) K

for all h € H(F'), where the last equality is Proposition [L5.1](iii). The absolute convergence
of 4T now follows from Lemma [6.5.1[(1).

Since Q@ is a good parabolic subgroup, by Proposition [6.4.1(i) the quotient Hy(F)\H(F) has
negligible complement in Q(F)\G(F). Hence, if we choose Haar measures compatibly, we
have

/_ w(g)dg = / @(h)dh
QFN\G(F) Hg(F)\H(F)
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for all ¢ € L' (Q(F)\G(F), 65). Thus, TAT becomes

L.(e,e) :/ / (e(h), €' (W'h))dh'dh
H(F) J Ho(F)\H(F)

for all e,e’ € 7°, the double integral being absolutely convergent by [[.4.8 Switching the
two integrals, we get

(7.4.9) La(e,e L. (e(h), e (H'))dhdh'

/
-
(Hg(F\H(F))?

for all e, e’ € >, where we have set
Ly(v,0) = / (v, 0(hig)v") 15 (hg) 2 dihg
Hg(F)

for all v,v" € ¢*°. The presence in the integral above of 5H§ instead of g follows from
Proposition B.8T(ii). Set

£ = [

()(

P) <

(7.4.10) The integral defining £, is absolutely convergent and L, is a continuous linear form
on End(o)>.

Indeed, this follows from Proposition [6.8.1](iii) as ¢ is tempered. We now prove the following

(7.4.11) Lr#0e L, #0

By and the density of 7° @ 7 in End(7)*°, we see that if £, is nonzero then £, is
nonzero. Let us prove the converse. The analytic fibration H(F) — Hg(F)\H(F) is locally
trivial. Let s : U — H(F) be an analytic section over an open subset U of Hg(F)\H(F).
For ¢ € C*(U,0>™) a smooth compactly supported function from U to o>, the following
assignment

e.(g) = 55(1)1/20"(1)@(@ if g =lus(h) with [ € L(F),u € UQ(F), held
v 0 otherwise

defines an element of 7. By [[.4.9) we have
Llecs) = | L (o). ¢ (H)) dhd
(Hg(FN\H(F))
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for all p,¢" € C*(U,0%). Now, assume that L, is nonzero. Because 0> ® o> is dense
in End(0)®, there exists vy, vy € 0 such that L,(vo, v)) # 0. Setting ¢(h) = f(h)vy and
¢'(h) = f(h)v) where f € C*(U) is nonzero in the formula above, we get Lr(ey,ey) # 0
hence £, doesn’t vanish. This ends the proof of [LZ.TTl

By [.4.11] we are now reduced to proving

(7.4.12) Lo #0& Lo#0

In order to prove [[.412] we will need a precise description of Hg and of the embedding
Hg — L. Since Qy is a maximal proper parabolic subgroup of U(V) it is the stabilizer of a

totally isotropic subspace Z’ of V. The quotient Q\G classifies the totally isotropic subspaces
of V of the same dimension as Z’. The action of H = U(W) on that space has two orbits:
one is open and corresponds to the subspaces Z” such that dim(Z”" " W) = dim(Z') — 1,
the other is closed and corresponds to the subspaces Z” such that dim(Z" NW) = dim(Z'").
Since we are assuming that @ is a good parabolic subgroup, Z’ is in the open orbit. Hence
Zyy = Z'NW is an hyperplane in Z’. Moreover, we have

LV = GLE(Z/) X U(V)

where V is a non-degenerate subspace of V' orthogonal to Z’. Since Zj, is an hyperplane in
7', up to Q(F)-conjugation we have V' C W and so we may as well assume that it is the
case. Note that we have a natural identification Hz = U(W) N Qy,. The exact sequence

1= Ug— Qy = GLg(Z)xU(V) =1

induces an exact sequence

(7.4.13) 1 = Ul — Hg = Py x U(V) = 1

where U% = U(W) N Uy and Pz is the mirabolic subgroup of elements g € GLg(Z')

preserving the hyperplane Z;, and acting trivially on the quotient Z’/Zj,. On the other
hand, we have

L=UW)xGLp(Z") xU(V)
and the embedding Hg < L is the product of the three following maps

e The natural inclusion Hz C U(W);

e The projection Hg — Pz followed by the natural inclusion Pz C GLg(Z');

e The projection Hg — U(V).
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Let D be a line such that (Zi) N W = Zj, @ (5 ®+ ‘7> Then, the unipotent group U%

may be described as the subgroup of U(WW) stabilizing the subspace D& Zyy,. Fix a basis
2, ..., 2, of Z};, and let Bz be the Borel subgroup of GLg(Z') fixing the complete flag

(1) () G G o) = 2w & 7

= =

and denote by Ny its unipotent radical. Let E be a generic character of Nz (F'). Let us
denote by N and H the inverse images in Hg of the subgroups Nz and Nz x U (‘7) of
Py x U(V) by the last t map of [L4.I3l Recall that G = U(V) x U(W). We have a natural
‘diagonal’ embedding H < G (that is: the product of the natural projection H — U(V)
and the natural inclusion H < U(W)) and if we extend € to a character of H(F) through
the projection H(F) — N (F), then the triple (G, H,€) is a GGP triple corresponding to
the pair of hermitian spaces (17,/1/[7) We can of course use this triple to define £;. We
henceforth assume that it is the case.

The representation o decomposes as ¢ = oy X o where 0,y is a tempered irreducible
representation of GLg(Z'). The subspace 075, ® 6> is dense in 0. Hence L, is nonzero if
and only if there exist vectors v,7" € > and w,w’ € 075, such that

Lo(w@v,w ®0)#0
Let us fix a Whittaker model o5, — C* (NZ/(F)\GLE(Z’),E_l) for 075, (such a model

exists because oy v is a tempered representation of a general linear group). For w € 0Ty, we
will denote by W, the corresponding Whittaker function. We have the following

(7.4.14) For a suitable choice of Haar measures, we have the equality (recall that Py is a
subgroup of U(W))

Lo (WS, W) = / W (o)W (7)o (3(p)5, 5(0')) b (pp') ™ pitd
(N1 (F)\Pgi (F))?

for all w,w" € 07, and all v,?" € 7> and where the integral on the right is absolutely
convergent.

Before proving this equality, let us explain how we can deduce[l. 412 from it. The implication
L, # 0= Lz # 0 is now obvious. For the converse direction, we use the fact that the Kirillov
model of 079,, that is the restriction of the Whittaker model to functions on Pz (F'), contains
> (NZ/(F)\PZ/(F), §—1> (cf. Theorem 6 of [GK] in the p-adic case and Theorem 1 of [Kem)|
in the real case). Since the analytic fibration Pz (F) — Nz (F)\Pz/(F') is locally trivial, we
can now argue in a similar way as in the proof of 411l

We will now prove [LAT4l Let us fix w,w" € 0fS,. Let Hy be the inverse image of U (V) in
Hz via the last map of the exact sequence [L4I3 The group H,(F) is unimodular and for
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suitable choices of Haar measures, we have dLha = dhydrp where dhy is a Haar measure on
Hy(F) and dpp is a left Haar measure on Pz (F). Moreover, the modular character dp is
trivial on Hy(F"). Thus, because of the description of the embedding Hg — L, we have

(74.15)  Lo(w®F,w @F) = / / (5, 5(phe)7) (w, 0vy (p)0" )51 (p) 2y p
Py Hy(F

for all v,7" € 0, the integral being absolutely convergent by [ 410 Let us define

Py () = / " o(E(dh

H(F)

P () = / W (D)W ()P ¢ (L(D)R(D) ) 115 (')~ *dpd
(Nt (F)\P(F))?

/ / o (phs) (w, 71,0 (P )31y (p) 2y p
PZ’ Hh

for all ¢ € C*(G(F)). The first expression above is the generalized &-integral on H(F) of
Section [Z.Il Because of and since o is tempered, the claim [[.4.14] will follow from

(7.4.16) The integrals defining Ptllw, and Pi,w, are absolutely convergent, moreover they

define continuous linear forms on C*(G(F)) and if Haar measures are chosen suitably
we have

Ptlu,w’((p) = P?u,w’(@)
for all ¢ € C¥(G(F)).

Let us start by proving the absolute convergence and continuity of Pi,w/- It suffices to show
that the integral

/ / =6 (phy)og(phe) | (10, 0w (p))| 1, (p) ez
Py Hy(F

is absolutely convergent for all d > 0. Since o0y is a tempered representation this last
integral is essentially bounded by

L L ZE R0 = gt ) iy = [ =)o) o ) it
Py (F) J Hy(F H5(F)

which by Proposition [6.8.1](iii) is an absolutely convergent integral.

Let us now show the absolute convergence and continuity of P}, ,,. By Lemma [Z.3TI(ii), it
is sufficient to show the following
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(7.4.17) For all d > 0 and all wy € 079, the integral

/ Wao (9)| ZVC ()0 () 811 (p) ™2l
Ny (F)\Pg (F)

is absolutely convergent.

Let d > 0 and wy € o1,y. Let T be the maximal subtorus of GLg(Zjy) stablhzmg the lines
(21),...,(z)). Notice that T plays the role of the torus T for the GGP triple (G, H, &) (cf.
Section E)EI) Also, let us fix a maximal (special in the p-adic case) compact subgroup K zL

of GLg(Z},). Then, we have Py/(F) = NZr(F)T(F)KZéV together with a decomposition of
the Haar measure dgp = 6p,, (t)05,, (t)"'dndtdk. Hence,

/ Wo ()] =7 0o 5 () =
N1 (F)\Pg: (F)

/ / W (k)| 27\ (k) o (th) 615 () 71?0, (80, ()~ didk

By Proposmon-( )(a) and (ii)(a), there exists a d; > 0 such that :H\G(tk) < 05 () o (t)h

for all ¢ € T(F) and all k € Ky . Also,we have o(th) < o(t) for all T € T(F) and all
k € Kz,. We have an isomorphism

= (t )1<i<e

where t;, 1 < i < ¢, denotes the eigenvalue of ¢ acting on z/. Since W, (tk) = W, v (ywo (t)
and the map k € K+ o1y (k)wy has bounded image, by Lemma [B.2.1] it is sufficient to
prove the existence of R > 0 such that the integral

[ =@ 01 B G B)8, D, (0 [ max(1, le) "

T(F) i=1

converges absolutely. Here, we have denoted by |.|g the normalized absolute value of E. By
Proposition [L5.I(ii), there exists a dy > 0 such that 62220 (1) <« o, (£)/20(t)% for all

t € T(F). Moreover, we have 05 (t) = dug(£)s,, ()0p,, ()" and

l

0p, () = [ [ltile

i=1

forallt e T (F'). Hence, it suffices to prove that there exists R > 0 such that the integral
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¢ l
[ ottt Tl e T max(, fil) "t

T(F) i=1 i=1

converges. We have

l
o(?) < [T 1o (1 + max(lf; . )

i=1
forallte T (F) and for suitable additive Haar measures dt; on E, 1 < i < ¢, we have

V4
dt = | 1615t

i=1

So finally, we only need to prove the existence of R > 0 such that the integral

/ log (1 + max(|z|5", |:£|E))d+dl+d2 max(1, |z|g) Fdx

E

converges. Any R > 1 fulfills this condition. This ends the proof of [[417] and hence of the
absolute convergence and continuity of P} .

We are now only left with proving the equality of the functionals P, ,, and P ,,. Because

we have shown that these two functionals are continuous linear forms on C¥(G(F')) and since

C(G(F)) is a dense subspace of C*(G(F)) (by [LE), we only need to prove the equality

P&J,w’((p) = Pg],ﬂ)’(@)

for all ¢ € C(G(F)). Let ¢ € C(G(F)). By Theorem 6.2 of [Ber2|] in the p-adic case and
Theorem 10.3 of [Bar] in the real case, if we choose the Haar measures suitably, we have

(w0>w6) = / Wwo(p)Ww(’)(p)dRp
Ny (F)\Py (F)

for all wy, wy € 075/, the integral being absolutely convergent. Hence, we have

1418 P2ote)= [ [ ptom) | W0 Wor (D) 31 () 2 el p
Py (F) J Hy (F) Ny (F)\Pg (F)

Let us assume one moment that the above triple integral is absolutely convergent. Then, we
would have

199



o= Walt) [ o) W1 (1) dhdipda
NZ/(F \PZ/ PZ/(F) Hh(F)

-/ Walt) [ [ o o W o, (o) bt ()
Nz (F)\Pgi (F Py (F) J Hy (F)

= / W (p') /
N (F \PZ’ PZ/(F)

’(P)CSH@(P)I/%Hh (p)~"dhydrp

S
©
SR

|
5
=
F

5H§(p/)_1/2dRp/

-/ W) [ o T ) b 1)
Ny (F\Py (F Py(F Hh(F

-/ W) | Vo) [ [ ol b))
N, (F)\Py: (F N (F)\Py (F N,/ (F Hh(F
0

zZ

H§< ) 1/2dRp5H§( N 2dgp!

- / W) Wor () / o'~ o) ER) e (o)~ 2 dpidny
N, (F)\Py/(F

- / W (0 )W (p) Pz ¢ (L) R(P) @) O1is (') ™2 dpd g’
(N (F)\Py:(F)
= P&},uﬂ(@)

where on the second line we made the variable change p — p'~'p, on the third line we made
the variable change hy — p~'hyp and on the fourth line we used the easily checked equality
5H§(p)de = 0p,(p)drp. This proves the equality we wanted. Hence, it only remains to
show the absolute convergence of [[.4.I8 It is certainly equivalent to show the absolute
convergence of the antepenultimate integral above i.e., we need to show that the integral

/ Wl War )] [ 1o R by o)™ 2
(N2 (F)\Pg: (F))? H(F)

converges. By Proposition [6.7.1)(v), there exists d > 0 such that this integral is essentially
bounded by

/(N e [Wao ()| W (p)| EPNE ()2 ()0 (p) 0 (9) 6 115 (p0') ~ 2 dpd !
z! z!

But by [[.4.17, we already know that such an integral converges. This ends the proof of
[7.4.16 and hence of the proposition in the particular case we have been considering.

We now explain how the other cases reduce to the particular case we just treated. We
distinguish three cases
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e Case where a = 1 and b = 0. Let us define a new hermitian space (V' h’) by V' =
V@ Ezy and h'(v+ Azj) = h(v) — N(A)h(2p). We have a natural inclusion of hermitian
spaces V' C V' and the pair (V,V’) is admissible and gives rise to a GGP triple
(G' H',£') where G' = U(V) x U(V'), H = U(V) and & = 1. Note that this new
GGP triple is of codimension one. Let Z' = Z, @ Ez,,1 where 2,11 = 2y + %, (where
Z. is defined as in Section[6.2)). Then the group GLg(Z’.) x U(W) is a Levi subgroup
of U(V'). Let ¢’ be any tempered irreducible representation of GLg(Z!). Then, we
have the chain of equivalences

‘CWZETK'WIX’T(V %O@EWVIXI (mw xa’) %O@EWVIXI (cw x(o1,w x0’) #0
= Eo - LUW@WV ;é 0

where in the first and third equivalences we have used the case already treated (for the
triple (G’, H',¢')) and in the second equivalence we have used induction by stages.

e Case where a = 0 and b = 1. Note that we already solved this case when the triple
(G, H,&) is of codimension one. We proceed by induction on dim (V) (if dim(V') =1
then we are in the codimension one case). Let us introduce two GGP triples (G', H', ')
and (G", H" £") relative to the admissible pairs (W@ Z, V') and (17, W @ Z) respectively
(Z is defined in Section [6.2). Let ¢’ be any irreducible tempered representation of
GLg(Z). Then, we have the chain of equivalences

£7r = LWW&W\/ % 0 ‘C(TerO' Rmry — ‘C(TerO' )X(o1,v X0V) % 0« EGVIZ(WWXU’) % 0
= ﬁg = ﬁgvgww 75 0

where in the first equivalence we applied the case (a,b) = (1, 0) to the triple (G', H', '),
in the second equivalence we applied the case (a,b) = (0, 1) to the same triple (which is
of codimension one) and in the third equivalence we applied the induction hypothesis

to the triple (G”, H",£").

e Case where a = b = 1. Then, we have the chain of equivalences

‘C7r = £(ULW X&W)‘X’Trv # O = £5W‘X’(01,V X&V) - E&wlZlT(V # 0 = £5 - ‘nglzav # 0

where in the first equivalence we applied the case (a,b) = (1,0) and in the second
equivalence we applied the case (a,b) = (0,1). B

7.5 Proof of Theorem [7.2.1]

Let mp € Temp(G). We already saw in Section [[.2] the implication £, = m(m) # 0. Let us
prove the converse. Assume that m(m) # 0 and let £ € Hompg(75°, ) be nonzero. We begin
by establishing the following
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(7.5.1) For all e € ng° and all f € C(G(F)), the integral
[ tmlge)sto)ds
G(F)

is absolutely convergent.

Indeed, this is equivalent to the convergence of

[ jemi@ol [ (fh)dhds
H(FN\G(F) H(F)
By Proposition B.7)(vi), for all d > 0, we have an inequality

(75.2) / lan < 2@l

for all x € H(F)\G(F). On the other hand, by Lemma [I.3.1](i), there exists d’ > 0 such
that we have the inequality

U

(7.5.3) |0(mo(x)e)| < EH\G(x)aH\G(:B)d

for all x € H(F)\G(F'). To conclude, it suffices to combine [[.5.2] and [(.5.3] with Proposition
G7iii).

We may compute the integral [[.5.1] in two different ways. First, using the decomposition
C(G(F))=C*(G(F))=C(G(F)) (cf. 2Z1.T), we easily get the equality

(7.5.4) /G , ((9)e)(9)dg = (ol 1))

for all e € 75° and all f € C(G(F')). Indeed, by linearity and the aforementioned decompo-
sition, we only need to prove [[.5.4l when f is of the form f = ¢ * f’ for some ¢ € C°(G(F))
and some f' € C(G(F)). Then, we have

| tmigas@is= [ [ dmi@eeero g
G(F) G(F) JG(F)
/ / U(mo(vg)e)e(y)dy.f'(g)dg
ar) Jar)

/ Umol@)mo(9)e) £ (9)dg
G(F)

where in the second line we have performed the variable change g — ~g. This step requires
the switch of the two integrals. This is justified by the fact that the double integral
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Lo L @0 1 6 s
G(F)

is absolutely convergent. But this easﬂy follows from [Z.5.1] since ¢ is compactly supported.
Now, the vector ¢ o my(p) € my > actually belongs to 7° and by definition of the action of
C(G(F)) on mg°, we have

/ U(mo(p)mo(g)e) f'(g)dg = / f(9) (mo(g)e, Lo mo(p)) dg = (mo(f")e, £ o mo())
G(F) G(F)

= L (mo(p)mo(f)e) = L(mo(f)e)
and [7.5.4] follows.

On the other hand, we may write

U(mo(g)e dg = {(mo(x)e hx)é(h)dhdx
L, (ters@ds= [ttt [ stgem

Hence, by Lemma [[.2.2(iv), if 7 € Xiemp(G) — 7(f) is compactly supported, we have

(7.5.5) /G (610 )dg = /H o (0@ /X o e )

for all e € mg°.

Let T € CP(Xiemp(G), E(G)). Applying (54 and [[5H to f = fr, we get

(7.5.6) UTrye) :/H(F)\G( )K(Wo(x)e)/x o Lo (Tor(x™ 1)) pu(r)dndx

for all e € mg°.

Let @ = LUg be a parabolic subgroup of G and o € Ily(L) such that my appears as a
subrepresentation of 7/ = i (). Set

0= {ZQ(O')\) A €iAL} C Xemp(G)

It is the connected component of 7" € Xiemp(G). Let eg € m5° be such that £(eg) # 0 and let
Ty € End(m)*> be such that Tyeg = €. We may find a section 7° € C°(Xiemp(G), E(G)),
such that

o T7(r)o = To,

e Supp(7°) C O.
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Applying toe=epand T = T, we see that there exists A € i.4} such that Ly #0,
where 7} = i§(0,). Introducing data as in Section [Z.4, we may write 0 = og, K & where
ogr is a tempered representation of a product of general linear groups and ¢ is a tempered
representation of a group G(F') which is the first component of a GGP triple (G, H,¢).
Twists of o by iA} leave the component ¢ unchanged and so, by Proposition [(.4.1] we have

Lo #06 L5 #0 Lo #0

Hence, £, # 0. Thus, we may find a section T" € C(Xiemp(G), E(G)) such that L. (TL) # 0.
By Lemma [.22(i), the function 7 € Xiemp(G) — L,(T}) is smooth. Since T is com-
pactly supported, it follows that the section T € Xiemp(G) — T2 = L, (THT? belongs to
C2(Xiemp(G), E(G)). Applying toe=¢epand T = T? we get

(7.5.7)  Lo(TH)(ep) = /

H(F)\G(F)

{(mo(x)eg) / Lo(THL(Tm(zx™ ) p(r)drd

Xremp (&)

Notice that by the choices of T and ey, the left hand side of [[.5.7] is nonzero. On the other
hand, by Lemma [[.2.2(ii), we have

Lo(T)La(Tn(2™")) = La(Tr LaTym(z™"))

for all T € Xiemp(G) and all x € G(F). By Lemma [T.22(iii), the section 7 — T2 = T L, T?
belongs to C2°(Xiemp(G), £(G)). Hence, applying toe=¢epand T = T2, we also get

/ U(mo(x)eg) / ,CW(T;)ﬁW(TSW(ZB_l)),u(ﬂ')dﬂ'd:E = E(T;OLﬂonoeo)
H(F)\G(F) Xiemp (G)

By the non-vanishing of the left hand side of [[5.7 we deduce that (T} L, T2 eq) # 0.

™0~ mo

Hence, in particular L., # 0 which is equivalent to the non-vanishing of £, i.e., what we
want. This ends the proof of Theorem [7.2.11 W

7.6 A corollary

Let us adopt the notation and hypothesis of Section [[L4l In particular, ) = LUg is a
parabolic subgroup of G with L decomposing as in [.4.1] [[.4.2] and [[.4.3], o is a tempered
representation of L(F') admitting decompositions as in [7.4.4] [7.4.5 and [7.4.6] and we set

o = ow Koy. This is a tempered representation of G(F) where G = U(va)f Q(YZ) Recall
that the admissible pair (W, V') (up to permutation) defines a GGP triple (G, H, ). Hence,
we can define the multiplicity m(c) of & relative to this GGP triple. We also set, as in

Section [T4} m = i&(0).

Corollary 7.6.1 (i) Assume that o is irreducible, then we have




(11) Let K C Xiemp(G) be a compact subset. There exists a section T € C(Xiemp(G), E(G))

such that

Lr(T7) = m(w)

for all m € K and moreover in this case, the same equality is satisfied for every subrep-
resentation ™ of some ' € K.

Proof:

(i)

By Proposition [T.4.T] and Theorem [.2.1], we have the chain of equivalences

m(m) A0 L, 20 Lz #0& m(a) #£0

Moreover, by Theorem [6.3.1] the multiplicity m () is at most one. Hence it suffices to
show that

m(m) <1

Equivalently: there is at most one irreducible subrepresentation of 7 with nonzero
multiplicity. Assume this is not the case and let 71, m9 C 7 be two orthogonal irreducible
subrepresentations such that m(m;) = m(my) = 1. By Theorem [7.2.1] we have L., # 0
and L, # 0. Let 71 € End(m ) C End(7)* and T € End(m)> C End(7)* be such
that £.(T1) = L, (Th) # 0 and L,(T2) = L, (T2) # 0. Then, by Lemma [7.2.2(ii),
we have L.(T1)L,(T3) = L,(T1L,T,). But obviously T1L,T; = 0 and this yields a
contradiction.

Using a partition of unity, it clearly suffices to show that for all 7’ € Xiemp(G) there
exists a section 1" € C(Xiemp, £(G)) such that

L(Tr) = m(r)

for 7 in some neighborhood of 7" in Xiemp(G). By (i), we know that the function
T € Xemp(G) — m(m) is locally constant. If m(n’) = 0, then there is nothing to
prove (just take 7" = 0). If m(n’) # 0, then by (i) there exists a unique irreducible
subrepresentation my C 7’ such that m(m) = 1. Then by Theorem [[.2I] we may
find Ty € End (7)™ such that L., (Ty) # 0. Let T° € C(Xiemp(G), E(G)) be such that
T2 = T,. Then we have

EW’ (T0’> = £7r0 (TO) 7£ 0

™

By Lemma [T.2.2(i), the function 7 € Xiemp(G) — L,(T2) is smooth and so we can
certainly find a smooth and compactly supported function ¢ on Xiemp(G) such that
o(m)L(T%) = 1 in some neighborhood of 7’. Tt then suffices to take T'= ¢T°. W
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8 The distributions J and J“°

We keep the notation introduced in Chapter The goal of this chapter is to define two
functionals J and JY° on the spaces of strongly cuspidal functions on the group G(F) and its
Lie algebra respectively. In the subsequent Chapters [9] [[0] and [IT] we will establish spectral
and geometric expansions for these distributions resulting in the local trace formulas alluded
to in the introduction. Both the definitions of J(f) and J“¢(f) involve integrating a certain
kernel over the diagonal of H\G x H\G and the main result of this chapter is that the
resulting integrals are absolutely convergent. The convergence of J(f) is proved in Section
B using some crucial estimates from Chapter [l The proof of the convergence of JUe¢(f) is
completely similar and thus the result is only stated in Section

8.1 The distribution J
For all f € C(G(F')), let us define a function on H(F)\G(F) by

K(f,z)= . (x*hx)é(h)dh, x € H(F)\G(F)

Notice that by Lemma [6.5.1](ii), the above integral is absolutely convergent. The theorem
below and Proposition [6.7.1](iii) show that the integral

()= K(f,z)dx

H(F)\G(F)

is absolutely convergent for all f € Cyeusp(G(F')) and defines a continuous linear form

Coeusp(G(F)) = C
f=J(f)

Theorem 8.1.1 (i) There exists d > 0 and a continuous semi-norm v on C(G(F')) such
that

|K(f,2)] < v(f)EMC (@) ome(r)
forall f € C(G(F)) and all x € H(F)\G(F).

(11) For all d > 0, there exists a continuous semi-norm vy on C(G(F')) such that

K (f, )| < va(f)E"\C (2)?0mq(x)

for all v € H(F)\G(F) and all f € Cseusp(G(F)).
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Proof: Recall that for all R > 0, pg denotes the continuous semi-norm on C(G(F)) given by

pr(f) = sup [f(9)|E%(9)oc(9)"
geG(F)

for all f € C(G(F)).

(i) Let d’ > 0’ Then, we have

K (f.2)] < pa(f) / =6( ) (o ) dh

H(F)

forall f € C(G(F))and allx € H(F)\G(F'). By Proposition 6.7.1)(v), if d’ is sufficiently
large, there exists d > 0 such that

/ =¢(x  ha)o (e ha) ™ dh < =G (1) m o (2)*
H(F)

for all z € H(F)\G(F). This proves (i) for v a scalar multiple of py when d’ is
sufficiently large.

(ii) We will adopt the notation of Section [6.6.21 That is:

e P, is a good minimal parabolic subgroup of Gy, My C P, a Levi component and
Ap the maximal central split subtorus of My;

e P is the parabolic subgroup opposite to P with respect to M and N is its unipotent
radical;

o Puiw = PoTN, My, = MyT and Ay, = AgA are respectively a good minimal
parabolic subgroup of GG, a Levi component of it and the maximal central split
torus of Mpin;

o A ={a € Ay(F); |a(a)| > 1 Va € R(Ay, Po)} and
At ={a € Apn(F); la(a)] = 1Va € R(Amin, Puin) };

e P, is the parabolic subgroup opposite to P, with respect to Mpin (we have
Pmin g P)7

e A is the set of simple roots of A, in Py and Ap = AN R(Apin, IV) is the subset
of simple roots appearing in n = Lie(V).

In the p-adic case, we fix a compact-open subgroup K C G(F) and to get uniform
notation, we set Cx (G(F')) = C(G(F)) and Cseusp, k (G(F')) = Cocusp(G(F')) when F' = R.
Clearly, we just need to establish the estimate of the theorem for f € Cseusp . (G(F)).
The first step is to reduce the range of the inequality to prove to those z = a € A, .
More precisely, we have
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Lemma 8.1.2 Point (ii) of the theorem follows from the following estimate:

(8.1.1) For alld > 0, there exists a continuous semi-norm vg  on Cx(G(F)) such that

1K (f,a)| < varx(f)E (0)ome(a)™

for alla € At and all f € Cseusp.ic(G(F)).

Proof: By Lemma [6.6.2(ii), there exists a compact subset  C G(F') such that

G(F) = H(F)A{ A(F)K

Hence, by Proposition [6.7.1)i) and the fact that for every semi-norm v on C(G(F)),
there exists a continuous semi-norm v/ on C(G(F)) such that v(*f) < v/(f) for all
k € K and all f € C(G(F)), it certainly suffices to prove the estimate of the theorem
for z = a € AJ A(F) i.e. we have a reduction to the following statement:

(8.1.2) For all d > 0, there exists a continuous semi-norm vy on Cx (G(F')) such that

(K (f,a)] < varx(f)E"(a)’ome(a)™

for all a € AJA(F) and all f € Cyusp.x (G(F)).
Set

a+
Amin

= {a € AFA(F); |a(a)] < om(a) Va € Ap}

where the exponent “a” stand for “almost” since by Lemma [6.6.2(i), elements of A%t
are “almost” in Af. . We now claim:

min*

(8.1.3) In the Archimedean case, for all d > 0 there exists a continuous semi-norm vy
on C(G(F)) such that

K (f,a)| < va(£)Z\Y(a)’ome(a)™

for all a € AJA(F)\ A% and all f € C(G(F)).

min

(8.1.4) In the non-Archimedean case, there exists a compact subset Cy C A(F') such
that

K(f,a) =0
for all a € A A(F)\AL, C4 and all f € Cx(G(F)).

min

208



First we prove Let a € A A(F)\A%" . Then, there exists a € Ap such that
la(a)| > ome(a). Since Ap is finite, we may as well fix @ € Ap and prove the estimate
BI3 only for those a € A A(F) such that |a(a)| > ome(a). So, let us fix @ € Ap. By
Lemma [6.6.2(iii), we know that £ is nontrivial on n,(F). Choose X € n,(F') so that
£(X) # 1. Denote by d¢ : n(F') — C the differential of £ at the origin. Since (X)) # 1
and ¢ is a character, we have d¢(X) # 0. By integration by part, for all f € C(G(F))

all @ € Apin(F) and all positive integers N, we have

dE(X)VE(f,a) = / *F(h) (LXV)E) (h)dh

H(F)

— ()Y /H ) (et
_(—1)V /H . (L(a™ XN a)f) (W)E(h)dh

— (~1)Va(a)N / (L(XY)F) (a ' ha)e(h)dh

H(F)
= (-1)"a(a) N K(L(X")f,a)

This implies in particular that for every positive integer N, we have

[K(f, )] < oma(a)™[K(LX™Y) [, a)l

for all f € C(G(F)) and all a € Ayin(F) such that |a(a)| > om\g(a). Together with
(i), this implies the desired inequality.

We now prove BT4l Let C' > 0. Certainly, there exists a compact subset Cy C A(F)
such that Af, Cs contains the set of a € A}, A(F) such that |a(a)] < C for all
a € Ap. Hence, fixing a € Ap, it suffices to show that for C sufficiently large we
have K(f,a) = 0 for all f € Cx(G(F)) and all a € Apn(F) with |a(a)] > C. Set
Ky=KNN(F), Ly =log(Ky) and L, = Ly Nn.(F). Then L, is a lattice of n,(F)
and there exists a constant C' > 0 such that A™'X € L, for all A\ € F* satisfying
|A| > C. Hence, for all f € Cx(G(F)) and all a € Ay, (F) with |a(a)| > C, we have

EX)K(f,a) = (a"tha)€é(he™)dh = / f(a " he=¥a) £(h)dh

H(F) H(F)

:/H(F)f(a_lh“e_x/a(“))f(h)th/ f (a=*ha) €(h)dh = K(f,a)

H(F)

Since £(X) # 1, this implies K(f,a) = 0 and BI4 follows.
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By B1.3 and R.1.4] it is thus sufficient to establish the estimate 8.1.2] only for those
x =a € A% in the Archimedean case and only for those x = a € AT. C, for a certain

compact subset C'4 C A(F) in the non-Archimedean case. The fact that we can further
reduce to the case where x = a € A, | up to changing the level in the p-adic case, is

min’

now a consequence of the next lemma, whose straightforward proof is left to the reader.

Lemma 8.1.3 (i) Forallay,a_ € Apin(F) and f € Coensp(G(F)), we have K(f,ara_) =

K(* f,a;) where * f € Consp(G(F)) is defined by (= f)(g) = f(a~"ga_) for all
g€ G(F).
a+

(11) In the Archimedean case, any a € A%t
and a_ € A(F) satisfy an inequality

+

min

can be written a = aya_ wherea, € A

o(a-) < log (1 +oma(ay))

Moreover, fizing such a decomposition for all a € A%, there exist ¢ > 0 such

that for every continuous semi-norm v on C(G(F)) there exists a continuous semi-
norm v' on C(G(F')) satisfying

v(“ f) < V,(f)UH\G(a-‘r)ca UH\G(CL) < UH\G(“—i—) and EH\G(M) < EH\G(G)UH\G(GJr)C

for all a € A%L and all f € C(G(F)).

(11i) In the non-Archimedean case, let Cy C A(F) be a compact. Then, any a €
At Cy can be written a = aya_ where ay € Al and a_ € Cy. Moreover, fizing
such a decomposition for all a € AL. Ca, there exists a compact-open subgroup
K' C G(F) and for all continuous semi-norm v on Cx(G(F)), there ezists a

continuous semi-norm v' on Cx/(G(F)) such that

“f€Ck(G(F)), v(*f)<V(f), omela) < omea(as) and 1% (ay) < Z7\%(a)

for alla € AL, and all f € Cx(G(F)).

min
[

We are thus left with proving 8. 1.1l In order not to have to keep track of semi-norms,
we now make the following useful remark: by (i), for all @ € Al the linear form f €
C(G(F)) — K(f,a) is continuous and therefore, by the uniform boundedness principle,
in order to prove BT we just need to establish that for any fixed f € Cr scusp(G(F))

and d > 0, we have

(8.1.5) |K(f,a)| < 2"\%(a)’omnc(a)™
for all a € A"

min*

210



For every maximal proper parabolic subgroup @ of G containing P, with unipotent
radical Uz and any 0 > 0, we set

A% () = {a € Aty Jala)] = €7@ Ya € R(Awin, Ug)}

min min’

Obviously, we can choose § > 0 such that the complement of

U Amm

the union being taken over all maximal proper parabolic subgroups Q D Py, in AT,
is relatively compact. We fix such a 6 > 0 henceforth and let () be a maximal proper

parabolic subgroup containing P,. By the previous decomposition, we only need to
prove the estimate .15 for a € AQ 6).

min

Let L be the unique Levi component of Q containing Ai,. Set Hz=H NQ and let H,
be the image of HQ by the projection Q@ —» L. Since Q is a good parabolic subgroup,
by Proposition [G.8.T[(i) this projection induces an isomorphism Hg ~ Hp. We define
a character {, on Hp(F) by setting £1(hr) = {(hg) for all hy € Hg(F) with image
hy € HL(F). Let Q@ = LUg be the parabolic subgroup opposite to () with respect to
L and set HY = Hj x Ug. By Proposition B.81l(ii), H?(F) is a unimodular group
and we fix a Haar measure dh® on it. Let £ be the character of H?(F) defined by
£9(hpug) = &r(hy) for all hy € Hi(F) and ug € Ug(F). For all f € C(G(F)) and
a € AL . we define

K9(f,a) = /H o R

This expression is absolutely convergent by Proposition [6.81(iv). Moreover, as Uy C
H® C @, it is clear that for every strongly cuspidal function f € Cyeusp(G(F )) we have
K@9(f,a) =0 for all a € At, . Hence, the following proposition implies and thus
will end the proof of the theorem.

Proposition 8.1.4 There ezists a constant ¢ > 0 (depending on the choices of Haar
measures) so that for any f € C(G(F)) and any d > 0 we have

‘K(f, a) — cK9(f, a)‘ < EH\G(a)2aH\G(a)_d

for all a € A%Z(5).

Proof: Fix f € C(G(F)) and d > 0. Let [ : @ — L be the unique regular map such
that ql(g)~' € Ug for all g € Q. Then hy € Hg w hy = l(hg) is precisely the
aforementioned isomorphism Hg ~ Hp. To simplify some arguments, we will assume,
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as we may, that o(l(hg)) = o(hg) for all hg € Hg(F). This in particular implies that
for any C' > 0 we have
[(Hgl< C]) = Hi[< C]

We also fix left Haar measures dphg, dphy on Hg(F) and Hp(F) respectively which
correspond via the isomorphism Hg ~ Hj, and we equip Ug(F) with the unique Haar
measure so that

/ o(h?)dh? = / / o(hrug)duodphy,
HQ(F) Hp(F) JUQ(F)

for all p € L*(HO(F)).
Let Upin be the unipotent radical of P,;, and set
H = H(F) N Poin(F)Unin (F)

Then H is an open subset of H (F) containing the identity. Let

w: H — Upnin (F')
be the F-analytic map sending h € H to the unique element u(h) € Upin(F) such that
hu(h)™ € Puin(F). We have

(8.1.6) The map u is submersive at the identity.

Indeed, the differential of u at 1 is given by dju(X) = p,, . (X) for all X € h(F),
where p,,,, denotes the linear projection of g onto uy, relative to the decomposition
9 = Prin D Umin, and py_. (h) = Uy since Py, is a good parabolic subgroup.

Because of B.1.6] we can find a relatively compact open neighborhood Uy, of 1 in
Upin(F') and an F-analytic section

hiumin — ﬁ]
u > h(u)

to the map u(.) over Unmin such that h(1) = 1. Set Uy = Upin N Ug(F) and H =
Hg(F)h (Ug). We will need the following fact:
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(8.1.7) The map ¢ : Hg(F) x Uy — H(F), (hg,uq) — hgh(ug), is an F-analytic open
embedding with image H and there exists a smooth function j € C*>°(Ug) such

that
/ o(h)dh = / / o (hggh(ug)) (uo)duodshg
H Ho(F) Jug

for all o € L'(H).

Indeed, we have the following Cartesian diagram

Hg(F) x Ug : H(F)

| |

Uq QIIN\G(F)

where the left arrow is the natural projection Hg(F') x Ug — Ug and the right and
bottom arrows are the restrictions to H(F') and U respectively of the natural projec-
tion G(F) — Q(F)\G(F). Since the bottom arrow is an open embedding, so is ¢. Let
j be the absolute value of the Jacobian of +. This is a smooth function on Hg(F) X Ug
which is left invariant by Hg(F) as ¢ is clearly Hg(F')-equivariant on the left. The
claim B.1.7 follows.

Fix ¢ > 0 that we will assume sufficiently small in what follows. By Proposition
[L31(ii), for e small enough we have

alg [< eo(a)]a™ C Ug

for all a € AG’JF((S). Then, we set

H<ea — H@ [< 60’(&)] h (CI,UQ [< 60(0')] a‘l) ’
HQ,<e,a =H; [< 60’(&)] aUQ [< 60‘(&)] a_l
and we introduce the following expressions

K<“(f,a) = / F(a~ ha)e (h)dh

H<e,a

KO<(f,a) = / F(a 1Pa)eQ (h9)dh®

HQ,<e,a

for all a € Agg(a). Set ¢ = j(1) (where the function j(.) is the one appearing in 8.1.7))

and let 0 < §y < 6. Asop\g(a) < o(a) for all @ € Apin(F), the proposition is obviously
a consequence of the following estimates:
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(8.1.8) |K(f,a) — K<(f,a)] < EH\G(a)2aH\G(a)_d

(8.1.9) |K9(f,a) — KO<(f,a)| < E"\Y(a)’omnc(a)™

(8.1.10) |K<¢(f,a) — cK9<(f,a)| < =H\G ()2 —000(0)

for all a € A% (5).

min

We start by proving B.1.8 and B.I.9. For this we need the following

(8.1.11) We have
o(a) < o (a”'h%) and o(a) < o (a”'ha)
for all a € A%F(5), all h@ € HO(F)\ H2<%% and all h € H(F)\ H<.

min

The first inequality follows from Proposition [[.3.1l(i) and Proposition [6.8.1v). For
the second inequality, combining Proposition [L31](i) with Proposition G.4.T](iii), we see
that it suffices to show the existence of ¢ > 0 such that

(8.1.12) H(F)N (Q[< €o(a)] alg [< €o(a)]a™) C H=*

for all a € A§’+(5). Fix ¢ > 0 and let us show that the above inclusion is satisfied if ¢

is sufficiently small for any a € A% (8). If o(a) < ¢!, then the left hand side of
is empty and there is nothing to prove. Hence, we may assume that o(a) > €~'. Let
h e HF)N (Q[< €o(a)] alg[< €o(a)]a™") and assume € < e. Then, there exists
u € alg [< €o(a)]a" such that hh(u)™" € Hg(F) and we only need to show that for
¢ sufficiently small we have o(hh(u)™!) < eo(a). By Lemma [L31(ii), for ¢ sufficiently

small, the set aUg [< €0(a)] ! remains in a fixed compact subset of Uy, independent
of a € A% (6). This immediately implies o (hh(u)™) < o(h) + o(h(uv)) < do(a) (as

we are assuming o(a) > €~1) where the implicit constant depends only on this fixed
compact set. This proves RII2 for ¢ sufficiently small and ends the proof of B.I.TTl

We are now in position to prove BI.8 and BI1.9 Indeed, by BITIIl for all d’ > 0 we
have
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|K(f,a) = K=(f,a)] < a(a)‘d'/z/ =% (a" ha)o(a " ha)~"2dh
H(F)

and

[K9(f,a) = KO<(f,a)] < o(a)™ "/ / =¢(a" h%)o(a " h%) " dn
HQ(F)

for all a € A%(5). By Proposition B.71(v), Proposition BRI(vi) and the inequality

oma(g) < o(g) (for all g € G(F)), for d’ sufficiently large the two last expressions
above are essentially bounded by

OH\G (a)_dEH\G (CL)2

for all a € AT, and this proves B.I.8 and B.1.9

min

We now go on to the proof of 8. 1.T0. By B.1.7, we have

(8.1.13)
K<(f,a) = / / f (a_lhéh(uQ)a) £ (h@h(uQ)) J(ug)duqdhy
Hg[<eo(a)] aUg[<eo(a)]a?
and

(8.1.14) K9<(f,a) = /

Hp[<eo(a)]

/ f (a7 hpuga) E.(hy)dugdhy,
aUg|<eo(a)a?

for all a € A§’+(5). Let 0 < ¢’ < § and d’ > 0 and assume for one moment the

min

following estimate:

(8.1.15) If € is sufficiently small, we have
|f (™ hgh(ug)a) & (hgh(ug)) j(ug) — cf (a~'h%) &(hg)]
< =¢ (a_tha) o (a‘tha) 4 g=8'o(a)

for all @ € A% (6), all ug € alg [< eo(a)] a~! and all hg € Hgl< eo(a)] where

we have set h? = I(hg)uq (and where we recall that ¢ = j(1)).
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Then, as hg — I(hg) is an isomorphism Hg(F) =~ Hp(F) preserving the measures,
sending §itig(p) 0 &L and Hy[< C] to Hy[< O] for any C > 0, by BIL.13 and B.I.14 we
get

|K<“(f,a) = cK“<(f,a)| <

/H (<eo(a)] /U <eo(@)a-! }f (a_lhah(UQ)a) f (h@h(UQ)) j(UQ) — Cf ( (h,Q)uQa) (ha)} dquh@

< @ / =9 (a'h%) o (a"'h%) " dhQ < 7@ / =9 (a~'h%) o (a~'h%) "
HQ,<e,a H

QF)

for all @ € A%, "(8). By Proposition B8T|(vi), for d' sufficiently large the last expres-

sion above is essentially bounded by e~®?(@=H\C (q)? oma(a a)® for some dy > 0. As

oma(g) < o(g) for all g € G, we have e‘élg(a)aH\G(a)dO < %9 for all q € Aglj(é)
and the estimate B.1T.10l follows.

Thus, it only remains to establish [B.I1.15l As f is a Harish-Chandra Schwartz function,
this estimate is itself a consequence of the two following ones:

(8.1.16) If € is sufficiently small, we have
[€(h(uq))i(ug) — j(1)] < e
for all @ € A% (0) and all ug € alUg [< eo(a)]a™t.

min

(8.1.17) If € is sufficiently small, we have

|f (e hghlug)a) — f (a7 'h%) | < Z9 (a™"h%) o (a~"h%) " e~

for all @ € A% (5), all ug € alg [< eo(a)] a~! and all hg € Hgl< eo(a)] where

min

as before we have set h% = I(hg)uq.

Actually, is an easy consequence of Lemmal[[.3.I[(ii) and the fact that the function
ug +— £(h(ug))j(ug) is smooth in a neighborhood of 1 (so that in particular in the p-
adic case, the left hand side of is identically 0 for e small enough). We now
prove 8 T.171 By Lemma in the Archimedean case and the smoothness of f in the
non-Archimedean case, it is sufficient to show:

(8.1.18) If € is sufficiently small, for all a € AQ+(5), all ug € alg [< eo(a)]a™ and

min

hg € Hg[< €o(a)], there exists X,Y € B(0,e ~07(@)) such that

a”hgh(ug)a = eXa_ll(ha)uQaeY
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Let a € A% 0), ug € alUg [< ea(a)]a™" and hg € Hg[< €o(a)]. Then we have

a”hgh(ug)a = via™(hg)ugays
where v = a™'hgl(hg)'a and v, = a”ug h(ug)a.
By Lemma[L.3.1(ii), there exists € > 0 such that a ' Ug[< €'o(a)]a C exp(B(0, e~%o(@)y),

Moreover, for e sufficiently small we have hgl(hg)™' € Ug[< €o(a)] and thus v €
exp(B(0, e~ @))).
Choose &' < §” < §. By definition of h(.), the map ug — h(ug)ug' is an F-analytic

map sending 1 to itself and taking values into P, (F). By Lemma [L3.1(ii) and
since A%F(5) c AT,

min min?

it follows that for e sufficiently small we have a‘lh(uQ)uéla €
exp(B(0,e72"7(@))). Moreover, we have

Y2 = (a" uga) " (a” h(ug)ug'a)(a uqa)

where a 'uga € Ug|< eo(a)] and there exists a > 0 such that
[Ad(g™") X1y < @)X,

for all g € G(F) and all X € g(F'). From this it follows that for e sufficiently small we
have v, € exp(B(0,e~%7(®)). This ends the proof of 8 .18 and thus of the proposition
|

8.2 The distribution J"°
For all f € S(g(F)), let us define a function on H(F)\G(F) by

KYe(f, x) / flz7 ' X2)6(X)dX, z€ H(F)\G(F)

the above integral being absolutely convergent. The theorem below, whose proof is similar
to the proof of Theorem [8.1.1], shows that the integral

: KYe(f, z)dx

H(F\G(F)
is absolutely convergent for all f € Sseusp(g(F')) and define a continuous linear form

Sseusp(9(F)) = C
fe JU )

Theorem 8.2.1 (i) There exists ¢ > 0 and a continuous semi-norm v on S(g(F)) such
that

[KE(f @) S v(f)ermat
for all x € H(F)\G(F') and all f € S(g(F)).
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(ii) For all ¢ > 0, there exists a continuous semi-norm v, on S(g(F')) such that

|KLie(f, x)‘ < Vc(f)e—CO'H\G(SC)

for all x € H(F)\G(F) and all f € Sscusp(g(F)).

9 Spectral expansion

The goal of this chapter is to give a spectral expansion for the distribution J introduced in
the previous chapter. The result is stated in Section and the proof goes through Sections
and [0.3]

9.1 The theorem
Let us set
Topee (1) = /X (G)D(w)ﬁf(w)m(ﬁ)dw

for all f € Coeusp(G(F')). Note that by Lemma [5.4.2 and 2.7.2] this integral is absolutely
convergent. The purpose of this chapter is to show the following

Theorem 9.1.1 For all f € Coensp(G(F')), we have

J(f) = Jspec([f)
By Lemma [5.4.2] and Theorem R.I.1], both sides of the equality of the theorem are continuous
in f € Cseusp(G(F)). Hence, by Lemma [5.3.11(ii) it is sufficient to establish the equality for
functions f € Cseusp(G(F')) which have a compactly supported Fourier transform. We fix

until the end of Section a function f € Csusp(G(F')) having a compactly supported
Fourier transform.

9.2 Study of an auxiliary distribution
Let us introduce, for all f' € C(G(F')), the following integrals

K75 (g1, 92) = ( )f(gl_lggg)f'(g)dg, 91,92 € G(F)
G(F
K} (g,7) = / K7 (g, ha)e()dh, g,z € G(F)
H(F)
K2 (a,y) = / Kb e, .y € G
H(F
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= [ K
H(F)\G(F)

Proposition 9.2.1 (i) The integral defining Kﬁf, (g1, g2) is absolutely convergent. For all
g1 € G(F) the map
92 6 G(F) — Kﬁf’(g17g2)
belongs to C(G(F)). Moreover, for all d > 0 there exists d > 0 such that for every con-
tinuous semi-norm v on Cy(G(F)), there ezists a continuous semi-norm p on C(G(F))
satisfying
v (Kfp(g,.) < u(fE%(g)a(g)™
for all f" € C(G(F)) and all g € G(F).

(it) The integral defining K; ;(g,x) is absolutely convergent. Moreover, for all d > 0, there
exist d' > 0 and a continuous semi-norm vgqy on C(G(F)) such that

!

}K}‘,f’(gvx)‘ < Vd,d'(f/)EG(g)U(g)_dEH\G(SC)UH\G(SC)d
for all f" € C(G(F)) and all g,z € G(F).
(iii) The integral defining K3 ;(x,y) is absolutely convergent. Moreover, we have

K} p(x,y) =/ Lo(m(@)m(f)m(y™)La(r(f)p(m)dr

Xiemp (G)
forall f € C(G(F)) and all x,y € G(F), the integral above being absolutely convergent.

(iv) The integral defining Jaux(f, f') is absolutely convergent. More precisely, for every
d > 0 there exists a continuous semi-norm vq on C(G(F)) such that

K7 p(,2)| < va( )20 (2)?0m 6 (2)

for all f" € C(G(F)) and all x € H(F)\G(F). In particular, the linear form

[ e C(G(F)) = Jaux(f, [')

1S continuous.
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Proof: The point (i) follows from Theorem [B.5.1](i). The point (ii) follows from (i), Lemma
B.5.1)(1i) and Lemma [Z31)(ii). The absolute convergence of the integral defining K7 . (x,y)
follows from (ii) and Lemma B.5.1(ii). The spectral formula for K7 . (z,y) is a direct ap-
plication of Lemma [[.22(v). We are thus only left with proving the estimate (iv). For
' € C(G(F)) the section

T(f) : 7 € Xiemp(G) = Lo(m(f))7(f) € End(m)>

is smooth by Lemma [T.2.2(i) and is compactly supported by the hypothesis on f. Hence it
belongs to C(Xiemp(G), E(G)) and by the matricial Paley-Wiener theorem (Theorem [2.6.7])
there exists a unique function ¢y € C(G(F')) such that nw(p) = L(n(f"))m(f) for all
T € Xiemp(G). By Lemma[B3[(i), the function ¢ is strongly cuspidal for all f' € C(G(F)).
By the formula (iii) for K7 ; and Lemma [Z2.2(iv), we have

K‘?’f/(x,x) - K(Spf/,x)

for all f" € C(G(F')) and for all x € H(F)\G(F). Hence by Theorem BIT] for all d > 0,
there exists a continuous semi-norm pg on C(G(F')) such that

K7 (2, 2)] < palpp )20 (@) om 6 (2) ™

for all f/ € C(G(F)) and for all x € H(F)\G(F). To conclude, it is thus sufficient to show
that the linear map

C(G(F)) = C(G(F))
e op
is continuous. By Theorem [2.6.1] it suffices to show that the linear map
I € CGF)) > (7 € Xeamp(G) 1= Le(7(]7))) € C=(Xiemp(F))

is continuous, where the topology on the target space is the obvious one. This follows easily
from Lemma [[.2.2(i) and Theorem 2.6.1 W

Proposition 9.2.2 We have the equality

Josl0.8) = [ D@L
X(G)
for all f" € C(G(F)).
Proof: Let a : G,, — A be a one parameter subgroup such that A(a(t)ha(t)™') = tA(h) for

all t € G, and all h € H (recall that we denote by A\ : H — G, the additive character
such that £ =1 o Ap). We denote as usual by R, L and Ad the action by right translation,
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left translation and conjugation of G(F') on functions on G(F'). We will set R, = Ro ap,
L, = Loar and Ad, = Adoar. These provide smooth representations of F’* on C(G(F)).
Let f" € C(G(F)). We want to prove the formula of the proposition for this function f’. By
Dixmier-Malliavin in the real case, we may write f’ as a finite sum f' = S°F_ Ad, () (f/)
where p; € C*(F*) and f' € C(G(F)) for 1 < i < k. By linearity, we may assume that this
sum has only one element, that is f' = Ad,(¢)(f") with ¢ € C*(G(F)) and f” € C(G(F)).
By continuity of the linear form J,.,, we have

Julfy 1) = / 2 (6) Tuus (f. Ada () /)0t

FX
Returning to the definition of J,., we get

Jaux(.fa f/) = / / So(t)K]%,Ada(t)f” (l’, {L’)dl’dxt
Fx JH(F)\G(F)

By Proposition @.21](iv), this double integral is absolutely convergent. Doing the variable
change = +— a(t)x and switching the two integrals, we obtain

(9.2.1) Jax(f, [1) = /H(F)\G(F)/FX gp(t)éH(a(t))_1K]%’Ada(t)f”(a(t):z,a(t)x)dxtdz

By definition, the inner integral above is equal to

/FX (t)on(alt)) ™ K} ad,p (ha(t)z, a(t)z)¢(h) ™ dhd*t

H(F)

By Proposition [@.2.1](ii), this double integral is also absolutely convergent. Doing the variable
change h — a(t)ha(t)™!, switching the two integrals and noticing that K},Ada(t)f,,(a(t)hx, a(t)r) =
K} pwy o (h@, a(t)r), we obtain the equality

©022) [ 0n(a(0) " K a0 o)
_ / / S0 oo (i a(t) ) (—tA ()t
H(F) J Fx
By definition, the inner integral of the last expression above is equal to

L o0 [ g Ha)e iy A

After the variable change h' + a(t)h'ha(t)™!, this becomes

/F el ” K3 o (hae, Wha) 5 (a(t) (EA(R)) d* tdh’
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By Proposition 0.2.1](i), this double integral is absolutely convergent. Switching the two
integrals, we obtain

(9.2.3) /F QK g0 (b alt)) (A () A"t

_ /H o o B R )0 (AR

We have d*t = [t|~'dt where dt is an additive Haar measure on F. Let us set ¢/(t) =
p(t)on(a(t))[t| ™ and

@) = [ Fawid, weF
F
for its Fourier transform. By 0.2.1] 0.2.2] and 9.2.3] we have

(9.2.4) Jous (s f1) = /

/ / K42 (ha, W' ha)g (A\(I))dh dhdx
HFNG(F) JH(F) JH(F)

For N > 0 and M > 0, let us denote by ay : H(F)\G(F) — {0,1} and By : G(F) —
{0,1} the characteristic functions of the sets {# € H(F)\G(F);ome(z) < N} and {g €
G(F);0(g) < M} respectively. For all N > 1 and C' > 0, we set

Jusen (f, f1) == / ay(z) / / K4 (ha, W' ha) g/ (A(I))dh dhdx
H(F)\G(F) H(F) JH(F)

Jaux,N,C(fv f/) = / OéN(iU) / / BC log(N) (h/)Kﬁf”(hxv h/hx)g/p\/()\(h/))dh/dhdx
H(F)\G(F) H(F) J H(F)

By 024 we have

(925) Jaux(.fa f/) - ]\}1_{{1)0 JauX,N(f> f,)

Moreover, we have the following

(9.2.6) The triple integrals defining Jaux n(f, f') and Jaux v (f, f') are absolutely convergent
and there exists C' > 0 such that

|Jaux,N(f, f/) - Jaux,N,C’(f, f/)| < N_l

for all N > 1.
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Indeed, since ¢’ € S(F), we have |¢'(\)] < (1+ |A])~! for all A € F. Hence, by Theorem
B.5.11(1), there exists d > 0 such that

| Jawe, v (f, )] < /H - / / (W hx)o(hx)?
o(h'ha)* (1 + |A(K)])~" dW dhdx

amso(E PN [ anta) [ [ oo ()2 )20 0 )
H(F)\G(F) H(F) JH(F)
o (hx)lo(h'ha)? (1 + [A(R)) ™" dh'dhdx

and

e (s ) = oo (fs )] < / an () / / Lo 1oy (F)EC (hat) 2 (W )
H(F)\G(F) H(F) JH(F)
o(hx)?o(h'ha)® (1 + [A(W)|) " di dhdx

for all N > 1 and all C' > 0. By Proposition [6.7.1|(vii) (applied to ¢ = 1), there exists d’ > 0
such that the first two integrals above are essentially bounded by

4

/ an (2)E (2) 2o g (2) " da
(FN\G(F)

which is of course an absolutely convergent integral (the integrand is bounded and compactly
supported). On the other hand, by Proposition [6.7.1)(vii), there exist ¢ > 0 and d’ > 0 such
that the third integral above is essentially bounded by

U

e-eClog(N)/ aN(x)EH\G(I)2UH\G(x)d dx
(FN\G(F)

for all N > 1 and all C' > 0. By Proposition [6.7.1](iv), there exists d” > 0 such that this last
term is itself essentially bounded by eI N4 for all N > 1 and all C' > 0. Choosing
C' to be bigger than (d” + 1)/e gives the estimate of [9.2.6]

Let us fix C' > 0 which satisfies [0.2.6l By [0.2.5 it follows that

(9.2.7) Juws (. 1) = 1m Junc(f, f)

Since the triple integral defining Jaux n,c(f, f') is absolutely convergent, we may write

Jaux,N,C'(f> .f,) = 5CIOg(N)(h)(;,()\(h)) / O‘N(g)Kﬁf” (ga hg)dgdh

H(F) G(F)
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We now prove the following estimate

(9.2.8) JauX,N,C(fa f/) - ﬁClog(N)(h)‘E/()‘(h)) Kﬁf” (9, hg)dgdh| < N~

H(F) G(F)

for all N > 1.
Indeed, since f is strongly cuspidal, by Theorem [E5.11(iii), there exists ¢; > 0 such that for

all d > 0, there exists d’ > 0 such that
|K7 (9, hg)| < E%(9)°a(g) %" Ma(h)”

for all g € G(F) and all h € H(F'). Fix such a ¢; > 0. Also, choose dy > 0 such that the
function g — Z%(g)%0(g)~% is integrable over G(F) (Proposition [L51(v)). Then, by the
above inequality, for all d > dy there exists d’ > 0 such that the left hand side of is
essentially bounded by

e
H(F)

for all N > 1 (here the factor N%~? comes from the fact that o(g) ™t < N~ for all g € G(F)
such that ay(g) = 0). Now, by Lemma [B.1.3] there exists ¢; > 0 such that

/ Berogn) () dh < N
H(F)

for all N > 1. Hence, it suffices to choose d > ¢;C + dy + ¢ + 1 to get the estimate [0.2.8]
From [9.2.7] and 0.2.8], we deduce that

(9.2.9) Jawc(f, f') = lim Bty (R (A(R)) K#4/(g, hg)dgdh
TR JH(F) G(F)

Arthur’s local trace formula allows us to express the inner integral above in spectral terms.
Indeed, since f is strongly cuspidal, by Theorem [.5.1{(v), we have the equality

(9.2.10) K7 (g, hg)dg :/ D(?T)é\f(ﬂ')eﬁ(R(h_l)f”)dﬂ'
G(F) X(@)
for all h € H(F'). By and 2.2.7] it is easy to see that

|0=(R(h71) )] < Z%(h)
for all m € X(G) and all h € H(F'). Hence, by and Lemma [5.4.2] we have an inequality

/X D) 0, (m)0: (RO )| de < =6 (0)
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for all h € H(F'). Hence, by Lemma [6.5.1](iii), the double integral

/ ¢ (A(R)) / D(m)0;(m)0=(R(h") ") drdh
H(F) X(G)

is absolutely convergent and by [0.2.9] and @.2.T0] this double integral is equal to Jau(f, f')-
Switching the two integrals and applying Lemma [T.T.2(ii), we get

Just 0.9 = [ D)L (<L) b

X
= [ DBy L. ()i
X(G)
which is the equality we were looking for and this ends the proof of the proposition. ll

9.3 End of the proof of Theorem

Recall that we have fixed a function f € Cseusp(G(F')) having a compactly supported Fourier
transform. By Lemma [[.2.2)(iv), we have

(9.3.1) K(f,x) = /X o Bl @)

for all x € H(F)\G(F). By Corollary [[.6.1](ii), there exists a function [’ € C(G(F')) such
that
(9.3.2) La(m(f)) = m(n)

for all T € Xiemp(G) such that 7(f) # 0. Also, by Theorem [7.2.T] and Corollary [7.6.1i), for
all T € Xiemp(G), we have

L, #0< m(r)=1
Hence, by [0.3.1l, we have the equality

K(f, ) =/ Lo(m(@)m(f)m(@™")) La(m([))p(m)dm
Xremp (G)
and by Proposition @.2.11(iii), it follows that

K(f,x) = K} p(x, 2)
for all x € H(F)\G(F). Consequently, we have the equality

J(f) = Jaux(f: ')
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Applying Proposition [0.2.2] we deduce that

J() = | D(m)is(m)La(r(f))dr
X(Q)
Let 7 € X(G) be such that ﬁf(w) # 0 and let 7’ be the unique representation in Xiemp(G)
such that 7 is a linear combination of subrepresentations of 7’. Then, we have 7'(f) # 0.

Hence, by and Corollary [Z.6.11(ii), we have L.(7(f")) = m(n) = m(7). It follows that

J(f) = D(m)f(m)ym(7)dr
X(G)

and this ends the proof of Theorem [0.1.1. W

10 The spectral expansion of JU¢

In this chapter, we establish a ‘spectral’ expansion for the distribution J“¢ that was intro-
duced in Chapter Bl More precisely, we will express JY¢(f) in terms of (weighted) orbital
integrals of the Fourier transform of the test function f. Even the statement of this ex-
pansion (Theorem [[0.81]) needs some preparation which is the content of Sections [0.1] to
0.7 To be a little bit more specific, by Fourier inversion we can rewrite the kernel function
involved into the definition of JU°(f) as an integral over a certain affine subspace X(F) of
g(F). Then, Sections [[0.] to [[0.7] are devoted to a thorough study of this affine space X
and in particular of the adjoint action of H on it. Doing so, we isolate a certain H-invariant
Zariski open subset Y of ¥ with particularly nice properties including freeness of the adjoint
action of H (Proposition [0.5.]) and a certain genericity property for the Borel subalgebras
intersecting ¥’ (Proposition [[0.6.1]). Once these preparations are in place, we can state in
Section [I0.8 the main result of this chapter (Theorem [[0.81]) the proof of which goes though
Sections to 011l The basic scheme of the proof is inspired from [Wal| Section 9. We
first introduce some truncation in the original expression defining J“¢(f) (there are lot of
freedom in the choice of this truncation, see Section [[0.0). After this, we end up with an
expression (depending on some integer N) J°(f) which naturally decomposes as a sum
(or rather an integral) of orbital integrals weighted by certain weights which depend on the
truncation and in Section [I0.10] we show that we can replace these weights by other more
rigid ones which have been studied by Arthur. Then using some computations made by
Arthur in the course of establishing his local trace formula [AT], we readily finish the proof

in Section [O.111.

10.1 The affine subspace X

Recall that in Section [6.21 we have defined a parabolic subgroup P = M N of G = U(W) x
U(V) as a product U(W) x Py where Py is a certain parabolic subgroup of U(V). Let
[Pl= MN be the parabolic subgroup opposite to P with respect to M. Then the unipotent
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radicals N and [N] can also be seen as subgroups of U(V') and we will identify them as such
in what follows.

Recall also that in Section we have defined a character £ on N(F') which extends to a
character of H(F) =U(W)(F) x N(F) trivial on U(W)(F). Using the G-invariant bilinear
pairing B on g defined in the same section, there exist a unique element [Z] € 7(F’) such that

for all X € n(F).
We have the following explicit description of = (seen as an element of u(V)):

(10.1.1) Zz; =z, for 1 <i<r, 2z ;= —z_; 1, for0<i<r—1,Zz_, =0and Z(W) = 0.

Set (= = + b where [hH is the orthogonal of b in g for B(.,.).

Recall that we have fixed a Haar measure dX on h(F'). In this whole chapter we will denote
this Haar measure by dpuy(X). In Section [IL6l we explained how to associate to dp,(X),
using B(.,.), a Haar measure duy- on h*(F). Let us denote by duy the translate of this
measure to X(F'). Then, by [L6.1] we have the following equality

(10.12) /h T () = [ R dns(v)
for all f € S(g(F)).

10.2 Conjugation by N

We have the following explicit description of h*: an element X = (X, Xy) € g = u(W) @
u(V) is in bt if and only if we have a decomposition

Xy = —Xw + c(20, w) + Ac(20,m20) + A+ N
for some w € W&, A € F, A € aand N € n (recall that ) € E is a nonzero element with trace

zero and cf. Section [6.1] for the notation c(v,v")). Thus for every element X = (X, Xy ) of
> we have a decomposition
(10.2.1) Xy =Z — Xw + (20, w) + Ac(20,m20) + A+ N
where w, A\, A and N are as above. Let us define the following affine subspaces of g:
o u(W)” ={(Xw,—Xw); XweuWW)}

e A is the subspace of u(V') C g generated by the c(z;,nz;) fori =0,...,r, the ¢(z;, zi11)
fori=0,...,r— 1, and the ¢(z,,w) for w € W;
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o =

(1]

+ (u(W)_ ©® A())

Proposition 10.2.1 Conjugation by N preserves ¥ and induces an isomorphism of alge-
braic varieties:

NxA—X
(n, X) = nXn™*

Proof: First we show that the map

(10.2.2) NxA—Y
(n, X) = nXn™*

is injective. This amounts to proving that for all n € N and all X € A if nXn~! € A then

n=1 Soletn € N and X = (X, Xy) € A be such that nXn~! € A. By definition of A,

we may write Xy and nXyn~! as

r r—1
(10.2.3) Xy =2 —Xw + c(z,w) + Z Nic(2i,mz) + Z pic(2i, ziv1)
i=0 =0
r r—1
(10.2.4) nXyn ' =2 — Xy + ¢z, w') + Z Noe(zi,mzi) + Z 1%, Zig1)
=0 =0

where w,w’ € Wg, \i, \i € F, 0 <4 <7, and pu;,p, € F, 0 <i <r— 1. Let us prove first
that

(10.2.5) nz; =z forall 0 <i < r.

The proof is by descending induction. The result is trivial for ¢ = r by definition of N.
Assume that the equality is true for some 1 < i < r. Then, from we easily
deduce that

(nXVn_l)zi = nXVzZ- = ’/LEZZ' = Nz;—1

and from [10.2.4] it is not hard to see that
(nXVn_l)zi = EZZ = Zi—1
Thus, the equality [[0.2.5]is satisfied with 7 — 1 instead of 7 and this ends the proof of [0.2.5
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We now prove the following

(10.2.6) nz_; =z_; forall 1 <i <.

We prove this by strong induction on 7. First, we treat the case i = 1. By I0.2.3 and I0.2.5],
we have

(nXyn Yz = nXyzy = n(—2_1 + 2 vz + povz) = —nz_i + 2 Nz + povz
On the other hand, by T0.2.4, we have
(nXvyn Nz = —2_1 + 2\nrzo + ppvz
It follows that
nz_1 — 2.1 = 2(No — Ng)nvzo + (o — pg)va
But, since nzg = 2z and n € U(V') we have h(nz_1,20) = h(2-1,20) = 0 and h(nz_1,2_1) €
Fn. From this we deduce that \g = A and pug = pg so that indeed nz_y = z_;. Let

1 < j <r—1and assume now that [[0.2.6]is true for all 1 < i < j. By[10.2.3 and 10.2.5] we
have )
(’/I,Xvn_ )Z_j = ’/I,XV,Z_j = n(—Z_j_1 + 2>\j7]VZj — Hj—1VZ5—1 + ,ujVZj_H)
=-—NzZ_j1 + 2>\j7]VZj — Hj—1VZ5—1 + UiV Z41

On the other hand, by T0.2.4, we have

(nXyn Nz = —z i1+ 2Nnuz; — p vz + pirzin
It follows that

nz_jo1 = Z—jo1 = 20 — Anvzg + (5o — pi—)vzion+ (B — 1)vzia
Since nz_; = z_j, nz_j41 = z_j41 (by the induction hypothesis) and n € U(V'), we have
h(nz_j_l, Z_j> = hiz—j—lv Z_j> = O, h(nz_j_l, Z_j+1) = h(Z_j_l, Z_j+1) =0 and
h(nz_j_1,2j41) € Fn. From this we deduce that A\; = X}, p’ ; = p; 1 and p; = p’; so that
indeed nz_;_y = z_;_y. This ends the proof of [10.2.6

From [10.2.5] and [10.2.6] and since n € N, we may now deduce that n = 1. This ends the
proof that the map [10.2.2] is injective. We easily compute

dim(NxA) = dim(N)+dim(A) = (2r°+r+2mr)+(m*+2m-+2r+1) = 2r*+3r+2mr+(m-+1)?

dim(X) = dim(h*) = dim(G) — dim(H) = (m + 2r + 1)* +m? — m? — dim(N)
=22 + 3r + 2mr + (m + 1)
where m = dim(WW). Hence, we have dim(X) = dim(N x A). Since we are in characteristic
zero, it follows that the regular map induces an isomorphism between N x A and a
Zariski open subset of . But, obviously N x A and ¥ are both affine spaces so that the

only Zariski open subset of > that can be isomorphic to N x A is ¥ itself. It follows that
the regular map [[0.2.2] is an isomorphism. W
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10.3 Characteristic polynomial

Let X = (Xw, Xy) € A. By definition of A, we may write

r—1

(10.3.1) Xy =Z— Xw +c(zp,w) + Z Nic(zi, mzi) + Z 1ic(2iy Zir1)
i=0

=0

where w € W4, A; € F and p; € F. Denote by Py, and P_x,, the characteriitic polynomials
of Xy and — Xy acting on Vi and W respectively (these are elements of E[T]). Let D be
the E-linear endomorphism of E[T] given by D(T*!) = T* for i > 0 and D(1) = 0.

Proposition 10.3.1 We have the following equality

—_

Py, (T) =) (=1)"h(w, X{yw) DI (P_x,, (T))+

J

r r—1
P_x, (T) <T2’“+1 +Y (=12 T Y 4 (—1)7T2 Mszr_l_gj)
7=0

i=0

3

Il
o

(Recall that m = dim(W) ).

Proof: This can be proved by induction on r. The computation, fastidious but direct, is left
to the reader. B

Corollary 10.3.2 The following U(W)-invariant polynomial functions on A

X = (Xw, Xv) = Wh(w, X{yw) € F, j=0,...,m—1

(where we have written Xy as in [I0.31) extend to G-invariant polynomial functions on g
defined over F.

In particular, the polynomial function

X = (Xw, Xv) = det (h (Xyw, Xjpw)) o, €F
extends to a G-invariant polynomial function on g defined over F'. Let us denote by @) such
an extension. Set d°(X) := det(1 — Ad(X))|g/gx for all X € greg. Then d“ extends uniquely
to a polynomial d“ € F[g]®. Set[Q]= Qod“ € F[g]® and let [\l and [Z] be the non-vanishing
loci of @ in A and X respectively. Notice that we have A’ C Ayq and X/ C ey (since d“
divides Q).
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10.4 Characterization of Y’
Proposition 10.4.1 X' is precisely the set of X = (Xw, Xy) € Xyeg Such that the family

d—1
2 Xvizp, oo, Xy 2

generates Vi as a E-module (Recall that d = dim(V)).

Proof: Let X = (Xw, Xy) € X. It suffices to prove that the family

d—1
2y XvZp, oo, Xy 2y

generates Vi as a E-module if and only if Qo(X) # 0. By Proposition [0.2.1] X is N-
conjugate to an element of A. Since @)y is G-invariant and nz, = z, for all n € N, we may
as well assume that X € A. We assume that it is the case in what follows.

By the decomposition I0.3.T], we see that

Xvzi =5z =z
forall e =1,...,r. It follows that
(2ry Xvzr, ..., X{2) = (22021, . -, 20)
Next, again by the decomposition T0.3.] it is easy to see that
Xyz i =Ez;=—z_;1 mod (zg,...,2)
for all 0 <7 < r — 1. Hence, we have
<zr, . ,X?fzr> = (Zry ey 21520y Z1y e ey Bep) = Wfl
and
X¥z =(-1z_, mod Wfl
It follows that the family
2y Xy Zpy oo ,X{f-_lzr
generates V& as a F-module if and only if the image of the family
Xvep, ..., X2,

in Vi/Wi ~ Wy is a basis of W. But, using again the decomposition [0.3.T] we see that

(Xvzery -, XP2o) = v (w, —Xww, ..., (=Xw)™ 'w)  mod Wz
Hence, the family
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(Xvz_p,...,X{2_,) mod Wfl
generates W as an E-module if and only if the determinant

Qo(X) = det (h (X} w, X%/w)) eF

0<i,j<m—1

is non-zero and this ends the proof of the proposition. B

10.5 Conjugacy classes in Y

Proposition 10.5.1 The action by conjugation of H on X' is free and moreover two ele-
ments of X' are G-conjugate if and only if they are H -conjugate.

Proof: Recall that by definition, H acts freely on 3 if the map

HxY =¥ xy
(h, X) — (X,hXh™")

is a closed immersion. Because of Proposition [0.2.1], this is equivalent to proving that

(10.5.1) UW)x AN — AN x A
(h, X) — (X,hXh™")
is a closed immersion. For X = (X, Xy) € g, we define the characteristic polynomial of X

to be the pair Px = (Px,,, Px, ). Let Y C A’ x A’ be the closed subset of pairs (X, X’) such
that Px = Px,. We claim the following

(10.5.2) The map [0.5.1]is a closed immersion whose image is ).

This will prove the two points of the proposition (if two elements of g are G-conjugate, they
share the same characteristic polynomial). First, of course, the image of [[0.5.1] is contained
in Y. Let (X, X’) € Y. We may write

r r—1
Xy =E— Xw +c(z,w) + Z Aic(zi; nz) + Z 1i¢(zi, Ziy1)
i=0 i=0

X, =

[1]

r r—1
— Xiy + c(z, ') + Z Aie(zi,nzi) + Z 1e(2i, ziv1)
i=0 i=0

where X = (Xy, Xw), X' = (X{, X{y), w,w' € Wg, M, N, € F and p;, ¢, € F. By
Proposition [0.3.1], we have \; = X, for i =0,...,r, yu; = p; for i =0,...,7 — 1 and
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(10.5.3) h(w, Xiyw) = h(w', Xyw') for i =0,...,m— 1.

Moreover, by definition of A’, (w, Xww, ..., X{{’ﬁ_lw) and (w’, Xppw', ... ,X"Vrff_lw’) are basis
of Wx. Let g be the unique E-linear automorphism of W4 sending Xi,w to X'jyw’ for all
i=0,...,m—1. By[[lL5.3 we have g € U(W) and we easily check that gX ¢~ = X’. It is
also easy to see that g is the only element of U(W') with this property. Hence, we have proved
that the map [[0.5.1] induces a bijection from U(W) x A’ to Y and we have constructed the

inverse, which is obviously a morphism of algebraic varieties. This proves the claim [10.5.2
|

Corollary 10.5.2 We have an inequality

Ug(t) < O'H\G(t)UE/(X)
forall X € X and allt € Gy.

Proof: First, we prove that

(10.5.4) oa(h) < os(X) + og(hXh™)
for all h € H, X € ¥'. From the previous proposition, we know that
HxY =¥ xY
(h, X) — (X,hXh™)

is a closed immersion. Hence, we have

0G(h) < os(X) + os/(hXh™)

for all X € ¥ and h € H. Moreover, since ' is the principal Zariski open subset of X
defined by the non-vanishing of the polynomial ) and since @) is G-invariant, we have

os/(hXh™") ~ og(hRXh™1) +log(2 + |Q(X)|™)
for all h € H, X € ¥'. Combining this with the inequality

log (2 + |Q(X)|_1) < oy(X)
for all X € ¥, we get 0.4l We now deduce the following inequality:

(10.5.5) Ug(h) <K O’Z/(X) + Ug(ht)
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forallh € H, X € ¥/, t € Gx. Indeed, since (¢, X) € G x g gXg~! € gis a regular map,
we have

og(hXh™Y) = oy (htX (ht) ™) < og(ht) + 04(X)

forall h e H, X € ¥ and t € Gx. Combining this with [0.5.4] and the inequality o4(X) <
osy(X) for all X € ¥/, we get

We are now in position to prove the lemma. By [[0.5.5 we have the following chain of
inequalities

Ug(t) = Ug(h_lht) < Ug(h) + U(;(ht) < O’Z/(X) + Ug(ht) < O’Z/(X)Ug(ht)

forallh € H, X € ¥/, t € Gx. By Lemma [6.21]i), taking the infimum over h € H gives
the desired result. B

10.6 Borel subalgebras and Y

Proposition 10.6.1 Let X € ¥/ and b be a Borel subalgebra of g (defined over F) containing
X, then

bbbh=g

Proof: Let X € 3’ and b C g be a Borel subalgebra containing X. By Proposition I0.2.1] up
to N(F')-conjugation we may assume that X € A’ and we will assume this is so henceforth.
Write X = (Xw, Xy) with Xy € uw(W) and Xy € u(V). By definition of A, we have a
decomposition

r r—1
(10.6.1) Xy =E—Xw +c(z,0) + Z Aic(zinz) + Z 1ic(2is Zit1)
i=0 i=0

where w € W, NEF, 0<i<rand ;€ F,0<i<r — 1.
It is easy to check that dim(b) 4+ dim(h) = dim(g) so that it suffices to prove

(10.6.2) bNh =0

There exist Borel subalgebras by, and by of u(W) and u(V') respectively such that Xy € by,
Xy € by and b = by, x by. Then obviously is equivalent to

(10.6.3) (bw +n)Nby =0

Fix an F-embedding £ — Fandset V=VgF, W=W®gF. Denote by V' and W’
the F-dual of V' and W respectively. Then, we have isomorphisms of F-vector space
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sending v ®@r A and w ®p A to (v ®g A, h(v,.) ®p A) and (w ®g A, h( .) ®g \) respectively.
For v € V, we will denote by © and 7 the image of v in V and V'~ respectlvely Also, if U

is a subspace of V we will set U = U ®p F and see it as a subspace of V. We will adopt
similar notation with respect to W. We have an isomorphism

*

u(V)z =~ gl(V)

which sends X € u(V)F to its restriction to V (the inverse is glven by mapping X € gl(V)
to the endomorphism of Vy acting as X on V and as —*X on V). Similarly, we have an
isomorphism

u(W)z ~ gl(W)

and we will use these isomorphisms as identifications. Then, by, is the stabilizer in gl(W) of
a complete flag

0=WoCW,C...CW,,=W
and similarly by is the stabilizer in gl(V) of a complete flag

F O:V()gvlg

N

Va=V

Let us define another complete flag

F: 0=V,CV,

N
iN
<
Is9
|
<l

of V by setting:

— .
o V. =<Z, ..., Zp_ip1 >tori=1,...,r+1;

oV =2, ®DoW,fori=1,...,m;

—/

For all v € V, let us denote by V(Xy,v) the subspace of V generated by v, Xyv, X2v, .. ..
We will need the following lemma

Lemma 10.6.2 Let 1 <1 < d, then we have
(i) For allv €V, which is nonzero, V,_, + V(Xy,v) = V;
(1) V; NVai=0

235



Proof: First we prove that (i) implies (ii). Indeed, if v € V_;ﬂvd_i is nonzero, then by (i), we
would havidim(V(XV, v)) =>d+1—1i. But V(_Xv,v) C Vg (since v € Vy_; and Xy € by
preserves Vy_;), and so dim(V(Xy,v)) < dim(V 4—;) = d — i. This is a contradiction.

We now turn to the proof of (i). Let v € V; be non-zero. Without loss of generality, we may

assume that v € V;\V;_l since otherwise the result with ¢ — 1 instead of ¢ is stronger. We
assume this is so henceforth and it follows that

(10.6.4) Vi +V(Xy,v) =V, + V(Xy,0)

Obviously %, € V; + V(Xy,v) and so by Proposition [T it suffices to show that V;_, +
V(Xv,v) is Xy-stable. The subspaces V(Xy,v) is Xy-stable almost by definition. Hence,
we are left with proving that

(10.6.5) XV CV,+V(Xy,v)

Thisisclearif 1 <i<r+lorr+m+2<17<d=2r+m+ 1 since in this cases using
the decomposition [I.6.1] we easily check that XV, , C V. It remains to show that
holds for r +2 < i < r+ m + 1. In this cases, again using the decomposition 10.6.1, we
easily check that

(10.6.6) Xy’ € Vi + (z5,0") Xy %,

for all v’ € V; (where XyZg = —Z_1 + 2unAoZo + povzy if r = 1 and XyZg = v + 2vnioZo
if r = 0). Here, we have used the fact that Xy € by so that Wi_r_o and W,_,_; are Xy-
stable. As v € V;, it suffices to show that the existence of k > 0 such that (zj;, Xfv) # 0.
By Proposition [[0.4.1], the family

zr Xz T Xz
generates V. Hence, since v # 0, there exists ko > 0 such that (!X v) = (2%, XFov) £ 0.

This already settles the case where » = 0. In the case r > 1, since V; is included in the

kernel of z* this shows that the sequence v, Xyv, XZv, . .. eventually escapes from V; and by
T0.6.6) this implies also the existence of k > 0 such that (%, Xv) # 0. This ends the proof
of [10.6.9 and of the lemma. W

Let us now set D; = V; erd+1_i for v = 1,...,d. By the previous lemma, these are one
dimensional subspaces of V' and we have

d
=1
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Let Y € (by 4+ n) Nby. We want to prove that ¥ = 0 (to get [0.6.2). Obviously Y must
stabilize the flags F and F’ so that Y stabilizes the lines Dy, ..., Dy. We claim that

(10.6.7) Y(D;)=0foralli=1,...,r+1landalli=r+m-+2,....d.

Indeed, since Y € by + n, we have YV; C V;_l forall 2 = 1,....,r + 1 and all 1 =
r+m-+2,...,dand so YD; C V;_l N Vari—i = 0 (by the previous lemma).

To deduce that Y = 0, it only remains to show that

(10.6.8) Y(D;))=0foralli=r+2,...;,r+m+ 1.

Assume, by way of contradiction, that there exists 1 < j < m such that YD, 1,; # 0. Since

Y € by + n, we have YV;JFHJ- CW;®Z, sothat Dyyyy; =YD,y CW,; @ Z,. Let

v € D,414; be non-zero. We claim that

(1069) (74. @ Wj) -+ V(Xv, U) = V

Indeed by the previous lemma, it suffices to prove that z, € (7+ b Wj) +V(Xy,v). By the
decomposition [[0.6.1], we easily check that

Xv(ZyoW;)CZ, oW, @ Fz

so that we only need to check that the sequence v, Xyv,... eventually escapes Z, @® Wj.
From Proposition [10.4.1] we know that there exists k& > 0 such that (zx, Xkv) # 0. Since
Z4+ @ W is included in the kernel of Z;, this proves [10.6.91

From [[0.6.9, we deduce that dim V(Xy,v) > 1+d—j —r. On the other hand, we have v €
Vi—r_j (since v € D,111;) and Xy leaves Vy4_,_; stable (since Xy € by). AsdimVy_,_; =
d —r — j it is a contradiction. This ends the proof of I0.6.8 and of the proposition. H

Recall that we have fixed a (classical) norm |.|; on g and that for all R > 0, B(0, R) denotes
the closed ball of radius R centered at the origin in g(F').

Corollary 10.6.3 There ezists a ¢ > 0 such that, for all € > 0 sufficiently small, all X €
Y/ (F) and all parabolic subalgebras p of g defined over F and containing X, we have

exp [B (0,ee™> N C H(F)exp (B(0,€) N p(F))

Proof:
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Lemma 10.6.4 There exists a constant ey > 0 such that for every subspace V of g(F') and
all co = 1 satisfying

B(O, 1) Q B(O,Co) N b(F) + B(O,Co) ny

we have

exp (B(O, 2%0)) C H(F).exp (B(0,¢) N V)

for all 0 < € < €.

Proof: Use the Campbell-Hausdorff formula and successive approximations. ll

Because of this lemma, it suffices to prove the following:

(10.6.10) There exists ¢; > 0 such that for all X € ¥'(F) and all parabolic subalgebras p of
g defined over F' and containing X, we have

B(0,1) C B (0,2 @) nh(F) + B (0,7 X)) N p(F)

Let us denote by B the variety of all Borel subalgebras of g. Let X be the closed subvariety
of greg X B defined by

X ={(X,b) € greg x B; X € b}

We will denote by p the natural projection X — g, and by Xy the inverse image by p of
Y. By the previous proposition, for all (X, b) € X5 we have b @ h = g and we will denote
by pg (resp. pg) the projection with range b (resp. h) and kernel b (resp. b). Denote by |[.|
the subordinate norm on Endz(g) coming from the norm we fixed on g. We first prove the
following fact

(10.6.11) There exists ¢y > 0 such that
[Pl + [pg] < e )

for all (X,b) € Ax.

Since the map (X,b) € Xy — (pg, pg) € End#(g)? is regular, we have an inequality

log; (Ip}] + k] ) < o (X, b)

for all (X,b) € A,. Moreover, the morphism p : X — g, is finite étale and therefore, so is
its restriction py, : Xy — ¥/, Therefore, by Lemma [[L21] we also have an inequality
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Oxs (X> b) < UZ’(X)
for all (X, b) € Xsx. Combining this with the previous inequality, we get [0.6.11]

We will also need the following fact, whose easy proof is left to the reader.

(10.6.12) There exists a finite Galois extension K of F, contained in F, such that for all
(X,b) € X with X € g,ee(F), the Borel subalgebra b is defined over K.

We are now able to prove the corollary. Fix a Galois extension K as in and a constant
¢y as in [0.G.TTl For R > 0, we will denote by Bk (0, R) the closed ball of radius 12 centered

at the origin in g(K') (recall that |.|; is defined on all of g = g(F')). Let X and p be as in
the corollary and let b € B be such that X € b and b C p. By [10.6.11] and [[0.6.12] we have

(10.6.13) B(0,1) € By (0,e7>™) nb(K) & Bg (0,2 X)) Np(K)

Denote by P the projection g(K) — g(F') given by
Py =1 3 oy)
K seGal(K/F)
where di = [K : F]. Let |P| be the subordinate norm of P relative to the norms on g(K)
and g(F') (obtained by restrictions of that on g). Then applying P to the inclusion [0.6.13],
we get
B(0,1) C Bg (0,|P[e>™ ™) nb(K) & Bx (0,|P|e™™= X)) N ph(K)
Since P(b(K)) C p(F'), we get 10.6.10. W

10.7 The quotient ¥'(F)/H(F)

By Proposition [0.2.1] we know that >’ has a geometric quotient by N and that ¥'/N ~ A’.
Because H = N x U(W) and U(W) is reductive, the geometric quotient of ¥’ by H exists
and we have ¥//H ~ A"/U(W). Denote by g’ the non-vanishing locus of @) in g and by ¢'/G
the geometric quotient of g’ by G for the adjoint action. The natural map ¥’ — ¢’/G factors
through the quotient ¥’/ H and we will denote by

m:Y%/H = ¢ /G

the induced morphism. We will also consider the F-analytic counterpart of this map:

mp : X(F)/H(F) = g/(F)/G(F)
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Recall that we put on H(F') the Haar measure py which lift the Haar measure py, on h(F').
Because H (F) acts freely on X/(F'), we can define a measure jisy/z on X'(F')/H(F) to be the
quotient of (the restriction to ¥/(F') of) us by pg. It is the unique measure on ¥'(F')/H(F)
such that

/ P(X)dus(X) = / / @(h" X h)dhdpsy i (X)
5(F) >/(F)/H(F) JH(F)

for all ¢ € C.(X(F)). Recall also that we have defined in Section [[.7] a measure dX on
Oreg(F)/G(F) = I'yeg(g). Moreover, g'(F)/G(F) is an open subset of ge(F)/G(F) and we
will still denote by dX the restriction of this measure to g'(F')/G(F).

Proposition 10.7.1 (i) © is an isomorphism of algebraic varieties and g is an open
embedding of F-analytic spaces ;

(it) mp sends the measure dpsy (X)) to DO (X)V2dX;
(11i) The natural projection p : X' — ¥'/H has the norm descent property.

Proof:

(i) Both ¥'/H and ¢'/G are smooth. By Proposition [[0.5.1] 7 and 7 are injective. More-
over, using Proposition [0.3.1] we see that 7 is surjective and so m is bijective. Since
the tangent spaces at X € ¥/(F)/H(F) of ¥(F)/H(F) and ¥'/H are the same, we
only need to prove that 7 is a local isomorphism (i.e. étale). Let X € 3. The tangent
space of 3'/H at X is

TxX'/H = b /ad(X)(h)

and the tangent space of g'/G at X is

Tx (¢'/G) = g/ ad(X)(g)

Modulo these identifications, the differential of 7 at X is the natural inclusion of
bt/ ad(X)(h) in g/ad(X)(g). We want to prove that it is an isomorphism. Choose a
Borel subalgebra b of g that contains X and denote by u its nilpotent radical. By Propo-
sition [0.6.1], we have g = h @ b so that g = b @ b+. But, we have b+ = u C ad(X)(g)
and this establishes the surjectivity. On the other hand, from the equality g = h & b,
we deduce that

ad(X)(g) = ad(X)(h) ® ad(X)(b) = ad(X)(h) © u

We just saw that g = b+ @ u so that b= Nu = 0. Hence, we have b+ Nad(X)(g) =
ad(X)(h) and this proves the injectivity.
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(ii) In what follows, we will use heavily the notions defined at the end of Section Let
X € Y(F). Set gx = Ker(ad(X)) and g* = Im(ad(X)). Then we have natural
identifications (as above)

TxX'(F)/H(F) = b*(F)/ad(X)(h(F))

Txg/(F)/G(F) = g(F)/g" (F)

and the tangent map of mr at X, that we will denote by vy, is the natural inclusion
(and this is an isomorphism). Let F(X) € R, be such that

Cxe (i ad(X)upty) = F(X) pg/pgx

where /i, and pgx are the autodual measures with respect to B(.,.) on g(F) and g~ (F)
respectively. Then 7 sends the measure dpusy p(X) to F'(X)dX and so we have to
prove that F(X) = D%(X)Y2. Fix a Borel subalgebra b of g containing X and let u
be its nilpotent radical. Then we have g=bh® b, g=ht Duand b = gx D u. Let pu,
be the unique measure on u such that

(10.7.1) [y = Hiy @ [iy

Then by [[.6.2] and [[.6.3] we have

Ho =ty @ piy

But, ut = b and it is easy to see that ul = g, ® gy, where pg, is the autodual
measure on gy (F'). Hence, we have

(10.7.2) [g = py @ gy © iy

Let T be the endomorphism of g that is equal to ad(X) on h@u and to Id on gx. Then
we have det(T") = det(ad(X)g/ey) so that |det(T)| = DY(X). Thus, using I0.7.2, we
have

DY(X) g = Tuptg = ad(X)pty © 1 @ ad(X). i
= DY(X)"? (ad(X)upty ® prgx ® i)
AS p1g = gy ® pgx (relative to the decomposition g = gy @ g*), this implies px =

DE(X)Y? ad( X)),y @ 1y (relative to the decomposition g*¥ = ad(X)(h) @ u). From this
and [[IL7T], we easily deduce that F'(X) = D%(X)Y2.
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(iii) By Proposition [0.2.1] it is sufficient to show that

N — NJUW)

has the norm descent property. Denote by Ag, the non-vanishing locus of @y in A
(where Qg € F[g]® is defined in Section 0.3)). Then we have the following Cartesian
diagram where horizontal maps are open immersions

N——Ag,

| |

N/UW)—Aq,/UW)

Thus, if we prove that Ag, — Ag,/U(W) has the norm descent property, we will be
done. By definition of A (cf. Section [[0.2), we have an U(W)-equivariant isomorphism

A= u(W) x W x A¥H

where the action of U (W) on the right hand side is the product of the adjoint action on
u(W), the natural action on W and the trivial action on A>*!. Denote by (u(W)x W),
the open-Zariski subset of u(W)x W consisting of all pairs (X, w) € u(W)xW such that
(w, Xw, X?w, ...) generates W. Then Ag, corresponds via the previous isomorphism
to (u(W) x W) o X A¥*LSince U(W) acts trivially on A**, we are reduced to show
that

(u(W) x W), = (w(W) x W) JUW)

has the norm descent property. Let B be the variety of basis of W and let Pol,, be the
variety of monic polynomial P € E[T] of degree m. Consider the action of U(W) on
Pol,, x B which is trivial on Pol,, and given by g.(e1,...,e,) = (ge1, ..., gey,) on B.
The map

(w(W) x W), = Pol,, x B
(X, w) — (PX,w,Xw,...,Xm_lw)

is a U(WW)-equivariant closed immersion. Passing to the quotient, we get a commutative
diagram

(u(W) x W)y— Pol,, x B

| |

(W(W) x W)o/U(W)— Pol,, x B/U(W)
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where horizontal maps are closed immersion (since U (W) is reductive). Moreover the
diagram is Cartesian (because all U(W)-orbits in B are closed and so the quotient
separates all orbits). Thus, we are finally reduced to showing that B — B/U(W) has
the norm descent property. Choosing a particular basis of W, this amounts to proving
that

GL(W) — GL(W)/U(W)

has the norm descent property. Since this map is GL(W)-equivariant for the action
by left translation, by Lemma [[.2.2(i), it suffices to show the existence of a nonempty
Zariski open subset of GL(W)/U(W) over which the previous map has the norm de-
scent property. Choose an orthogonal basis (eq,...,e,) of W and denote by B the
standard Borel subgroup of GL(W) relative to this basis. Then BN U(W) = Z is
the subtorus acting by multiplication by an element of Ker Ng,p on each e; (so that
Z ~ (Ker Ng/r)™). Denote B x% U(W) the quotient of B x U(W) by the Z-action
given by 2.(b, g) = (bz71, zg). Then the multiplication map

B xZUW) = GL(W)
(b, g) = bg

is an open immersion. Thus, it suffices to prove that

Bx?UW)— (Bx?UW)) /UW) =B/Z

has the norm descent property. Let U be the unipotent radical of B and T" the subtorus
of B stabilizing the lines (e;), ..., (€,). Then the previous map is isomorphic to

Ux (Tx?UW)) >UxT/Z

and so we are reduced to showing that 7' xZ U(W) — T/Z has the norm descent
property. Let S =~ (Z/2Z)™ be the subgroup of elements of Z with eigenvalues +1
and let T; = (G,,)™ be the split part of the torus T = (RE/F(Gm)m. Then we have
T =T, x% Z and thus T xZ2 UW) = T; x5 U(W) and T/Z = T;/S. So, we need
to prove that the map T; x° U(W) — T;/S has the norm descent property. For
all ¢ € Ker (HY(F,S) — H(F,U(W))) let g. € U(W) such that ¢, = o(g.)g. ", for
all 0 € T'p. Denote by £ the set of all g. (this is a finite set). Let ¢ € T; and
denote by 7 its image in 7;/S. Assume that ¢ € Im ((T; x° U(W)) (F) — T;/S(F)).
Then the 1-cocycle ¢ € T'p — ¢, = to(t)™' € S splits in U(W). So there exists
(a unique) g, € & such that ¢, = o(g)g; ", for all ¢ € I'p. Moreover, the element
(t,g:) € (T; X U(W)) (F) maps to ¢ and we clearly have an inequality

0T, xSUW) (t, gt) < JTi/S(E)
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for every such t. This proves that T; x° U(W) — T;/S has the norm descent property
and this ends the proof of (iii). W

10.8 Statement of the spectral expansion of JM¢

Let us define to be the subset of I'(g) consisting of the conjugacy classes of the semi-
simple parts of elements in X(F'). We equip this subset with the restriction of the measure
defined on I'(g). Thus, if T(G) is a set of representatives for the G(F')-conjugacy classes
of maximal tori in G and if for all " € T(G) we denote by t(F')x the subset of elements
X € t(F) whose conjugacy class belongs to I'(X), then we have

X)dX = wW(G, 7)™ X)dX
RS > W) L, e

TeT (G

for all p € C.(I'(X)). Recall that in Section B2 we have defined a continuous linear form
JH on Susp (8(F)). The purpose of the next 3 sections is to prove the following theorem.

Theorem 10.8.1 We have

JE(f) = | DE(X)YV20;(X)dX
)

for all f € Sqeusp(9(F)).

Let f € Sscusp(9(F)). By Theorem B2, Lemma [5.2.2(i) and [L7.2], both sides of the equality

~

of the theorem are continuous in f. Hence, by E.I.1, we may assume that Supp(f)¢ is
compact modulo conjugation (this condition is automatic if F' is p-adic). We assume this is
so henceforth.

10.9 Introduction of a truncation

We fix a sequence (ky)n>1 of functions fxj: H(F)\G(F) — [0, 1] satisfying the following
conditions:

(10.9.1) There exist Cy,Cy > 0 such that for all x € H(F)\G(F') and all N > 1, we have:
oma(r) KON = ky(x) =1
kn(z) #0 = opa(e) < CoN

(10.9.2) If F' is p-adic, there exists an open-compact subgroup K’ C G(F) such that the

function ky is right-invariant by K’ for all N > 1.
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(10.9.3) If F' = R, the functions ky are smooth and there exists a positive real number C'
such that

< C[X],

‘—F&N zetX \to

for all z € H(F)\G(F), all X € g(F') and all N > 1.

Such a sequence of truncation functions is easy to construct. Indeed, pick any sequence
(k%) n>1 of measurable functions % : H(F)\G(F) — [0, 1] that satisfy the condition [0.9.1]

above, let ¢ € C°(G(F')) be any positive function such that / v(g)dg = 1, then the
G(F)
sequence of functions ky = k% * ¢, N > 1, satisfies the conditions [0.9.1], 10.9.2 and [0.9.3]

above.

Set

T f) = / wxto) [ o Xg)e(X)dX dg
H(F)\G(F) h(F)

Then, by definition of J“¢, we have

(10.9.4) JHE(f) = lim J(f)

By 10.1.2] we have

(109.5) K= [ ) [ Tl Xodus(X)dg
H(F)\G(F) £(F)

Fix a set 7(G) of representatives for the conjugacy classes of maximal tori in G. Recall
that in Section [[0.3] we have defined a G-invariant polynomial function ) on g. For all
T € T(G), let us denote by t the principal Zariski-open subset

t={X et QX)#0}
and set [((F)] = ¥(F) N t(F)s. Then, t(F) is exactly the subset of elements X € t(F) that
are conjugate to some element in ¥'(F). Let us fix, for all T € T(G), two maps

X et(F) —mx e G(F)

X et(F) —[Xge X(F)
such that 73! Xvx = Xy, for all X € t(F)’. Then, by Proposition [0.7.1)(i) and (ii), we have

Flo' Xg)dps(X) = > |W (G, 1) 1/ DYX)? | flg7'h~' Xshg)dhdX
S(F) TeT (e (FY H(F)
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for all g € G(F'). By inserting this expression in [[0.9.5] and switching two integrals, we get

N = W@ / De(X)"/? / Flg™ X g)mn x (9)dgd X
TEeT(C) t(F) T(F\G(F)

for all N > 1, where we have set

Frx]g) = / kN (vx tg)dt
T(F)

Define

(10.9.6)  [J¥5f) = / DE(X)"? / flo' Xg)knx(g)dgdX, for N >1
{(F) T(F)

\G(F)

for all T € T(G), so that

(10.9.7) TN = D WG D[ IG(f), for N>1
TeT(G)

We fix from now on a torus 7' € T (G). The previous formal manipulation (interchange of
two integrals) will be justified by the next lemma proving the absolute convergence of [0.9.6.
But first we need to prove the following:

(10.9.8) We can choose the maps X € t(F) — vx and X € ¢(F)’ — Xy so that they satisfy
inequalities
o (Xy) < 0g(X) +1og (2 + QX))

06 (1x) < 0g(X) +log (24 |Q(X)| ™)
for all X € t(F)'.

By Proposition [0.7.1i) and (iii), we can choose the map X € t(F) — Xy € ¥'(F) such
that

(10.9.9) Ug/(Xz) < Ug//G(X)

for all X € t(F)". Moreover, since g'/G is the principal open subset of g/G defined by @, we
have

(10.9.10) 0y 16(X) ~ 0g/a(X) +log (2+]Q(X)| )
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for all X € t(F)". But, since T is a torus, we have 04/q(X) ~ 04(X) for all X € ¢(F). The
first inequality of [[0.9.8is now a consequence of [10.9.9 and [10.9.101 On the other hand, by
2.1 and [[.2.2] we can choose the map X — ~x such that

UG (fyX) << Ugrcg (XE>

for all X € t(F)". Since we have oy, (Y) < os/(Y) for all Y € ¥'(F), the second inequality
of [[0.9.§] follows from the first. This ends the proof of [[0.9.8

We will assume from now on that the maps X — vy and X — Xy satisfy the conditions

of [0.9.8l For all € > 0, let us denote by [t(£)'[> €|| the set of elements X € t(F")" such that
|Q(X)| > e. Forall C > 0, we will denote by 1.¢ the characteristic function of the set of
X € g(F') such that o4(X) < C. For all N > 1 and all € > 0, we define the two following
expressions which are similar to 10.9.7

T (f) = / DE(X)V? / Flo~ X g)lrn.x(9)dg
t(F)’ T(F)\G(F)

~

75 (7= / DE(X)V? / Lerogon (07 X0)Fl™ X ) (9)dg
H{(F) [>€] T(F

NG(F)

Let wr C t(F') be a relatively compact subset such that f is zero on t(F) — wr (recall the

—~

assumption that Supp(f)¢ is compact modulo conjugation). The following lemma proves in
particular the absolute convergence of [[0.9.71

Lemma 10.9.1 (i) There exist k > 0 such that

SNk,
rinx(g) < N'log (2+1Q(X)[7) " oy(g7' Xg)"
for all X € (F) Nwyp, all N > 1 and all g € G(F).

(i1) There exist k > 0 such that .
1N (f) < N*

for all N > 1.
(11i) For b > 0 large enough, we have
[INT () = T (H)] < N7
for all N > 1.

Proof: (i) implies easily (ii) and (iii) by and [L2.4l By the property 0.9 of ky, we
have an inequality
oma(g) K N
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for all N > 1 and all g € G(F) such that ky(g) > 0. It follows that

(10.9.11) ome(1x'trx) < Nog(g)oa(vx)

forall N > 1, all X € t(F), all t € T(F) and all g € G(F) such that sy (y5'tg) > 0. On
the other hand, since vy'tyx € Gy, (F), for all X € t(F)" and all t € T(F), by Corollary
[10.5.2] we have

o6(Vx trx) < ome(vy tx)ow (Xx)
for all X € t(F) and all ¢t € T'(F'). Combining this with [[0.9.8 and [0.9.17] and since wr is
bounded, we get

o6(t) < Nog(g)log (2+Q(X)|™)

forall N > 1, all X € (F) Nwr, all t € T(F) and all g € G(F) such that ky(y5'tg) > 0.
The function xy is nonnegative and bounded above by 1. Hence, it follows from the previous
inequality and the definition of xx x that there exists ¢y > 0 such that

knx(g) < vol{t € T(F); o¢(t) < coNog(g) log (2 + |Q(X)|_1)}

forall N > 1, all X € t(F)' Nwy and all g € G(F). It is easy to see that there exists £ > 0
such that
vol{t € T(F);04(t) < M} < M*

for all M > 1. Hence, we get
inx(9) < N¥log (2 +1Q(X)™)" oalg)

forall N > 1, all X € t(F) Nwr and all g € G(F'). Since the function ky x is invariant by
left translation by T'(F'), we may replace g by tg for any ¢ € T'(F') in the right hand side of
the inequality above. By [[L21] taking the infimum over T'(F") gives the inequality

(10.9.12) knx(9) < NFlog (2+1Q(X)| ™) onale)
forall N > 1, all X € t(F) Nwr and all g € G(F). By [[.2:2] we have an inequality

(10.9.13) ora(9) < og(g7" Xg)log (24 DY(X)™1)
for all g € G(F) and all X € t,,o(F). But since the polynomial d“ divides @, we also have

(10.9.14) log (2 + DY(X)™") < log (2+]Q(X)| ™)

for all X € ¢(F)' Nwr. The point (i) now follows from the combination of [[0.9.12] [10.9.13
and 10.9.14 W

We fix for the moment a positive integer b > 0 satisfying (iii) of the previous lemma. In
Section [[0.11], we shall assume (as we may) that b has been chosen sufficiently large (how
large will be made precise in §I0.1T)).
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10.10 Change of truncation

Set [My| = Zg(Ar). Tt is a Levi subgroup of G. Fix a minimal Levi subgroup My, of G
included in Mp, a minimal parabolic subgroup P, having M, as a Levi component and
K a maximal compact subgroup of G(F') which is special in the p-adic case. We use this
compact subgroup to define the functions Hg for all @ € F(Mpin). Let Ay be the set
of roots of Apin in Py Let Y € Ay and define Yp, for P € P(My), by Yp = w - Y
where w is the only element in the Weyl group W (G, My;,) such that wPy,w™! = P. Then
(YP) Pep (M) 18 @ positive (G, Miyin)-orthogonal set. By the general constructions of Section
L9, this determines a positive (G, My)-orthogonal set (Yp,)p,ep(my)- For all g € G(F), we
define another (G, Mr)-orthogonal set Y(g) = (y(g)pT)PTep ) by setting

Y(9)pr = Yp, — Hp (g)

for all Pr € P(Mry) and where Py denote the parabolic subgroup opposite to Py with respect
to Mp. We will need the following

(10.10.1) There exists ¢ > 0 such that for all g € G(F) and Y € Aj,  satisfying

o(g) <c inf aY)

a€Anin

the (G, My)-orthogonal set Y(g) is positive.

For YV = (Vp,)prepuy) a positive (G, Mry)-orthogonal set and Q) = LUy € F(Mr),we will

denote by JJ%T(., Y) and (resp. 7¢) the characteristic function in Ay, of the sum of Az and

of the convex hull of the family (Vp,)p,cq (resp. the characteristic function of Af, + Af).
Then we have (see [LW] Lemme 1.8.4(3))

(10.10.2) > 0P (V)¢ - Vo) =1

QeF(Mr)

for all ¢ € A,
For all Y € A}, we define a function on G(F) by

B(Y.g) = / i (0, 0, )

Set

~

Ty = / DE(X)2 / Lero) (97X 9) F(g™ X )3(Y, g)dgd X
'[>N-Y] T(F)\G(F)
forall N >1and Y € A;Smin.
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Proposition 10.10.1 There exist ¢1,co > 0 such that

"‘G\%%‘,N*df) - JY,T,N*b(f)‘ < N7

forall N >1 and allY € A;Smin that satisfy the following two conditions

(10.10.3) c1 log(N) < igf a(Y)
Q€A min
(10.10.4) sup a(Y) <N
a€Apin

Proof: For all N > 1, let us denote by Ay the subset of (t(F) N wr) x T (F)\G(F) consisting
of pairs (X, g) such that |Q(X)| > N~ and o,(g7'Xg) < log(N). Then, we have

JHe (f) = [ DE(X)Y2F(g7 X g)rn x(9)dX dg

Jyrn-o(f) = DY (X) 2 f(g7" Xg)B(Y, g)dXdg
An
forall N > 1and all Y € A;Smin. Let ¢q, co be positive real numbers. We will prove that
the inequality of the proposition is valid for all N > 1 and all Y € A;Smin that satisfies the
inequalities [10.10.3] and [10.10.4] as long as c¢; is large enough and ¢y is small enough. We
note the following

(10.10.5) We have an inequality o (g) < log(N) for all N > 1 and all (X, g) € An.

Indeed, this follows from and the fact that d“ divides Q. In particular, by I0.10.1]
if ¢; is sufficiently large, the (G, Mr)-family )(g) is positive orthogonal for all N > 1, all
(X,9) € Ay and all Y € A} that satisfies TII0.3. We will henceforth assume that ¢; is
at least that sufficiently large. Hence, for all Q) € F(Mr), we can set

kinxol9) = /T - wn (1 t9) 0, (Harr (1), Y(9) o (Hr (1) — Y(g)q)dt

for all N > 1, all (X,g) € Ay and all Y € A},  that satisfies By [[0.10.2, we have
the decomposition

Ky x(9) = Z K’}]\/f,X,Q(g)

QeF(Mr)

for all N, X, g and Y as before. Obviously the functions ) y o are left invariant by T'(F)
and so we have accordingly a decomposition
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Li Q.Y
Tiano ()= 3 Tymy
QeF(Mr)

forall N >1and allY € A;Smin satisfying [[0.10.3] where we have set

Ty () = } DE(X)? g7 X g)kY x o(g)dgd X
N

The proposition will now follows from the two following facts

(10.10.6) If ¢y is sufficiently small, there exists Ny > 1 such that
Jﬁ;N b(f) = JY,T,N*b(f)

forall N > Nyand all Y € AJISmm satisfying 10.10.4

(10.10.7) Let Q € F(My), Q # G. If ¢; is large enough, then we have an inequality

98] <5

for all N > 1 and all Y € Aj,  satistying [0.10.3|

First we prove [[0.10.6l Obviously, we only need to prove that for ¢, small enough, N large
enough and Y € A}, satisfying [0.10.4, we have

finxalg) =0(Y,9)

for all (X, g) € Ay. Expanding the definitions, it is certainly enough to prove that

(10.10.8) o (Harr (1), Y(9)) = 1 = kin(vx'tg) = 1

for all (X, g) € Ay and all t € T'(F'). We have an inequality

o(tg) < sup a(Y)+ora(9g)

a€Anin

Har, (1), Y(g)) = 1. By

for all Y € Af all g € G(F) and all t € T(F) satisfying of}, (
) [> N~ Nwy. Combining

M0.9.8, we have o(vy) < log(N) for all N > 2 and all X € t(F
these two facts with [0.10.5, we get

(10.10.9) o, (Har (8), Y(9)) = 1 = o(vx'tg) < sup oY) +log(N)

a€Anin
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forall N > 2 all (X,g) € Ay, allt € T(F) and all Y € A+ . Moreover, by the property
M0.9.1 of Ky, there exists Cy > 0 such that for all N > il and all v € G(F) we have
o(v) < CoN = kn(7) = 1. Hence, 10.10.8 follows from [10.10.9 when ¢, is small enough and
N large enough and this ends the proof of

We now move on to the proof of [0.10.7] Fix a proper parabolic subgroup @ = LUy € F(Mr)
and denote by Q = LUz the opposite parabolic subgroup with respect to L (the only Levi
component of ) containing Mr). We have the Iwasawa decomposition G(F) = L(F)Ug(F)K
and for suitable choices of Haar measures we have dg = dldudk. For all N > 1, let By be the
set of quadruple (X, [, u, k) € t(F)" x (T(F)\L(F)) x Ug(F) x K such that (X,luk) € Ay.
Then we have

Tyrno(f) = i DE(X)V2F (kN X luk) kY x o (luk)dldudkd X
N

forall N >1andallY € A;min. We claim the following:

(10.10.10) If ¢; is large enough, we have
|/€%,X,Q(ZUI€> - ’KL%,X,Q(”{;” < N7!
for all N > 1, all (X,l,u,k) € By and all Y € A} satisfying

We will postpone the proof of and show how to deduce [[0.10.7 from it. Assume
that c; is large enough so that [[0.10.10 holds. Then we have

JOY () = [ DOV R T X k)Y o (1k)didudkd X

N, T,N—b

By
< N7' [ DYXx)/?
By

— N—l DG(X)1/2
An

< N‘l/ Ja(X, | fl)dx
{(F)

f(k‘lu_ll_leuk)‘ dX dldudk

f(g‘ng)‘ dXdg

forall N > 1 and YV € .A;Smin satisfying [[0.10.3l The last integral above is convergent.
Consequently, in order to prove [0.10.7, we only need to prove an inequality

~

DE(X)?Fk T Xluk) k) x o (Uk)dldudkd X | < N7
By

(10.10.11)

for all N > 1 and all Y € Ay, . Obviously, we have op\¢(lk) < op\g(luk) for all | € L(F),
all u € Ug(F) and all k € K. By M0.I10.5 it follows that there exists ¢ > 0 such that
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ona(lk) < clog(N) for all N > 2 and all (X,[,u, k) € By. Let us denote, for all N > 2, by
Cy the set of triples (X, 1, k) € (¢(F) Nwr) x (T(F)\L(F)) x K such that |Q(X)| > N~°

and op\q(lk) < clog(N). By what we just said, we have By C Cy x Ug(F). Since Fis
strongly cuspidal, we have

/ DE(X)V2F (K u N X luk) kY x o (k) dudldkd X = 0
CNXUE(F)
Let us set Dy = (CN X UQ(F)) \By for all N > 2. Note that by definition of By, we have

10.10.12 oy(k" M X uk) > log(N
g

for all N > 2 and all (X, [, u, k) € Dy. From the vanishing of the above integral, we deduce

(10.10.13) DE(X)Y2 F(k~ T X k) kY, o (1K) dldudkd X
Bn

=— [ DEX)Y (kT T X k)R v o (1K) didudkd X

DN

forall N > 2 and all Y € A}, . Obviously, we have ry x o < sy x. Using Lemma [[0.9.1(i),
it follows that there exists k£ > 0 such that

ki x.o(lk) < N*
for all N > 2, all (X,[,k) € Cy and all Y € A}, . Hence, we see that the integral T0.T0.T3,
is essentially bounded (in absolute value) by
N* [ DOV (kw7 X luk) |dldudkd X
Dn

forall N >2and all Y € .A;Smin. But, since J?is a Schwartz function, we easily deduce from
that the last integral above is essentially bounded by N~'=* for all N > 2. This
proves I0.I0.1T] and ends the proof of T0.I0.7.

It remains to prove the crucial point [0.10.10. By [0.J0.5, there exists ¢ > 0 such that
for all N > 2 and all (X,[,u, k) € By up to translating [ by an element of T'(F'), we have
o(lul™") < clog(N) and o(lk) < clog(N). Since kY x ¢ is left invariant by T'(F), it suffices
to prove the following

(10.10.14) If ¢ is sufficiently large, we have

}"{%,X,Q(UQ) - /{%,X,Q(g)} < N7

for all N > 2, all X € t(F)'[> N™"] Nwr, all u € Ug(F) and all g € G(F) satisfying
o(u) < clog(N), o(g) < clog(N) and all Y € A}, satisfying
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Let N, X, u, g and Y as above. We will prove that the inequality [[0.10.14 holds provided ¢,

is large enough. First, if ¢ is large enough, we see by [0.10.1lthat the (G, My )-families Y (ug)

and )(g) are positive orthogonal. For ¢’ € G(F'), the function a]?/[T(., Y())mo(- —V(d)o)

only depends on Y(¢')p, for Pr € P(Mr) with Pr C @ and these terms are invariant by left
translation of g’ by Ug(F'). Thus, we have

01, (- Y(g))ro(. = Y(ug)o) = o3, (- Y(9)mal- = Y(9)o)

Remembering the definition of kY, x o, we deduce that

oxol9) ~wFxa)] < [ [mn(oi'tug) — 5x49) o8, (Huv (1, 9(0)
TQ(H, (t) — V(9))dt
By the property [[0.9.1] of ky, there exists C; > 0 such that for all ¢t € T'(F') we have
v (vx'tug) — k(7x'tg)| # 0= a(t) < CL (N + o(yx) + o (u) + o(g))

By the hypothesis made on g, u and X and by [[0.9.8] this last condition implies o(t) < CoN
for some bigger constant C'y > . Moreover, there exists C5 > 0 and k£ > 0 such that the
volume of the subset {t € T'(F); o(t) < C,N} is bounded by CsN*. Hence, we will be done
if we can establish the following

(10.10.15) Provided ¢; is sufficiently large, for all ¢t € T'(F’) satisfying

05t (Harr (8), Y(9) 7o (Harr (1) = V(9)q) = 1

we have
|kn (Vi tug) — kn(vx'tg)| S NTF

Fix t € T'(F') such that

05ty (Hare (8), Y(9) 7o (Har (1) = V(9)o) = 1

Let 3, be the set of roots of Ay in Ug and consider it as a subset of A}, = X*(Ar) @ R.
There exist positive constants Cy and C'5 such that

(B, Hup () 2 C [nf a(Y') = Cso6(g'), forall g € X))
for all Y’ € A}, all ¢ € G(F) and all t € T(F) such that
o (Hair (8), V' (9)) o (Har (8) = V'(g)@) = 1
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Hence, by the assumptions on g and Y, we have

(10.10.16) (B, Hyyp(t)) = (Cacr — Cse)log(N),  for all § € X

Let e be a positive real number that we will assume sufficiently large in what follows. By
10.10.16 and the assumption on wu, if ¢; is sufficiently large, we have

tut™' € exp (B (0, N_4e))
Hence, by [0.9.8] and the assumption on X, if e is sufficiently large, we have
viltut_lv)( € exp (B (0, N_3e))

Let P, € P(Mr) be a parabolic subgroup such that Hy,(t) € A—IJSt (where the bar denotes
the closure). Recall that 7' Xyx = X5 € ¥/(F). By Corollary [0.6.3 and T0.9.8 again, if
we choose e sufficiently large, we will have

vy tut tyx € H(F)vi'exp (B (O, N‘ze) N pt(F)) Vx

where p, = Lie(P;). Hence, we may write vy tut 'yx = hyy'eXPyx with h € H(F) and
Xp € B(0, N%)Np,(F). By left invariance of xx by H(F), we will have

(10.10.17) ki (Vx'tug) = kn (v e tg)

Since we choose P, € P(Mr) so that Hy..(t) € A—;Et, there exists ¢; > 0 independent of ¢
such that =1 (B(0,1) Nps(F))t C B(0, cs) Np(F). Hence, we get

t7' Xpt € B(0,csN7>¢) Npy(F)
It follows by the assumption on g that if e is large enough, we have
g 't ' Xptg € B (0, N_e)
By the conditions and that we imposed on ky, for e sufficiently large we have

(In the non-Archimedean case) xy(vx'e*"tg) = rn(vx't9)

(In the Archimedean case) },%N(v)}ltg) - /{N('y)zleXPtg)} < NIH
Combining this with [[0.10.17, we get, if ¢; is large enough,

(In the non-Archimedean case) #y(vy'tug) = sy (75 tg)

(In the Archimedean case) |rkn(vy'tg) — in(vy' tug)| < N7'7F

This proves 10.10.15] from which the claim [10.10.10 follows and this ends the proof of the
proposition. W
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10.11 End of the proof of Theorem [10.8.1]
We are now in position to finish the proof of Theorem [10.8.1l Let us set

Felf) = [ DO / Flg™ X g)a(Y, g)dgdx
t(F) (FI\G(F)

forall Y € A;Smm. Obviously, we can find £ > 0 such that

(Y, 9) < (1+ |Y|)kUT\G(g)k
forall Y € AT,

Toand all g € G(F). Using .22 and [[.2.4], it follows that there exists
€ > 0 such that we have
‘JY,T(f) - JY,T,N*b(f)} < N
for all N > 2 and all Y € A}, satisfying the inequality T0.10.4 of Proposition I0.I0.11
Hence, combining this inequality with Proposition [0.10.1], we see that if we choose b large
enough we have

(10.11.1) | Jyr(f) = ING(f)| < N7

for all N > 2 and all Y € At. that satisfies the inequalities [0.10.3 and [0.T0.4] of Proposi-
tion [0.I0.1l Arthur has computed the functions Y € Al + 0(Y,g) (cf. [Adl], p.46). More
precisely, the result is the following: for every g € G(F') the function Y 6 At = o(Y, g)
for Y in a certain lattice R is a sum of functions of the form q¢(Y, g)e$Y) where q.(., g) is
a polynomial in ¥ and ¢ € Hom(R, 2inR/2inZ). Such functions are linearly independent,
and it follows from [[0.ITTl that we have

(10.11.2) lim K55 = [ DO [ g X ga0,g)dgax
{(F) (FO\G(F)

N—oo

Moreover, by [Al] (6.6), we have

0(0,9) = (=)™ 7u(T)™" > v, (9)
QEF(Mr)

where the cj are certain constant with c;; = 1 and the functions UJ%T (g) are the one intro-

duced in Section [[.T0 (recall that we fixed a maximal compact subgroup K that is special
in the p-adic case). We remind the reader that the factor v(T') is the quotient between the
Haar measure we fixed on T'(F') (i.e. the autodual one) and another natural Haar measure
on T'(F) (cf. Section [L6)). It is present in the formula above because we are using differ-
ent normalizations of measures than the one used by Arthur in [Al]. By definition of the
weighted orbital integrals Jﬁ, (X,.), becomes

lim JY5(f) = (=1)™ru(T)™" ) cQ/ DE(X)2 T8 (X, fldX

N—o0
Qer(Mp)  VHE)
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Since f is strongly cuspidal, by Lemma [5.2.1(i) we have J]{%T(X f)=0forall X € treg (F)
and all Q € F(Mr) such that @ # G. So finally we obtain

lim JH5(f) = (~D)men(T) [ DOX) G, (X, X
—00 ’ f(F)/

= DY(X)"?04(X)dX
t(F)

Summing this last equality over T' € T (G), we obtain, by [0.9.7 and [0.9.4

JUe(fy =Y WG| DUX)VOHX)dX
TET(G) tE)

= DY(X)20:(X)dX
)

But, by Proposition B.6.1(i) we have 07 = éf. This ends the proof of Theorem 10.8.7. W

11 Geometric expansions and a formula for the multi-
plicity

This is the last chapter on the proof of the local simple trace formulas for GGP triples. More
precisely, we will establish geometric expansions for the distributions J (Theorem [[T.4.1]) and
JHe (Theorem TT.4.3) as well as a certain integral formula for the multiplicity m(r) (Theorem
IT4.2) when the representation 7 is tempered. These three results will be proved together
in a common inductive proof which is scattered over Sections to On the other
hand, Sections [IT1.1] and contains preliminary material for the statement of the
main theorems (and their proof). In more details, in Section [T.1] we introduce some spaces
of semi-simple conjugacy classes which are then used in Section to define certain linear
forms Mgeom () and myic () on spaces of quasi-characters for the group G(F) and its Lie
algebra respectively. These linear forms are the main ingredients in the formulation of the
three theorems of Section [[T.4l Finally, in Section we record a result pertaining to the

compatibility of the linear form mgeom(.) with parabolic induction.

11.1 Some spaces of conjugacy classes

In this section, we introduce certain spaces of semi-simple conjugacy classes in G(F'), G, (F)
(for # € Hy(F)) and g(F) to be denoted I'(G, H), I'(G,, H,) and T'Y°(G, H) respectively.
These will be needed in the next section to define certain continuous linear forms on the
spaces of quasi-characters QC(G(F)) and SQC(g(F')) which are in turn the main ingredients
entering in the statement of the geometric expansions of J(f) and J°(f) as well as the
formula for the multiplicity m(7) (see Section I1.4).
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Let © € Hy(F). We first give an explicit description of the triple (G, H,, &, )| where &, =
& u,(r)- Up to conjugation, we may assume that x € U(W )y (F'). Denote by and [V/| the

kernel of 1 — x in W and V respectively and by the image of 1 — z. We then have the
orthogonal decompositions W = W! @+ W/ and V = V! ¢+ W” Set |H!| = U(W]) x N,
(where N, is the centralizer of x in N) - UW!) x UV, - UW!"), and =
UW!)e x UW!),. We have natural decomp081t10ns

U(V)e =UVy) x UW,)a, UW)e =UW;) x UW,)s and Hy = U(W), x N,

Moreover, we easily check that U(W/), commutes with N,. Hence, we also have natural
decompositions

(11.1.1) G,=G! xG/ and H, = H, x H]

the inclusions H, C G, being the product of the two inclusions H, C G, and H! C G!. It
is clear that &, is trivial on H!, so that we get a decomposition

(Gwa H,, gr) = (G;m Hg/cv gglv) X (va Hglc/v 1)

where &, = { g, and the product of triples is obviously defined. Note that the triple
(G, H., &) coincides with the GGP triple associated to the admissible pair (V), W/). The
second triple (G”, H” 1) is also of a particular shape: the group G” is the product of two
copies of H! and the inclusion H] C G’ is the diagonal one. We shall call such a triple
an Arthur triple. Finally, note that although we have assumed z € U(W)g(F'), there is
a decomposition similar to [T.11] for any = € Hg(F) (just conjugated = inside H(F') to
an element in U(W)s(F)) and that if 2,y € H(F') are H(F)-conjugate there are natural
isomorphisms of triples

(GL, H,, &) ~ (G, H),&,) and (Go, HY, 1) ~ (G, H], 1)

well-defined up to inner automorphisms (by H.(F') and H(F') respectively).

Let © € Hy(F'). As in Section [[L7, we denote by I'(H), ['(H,), ['(G) and I'(G,) the sets of
semi-simple conjugacy classes in H(F'), H,(F'), G(F) and G,(F') respectively and we equip
them with topologies. Then, we have the following

(11.1.2) The natural maps I'(H,) — I'(G,) and I'(H) — I'(G) are closed embeddings.
Moreover, if ©Q, C G,(F) is a sufficiently small G-good open neighborhood of z (see
Section 3.2 for this notion), the following diagram (where we identify €2, with its image
in I'(G,)) is Cartesian

I'(H,)NQ, ——Q,




Indeed, we see easily using the above descriptions of both H, and G, that the two maps
I'(H,) — I'(G,) and I'(H) — TI'(G) are injective. Since these maps are continuous and
proper (see §I.7) and I'(H,), ['(G,), ['(H), I'(G) are all Hausdorff and locally compact, it
follows that I'(H,) — I'(G,) and I'(H) — I'(G) are closed embeddings. Let Q, C G.(F)
be a G-good open neighborhood of x. We show now that the above diagram is Cartesian
provided €, is sufficiently small. This amounts to proving that if y € Q, ;s is G(F')-conjugate
to an element of H(F) then y is G,(F)-conjugate to an element of H,(F'). Let y be such
an element and let us fix 2! C G,(F) another G-good open neighborhood of z. In what
follows, we will assume (as we may) that €2, C Q. Since G, = Zg(x) (because Gy is
simply-connected), by definition of a G-good open subset it suffices to show that if €, is
sufficiently small then y is G(F')-conjugate to an element in H,(F) N Q.. We easily check
that H,(F) N, is a H-good open neighborhood of z. Hence, the map I'(H,) N, — ['(H)
is injective and has open image. Similarly, the map I'(G,) N Q, — ['(G) is injective and has
open image. Moreover, as €2, runs through the G-good open neighborhoods of x the subsets
I'(G,) N Q, form a basis of open neighborhoods of x in I'(G). Hence, since I'(H) — I'(G) is
a closed embedding, the subsets I'(H) N (I'(G,) N Q,), as €, runs through the G-good open
neighborhoods of z, form a basis of open neighborhoods of = in I'(H). It follows that for €2,
sufficiently small we have I'(H) N (I'(G,) N €2,) € I'(H,) N €Y, and this implies the claim.

We now define a subset of I'(H) as follows: = € I'(G, H) if and only if H is an
anisotropic torus (and hence G also). By [[1.1.2l we may also see I'(G, H) as a subset of
I'(G). Notice that I'(G, H) is a subset of I'qy(G) that contains 1. We now equip I'(G, H)
with a topology, which is finer than the one induced from I'(G), and a measure. For this, we
need to give a more concrete description of I'(G, H). Consider the following set [T] of subtori
of U(W): T € T if and only if there exists a non-degenerate subspace W” C W (possibly
W” = 0) such that T is a maximal elliptic subtorus of U(W"). For such a torus 7', let us
denote by [T}] the open Zariski subset of elements ¢ € T" which are regular in U(W") acting
without the eigenvalue 1 on W”. Then, I'(G, H) is the set of conjugacy classes that meet

U n@)

TeT
Indeed, for all z € I'(G, H) (identified with one of its representatives in U(W ) (F)), we
have H! € T and = € (H)),(F) whereas on the other hand if x € T}(F') for some T' € T,
then H? =T. For T € T, the non-degenerate subspace W” C W such that 7" is a maximal
torus of U(W") is unique (since we have W” = W for all x € T;(F')) and we shall denote
it by (W]} We will also set for the Weyl group W(U(W¥),T). Let us now fix a set
of representatives [T] for the U(W)(F)-conjugacy classes in 7. Then, we have a natural
bijection

(11.1.3) [(G,H)~ | | Tu(F)/W(T)
TeT

Indeed, the map that associates to an element of the right hand side its conjugacy class is a
surjection onto I'(G, H). That this map is injective is an easy application of Witt’s theorem.
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Now, the right hand side of [I.1.3 has a natural topology and we transfer it to I'(G, H).
Moreover, we equip I'(G, H) with the unique regular Borel measure such that

/ o(@)dz =
I(G,H)

for all ¢ € C.(I'(G, H)). Recall that v(T") is the only positive factor such that the total mass
of T'(F') for the measure v(7")dt is one. Note that 1 is an atom for this measure whose mass
is equal to 1 (this corresponds to the contribution of the trivial torus in the formula above).

More generally, for all © € Hy(F) we may construct a subset of I'(G,) which is
equipped with its own topology and measure as follows. By [IIL.I.1], we have a decomposi-
tion I'(G,) = I'(G%,) x I'(G%). Since the triple (G', H.,&,) is a GGP triple, the previous
construction provides us with a space I'(G’,, H.) of semi-simple conjugacy classes in G/ (F).
On the other hand, we define I'(G”, H?) to be the image of I'y,,;(HY) (the set of anisotropic
conjugacy classes in HY(F'), cf. Section [[7) by the natural inclusion I'(H?”) C I'(GY). In
Section [T, we already equipped I'(G%, HY) = 'y, (HY) with a topology and a measure. We
now set

S [ et

TeT T(F)

[(Ga, Hy) = (G, Hy) x (G, HY)

and we equip this set with the product of the topologies and the measures defined on
(G, H.) and T'(G”, H!). Note that I'(G,, H,) = 0 unless x € G(F) (because other-
wise T'yni(HY) = (). The following lemma establish a link between I'(G,, H,) and T'(G, H):

Lemma 11.1.1 LetQ, C G.(F) be a G-good open neighborhood of x and set Q = QS. Then,
if Q. 1s sufficiently small, the restriction of the natural map I'(G,) — T'(G) to Q.NI'(G,, Hy,)
induces an isomorphism of topological spaces

Q. NI(Gy, Hy) QN TG, H)
PTresServing measures.
Proof: First, note that the restriction of the natural map I'(G,) — I'(G) to Q, NT'(G,, H,)

is injective by definition of a G-good open subset. As a first step towards the proof of the
lemma, we show the following

(11.1.4) If Q, is sufficiently small, the image of Q, NT'(G,, H,) in I'(G) is @NI(G, H).

By[IT12 if 2, is sufficiently small, every conjugacy class in QNI'(G, H) has a representative
in Q,NH, «(F). Moreover, every conjugacy class in 2,NI'(G,, H,) also have a representative
in Q, N H, .(F). Let y € Q, N H, .(F). We need only prove that the G(F)-conjugacy class
of y belongs to I'(G, H) if and only if the G, (F')-conjugacy class of y belongs to I'(G,, H,).
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Let v € H.(F) and y" € HJ(F) for the components of y relative to the decomposition
H, = H. x H!. Since Q, is a G-good open neighborhood of z, we have

Gy = (Ga)y = (GL)y x Gy
Moreover, we have the decomposition
(L) = (LY x (@)
and it follows that
Gy = (Gp)y x [(GL)y x (G7)y]
We easily check that this corresponds to the decomposition G, = G} x G, that is

G, = (G})y and G} = (G7)y % (G7),r
By definition, y belongs to I'(G, H) if and only if G} is an anisotropic torus whereas y belongs
to I'(G., H,) if and only if both (G,);, and (G7),» are anisotropic tori. By the last equality
above, these two conditions are equivalent. This ends the proof of IT.1.4l

To finish the proof of the lemma, it only remains to show that the induced map
Q. NT(G,, Hy) —» QNT(G, H)

is locally a topological isomorphism that preserves measures. Let y € Q, NI'(G,, H,) and
identify it with one of its representative in H, .(F'). Set T' = G7. We introduce as before
the components y" and y” of y relative to the decomposition H, = H. x H”. Then, T is an
anisotropic torus and we have a decomposition

T=T xT"

where 7" = (G!)", and T" = (G%),». We have I'(G,, H,) = ['(G/,, H,) x I'(GY,H). By

y
definition of the topological structures and measures on both I'(G’,, H.) and I'(G’, HY), the

two maps
teT'(F)—ty e (G, H.)

teT"(F)—ty" e (G, HY)

are locally near 1 topological isomorphisms that preserve measures (where we equip T"(F)
and 7"(F) with the unique Haar measures of total mass 1). Hence, the map

teT(F)w—ty e I'(Gy, Hy)

is also locally near 1 € T'(F) a topological isomorphism that preserves measures (again
equipping T'(F') with the Haar measure of total mass 1). On the other hand, by definition
of the topology and the measure on I'(G, H), the map

teT(F)—tyel'(G,H)
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has exactly the same property. Hence the map
Q. NING,,H,) - QNT(G, H)

is locally near y a topological isomorphism that preserves measures. This ends the proof of
the lemma.H

We also define a subset of I'(g), again equipped with a topology and a measure,
as follows. For all X € u(WW)s(F'), we have decompositions

(11.1.5) Gx =Gy xG%, Hx=HYx HY
where this time

GX|l=U(Wx) xU(Vy), [Gx=UWx)x x UWx)x, [Hy]=UW%)x Nx [HE]=UW

for the kernels of X acting on W and V respectively, the image of X in W
and Ny the centralizer of X in N. Again, the decompositions still hold for every
X € bg(F) and they depend on the choice of representative in the conjugacy class of X
only up to an inner automorphism. We now define I'“®(G, H) to be the set of semi-simple
conjugacy classes X € I'(h) such that HY is an anisotropic torus. The obvious analog of
for the Lie algebra allows us to identify I'Y®(G, H) with a subset of I'(g). Notice that
IHe(G, H) is a subset of Ty(g) that contains 0. Moreover, fixing a set of tori 7 as before,
we have a natural identification

(11.1.6) V(G H) = | | t(F)/W(T)

TeT

where for T' € T, [t denotes the Zariski open subset consisting of elements X € t that are
regular in u(W7) and acting without the eigenvalue 0 on W7. By the identification ITT.1.0]
I'Y°(G, H) inherits a natural topology. Moreover, we equip I'M°(G, H) with the unique
regular Borel measure such that

/ =) [w(T / o(X)dX
I'Lie(@,H) TeT t(F)

for all ¢ € C.(T™°(G, H)). Note that 0 is an atom for this measure whose associated mass
is 1. The following lemma establish a link between I'M(G, H) and T'(G, H):

Lemma 11.1.2 Let w C g(F) be a G-excellent open neighborhood of 0 (see Section [3.3
for this notion) and set @ = exp(w). Then, the exponential map induces a topological
isomorphism

wNTH(G H) ~QNT(G, H)

pT(BS@’I"UZ"ﬂg measures.
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Proof: Since w C g(F) is a G-excellent open subset, the exponential map induces a bijection

wNl(g) ~QNT(G)

Moreover, this bijection restricts to a bijection between wNI'M¢(G, H) and QNT(G, H) since
for X € wNT'(h) we have G = G”y. To finish the proof of the lemma, it only remains
to show that this bijection is locally a topological isomorphism that preserves measure. Let
X e wnTHe(G, H) and set T = G%. We have the following commutative diagram

Yet(F)—=Y +X ewnl¥(G, H)

l exp l exp

teT(F)——teX € QNT(G,H)

where the maps at the top and on the left are locally near 0 topological isomorphisms that
preserve measures and the map at the bottom is locally near 1 a topological isomorphism
that preserves measures. This shows that the map on the right is locally near X a topological
isomorphism that preserves measure. This ends the proof of the lemma. B

Lie

11.2  The linear forms mgeom and My,

In this section, we define continuous linear forms mgeom and mge, on QC(G(F)) and
SQC(g(F)) respectively. These linear forms are the main ingredients in the formulation
of the three theorems of Section 1.4l They will be precisely defined in the proposition
below but first we need to introduce some determinant functions. We keep the notation

introduced in the previous section. First, we set

= D%(2)D"(z)~

for all © € H(F') where we recall that D%(z) = |det(1 — Ad(x))|g/g, | and D (z) = |det(1 —
Ad(x))p/p, | (see Section [LT]). Then, we easily check that

(11.2.1) A(z) = |Npyp(det(1 — z)wy)

for all x € Hy(F'). Similarly, we define

AX] = DEX)DH(X)

for all X € h(F') and we have the equality

(11.2.2) A(X) = |Ngp(det( Xy )|
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for all X € by(F). Let w C g(F') be a G-excellent open neighborhood of 0. Then, we easily
check that w N h(F') is a H-excellent open neighborhood of 0 (cf. the remark at the end of
Section [3.3]). We may thus set

[E X = 57 (X)%¢(x) ™!

for all X € wNh(F). By B3l we have

(11.2.3) JE(X) = AX)A(e®)!

for all X € w N hy(F). Note that j& is a smooth, positive and H(F)-invariant function
on wNh(F). It actually extends (not uniquely although) to a smooth, positive and G(F)-
invariant function on w. This can be seen as follows. We can embed the groups H; = U(W)
and Hy = U(V) into GGP triples (Gy, Hy,&1) and (G, Hy, &). Then the function X =
(Xw,Xy) € w— jgll (XW)1/2jg§ (Xy)Y/? is easily seen to be such an extension (using for
example the equality above). We will always assume that such an extension has been
chosen and we will still denote it by j&.

Let © € Hy(F'). Then, we define

= D% (y) D™= (y)~?

for all y € H, ss(F). On the other hand, since the triple (G!, H.,¢.) is a GGP triple, the
previous construction yields a function A% on H’, . (F). We easily check that

K]

(11.2.4) A (y) = A%(y)

for all y = (y’,y”) € Hx,SS(F) = H:;,ss(F) X Hsln,,ss(F)'

Let ©Q, C G.(F) be a G-good open neighborhood of x. Then, it is easy to see that 2, N
H(F) C H,(F) is a H-good open neighborhood of z (cf. the remark at the end of Section
[B.2). This allow us to set

6. (W) = i (y)°ng (y) ™

for all y € Q, N H(F). By B.2.4], we have

(11.2.5) ne.(y) = As(y)A(y) ™!

for all y € Q, N Hy(F). Note that nf , is a smooth, positive and H,(F')-invariant function
on Q,NH(F). It actually extends (not uniquely although) to a smooth, positive and G, (F)-
invariant function on €,. We will always still denote by 7§, such an extension.

Lie

geom are contained in the following proposi-

The definitions of the distributions mgeom and m
tion:
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Proposition 11.2.1 (i) Let 0 € QC(G(F)). Then, for all s € C such that Re(s) > 0 the
integral

/ DE(2)2¢y(2) A ()"~ 2da
(G, H)

15 absolutely convergent and the limait

Meeom (0)|:= lim D (x) 2 ey(2)Az)* Y 2da
s—0t I(G,H)

exists. Similarly, for all x € Hy(F') and for all 0, € QC(G,(F)), the integral
[ DO e, ()Ml oy
I(Gx,Hy)

is absolutely convergent for all s € C such that Re(s) > 0 and the limit

~ lim DO (1) 2o, (1) Auly)* 2y

s—0t [(Gy,Ha)

exists. Moreover, Mgeom is a continuous linear form on QC(G(F')) and for all x €
Hy(F), My geom 5 @ continuous linear form on QC(G4(F)).

(1)) Let x € Hy(F) and let Q, C G.(F) be a G-good open neighborhood of x and set
Q= QY. Then, if Q, is sufficiently small, we have

Mgeom () = mxgeom((ng,x)l/zexﬂx)
for all 0 € QC.(2).
(iii) Let 6 € QC.(g(F)). Then, for all s € C such that Re(s) > 0 the integral

/ DE(X)V2ey(X)A(X) 24X
FLiC(G,H)
s absolutely convergent and the limait

mbe (0):= lim DE(X) 2 X)A(X)H2dX

BLOIL s—0t I'Lie(G,H)
exists. Moreover, mgi  is a continuous linear form on QC.(g(F)) that extends con-
tinuously to SQC(g(F')) and we have

mLie (9}\) _ |)\|6(G)/2mLie (9)

geom geom

for all 0 € SQC(g(F)) and all X\ € F* (recall that 0,(X) = O(A'X) for all X €
Greg(F))-
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(iv) Let w C g(F) be a G-excellent open neighborhood of 0 and set 2 = exp(w). Then, we
have .
Mgeom (0) = Mo ((5)20,)

for all 8 € QC.(2).

Remark: By Proposition 5.1 1.(i), in the integral defining mygeom(#) above only the conju-
gacy classes © € I'(G, H) such that G, is quasi-split contribute. This means that we could
have replaced I'(G, H) by the, usually smaller, set I'q(G, H, £) consisting of conjugacy classes
x € I'(G, H) such that G, is quasi-split. Of course, a similar remark applies to 1 geom (02)
and mle ().

geom
Proof:

(i) We first show the following

(11.2.6) For all # € QC(G(F)) and all s € C such that Re(s) > 0, the integral
Mgeom,s () 12/ DC () 2co(x)Az)* V2 dx
(G, H)

is absolutely convergent. Moreover, Mgeom,s defines a continuous linear form on

QC(G(F)) (for all Re(s) > 0).

Indeed, since I'(G, H) is compact modulo conjugation and the function (D%)Y2¢y is
locally bounded by a continuous semi-norm on QC(G(F)) for all § € QC(G(F)) (see
Proposition L5.T]), it is sufficient to show that the integral

/ Adz) " 2dy
(G, H)

is absolutely convergent for Re(s) > 0. By definition of the measure on I'(G, H) and
MT.21] this is a straightforward application of Lemma[B.1.2[(i). Similarly, we prove that

(11.2.7) For all z € Hg(F), all 0, € QC(G,(F)) and all s € C such that Re(s) > 0,
the integral

Magon (@)= [ D) e () Aty

is absolutely convergent. Moreover, m; geom,s defines a continuous linear form on

QC(G.(F)) (for all Re(s) > 0).
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Assume for a moment that the limits

(11.2.8) Mgeom (8) = M Mgeom 5(0)
s—0+

and

(1129) mx,geom(ex) = lim mx,geDm,S(el‘)
s—0t

exist for all § € QC(G(F)), all x € Hy(F) and all 0, € QC(G,(F)). Then, by the
uniform boundedness principle (cf. Appendix [A]), Mgeom and Megeom o ( € Hys(F')) will
automatically be continuous linear forms on QC(G(F')) and QC(G,(F")) respectively.
Hence, it only remains to show that the limits [[1.2.8 and [[1.2.91always exist. We prove
this by induction on dim(G) i.e. we assume that the result holds for every GGP triple
(G',H',¢') with dim(G’) < dim(G) (the result is trivial when dim(G) = 1) an we will
show that it holds for (G, H, ). We first show the following

(11.2.10) Let x € Hy(F') and assume that x # 1. Then the limit exists for all
0. € QO(G.(F)).

Since G, = G, xG", by Proposition ZI|(v) we have QC(G,(F)) = QC(G'(F))®,QC (G"(F)).
By [A.5.3] it thus suffices to show that the limit exists for every quasi-character

6, of the form 6, = 0! ® 0" where 0! € QC(G.(F)) and 0 € QC(G%(F)). Fix such a
quasi-character. Since I'(G,, H,) = I'(G%, H.) x I'(G”, HY), using [1.2.4] we have

M geom,s(0) = / D% (y)" 2y, (y) A% (y)*~2dy x / D% (y)'Peqy (y)dy
(GL,HyE) Gy, HY)
for all s € C such that Re(s) > 0. Recall that the triple (G’, H.,£.) is a GGP triple.

For Re(s) > 0, let us denote by Me&m.s the distribution on QC(G!(F)) defined the
salme way as Mgeom,s but for this GGP triple instead of (G, H, ). Then, the first integral

above is equal to mgéfm,s(é’;). Since dim(G’,) < dim(G), the induction hypothesis tells
us that mgem s(¢,) has a limit as s — 07 and this ends the proof of TLZI0

We are now left with proving that the limit [T.2.8 exists for all # € QC(G(F)). First,
from Lemma IT.T.T] we deduce that
(11.2.11) Let € Hg(F'), Q. € G.(F) be a G-good open neighborhood of = and set
Q = QY. Then, if Q, is sufficiently small, we have the equality
mgeom,s(e) = mx,geom,s((ng(;)l/2_89:c,ﬂx)

for all 8 € QC.(2) and all s € C such that Re(s) > 0.
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Indeed, let § € QC.(Q), by Lemma IT.1.1] we have

Mgeoms(6) = / DE(y) ey Aly)*dy
QN0(G,H)
= R SN
Q:NI(Gz,Hy)

for all s € C such that Re(s) > 0. For all y € Q,NI[(G., H,), we have D (y)'/2c4(y) =
D% (y)2cy, o, (y) (Proposition 5111 (iv)) and by IL.ZH we also have A(y) = nf(y) A (y).
The equality [T.2.11] follows.

We now prove

(11.2.12) Let 0 € QC(G(F)) and assume that 1 ¢ Supp(f). Then, the limit IT.2.8

exists.

Indeed, since I'(G, H) is a subset of I'(H) which is compact modulo conjugation, by an
invariant partition of unity process (Proposition B.1.1l(ii)), we are immediately reduced
to proving for § € QC.(2) where Q is of the form Q = Q¢ for some x € Hy(F)
different from 1 and some Q, C G,(F) a G-good open neighborhood of x that we can
take as small as we want. In particular by [L2.TT] if we take Q, sufficiently small, we
have

1/2—86)

mgeom,s(e) = mx,geom,s((ni;{G) :c,Qx)

for all Re(s) > 0. By [[L2.I0, we know that the continuous linear forms 1, geom,s
converge point-wise to a continuous linear form my, geom on QC(G,(F)) as s — 0.
By the uniform boundedness principle, it implies that m; geom,s converges uniformly
on compact subsets of QC(G,(F)). In particular, if we can show that the function
s = (nH5)/* %0, 0, has a limit in QC(G,(F)) as s — 0, then we will be done by
the above equality. Clearly, (nf)"/*~* converges to (nf;)"/? in C*(Q,)%. Hence, by
Proposition B.4.1(iv), we have

im (nfo)' 0,0, = () 0.0,
s—0t ’ )

in QC.(§2,) and so also in QC(G,(F')). This ends the proof of [T.2.12

Let w C g(F') be a G-excellent open neighborhood of 0 and set 2 = exp(w). By
MT.2.12, and since there exists ¢ € C*°(G(F))% such that Supp(p) € Q and ¢ = 1 in
a neighborhood of 1, we are left with proving

(11.2.13) The limit [T.2.8 exists for all 8 € QC,(12)
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As a first step towards the proof of [1.2.13] we claim the following

(11.2.14) For all 8 € QC.(g(F)) and all s € C such that Re(s) > 0, the integral

geom,s

mhe - (0) = / DE(X)2ey(X)A(X)* 12X
FLie(G,H)

Lie

ceom.s defines, for Re(s) > 0, a continuous linear

converges absolutely. Moreover, m
form on QC.(g(F)), and we have

mgeom,s(9> = mIg_g(e)m,s((jg>l/2_89w)

for all 0 € QC.(Q2) and all s € C such that Re(s) > 0.

Indeed, the first part of the claim can be proved in a way similar to[11.2.6 using Lemma
[B.1.2(ii) whereas the second part of the claim is proved as IT.2Z.TT using Lemma [[T.T.2]
instead of Lemma ITT.T.11

Using again the uniform boundedness principle (cf. Appendix [AT]), if the limit

(11.2.15) mie (0) := lim me ()

geom S0+ geom,s

exists for all § € QC.(g(F)), then ml = will automatically be a continuous linear
form on QC.(g(F)) and the linear forms myi . will converge uniformly on compacta
to mie as s — 07. Hence, by IL2.14] to prove IL.2.I3 we only need to show the

geom

existence of the limit for all 0 € QC.(g(F)). As a first step, we show
(11.2.16) For all € QC.(w) such that 0 ¢ Supp(f), the limit exists.

Let L C w be a closed invariant neighborhood of 0. Then, it suffices to show that the
limit exists for all § € QC.(w — L). By II.214], we have
méeigm,s(e) = mgeom,é’((jg © eXp)8_1/299)

for all 0 € QC.(w) and Re(s) > 0. Hence, it suffices to prove that the limit

(11.2.17) M Mgeom,s((j& © exp)*~/26)

s—0t

exists for all € QC.(Q — e¥). Since e is a closed invariant neighborhood of 1 in
G(F), we already know, by TT.2.12] that the limit TT.2.8 exists for all § € QC,(2 — k).
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But, again by the uniform boundedness principle and Proposition [1.4.1](iv), it follows
that the linear forms mgeom, s converge uniformly on compact subsets of QC,.(2 — L) as
s — 07, hence the limit [T.2.17 exists for all § € QC.(2 — e*).

We now extend slightly and prove
(11.2.18) For all § € QC.(g(F)) such that 0 ¢ Supp(#), the limit TT.2.T5 exists.

Recall that for 8 € QC(g(F)) and A € F'*, the quasi-character ) is defined by 0,(X) =
OAT'X), X € greg(F). Of course, if § € QC.(g(F)) is such that 0 ¢ Supp(f) then
the quasi-character 6, has the same property for all A € F*. Moreover, if |A| is
sufficiently small then 0, € QC.(w). Hence, TT.2.18 will follow from once we
have established the following

(11.2.19) Denote by My, A € F* the endomorphism of QC.(g(F')) given by M,(0)
(£))

IA|7%(@)/29, . There exists a positive integer d > 0 such that for all § € QC.(g
and all A € F'*, we have

lim mgie [(My—1)%] =0

S0t geom,s

Let d > 0 be an integer. For all X € T™°(G, H), let us denote by dx the dimension of
the torus G’%. By definition of the measure on I'“*(G, H) and Proposition 5.1 2.(iv),
it is easy to see that

e [(M)\ . 1)d‘9} _ / (l)\|23dx _ 1)dDG(X)1/209(X)A(X)s_1/2dX

geom,s )
T'Lie (G7H)

for all 0 € QC.(g(F)), all A € F’* and all Re(s) > 0. By this and the definition of the
measure on ['°(G, H), to establish it is now sufficient to show the following

(11.2.20) For all T" € T there exists a positive integer d > 0 such that for all § €
QC.(g(F)), we have

lim s / DE(X)M2c(X)A(X)*Y2dX =0
{(F)

s—0t (

The point is a straightforward consequence of Lemma [B.1.2](ii) and of the fact
that for all § € QC.(g(F)) the function (D%)Y2¢y is locally bounded and compactly
supported modulo conjugation. This ends the proof of and hence of IT.2.18

We now again improve [1.2.18 slightly. More precisely, we prove
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(11.2.21) Let 0 € QC.(g(F')) and assume that ¢y »(0) = 0 for all O € Nil,,(g). Then,
the limit exists.

Choose d so that [T.2.T9 holds. Fix A € F* such that |A| # 1. Let 6 € QC.(g(F')) and
assume that cgo(0) = 0 for all O € Nil,eg(g). Then, by Proposition [A.6.1)(i) we may
find 6, € QC.(g(F)) and 8, € QC.(g(F)) such that § = (M, — 1)0; + 0, and 0 is
supported away from 0. We can now deduce [[1.2.21] from [I11.2.18 and [11.2.19]

If G is not quasi-split, then [T.2.2]] already shows that the limit always exists
(as in this case Nil,eg(g) = 0), ending the proof of (i). We assume henceforth that G is
quasi-split. Then, G has two regular nilpotent orbits O, O_ € Nil,,(g) (this follows
from the description of regular nilpotent orbits of unitary groups given in Section [6.1]).
Let p € C*®(g(F))Y be an invariant smooth function which is compactly supported
modulo conjugation and equals 1 in some neighborhood of 0. Set 6, = @}((’)Jr, )
and 0_ = go}((?_, .). These are compactly supported quasi-characters on g(F') and by
[[1.2.21], it only remains to show that the two limits

(11.2.22) lim mXe  (0,) and lim mXe  (0_)

ssp+  geom,s ss0+  geom,s

exist. The quasi-character 3((9+, ) +5((’)_, .) is parabolically induced from a maximal
torus of a Borel subgroup of G (cf. Chapter B.4] for the notion of induction of quasi-
characters and more particularly for the case at hand). Hence the support of
0, + 0_ intersects I'y(G) only at the center of g(F'). It follows from that the
support of 6, + 0_ intersects I'™¢(G, H) only at 0. Hence, we have

(11.2.23) Mgoom,s (0+) + Moo o(0-) = co, (0) + co_(0) = 1
for all Re(s) > 0. On the other hand, let A € N(E*) — F* and d as in I1.219
Then, multiplication by A exchanges the two orbits O, and O_ (this follows from the
description of regular nilpotent orbits of unitary groups given in Section [6.1]). It follows
that (M, —1)90, coincides near 0 with a nonzero multiple of #, —6_. Hence, by ITT.2.18§
and [T.2.T9] the limit

: Lie
sllg%r mgeom,s(e-i‘ - 9—)

exists. Combining this with [T.2.23] this shows that the two limits [T.2.22] exist and
this ends the proof of (i).

(ii) This follows from IT.2.111
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(iii)) We have already proved the first part during the proof of (i). For all T" € T, let us
introduce the distribution

mbel () = [W(T)| ™ DE(X) 2y X)A(X)*12dX, 6 e QC.(g(F))

geom, s
H(F)

for Re(s) > 0. Again using Lemma [B.1.2(ii), this integral is absolutely convergent and
defines a continuous linear form on QC.(g(F')). Moreover, if we follow the proof of (i)
closely, then we see that it actually also works “torus by torus” so that the limit

. Lie,T
Tim 1o, o(6)

exists for all § € QC.(g(F)) and all T € T. Since, we have
LlO (9}\) Z‘)\|5(G)/2+2sdim(T)mLio,T (9)

goom s geom,s
TeT

for all 0 € QC.(g(F)), all A € F* and all Re(s) > 0, it now easily follows that
mLio ( ) ‘)\|5 @)/ L1o (9)

geom geom

for all § € QC.(g(F)) and all X € F*. The fact that mg,, extends continuously to
SQC(g(F)) now follows from PrOpositlon A6.T(i).

(iv) This follows from [1.2.174 W

11.3 Geometric multiplicity and parabolic induction

Let L be a Levi subgroup of GG. Then, as in Section [Z.4], we may decompose L as a product

L=1L" %G
where is a product of general linear groups over F and G belongs to a GGP triple
(G, H,€) which is well-defined up to G(F)-conjugation. In particular, Proposmon 12T

applied to this GGP triple provides us with a continuous linear form mg, . on QC’ (G(F)).
We define a continuous linear form mfk, ., on QC(L(F)) = QC(L%"(F )®,QC(G G(F)) by

setting ~
(QGL ® 9) goom(e)CGGL(]')

for all 8L € QC(LCL(F)) and all § € QC(G(F)). The next lemma is precisely [Beul]
Lemme 17.2.1 in the p-adic case and moreover the proof of loc. cit. adapts verbatim to
the real case once we replace references of loc. cit. to Lemme 2.3 of [Wad] by references to

Proposition A7.1[(ii).

LGL

Lemma 11.3.1 Let 6L € QC(L(F)) and set 0 = i¥(0*). Then, we have

mgCOm(H) = goom(9L>
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11.4 Statement of three theorems

Set

o~

com ()| = Mgeom (0f), for all f € Coeusp(G(F))

Mgeom ()| = Mgeom (0r), for all T € Riemp(G)

Tyaom ()] = Moo (05), for all f € Sseusp(a(F))

Recall that in Chapter B we have defined two continuous linear forms J(.) and J%°(.) on
Cscusp(G(F)) and Seeusp (G(F)) respectively. Recall also that in Section [6.3, we have defined
a multiplicity m(7) for all 7 € Temp(G). The goal of the next 5 sections is to prove the
following three theorems.

Theorem 11.4.1 We have

J(f) - Jgeom(f)
fOT all f S Cscusp(G(F))'

Theorem 11.4.2 We have

m() = Mgeom (7)

for all m € Temp(G).

Theorem 11.4.3 We have

TE(f) = oo (f)
for all f € Sqeusp(9(F)).

The proof is by induction on dim(G) (the case dim(G) = 1 being obvious). Hence, until the
end of Section [[T.9) we make the following induction hypothesis

(HYP) Theorem IT.4.1], Theorem and Theorem hold for all GGP triples
(G', H',¢') such that dim(G’) < dim(G).
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11.5 Equivalence of Theorem [11.4.1] and Theorem [11.4.2

Recall that Riemp(G) stands for the space of complex virtual tempered representations of
G(F). In Section 27, we have defined the subspace R;,4(G) of “properly induced” virtual
representations and also a set Xy (G) of virtual representations well-defined up to multipli-
cation by a scalar of module 1 (the set of elliptic representations).

Proposition 11.5.1 Assume the induction hypothesis (HYP). Then,

(i) Let m € Rina(G). Then, we have

m(T) = Mgeom ()
(11) For all f € Cseusp(G(F')), we have the equality
J(F) = Jaeom () + D D(m)b(r) (m(T) = Moo (7))
TEXen(G)
the sum in the right hand side being absolutely convergent.

(i7i) Theorem [11.4.1 and Theorem [11.].3 are equivalent.
(iv) There ezists a unique continuous linear form on QC(G(F)) such that

b J(f) = ch(ef) fOT all f € Cscusp(G(F));'
L Supp(ch) g G(F)ell'

Proof:

(i) Let m € Ryq(G). By linearity, we may assume that there exists a proper parabolic
subgroup @ = LUg of G and a representation ¢ € Temp(L) such that 7 = (o).
Then, as in Section [[4] we may decompose L as a product

L=1L%"x@G
where QGL is a product of general linear groups over £ and G belongs to a GGP triple

(G, H,&). We have accordingly a decomposition

oc=0c""X5

of o, where 0% € Temp(L%L) and & € Temp(G). By Corollary [.6.1(i), we have



(i)

(iii)

(iv)

On the other hand, by and Lemma [[T.37] we have

Mgeom (T) = mgeom(E)cacL (1)

Finally, by the induction hypothesis (HYP) applied to the GGP triple (é, H, £), we
have

m(&) = mS o (3)

It only remains to see that c¢,cz (1) = 1. But this follows from Proposition 4.8.1](i), since
every tempered representation of a general linear group admits a Whittaker model (cf.
[Ze] Theorem 9.7).

Let f € Csusp(G(F')). The sum on the right hand side of the identity is absolutely
convergent by Lemma [5.42] Proposition E8Tf(ii) and By Theorem QT we
have the equality

~

_L?@DW@Wm@M+ > D(m)s(m)m(F)

TEXen(G)

(11.5.1) ﬂﬂ:L@DW@mm@m

Since the (virtual) representations in X;,4(G) are properly induced, by (i), we have
() = Mgeom (7)
for all m € X;,,4(G). Hence, IT.5.1] becomes
J(f) = D(m)05 (m)mgeom (T)drm + Y D(m)b(m) (m(T) — Mgeom (7))
X(G) TE€Xen(G)

Finally, by Proposition 5.6.1(ii), we have the equality

Jgeom (f) = D(m) 0 () mgeom (7)drr
X(G)
and (ii) follows.
It is obvious from (ii) that Theorem implies Theorem [[T.4.1] For the converse,
it suffices to use (i), Corollary B.7.2(iv) and 2.7.11

The unicity follows from Corollary [5.7.2(i). For the existence, it suffices to set

Jac(8) = Mgeom(8) + Y D(r) (m(T) — Mgeom (7)) / D(2)0(x)0x (z)dx

r€Xn(G) Ten(G)

for all @ € QC(G(F)). That it defines a continuous linear form follows from Corollary
B.7.2(i1) and (iii), Proposition EE8T(ii) and |
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11.6 Semi-simple descent and the support of J — mgeom

Proposition 11.6.1 Assume the induction hypothesis (HYP). Let § € QC(G(F)) and
assume that 1 ¢ Supp(#). Then, we have

Jae(0) = Mgeom (6)

Proof: Since Jy and mgeom are both supported in I'ey(G), by a partition of unity process, we
only need to prove the equality of the proposition for § € QC.(£2) where Q is a completely
G(F)-invariant open subset of G(F) of the form Q¢ for some x € G(F)a1,  # 1, and some
G-good open neighborhood @, C G,(F) of x. Moreover, we may take (2, as small as we
want. In particular, we will assume that €2, is relatively compact modulo conjugation.

Assume first that z is not conjugate to any element of H(F'). Then, since I'(H) is closed
in I'(G) (by IILI2), if Q, is chosen sufficiently small, we would have QN T'(H) = (. In this
case, both sides of the equality are easily seen to be zero (for all § € QC.(2)).

Assume now that = is conjugate to some element of Hy(F). We may as well assume that
x € Hy(F). Then, we have the decompositions

v " "o n "
G,=G.xG, G'=H'xH

Shrinking €2, if necessary, we may assume that {2, decomposes as a product

Q=0 x (Q xQ)
where Q) C G/ (F) (resp. 2/ C H!(F)) is open and completely G’ (F)-invariant (resp.

completely H!(F)-invariant). Note that z is elliptic in both G, and H!. Hence, by Corollary
B.7.2(i), shrinking €, further if necessary, we may assume, and we do, that the linear maps

fr € Sscusp () = 0 € QCL(S,)

fr € Sseusp (%) 7 051 € QC(2)

have dense image. Since QC.(Q) = QC.(2.)®,QC.()®,QC.(") (Proposition EZI(v))
and Jye and mgeom are continuous linear forms on QC,(€2), we only need to prove the equality
of the proposition for quasi-characters 8 € QC.(2) such that 6,q, = 0, for some f, €
Sacusp(€2:) which further decomposes as a tensor product f, = f, ® (fi, ® fi,) where f, €
Sseusp (%) and f7/ 1, fi 5 € Sseusp(€2;). So fix a quasi-character 6 € QC,(€2) with this property

and fix functions f,, f;, fr, and f;, as before.

Consider a map as in Proposition B.7.1] and set f = J?; € Sscusp(€2). Then, we have
(11.6.1) J(f) = Jacl0r) = Joe(0)
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(Notice that here Zg(x) = G, since Gge is simply-connected). Let us denote by J& the
continuous linear form on Cyusp (G (F')) associated to the GGP triple (G, H.,£.). Also,

let us denote by JA4= the continuous bilinear form on Cyeysp(H”(F)) introduced in Section

(where we replace G by H!). Recall that we have defined a H,(F')-invariant smooth
and positive function nf; on Q, N Hy(F) = (U, N H,(F)) x Q. It is easy to see, using
the formulas ITT.2.4] and IT.2.T], that this function factorizes through the projection
Q, N Hy(F) — ). We shall identify 7/ with the function it defines on Q. Let us show
the following

(11.6.2) If Q, is sufficiently small, we have
J(F) = T ()T (i) P Fias £ )

The intersection 2, N H,(F) C H,(F) is a H-good open neighborhood of x (cf. the remark
at the end of Section [3.2). Moreover, by IT.T.2if 2, is sufficiently small, we have QNH (F) =
(Q, N H,(F))". We henceforth assume €2, that sufficiently small. Then, by B2Z5, we have

(1163)  J(f) = /H o /H T endndy

- / / / nf(h””) hgf(hw)gx(hx)dhmdhdg
H(F)\G(F) JHy(F)\H(F) J Hy(F)

H(F\G(F) J Hy(F)\H(F) J Hy(F)

Assume one moment that the exterior double integral above is absolutely convergent. Then,
we would have

J(f) = / / D (ha) V27 ), (h () ey
Hy(F)\G(F) J Hy(F)

_ / / / D ()2 (0 Facn, (957 Roga)Eo (o) doodgudy
Go(F)\G(F) J Hy (F)\Gz(F) J Hz:(F)

Introduce a function o on G.(F)\G(F') as in Proposition 5.7l Let ¢ € G(F). Up to
translating g by an element of G,(F'), we may assume that (9f).q, = a(g)f:. Then, the
interior integral above decomposes as

o) [ ) L g )6 )b
Ho (F)\Ga(F) (F)
L) IR B AU AT AT
HL(F\G.(F) J HL(F)
o o O ) £ !
//(F //
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We recognize the two integrals above: the first one is J%(f!) and the second one is
JAHE((GH V2 fr,) (Note that the center of HZ(F) is compact since z is elliptic). By

z,lvJz

Theorem B.I.IJ(ii) and Theorem [(.5.11(ii) and since the function « is compactly supported,
this shows that the exterior double integral of the last line of [1.6.3]is absolutely convergent.

Moreover, since we have
/ a(g)dg =1
G (F)\G(F)
this also proves [11.6.2

We assume from now on that €, is sufficiently small so that [[1.6.2 holds. By the induction
hypothesis (HYP), we have

T (f2) = mgn(6r,)
On the other hand, by Theorem (.5.1(iv), we have

T () P Fe fls) = /F ) e (y) 2D () 20 ()01, (y)dy

(Notice that here both f;', and f;, are strongly cuspidal, hence the terms corresponding to
['(H!) — Ty (HY) vanish). Moreover, it is easy to check that

Megeomx(162)"701,) = Mg (0r,) X /F o i) D% () 2050 (y)0;r,(y)dy

Hence, by TT.6.11 and Proposition TT.2.1](ii), we have
Jae(0) = J(f) = Mgeom (N 2)"/01.) = Mgeom (6)
This ends the proof of the proposition. H

11.7 Descent to the Lie algebra and equivalence of Theorem 11.4.1]
and Theorem 11.4.3

Let w C g(F') be a G(F')-excellent open neighborhood of 0 and set € = exp(w). Recall that
for any quasi-character € QC(g(F')) and all A € F'*, 0, denotes the quasi-character given
by 0(X) = O(A1X) for all X € greg (F).

Proposition 11.7.1 Assume the induction hypothesis (HYP). Then,

(1) For all f € Sscusp(Q2), we have

J(f) = J7((55) " )
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(i) There exists a unique continuous linear form on SQC(g(F)) such that

TH(f) = Jge"(0)
for all f € Sscusp(9(F)). Moreover, we have

T (05) = [N (0)
for all @ € SQC(g(F)) and all X € F*.
(i7i) Theorem [11.4.1 and Theorem [11.].3 are equivalent.
(iv) Let 0 € SQC(g(F)) and assume that 0 ¢ Supp(@). Then, we have

T (0) = mls,, (0

geom

Proof:

(i) The intersection wy = w N H(F) C h(F) is a H-excellent open neighborhood of 0 (cf.
the remark at the end of Section [3.3)). Recall that

jé (X) = j7(X)%9(x) ™
for all X € wy. Hence, by B.3.2] we have

/H o o) = / 10 (g )e(X)dX

wh

- / OV fulg X g)e(X)dX
h(F)

for all f € §(Q) and all g € G(F). The identity of the proposition follows immediately.

(ii) The unicity follows from Proposition E.6.11(i). Let us prove the existence. Set

(11.7.1) Jhe(g) = /F . DY(X)2(X)dX

for all 8 € SQC(g(F')), where I'(X) is defined as in Section I0.8 By [L.7.2] the integral
above is absolutely convergent and JM° is a continuous linear form on SQC(g(F)).
Moreover, by Theorem [I0.81], we have

TH(f) = et (0y)

for all f € Sscusp(8(F")). This shows the existence. The last claim is easy to check using
the formula TT.7.1]
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(iii) By (i) and Proposition [T1.2.I[(iv), it is clear that Theorem [1.4.3 implies Theorem
II.4.11 Let us prove the converse. Assume that Theorem [[T.4.1 holds. Then by (i) and
Proposition [T.2.1[(iv), we have the equality

TH(f) = Tgeom(f)
for all f € Sscusp(w). Hence, by Proposition B.6.1((i), we also have

THe(6) =tk (6)

geom

for all § € QC.(w). By the homogeneity properties of J;Cic and méeigm (cf. Proposition
MT.2.1(iii)), this last equality extends to QC.(g(F')). By the density of QC.(g(F)) in
SQC(g(F)) (Lemma E2Z3|(v)), this identity is even true for all § € SQC(g(F')). This

implies Theorem [11.4.3

(iv) First, we show that we may assume 6 € QC.(g(F)). By Lemma A23(v), we may find
a sequence (6,,),>1 in QC.(g(F)) such that

lim 6,, =6
n—o0
in SQC(g(F)). Let ¢ € C*(g(F))% be an invariant compactly supported modulo
conjugation function which is equal to 1 in a neighborhood of 0 and such that (1—¢)0 =
0. By LemmaL.2.3(iv) and the closed graph theorem, multiplication by (1—¢) induces
a continuous endomorphism of SQC(g(F')). Hence, we have
lim (1 — )0, =46
n—oo
and each of the quasi-characters (1 — ¢)f,,, n > 1, is supported away from 0. By
continuity of the linear forms J;Cic and mlgjégm, this shows that we may assume that
0 € QC.(g(F)). By the homogeneity properties of Jii* and mgy,, (cf. Proposition
MT.2.71(iii) ), we may even assume that Supp(f) C w. Finally, using Proposition B.6.11(i),
we only need to prove the equality for § = 6; where f € Ssusp(w). It is then a
consequence of (i) and Proposition ITT.2.1(iv). W

Lie

geom

11.8 A first approximation of J(I;Cie —m

Proposition 11.8.1 Assume the induction hypothesis (HYP). Then, there exists a con-
stant ¢ € C such that

J(I;ge(Q) —mH e (0) = c.cs(0)

geom

for all 0 € SQC(g(F)).

Proof: We first prove the following weaker result
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(11.8.1) There exists constants co, O € Nil,es(g), such that

The(0) —mie (0) = > cocyo(0)

O€Nileg(g)

for all # € SQC(g(F)).

Let 6 € SQC(g(F)) be such that cyo(0) = 0 for all O € Nil,ee(g). We want to show
that J1°() = mye (#). Let A € F* be such that |\ # 1. Denote by M, the operator

geom
on SQC(g(F)) given by M,0 = |\7%)/29,. Then by Proposition E6.1(i), we may find
61,05 € SQC(g(F)) such that § = (M, —1)6, +6, and 65 is supported away from 0. Then, by

Proposition IT.7I(iv), we have J2i¢(0;) = mie, (62). On the other hand, by the homogeneity

- . geom
property of Ji° and mgi = (cf. Proposition IT.7.1)ii) and Proposition TT.2.\iii)), we also
have JL°((My — 1)61) = mii  ((My — 1)61) = 0. This proves IT.81l

To ends the proof of the proposition, it remains to show that the coefficients cp, for O €
Nil,eg(g), are all equal. If G is not quasi-split, there is nothing to prove (as then Nil e, (g) = 0).
Assume now that G is quasi-split. Then G has two nilpotent orbits and multiplication by
any element A\ € F* — N(E*) exchanges the two orbits (this follows from the description
of regular nilpotent orbits of unitary groups given in Section [6.I]). The results now follows
from and the homogeneity property of J&i¢ and mi . W

geom*

11.9 End of the proof

By Proposition TT.51[iii), Proposition MIT.7.1I(ii) and (iii), in order to finish the proof of
Theorem [IT.4.T, Theorem and Theorem [IT.4.3] it only remains to show that the
coefficients ¢ of Proposition [[1.8.1] is zero. If G is not quasi-split there is nothing to prove.
Assume now that G is quasi-split. Fix a Borel subgroup B C G and a maximal torus Toqg C B
(both defined over F'). Denote by I'¢a(g) the subset of I'(g) consisting of the conjugacy classes
that meet tyq(F). Recall that in Section [[0.8, we have defined a subset I'(X) C I'(g). It
consists in the conjugacy classes of the semi-simple parts of elements in the affine subspace
Y (F) C g(F) defined in Section [0l We claim that

(11.9.1) Lqa(g) CT(X)

Up to G(F')-conjugation, we may assume that B is a good Borel subgroup (cf. Section [(6.4]).
Then, we have h @ b = g and it follows that

(11.9.2) b du=g

where u denotes the nilpotent radical of b. Recall that ¥ = = + h*. From I1.9.2, we easily
deduce that the restriction of the natural projection b — tiq to X N b induces an affine
isomorphism ¥ N b ~ t,q and this clearly implies TT.9.11
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Let 6y € C°(tqareg(F)) be W(G, Tyq)-invariant and such that

(11.9.3) [ . DE(X)20,(X)dX #0

We may extend 6y to a smooth invariant function on g, (F'), still denoted by 6,, which is
zero outside tyq,eq(F)¢. Obviously, 6 is a compactly supported quasi-character. Consider
its Fourier transform 6 = 6,. By Proposition M.111(iii), Lemma A.2.3|(iii) and B.AH 6 is
supported in T'yq(g). Since Tya(g) NT(G, H) = {1}, by definition of mki° . we have

geom?

Migoom (¢) = ¢o(0)

geom

On the other hand, by Proposition ELT.INiii), Lemma E.23(iii) and Proposition EE5.T112(v),

we have

(11.9.4) (0) = [ DEX)200(X )5 5, (0)dX = / X)Y205(X)dX
I'(g) Tqal(s

By definition of Jgfcio and [I1.9.1] this last term is also equal to Jgge(e). Hence, we have
Jue(0) = mge,, (). Combining TT.9.3 with ITT.9.4, we see that cy(0) # 0 and it follows that

geom

the constant ¢ of Proposition IT.8.1lis zero. B

12 An application to the Gan-Gross-Prasad conjecture

In this chapter, we fix, as we did in Chapters [@ to [[1], an admissible pair of hermitian spaces
(V,W) and we denote by (G, H,&) the corresponding GGP triple but we now make the
following additional assumption

G and H are quasi-split

The goal of this chapter is to give an application of the multiplicity formula of Theorem
to the so-called local Gan-Gross-Prasad conjecture. Roughly speaking, this application states
that there is exactly one distinguished representation 7 (i.e. one such that m(mw) = 1) in every
(extended) tempered L-packet of G(F'). In the p-adic case this result was already proved by
the author [Beul] and the idea of the proof goes back to Waldspurger [Wal]. As explained
in the introduction, it is based on showing the existence of many cancellations when we sum
the multiplicities over an extended tempered L-packet. For this, we use character identities
between the stable characters associated to a tempered L-packet on G(F') and its (pure)
inner forms. In the p-adic case there are only two relevant pure inner forms to consider:
G itself together with a nonquasi-split one G’ and the character identity involves the sign
—1. In the real case, there are far more pure inner forms to keep track of (m + 1 precisely
where m is the rank of H) and the signs involved in the character identities alternate. To
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get a uniform treatment, we will use Kottwitz |[Kott2] general definition for these signs.
We recall this in Section [12.1] where we also introduce a certain notion of stable conjugacy
for semi-simple conjugacy classes (that we call strongly stable conjugacy) which differs from
the generally accepted one but will be the one relevant for us. Then in Section we
describe the so-called pure inner forms of a GGP triple. These are needed to state the
main result where we consider a GGP triple together with all its pure inner forms at the
same time. In Section [[2.3] we state our main requirement on tempered L-packets under
the form of three hypothesis. The first two assumptions ((STAB) and (TRANS)) pertain to
the aforementioned character identities. The third one, (WHITT), concerns the existence
and unicity of a generic representation (with respect to a fixed Whittaker datum) in each
tempered L-packet of G. That these hypothesis are satisfied in the Archimedean case follows
from work of Shelstad, Kostant and Vogan. In the p-adic case, we give precise references
to the recent work of Mok [Mok] and Kaletha-Minguez-Shin-White [KMSW] on the local
Langlands correspondence for unitary groups where these assumptions are proved. The
main result of this chapter (Theorem 24T is stated in Section 2.4l As a preparation
for its proof, we study in Section strongly stable conjugacy classes inside the space of
conjugacy class I'(G, H) introduced in Section [I1.1] (strictly speaking we consider the disjoint
union of I'(G,, H,) over all the pure inner forms (G, H,, &) of (G, H,§)). Finally, the proof
of Theorem [[2.4.1]is given in Section

12.1 Strongly stable conjugacy classes, transfer between pure in-
ner forms and the Kottwitz sign

In this section, we recall some definitions and facts that will be needed later. These consid-
erations are general and we can forget about the GGP triple that we fixed. So, let G be any
connected reductive group defined over F. Recall that two regular elements z,y € Gieg(F)
are said to be stably conjugate if there exists g € G(F) such that y = grg~! and g~'o(g) € G,
for all 0 € I'p = Gal(F/F). We will need to extend this definition to more general semi-
simple elements. The usual notion of stable conjugacy for semi-simple elements (cf. for
example [Kottl]) is too weak for our purpose. The definition that we will adopt is as follows.
We will say that two semi-simple elements z,y € Gg(F') are strongly stably conjugate and
we will write

Mstably

if there exists g € G(F) such that y = gzg~! and the isomorphism Ad(g) : G, ~ G, is
defined over F'. This last condition has the following concrete interpretation: it means that
the 1-cocycle 0 € T'r — g 'o(g) takes its values in Z(G,) the center of G, (this is because
Z(G) coincides with the centralizer of G, in Zg(x) since G, contains a maximal torus of
G which is its own centralizer). Moreover, for © € G (F') the set of G(F')-conjugacy classes
inside the strong stable conjugacy class of x is easily seen to be in natural bijection with

Im (H'(F, Z(G,)) = H'(F, Za(x))) N Ker (H'(F, Zg(x)) — H'(F,G))
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We now recall the notion of pure inner forms. A pure inner form for G is defined formally
as a triple (G’ 1, ¢) where

e (7' is a connected reductive group defined over F’;
o ) :Gr G/F is an isomorphism defined over F:

e c:0€l'yr — ¢, € G(F) is a 1-cocycle such that 1~19¢ = Ad(c,) for all o € T'p.

There is a natural notion of isomorphism between pure inner forms the equivalence classes
of which are naturally in bijection with H'(F, &) (the isomorphism class of (G, 1, ¢) being
parametrized by the image of ¢ in H'(F,G)). Moreover, inside an equivalence class of pure
inner forms (G’ v, ¢), the group G’ is well-defined up to G'(F')-conjugacy. We will always
assume fixed for all & € H'(F,G) a pure inner form in the class of a that we will denote by
(G, Ve, o) or simply by [G,]if no confusion arises.

Let (G’,1,c) be a pure inner form of G. Then, we will say that two semi-simple elements
x € G(F) and y € GL(F) are strongly stably conjugate and we will write

Mstably

(this extends the previous notation) if there exists g € G(F) such that y = ¢(gzg™') and
the isomorphism ¢ o Ad(g) : G, ~ G, is defined over F. Again, the last condition has an
interpretation in terms of cohomological classes: it means that the 1-cocycle 0 € I'p —
g lc,0(g) takes its values in Z(G,). For x € G(F) the set of semi-simple conjugacy classes
in G'(F') that are strongly stably conjugate to z is naturally in bijection with

Im (H'(F, Z(G.)) = H'(F, Za(x))) N p; ()

where o € H'(F,G) parametrizes the equivalence class of the pure inner form (G’,, c) and
p. denotes the natural map H'(F, Zg(z)) — H'(F,G). We will need the following fact

(12.1.1) Let y € Gi(F) and assume that GG and G, are both quasi-split. Then, the set

{ZL' € GSS(F)7 T ~stab y}

is non-empty.

Indeed, since G, is quasi-split, we can fix a Borel subgroup B, of G} and a maximal torus
T, C B, both defined over F. Consider the embedding ¢ = w&i : T,7 — G. Since ¢ is
an inner form, it is easy to see that for all ¢ € I'r the embedding ?¢ is conjugate to ¢. As
G is quasi-split, by a result of Kottwitz ([Kottl] Corollary 2.2), there exists g € G(F) such
that Ad(g) o ¢ is defined over F. Set z = gu(y)g~' = g (y)g~" and T, = gu(T,)g~*. We
claim that x and y are strongly stably conjugate. To see this, we first note that the 1-cocycle
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o €I'p— g lc,0(g) takes its values in T, (as Ad(g) o is defined over F). Hence, we only
need to show that the map H*(F, Z(G,)) — H(F,T,) is surjective or, what amounts to the
same, that the map H'(F, Z(G))) — H'(F,T,) is surjective. Denote by A the set of simple
roots of T, in B, (a priori these roots are not defined over F' but I'r acts on them). We have
the equality
X:(T,/Z(Gy)) = P Za
acA

and the Galois action on X% (T,/Z(G,)) permutes the basis A. It follows that the torus
T,/Z(G,) is a finite product of tori of the form Rp,rG,, where F” is a finite extension of F
and Ry denotes the functor of restriction of scalars. In particular, by Hilbert 90 the group
H'(F,T,/Z(G,)) is trivial and it immediately follows that the morphism H'(F, Z(G})) —
HY(F,T,) is surjective.

We continue to consider a pure inner form (G’, 1, c¢) of G. We say of a quasi-character 6 on
G(F) that it is stable if for all regular elements =,y € G,ee(F') that are stably conjugate we
have 0(x) = 0(y). Let 6 and 0’ be stable quasi-characters on G(F') and G'(F’) respectively
and assume moreover that G is quasi-split. Then, we say that 6" is a transfer of 0 if for all
regular points x € Greg(F') and y € G, (F') that are stably conjugate we have 0'(y) = 0(z).
Note that if 6" is a transfer of 6 the quasi-character 6’ is entirely determined by @ (this is
because every regular element in G’(F') is stably conjugate to some element of G(F') for
example by the point [2.1.1] above). We will need the following:

(12.1.2) Let 6 and 6’ be stable quasi-characters on G(F') and G'(F') respectively and assume
that ¢ is a transfer of §. Then, for all x € G (F) and y € G, (F) that are strongly
stably conjugate we have

co(y) = co(z)

Let x € Gx(F) and y € GL(F) be two strongly stably conjugate semi-simple elements.
Choose g € G(F) such that y = ¢(gzg™!) and the isomorphism ¢ o Ad(g) : G, ~ G, is
defined over F. We will denote by ¢ this isomorphism. If G, and Gj are not quasi-split
there is nothing to prove since by Proposition L5T](i) both sides of the equality we want to
establish are equal to zero. Assume now that the groups G, G, are quasi-split. Let B, be a
Borel subgroup of G, and T,, C B, be a maximal torus, both defined over F. Set B, = (B;)
and T, = «(T,). Then, B, is a Borel subgroup of G and T, C B, is a maximal torus. By
Proposition A.5.1](ii), we have
DY(x)Y2¢cy(x) = |W(G,, T,)|™'  lim DY ")%0(z)

/€T, (F)—x

and

G’ /2. _ l -1 : G'(,N\1/2p1(, 1
D™ (y) Feo(y) = W(G,, T,)| y,ETEg}HyD ()70 (y)
= [W(G,,, T)|I”"  lim DY (u(a")"*¢'(u("))

/€T, (F)—x
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For all 2’ € T,(F) N Gyeg(F'), the elements 2’ and «(z’) are stably conjugate. Hence, since
¢’ is a transfer of 6, we have ¢'(«(2')) = 6(2') for all 2’ € T,(F) N Greg(F). On the other
hand, we also have D%(z) = D (y), |[W(G,,T,)| = |W(G,,T,)| and DY (u(z")) = D(z')
for all @’ € T,(F) N Gyreg(F). Consequently, the two formulas above imply the equality
co(y) = co(x).

Let us assume henceforth that G is quasi-split. Following Kottwitz [Kott2], we may associate
to any class of pure inner forms a € H'(F, Q) a sign [e(G,)| (as the notation suggests, this
sign actually only depends on the isomorphism class of the group G,). Let =
H?(F,{£1}) = {£1} be the 2-torsion subgroup of the Bauer group of F. The sign e¢(G,)
will more naturally be an element of Bry(F'). To define it, we need to introduce a canonical
algebraic central extension

(12.1.3) 1 {1} =G> G -1

of G by {£1}. Recall that a quasi-split connected group over F' is classified up to conjugation
by its (canonical) based root datum Vy(G) = (X¢, Ag, X%, Al) together with the natural
action of I'r on Wo(G). For any Borel pair (B,T") of G that is defined over F', we have a
canonical I'p-equivariant isomorphism ¥y(G) ~ (X*(T),A(T, B), X.(T), A(T, B)") where
A(T, B) C X*(T) denotes the set of simple roots of T in B and A(T, B)" C X, (T') denotes
the corresponding sets of simple coroots. Fix such a Borel pair and set

1
P=3 Z )ﬁEX*(T)@?@

BER(G,T

for the half sum of the roots of T"in B. The image of p in Xg ® Q doesn’t depend on the
particular Borel pair (B, T') chosen and we shall still denote by p this image. Consider now
the following based root datum

(12.1.4) (Xa, Mg, X, AY)

where X¢ = X¢ +Zp € Xe ® Q and Xi = {\Y € X% (\Y,p) € Z}. Note that we have
AY, C X} since (", p) = 1 for all ¥ € AY,. The based root datum I2Z14, with its natural
['p-action, is the based root datum of a unique quasi-split group éo over F' well-defined
up to conjugacy. Moreover, we have a natural central isogeny Gy — G, well-defined up to
G(F)-conjugacy, whose kernel is either trivial or {+1} (depending on whether p belongs to
X¢ or not). If the kernel is {1}, we set G = Gy otherwise we simply set G = G x {£1}.
In any case, we obtain a short exact sequence like well-defined up to G(F)-conjugacy.
The last term of the long exact sequence associated to yields a canonical map

(12.1.5) HY(F,G) — H*(F,{£1}) = Bry(F) ~ {£1}
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We now define the sign e(G,,), for « € H'(F,G), simply to be the image of a by this map.
We will need the following fact

(12.1.6) Let T be a (not necessarily maximal) subtorus of G. Then, the composite of
with the natural map H'(F,T) — H'(F,G) is a group morphism H'(F,T) — Bry(F).

Moreover, if T' is anisotropic this morphism is onto if and only if the inverse image T
of T'in G is a torus (i.e., is connected).

The first part is obvious since the map H'(F,T) — Bry(F) = H?(F,{41}) is a connecting
map of the long exact sequence associated to the short exact sequence

(12.1.7) 15 {£1} 5T T —1

of algebraic abelian groups. To see why the second part of the claim is true, we first note
that if 7" is not a torus then the short exact sequence [I2.1.7splits so that the connecting map
HY(F,T) — H*(F,{+£1}) is trivial. On the other hand, if T is a torus and T is anisotropic
then T is also anisotropic. From the long exact sequence associated to I2.1.7, we can extract
the following short exact sequence

HY(F,T) — H*(F,{+1}) — H?*(F,T)

But, by Tate-Nakayama we have H2(F,T) = 0 and it immediately follows that the morphism
HY(F,T) — H?*(F,{+£1}) is onto.

12.2 Pure inner forms of a GGP triple

Let V' be a hermitian space. We have the following explicit description of the pure inner forms
of U(V). The cohomology set H'(F,U(V)) naturally classifies the isomorphism classes of
hermitian spaces of the same dimension as V. Let o € H'(F,U(V)) and choose a hermitian
space V,, in the isomorphism class corresponding to a. Set Vs =V ®p F and Vor=Va® rF.
Fix an isomorphism ¢, : Vi ~ V,  of E-hermitian spaces. Then, the triple (U(V4), tha, ¢a),
where 1), is the isomorphism U(V)# ~ U(V,)F given by ¥,(g9) = ¢o 0 go ¢! and ¢, is
the 1-cocycle given by o € I'p — ¢,17¢,, is a pure inner form of U(V) in the class of a.
Moreover, the 2-cover of U(V') that has been defined for general reductive groups at
the end of the previous section admits the following explicit description:

—~—

o If dim(V) is odd, then U(V) =U(V) x {£1};

—_~—

e If dim(V) is even then U(V) = {(g,2) € U(V) x Ker Ng,p; det(g) = 2°}.
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We now return to the GGP triple (G, H,¢) that we have fixed. Recall that this GGP
triple comes from an admissible pair (V, W) of hermitian spaces and that we are assuming
in this chapter that the groups G and H are quasi-split. Let o € HY(F,H). We are
going to associate to a a new GGP triple (G, H,, &, )| well-defined up to conjugacy. Since
HY(F,H) = H'(F,U(W)), to the cohomology class a corresponds an isomorphism class
of hermitian spaces of the same dimension as W. Let [[,] be a hermitian space in this
isomorphism class and set [Vo] = W, @1 Z (recall that Z is the orthogonal complement of W
in V). Then, the pair (V,,, W,) is easily seen to be admissible and hence there is a GGP triple
(Ga, Ha, &) associated to it. Of course, this GGP triple is well-defined up to conjugacy. We
call such a GGP triple a pure inner form of (G, H,£). By definition, these pure inner forms
are parametrized by H'(F, H). Note that for all « € H'(F, H), G, is a pure inner form
of G in the class corresponding to the image of o in H'(F,G) and that the natural map
HY(F,H) — H'(F,Q) is injective.

12.3 The local Langlands correspondence

In this section, we recall the local Langlands correspondence in a form that will be suitable
for us. Let G be a quasi-split connected reductive group over F' and denotes by Cdl =
G(C) x Wg its Langlands dual, where Wz denotes the Weil group of F. Recall that a
Langlands parameter for G is a homomorphism from the group

TH = Wg x SLy(C) if Fis p — adic
S We if F=R

to L@ satisfying the usual conditions of continuity, semi-simplicity, algebraicity and com-
patibility with the projection G — Wp. A Langlands parameter ¢ is said to be tempered
if @(Wg) is bounded. By the hypothetical local Langlands correspondence, a tempered
Langlands parameter ¢ for GG should give rise to a finite set called a L-packet, of
(isomorphism classes of) tempered representations of G(F'). Actually, such a parameter ¢
should also give rise to tempered L-packets C Temp(G,) for all « € HY(F,G) (we
warn the reader that in this formulation of the local Langlands correspondence, some of the
L-packets I19 () may be empty). These families of L-packets should of course satisfy some
conditions. Among them, we expect the following properties to hold for every tempered
Langlands parameter ¢ of G:

(STAB) For all « € H'(F, @), the character

- Y o

mell% (p)

is stable

see J12.1] for the definition of stable; also notice that our different notion of “strongly stable
conjugate” does not affect this property since it only involves the values of 6, , at regular
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semi-simple elements (for which the two notions of stable conjugacy coincide). For a =1 €
HY(F,@G), in which case G, = G, we shall simply set Oy = 01,

(TRANS) For all « € H*(F,G), the stable character 6, is the transfer of e(G,)0,,
where e(G,) is the Kottwitz sign whose definition has been recalled in

Section 12,11

(WHITT) For every O € Nil,es(g), there exists exactly one representation in the
L-packet 119 () admitting a Whittaker model of type O.

(cf. Section .8 for the bijection between Nil,.;(g) and the set of types of Whittaker models).

Notice that these conditions are far from characterizing the compositions of the L-packets
uniquely. However, by the linear independence of characters, conditions (STAB) and (TRANS)
uniquely characterize the L-packets [1%(p), « € HY(F,G), in terms of 11%(y).

When F' = R, the local Langlands correspondence has been constructed by Langlands himself
[Lan] building on previous results of Harish-Chandra. This correspondence indeed satisfies
the three conditions stated above. That (STAB) and (TRANS) hold is a consequence of
early work of Shelstad ([She] Lemma 5.2 and Theorem 6.3). The property (WHITT) for its
part, follows from results of Kostant ([Kost] Theorem 6.7.2) and Vogan ([Vo| Theorem 6.2).
When F'is p-adic, the local Langlands correspondence is known in a variety of cases. In par-
ticular, for unitary groups, which are our main concern, the existence of the Langlands cor-
respondence is now fully established thanks to Mok [Mok|] and Kaletha-Minguez-Shin-White
[KMSW] both building up on previous work of Arthur who dealt with orthogonal and sym-
plectic groups [AT]. That the tempered L-packets constructed in these references verify the
conditions (STAB) and (TRANS) follows from [Mok| Theorem 3.2.1 (a) and [KMSW]| Propo-
sition 1.5.2. Moreover, the L-packets on the quasi-split form G satisfy condition (WHITT)
by [Mok] Corollary 9.2.4.

12.4 The theorem

Recall that we fixed a GGP triple (G, H, ) with the requirement that G and H be quasi-split.
Also, we have defined in Section the pure inner forms (G, Hy, &) of (G, H, ). These
are also GGP triples, they are parametrized by H!(F, H) and G, is a pure inner form of G
corresponding to the image of o in H'(F,G) via the natural map H'(F, H) — H'(F,G).

As we said, the local Langlands correspondence, in the form we stated it, is known for unitary
groups. It is a fortiori known for the product of two such groups and hence for G.

The purpose of this chapter is to show the following theorem. It has already been shown
in [Beul] (théoreme 18.4.1) in the p-adic case. The proof we present here is essentially the
same as the one given in [Beul] (which itself follows closely the proof of théoreme 13.3 of
[Wal]) but here we are treating both the p-adic and the real case at the same time and it
requires more care since in the real case there are usually far more pure inner forms to keep
track of (in the p-adic case there are only two unless dim(1V') = 0).

289



Theorem 12.4.1 Let ¢ be a tempered Langlands parameter for G. Then, there exists a
unique representation w in the disjoint union of L-packets

|| 1%y
a€H(F,H)

such that m(m) = 1.

12.5 Stable conjugacy classes inside I'(G, H)

Recall that in Section [[T.1], we have defined a set I'(G, H) of semi-simple conjugacy classes
in G(F). It consists in the G(F')-conjugacy classes of elements x € U(W)s(F') such that

] := UW,)a

is an anisotropic torus (where we recall that W, denotes the image of z — 1 in W). Two ele-
ments z, r’ € U(W)g(F') are G(F)-conjugate if and only if they are U (W) (F')-conjugate and
moreover if it is so, any element g € U(W)(F') conjugating = to a2’ induces an isomorphism

U(Wa/c/):v = U(W!’)w’

Moreover, this isomorphism depends on the choice of g only up to an inner automorphism.
From this it follows that any conjugacy class = € I'(G, H) determines the anisotropic torus
T, up to a unique isomorphism so that we can speak of “the torus” 7T, associated to z.

These considerations of course apply verbatim to the pure inner forms (G, Ha, &), o €
HY(F, H), of the GGP triple (G, H, ) that were introduced in Section 122l In particular,
for all « € H'(F, H), we have a set I'(G,, H,) of semi-simple conjugacy classes in G,(F)
and to any y € I'(G,, H,) is associated an anisotropic torus T},.

Proposition 12.5.1 (i) Let « € H'(F, H) and y € (G, Hy) be such that G, is quasi-
split. Then, the set
{SL’ € F(Gv H)7 T ~stab y}
1S non-empty.

(ii) Let « € HY(F,H), x € T(G,H) and y € T'(Gq, Hy) be such that x ~ga.p, y. Choose
g € Guo(F) such that g (x)g™" =y and Ad(g) o Yy : G, ~ G, is defined over F.
Then, Ad(g) o v, restricts to an isomorphism

T, ~1T,

Y

that is independent of the choice of g.
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(iii) Let x € T'(G,H). Then, for all o« € H'(F, H) there exists a natural bijection between
the set

{y € F(G!om Ha); T ~stab y}

and the set

¢z ()
where q, denotes the natural map H'(F,T,) — H'(F,G).

() Let x € T(G, H), x # 1. Then, the composition of the map o € H(F,G) — e(G,) €
Bry(F) with the natural map HY(F,T,) — HY(F,G) gives a surjective morphism of
groups H'(F,T,) — Bry(F).

Proof: For all « € H'(F, H) = H'(F,U(W)), let us fix a hermitian space W,, of the same
dimension as W and in the isomorphism class defined by o. Set V,, = W, @+ Z. Then, we
may assume that G, = U(W,) xU(V,,). Moreover, we may also fix the other parts of the data
(Ga, Vo, o) of a pure inner form of G in the class of « as follows. Choose an isomorphism
¢o : Wg =~ W, 5 of E-hermitian spaces, where we have set as usual Wz = W ®@p F and
W,r=W.®F F, and extend it to an isomorphism ¢ : Vi ~ V, 7 that is the identity on
Z7. Then, we may take 1), to be the isomorphism

Gr=UWg) xU(VF) =G, 7=UW,5) x UV, 7)
given by

(gw,gv) — (6 ogw o (o))", on o gvo(¢n))

and we may take the 1-cocycle ¢, to be given by

o €Tr > (00) "0, (00)'700) € UWF) x U(VF) = GF

Notice that if we do so, then the isomorphism ¢, sends Hz onto H, 7.

(i) Let y € I'(Ga, H,) and assume that G, is quasi-split. Identify y with one of its
representatives in U(W,). Writing the decomposition IT.11l for G, ,, we have

_ / "
Ga7y o GO&Z/ X Ga7y

where

Goy = UMW) xUV,), Gq,=UWT), x UMW),
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(iii)

where W/ is the kernel of y — 1 in W, V. = W) & Z and W/ is the image of y — 1 in
W,. By definition of I'(G,, H,), T, = U(W/)), is an anisotropic torus and in particular
y is a regular element of U(W/) without the eigenvalue 1. Since G, , is quasi-split,
we see that the unitary groups of both W/ and V., = W/ @& Z are quasi-split. As Z
is odd-dimensional, by Witt’s theorem these two conditions are easily seen to imply
that the hermitian space W/ embeds in W. Fix such an embedding W/ — W and
let us denote by W” the orthogonal complement of W/ in W. Then, UW/) is a
pure inner form of U(W") and moreover U(W") is quasi-split. Hence, by [2.1.1] there
exists a regular element x € U(W")(F) that is stably conjugate to y. In particular, x
doesn’t have the eigenvalue 1 when acting on W” and moreover we have an isomorphism
UW"), >~ UW/), which is defined over F. Thus, U(W"), is an anisotropic torus and
it follows that x € I'(G, H). This ends the proof of (i).

Let us identify x and y with representatives in U(W)(F') and U(W,,)(F) respectively.
Then, 1,(x) and y are G,(F)-conjugate. However, as G, = U(W,) x U(V,), two
elements in U(W,)(F) are G (F)-conjugate if and only if they are U(W,,)(F)-conjugate.
Hence, there exists h € U(W,)(F) such that y = ht,(z)h~'. Obviously, h o ¢, sends
W) to W/ and so Ad(h)o, induces an isomorphism T, = U(W/), ~ U(W/ ), =T,.
Now every element g € G,(F) such that gi,(z)g~" = y may be written g = g,h for
some element g, € G, ,(F) (since G, has a derived subgroup which is simply-connected,

here we have G, = Z¢, (y)) and as T), is contained in the center of G, ,, the restriction
of Ad(g) o9, to T, will coincide with the isomorphism Ad(h) o ¢, : T, ~ Tj,.

Recall that the set

{y S F(Ga)7 L ~stab y}

is naturally in bijection with Im (H'(F, Z(G,)) — H*(F, G,))Np, ' («) where p, denotes
the natural map H*(F,G,) — H'(F,G) (since the derived subgroup of G, is simply
connected we have Zg(x) = G,). This bijection is given as follows: for y € I'(G,)
such that = ~g.p, y choose g € G(F) so that 1 (gzg™") = y. Then, the cohomological
class associated to y is the image of the 1-cocycle o € I'r — g7 'cy,0(g) in H'(F,G,)
which by definition belongs to Im (H*(F, Z(G,)) — H*(F,G,)) N p,'(a). To obtain
the desired bijection, it suffices to show that the image of the subset

{y S F(Gon Ha); T ~stab y}

by this bijection is exactly H'(F,T,) N p;'(a) (notice that the restriction of the map
H\F,Z(G,)) - HY(F,G,) to H'(F,T,), where the embedding T, < Z(G,) being
induced from H — G is the ‘diagonal’ one, is injective as the latter is a direct summand
of HY(F,G,)). Let y € I'(Gq, H,) be such that o ~g.p, y and identify y with one of
its representatives in H,(F). Since two semi-simple elements of H,(F) are G, (F)-

conjugate if and only if they are H,(F')-conjugate and as 1, sends H(F') to H,(F'), we
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may find h € H(F) such that y = 1, (hxh™!) and it follows that the cohomology class
associated to y lies in

(12.5.1) Im (H'(F, H,) = H'(F,G,)) n1m (H'(F, Z(G,)) = H'(F,G,)) Np;'(a)

Conversely, assume that y € I'(G,) is strongly stably conjugate to x and that its
associated cohomology class belongs to [Z5.1l Then, since the map H(F, H) —
HY(F,G) is injective, we may find h € H(F) such that 1,(heh™') € H,(F) is in the
conjugacy class of y. From this, it is easy to infer that y € I'(G,, H,). Thus, we have
proved that the set

{y € I(Ga, Ha); T ~stat Y}

is in bijection with [2Z.5.1l To conclude, we only need to prove the equality

(12.5.2)
Im (H'(F,H,) - H'(F,G,)) NIm (H'(F, Z(G,)) — H'(F,G,)) = H'(F, T},

Using the decompositions
G, =G, xG! H,=H.,xT,
Gl =T, xT,
it is easy to deduce that

Im (H'(F,H,) = H'(F,G,)) NIm (H'(F, Z(G,)) = H'(F,G,)) =
[Im (H'(F, Z(G,)) — H'(F,G.)) NIm (H'(F, H,) - H'(F,G.))] x H'(F,T})

Hence, to get [12.5.2] it suffices to see that

(12.5.3)  Im (H'(F, Z(G,)) — H'(F,G,)) NIm (H'(F, H,) — H'(F,G")) = {1}

Now recall that (see Section M1.1))
G, = UMW) x U(V])

H, = U(W,) x Ny

where W/ is the kernel of x — 1 in W, V] = W, & Z and N, is the centralizer of x in
N. Thus, we have

HY(F,G,) = H\(F,UW,)) x H'(F,U(V}))
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(iv)

H'(F.H;) = HY(F,UW,))
and the map H'(F, H.) — H'(F,G’) is the product of the two maps

HY(F.UW,)) - H(F.UW), H'(F,UW,))— H(F,U(V,))

which are both injective. So, to get [12.5.3] we only need to show that

(12.5.4)
Im (H' (F, Z(U(W,))) — H'(F,U(V;)) NIm (2" (F, Z(U(V;))) = H'(F,U(V}))) = {1}

Recall that H'(F,U(V})) classifies the (isomorphism classes of ) hermitian spaces of the
same dimension as V]. Let 6 € F* \ Ng/p(E*). Then, the group H' (F, Z(U(W})))
contains only one nontrivial element whose image in H'(F,U(V!)) corresponds to the
hermitian space 0W, & Z (where W, denotes the hermitian space obtained from W,
by multiplying its hermitian form by ¢). Similarly, H! (F, Z(U(V}))) has only one
nontrivial element whose image in H'(F,U(V/)) corresponds to the hermitian space
dV!. As Z is odd dimensional, we have 67 % Z (the two hermitian spaces have distinct
discriminants) so that by Witt’s theorem we also have V) = 0W! @ 67 # SW! & Z.
This proves [[2.5.4] and ends the proof of (iii).

Let us denote by G the 2-cover of G defined at the end of Section TZI] and let 7, be
the inverse image of T} in this 2-cover. Then, by [2.1.6] it suffices to check that T,

is connected. By the precise description of U(V) and U(W) given at the beginning of
Section [12.2]and since exactly one of the hermitian spaces V and W is even-dimensional,
we have B

T, ={(t,z) € T, x Ker Ng/p;det(t) = 2*}

Thus, we need to show that the determinant has no square-root in the character group
of T, but this is obvious since over the algebraic closure there exists an isomorphism

(T.)F ~ G,

t— (ti)1<i<e

for some integer ¢ > 1 such that

forallt € T,(F). A
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12.6 Proof of Theorem [12.4.1]
Let ¢ be a tempered Langlands parameter for G. We want to show that the sum

(12.6.1) > m(n)

a€H(F,H) nellCa(p)

is equal to 1. Let o € H*(F, H). By Theorem [T.4.2] we have

m(r) = lim cx(y) D (y) P Ay) " 2dy
s—0T [(Go,Hao)

for all 7 € 1% (y). Summing this equality over the L-packet 1% (¢), we deduce that

(12.6.2) > m(r) = lim Co.a(y) DS () 2 Aly)* 2dy

s—0t
€llGa () [(Ga,Ha)

where we have set

Coa = E Cr

m€ll% (p)

Denote by gian(Ga, Hy) the set of strongly stable conjugacy classes in I'(G,, H,). We endow
this set with the quotient topology and with the unique measure such that the projection
map ['(Gq, Hy) = Tstan(Ga, Hy) is locally measure-preserving. By the condition (STAB) of
Section [[2.3] the character 0, , = Z 0. is stable and it follows from that the
mell%a (p)

function y — ¢, o(y) is constant on the fibers of the map I'(G,, Hy) = Istan(Ga, Hy). Since
it is also trivially true for the functions D% and A, we may rewrite the right hand side of
as an integral over [y, (Ga, Hy) to obtain

(1263) > m(m)=lm 2 v Wl ea () D% () Aly) ™y
WEHGQ ((p) s=0 Fstab(Ga ,Ha)

where postab © ['(Ga, Ha) = Tstan(Ga, Hy) is the natural projection.

Let us introduce the subset F;lflab(Ga, H,) C Tsap(Ga, Hy) of elements x € Ty (Go, Hy) such
that G, , is quasi-split. This subset is open and closed in [y (Ga, Hy) and by Proposition
A5 1.(i), the function ¢, , vanishes on the complement [gan(Gao, Ha) N thdab(Ga7 H,) so
that becomes

(12.6.4) > m(r) = lim [P ke (9.0 (y) D (9) P A (y)*~ Py

—0t d
rellGa (p) s thab(Ga’Ha)
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By Proposition I25.1(i), we have an injection T (G,, Hy) < T (G, H) such that if
y — x then y and x are strongly stably conjugate. For all y € F;lflab(Ga, H,), denoting by x
its image in Fstab(G, H), we have the following commutative diagram

T,(F)

|

19 (Ga, Hy) — T (G, H)

T.(F)

where the two vertical arrows are only defined in some neighborhood of 1, given by t — ty,
t — tx and are both locally preserving measures (when 7} (F') and 7, (F') are both equipped
with their unique Haar measure of total mass one) and the top vertical arrow is the restriction
to the F-points of the isomorphism provided by Proposition [2.51[(ii). From this diagram,
we easily infer that the embedding T (G, Hy) — T'% (G, H) preserves measures. More-
over, by [] and the condition (TRANS) of Section TZ3 if y € T (G, Hy) maps to
x € ngb(G, H) we have the equality c,o(y) = e(Ga)cy(x) (where we have set ¢, = c,1).
Using these two facts, we may now express the right hand side of [2.6.4] as an integral over
Fstdab(G, H). More precisely, the result is the following formula

> m(r) = lim e(Go)na(x)cy(z) DO (2) V2 A(2)* 2 da

+ d
wellGa (‘P) s=0 thab(G’H)

where we have set
na(x) = |{y S F(Gav Ha>; Y ~stab SL’}|

for all z € T% (G, H). Summing the above equality over a € H'(F, H), we get

(12.6.5)
> D> mm=lim ) > e(Ga)na(@)ey(z) D (2) 2 Ax) 1 da
a€H(F,H) nellCa () S0 I GH) e fri(p

Let z € % (G, H) and consider the inner sum
(12.6.6) > e(Ganalx)
a€H' (F,H)

By Proposition [2.5.1](iii), this sum equals

> e(Gy)

BEH! (FTx)
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Moreover, by Proposition I2Z5.1iv), the map 8 € H'(F,T,) — e(Gg) € Bry(F) ~ {£1}
is a group homomorphism which is non-trivial for x # 1. We deduce from this that the
sum is zero unless x = 1. Returning to the formula and taking into account
these cancellations, we see that the right hand side of reduces to the contribution of
1 € I'(G, H) and thus we get

(12.6.7) > > m(r) =c,(1)

a€H(F,H) reTl%a ()

By Proposition EL.81(i), the term c,(1) has the following representation-theoretic interpre-
tation: it equals the number of representations in I1%(p) admitting a Whittaker model, a
representation being counted as many times as the number of different types of Whittaker
model it has, divided by the number of different type of Whittaker models for G. By the
condition (WHITT) of Section [[2.3] this number is 1. It follows that the left hand side of
I2.6.7 is also equal to 1 and we are done. l

A Topological vector spaces

In this appendix, we collect some facts about topological vector spaces that will be use
constantly throughout the paper. We will only consider Hausdorff locally convex topological
vector spaces over C. To abbreviate we will call them topological vector spaces. Let E be
a topological vector space. Recall that a subset B C FE is said to be bounded if for every
neighborhood U of the origin there exists A > 0 such that B C A\U. An equivalent condition is
that every continuous semi-norm on E is bounded on B. By the Banach-Steinhaus theorem,
a subset B C FE is bounded if and only if it is weakly bounded, meaning that for any
continuous linear form ¢’ on E the set {(b,€’), b € B} is bounded. If B C F is a bounded
convex and radial (that is AB C B for all |\| < 1) subset of E then we will denote by Ep
the subspace spanned by B equipped with the norm

gp(e) =inf{t > 0; e € tB}, e€ Ep

We say that E is quasi-complete if every bounded closed subset is complete. Of course
complete implies quasi-complete. If F is quasi-complete, then for every closed bounded
convex and radial subset B C E, the space Ep is a Banach space. We will denote by E’
the topological dual of E that we will always endow it with the strong topology (that is
the topology of uniform convergence on bounded subsets). If F is quasi-complete, a subset
B C E' is bounded if and only if for all e € E the set {{e,b); b € B} is bounded (again
by the Banach-Steinhaus theorem). More generally, if F' is another topological vector space
then we will equip the space Hom(E, F') of continuous linear maps from F to F' with the
strong topology. Thus, a generating family of semi-norms for the topology on Hom(FE, F') is
given by
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pe(T) =supp(Te), T € Hom(E,F)
eeB
where B runs through the bounded subsets of £’ and p runs through a generating family of
semi-norms for F'.

A.1 LF spaces

Let (E;, fij), @ € I, be a direct system of topological vector spaces (the connecting linear
maps f;; being continuous). Consider the direct limit in the category of vector spaces

I

We will in general endow E with the direct limit topology that is the finest locally convex
topology on E such that all the natural maps F; — E are continuous. If F' is another
topological space, a linear map £ — F' is continuous if and only if all the induced linear
maps E; — F, ¢ € [ are continuous. If I is at most countable, the E;, i € I, are Fréchet
spaces and E is Hausdorff (this is not automatic) then we will call E an LF space. If E is
an LF space then we can write it as the direct limit of a sequence (E,),>o of Fréchet spaces
where the connecting maps are just inclusions E,, C E, ,; so that we have

E:U&

n=0
A bounded subset B of E is not always included in one of the F,, but this is the case if B
is convex radial and complete in which case there exists n > 0 such that B is included and
bounded in E,, ([Grl] Corollaire IV.2 p.17). Hence, in particular, if £ is quasi-complete then
every bounded subset is included and bounded in some FE,,.

LF spaces share many of the good properties of Fréchet spaces. First of all, an LF space is
barrelled ([Tr] Corollary 3 of Proposition 33.2), hence the Banach-Steinhaus theorem (aka
uniform boundedness principle) applies to them ([Tr] Theorem 33.1). In particular, if E is
an LF space, F' any topological vector space and (u,),>1 is a sequence of continuous linear
maps from E to F' that converges pointwise to a linear map u : £ — F, then w is continuous
and the sequence (u,),>1 converges to u uniformly on compact subsets of E. Less known is
the fact the open mapping theorem and the closed graph theorem continue to hold for LF
spaces. This result is due to to Grothendieck (cf. [Grl] Theorem 4.B) and will be constantly
used throughout this paper. We state it in the next proposition.

Proposition A.1.1 Let E and F be LF spaces. Then we have the following

(i) (Open mapping theorem) If f : E — F is a continuous surjective linear map, then it
1S open.

(i1) (Closed Graph theorem) A linear map f : E — F is continuous if and only if its graph
15 closed.
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A.2 Vector-valued integrals

Let E be a topological vector space and let X be a Hausdorff locally compact topological
space equipped with a regular Borel measure u. Let ¢ : X — E be a continuous function.
We say that ¢ is weakly integrable (with respect to u) if for all €’ € E’ the function z € X —
(p(z), ') is absolutely integrable. If this is so, there exists a unique vector I(p) in (E’)*, the
algebraic dual of E’, such that

(I(p), €)= /}((gp(z), eYdu(z), forall e € E

We call I(p) the weak integral of ¢ and we usually denote it simply by

/X o (2)dp(x)

Note that this integral doesn’t necessarily belong to E or the completion of E.

We will say that ¢ is absolutely integrable if for any continuous semi-norm p on E the function
x € X — p(p(x)) is integrable. Of course, absolutely integrable implies weakly integrable. If

 is absolutely integrable and E' is quasi-complete then the integral / o(z)dp(x) belongs to
X

E. In general, / o(x)dp(x) belongs to E, the completion of E. Of course, if ¢ is compactly

X
supported then it is absolutely integrable (recall that we assume ¢ to be continuous).

A.3 Smooth maps with values in topological vector spaces

Let E be a topological vector space and M be a real smooth manifold. Let £ € NU {oo}.
Let ¢ be a map from M to E. We say that ¢ is strongly C* if it admits derivatives of all
orders up to k (in the classical sense) and that all these derivatives are continuous. We say
that ¢ is weakly C* if for all ¢ € E’ the map m € M — (p(m), ¢’} is of class C*. Obviously,
if o is strongly C* then it is also weakly C*. A function that is weakly C> will also be called
smooth. The next proposition summarizes the main properties of strongly and weakly C*
functions. The first point of the proposition shows that for quasi-complete spaces there is not
much difference between weakly C* and strongly C* maps. The second point implies that
the notion of smooth functions with values in £ only depends on the bornology of E (that
is the family of its bounded subset). This is a very important property and the subsequent
points of the proposition follow easily from it. In lack of a reference, we include a proof.

Proposition A.3.1 Let k € NU{oco}. Then
(i) If E is quasi-complete and @ : M — E is weakly C**' then ¢ is strongly C* .

(i) A map ¢ : M — E is smooth if and only if for all k > 0 and every relatively compact
open subset 0 C M, there exists a bounded subset B, C E such that @) factorizes
through Ep, and such that the induced map Q — Ep, is weakly C*;
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(i1i) Let A C E' be a subset such that every subset B C E that is weakly-A-bounded (meaning
that for all ¢ € A the set {(b,€'), b € B} is bounded) is bounded. Then, a map
©: M — E is smooth if and only if for all a € A the function m € M — {(p(m),a) is
smooth.

(iv) Assume again that E is quasi-complete. Let F be another topological vector space.
Then a map ¢ : M — Hom(E, F') is smooth if and only if for alle € E and f' € F’,
the map m € M — (p(m)(e), f') is smooth.

(v) Let F and G be two other topological vector spaces and assume that E is quasi-complete.
Let A: Ex F — G be a separately continuous bilinear map. Then, if p1 : M — E and
w9 : M — F are smooth functions, the function

m € M — A(p1(m), pa(m)) € G

1s also smooth.

Proof:

(i) The question being local, we may assume that M = R"™. Assume first that ¢ is weakly
C'. Then for all ¢ € E' and all z,y € R", we have

(o), €) = (p(z),€)| = /0 Ay — ) ({(.), €)) (1 = t)z + ty) dt'

o (1=2) (O

ly — |

< ly — zf| sup
selay]

This shows that for every compact subset K C R" the family

{w(y) — p(z)

, T,y € K}
ly — |

is weakly bounded hence bounded so that ¢ is Lipschitz hence continuous.

Assume now that ¢ is weakly C2. Let u,x € R” and ¢’ € E’. Then by Rolle’s theorem,
for all t € [—1,1] \ {0} there exists s; € [—1,1] with |s;] < || such that

<s0<fv i)~ pla), > = 0(u) ({p(), ¢)) (& + seu)

Hence, for all ¢, € [—1,1] \. {0}, we have
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t t’

)<so($ ttu) —p(z)  plzttu) —pz) e,>

/St o(u?) ((e(.),€)) (x + su)ds

t

< Ise = s Suwp |0(u?) ({p (), €)) (x + su)

< ([t +12) S |0(u?) ({p (), €)) (x + su)

It follows that the family

{(|t| eyt <s0(93+tU) —p(z) oz +tu) —w(fv)) it e[-11]~ {0}}

t t

is weakly bounded, hence bounded. Since FE' is quasi-complete, this immediately implies
that the limit

Ll tu) — p(a)
t—0 t

exists in . We just prove that the function ¢ is strongly derivable everywhere in every
direction. But for u € R™, d(u)y is of course weakly C*, hence continuous by the first
part of the proof. This shows that ¢ is indeed strongly C.

The general case follows by induction. Indeed, assume that the result is true for & > 1.
Let ¢ : R® — E be a weakly C**2 map. Then, of course ¢ is weakly C? hence strongly
C! by what we just saw. Moreover, for every u € R", the function 9(u)y is obviously
weakly C**! so that by the induction hypothesis it is also strongly C*. This proves
that ¢ is in fact strongly C**! and this ends the proof of (i).

(ii) Up to replacing F by its completion, we may of course assume E complete. Then, the
proof of (i) shows that it suffices to take
By = {(Dy)(m); m € Q, D € DiffZ,,, (M)}
for all kK > 0.

(iii) As we already explained, the true meaning of (ii) is that the notion of smooth func-
tion with values in a topological vector space only depends on the bornology of that
space. Hence, here it suffices to notice that the weak- A-topology on E defines the same
bornology as the original topology on E (this is exactly the assumption made on A).

(iv) Again, this is because the topology defined by the semi-norms 7' — |(Te, f')|, e € E
f € F', defines the same bornology on Hom(FE, F') as the strong topology.
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(v) We are immediately reduced to the case when G = C. Let £k > 0 and Q C M be a
relatively compact open subset. Then by (ii), there exists bounded subsets By C E
and Bj, C F such that the restrictions of ¢; and ¢, to Q2 factorize through Ep, and F Bl
respectively and induce weakly C**! maps from € into these spaces. Since F is quasi-
complete, the bilinear map A restricted to Ep, X Fpr induces a continuous bilinear form
Ep
Ep
spaces). Since the maps ¢ : Q — EBk and g : Q — FB/ are weakly C**1 by (i) they
are also strongly C*. It immediately follows that the map m € Q — A(p1(m), pa(m))
is of class C*. This of course implies (v). W

» X Fp. — C. Hence, this bilinear form extends continuously to EBk x F, B|, Where

. and F p;, denote the completion of Ep, and Fp, respectively (these are Banach

We will denote by C*°(M, E) the space of all smooth maps from M to E. We equip C*>°(M, E)
with a topology as follows. If E is complete then we endow C*°(M, E) with the topology
defined by the semi-norms

Ppx.g(®) = sup q[(Dp)(m)]

mekC
where K runs through the compact subsets of M, ¢ runs through the continuous semi-
norms on E and D runs through Diff> (M) the space of smooth differential operators on M
(note that by the point (i) of the last proposition, since E is complete, Diff> (M) acts on
C>®(M, E)). In the general case, we equip C’OO(M E) with the subspace topology coming
from the inclusion C*(M, E) C C>(M, E) where E is the completion of E.

A.4 Holomorphic maps with values in topological vector spaces

Let E be a topological vector space and M a complex analytic manifold. Let ¢ : M — F
be a map. We say that ¢ is holomorphic if for all ¢’ € E’ the function m € M +— {(p(m), ')
is holomorphic and we say that ¢ is strongly holomorphic if it admits complex derivatives
of all orders. Obviously, if ¢ is strongly holomorphic then ¢ is holomorphic. The analog of
Proposition [A.3.1] for holomorphic functions is true ([Gr2] Theorem 1) and is summarized in
the next proposition.

Proposition A.4.1 (i) If E is quasi-complete and ¢ : M — E is holomorphic if and only
if it is strongly holomorphic.

(ii)) A map ¢ : M — E is holomorphic if and only if for every relatively compact open
subset 0 C M there exists a bounded convex and radial subset B C E such that pq
factorizes through Eg and the induced map €2 — Ep is holomorphic;

(i1i) Let A C E' be a subset such that every subset B C E that is weakly-A-bounded (meaning
that for all ¢ € A the set {(b,€'), b € B} is bounded) is bounded. Then, a map
¢ : M — E is holomorphic if and only if for all a € A the functionm € M +— (p(m), a)
1s holomorphic.
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(iv) Assume again that E is quasi-complete. Let F be another topological vector space.
Then a map ¢ : M — Hom(E, F) is holomorphic if and only if for all e € E and
freF', the map m € M — (p(m)(e), f') is holomorphic.

Let X be a compact real smooth manifold. Denote by C°°(X) the space of smooth complex-
valued functions on X. It is naturally a Fréchet space and we will denote by C'~*°(X) its
topological dual. For each integer k > 0, we also have the space C*(X) of C* complex-valued
functions on X. It is naturally a Banach space and its dual C~*(X) is also a Banach space.
We have a natural continuous inclusion C=#(X) C C=°(X). Let M be a complex analytic
manifold. In Section [B.3] we will need the following fact

(A.4.1) Let ¢ : M — C~>°(X) be holomorphic. Then, for every relatively compact open
subset (2 C M, there exists an integer £ > 0 such that the map o factorizes through
C~*(X) and induces an holomorphic map Q — C~*(X).

This will follow from the point (ii) of the last proposition if we can prove that every bounded
subset B C C~>°(X) is contained and bounded in some C~%(X), k > 0. Note that we have
a natural continuous and bijective linear map

(A.4.2) lim C~*(X) = C™>(X)

Since C~>°(X) is the strong dual of a Fréchet space, it is complete ([Bour| Proposition
IV.3.2). Hence, if we can prove that[A.4.2]is a topological isomorphism then we will be done
(cf. Section [A.]). By the open mapping theorem, it suffices to show that C~>°(X) is an LF
space. This follows from the fact that C°°(X) is a nuclear space (cf. next section), hence
it is reflexive and the strong dual of a reflexive Fréchet space is an LF space ([Bour| IV.23
Proposition 4).

A.5 Completed projective tensor product, nuclear spaces

Let E and F be two topological vector spaces. For all continuous semi-norms p and ¢ on F
and F' respectively, define a semi-norm p ® ¢ on £ ® F' by

(p®q)(v) =inf{d_ple)q(fi); v=> e®fi}, vEE®F
i=1 i=1
where the infimum is taken over all decompositions v = > | ¢; ® f; of v where ¢; € E and
fi € F. If we choose two families of semi-norms (p;);e; and (g;);es that generate the topology
on E and F respectively, then the family of semi-norms (p; ®¢;) . j)erxs defines a topology on
E® F which is independent of the two chosen families (p;);e; and (g;)jes. We shall call it the
projective topology and we will denote by the completion of £ ® F for this topology.
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We call E®pF the completed projective tensor product of E and F. It satisfies the following
universal property ([Tt] Proposition 43.8): for any complete topological vector space G, the
map that associates to T € Hom(E®,F, G) the bilinear map (e, f) € E x F + T(e ® f)
induces a bijection

Hom(E®,F,G) ~ B(E, F; Q)

where B(FE, F'; G) denotes the space of all continuous bilinear maps F x F' — G. We shall
need the following

(A.5.1) Let E and F be Fréchet spaces, G be any topological vector space, M be a real
smooth manifold and ¢ be a map M — Hom(E®,F,G). Then, ¢ is smooth if and
only if for all e € E, all f € F and all ¢’ € G’, the map

m e M — (p(m)(e® f),d)

is smooth.

By Proposition [A31l(iii), it suffices to see that a subset B C Hom(E®,F,G) is bounded if
and only if for all e € E, f € F and ¢’ € G’ the set {{b(e ® f),¢'); b € B} is bounded. We
are immediately reduced to the case where G = C. Let B be a set of continuous linear forms
on E®pF , that we will identify with a set of continuous bilinear forms on F x F'; and assume
that the set {b(e, f), b € B} is bounded for all e € E and f € F. We want to show that B
is bounded in (E@,,F)/. This amounts to proving that the set {b(v); b € B} is bounded for
all v € E®pF . Since F and F' are Fréchet spaces, by [Tt] Theorem 45.1, every v € E@I,F is
the sum of an absolutely convergent series

(A.5.2) V=) Al ® Yy
n=0
where (A,)n>0 1S a sequence of complex numbers such that Z|)\n| < oo and (x,)ns0 (resp.

n=0
(Yn)n=0) is a sequence converging to 0 in E (resp. in F'). Thus, we only need to show that

the set {b(x,,yn); b € B n > 0} is bounded. But this follows from the usual uniform
boundedness principle (for Banach spaces) using the fact that £ and F' are quasi-complete.
This ends the proof of [A.5.1]

Another property of the projective tensor product that we shall need is the following.

(A.5.3) Let E and F be Fréchet spaces. Then a sequence (\,;),>o of continuous linear forms
on E®,[ converges pointwise if and only if for all e € E and all f € F' the sequence
(An(e ® f))nso converges.
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Indeed, by the universal property of the projective tensor product, the A, correspond to
continuous bilinear forms B,,: £ x F' — C. Now, if B, converges pointwise, since £ and F
are Fréchet spaces, by the Banach-Steinhaus theorem (and [Tr] Theorem 34.1) the sequence
(Bn)n>0 is equicontinuous and thus so does the sequence (\,;),>0. As it is converging on a
dense subspace of E@)pF , this sequence is therefore converging everywhere.

Nuclear spaces are a class of topological vector spaces that have many of the good properties
of finite dimensional vector spaces. For the precise definition of nuclear spaces we refer
the reader to [Ti]. Examples of nuclear spaces are C*°(M) or C°(M), where M is a real
smooth manifold. Any subspace and any quotient by a closed subspace of a nuclear space is
nuclear ([Tr] Proposition 50.1). A nuclear Fréchet space is a Montel space ([Tt] Proposition
50.2), hence is reflexive. Important for us will be the following description of the completed
projective tensor product of two nuclear spaces of functions ([Grl] Theorem 13). For every
set S, let us denote by F(S) the space of all complex-valued functions on S. We shall endow
this space with the topology of pointwise convergence.

Proposition A.5.1 (Grothendieck’s weak-strong principle) Let S and T be two sets and let
E and F be subpaces of F(S) and F(T) respectively. Assume that both E and F are equipped
with locally convex topologies that are finer than the topology of pointwise convergence and
that turn both E and F into nuclear LF spaces. Then, the natural bilinear map

ExF —F(SxT)

1s continuous and extends to an injective continuous linear map
E®,F — F(SxT)

whose image consists in the functions p : S x T — C which satisfies

e Forall s €S, the functiont € T — @(s,t) belongs to F';

e For all f' € F', the function s € S+ (p(s,.), f') belongs to E.

Finally, the next lemma will be used in Section in order to prove that spaces of quasi-

characters are nuclear. Before stating it, we introduce a notation. Let V' C U C R"™ be open

subsets. We will denote by the space of all smooth functions ¢ : V' — C such that
for all u € S(R™) the function d(u)y (extended by 0 outside V') is locally bounded on U.
We endow this space with the topology defined by the semi-norms

e.u(p) = sup [(O(u)p)(2)], ¢ € CF(V,U)

e

where C runs through the compact subsets of U and u runs through S(R™). With this
topology, Cp°(V,U) is easily seen to be a Fréchet space.
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Lemma A.5.2 Assume that the following condition is satisfied: For all x € U, there exists
an open neighborhood U, C U of x such that U, NV can be written as a finite union of open
convez subsets. Then, Cs°(V,U) is nuclear.

Proof: Fix for every x € U an open neighborhood U, C U satisfying the condition of the
lemma. Set V, = U, NV for all x € U. Then, the natural restriction maps C;°*(V,U) —
C°(V,, U,) induce a closed embedding

CrWV.U) = [[ G (Ve Un)
xelU

Hence, we only need to prove that the spaces C;°(V,, U,) are nuclear. We may thus assume
that V itself can be written as a finite union of open convex subsets. Let V = V;UVLU. . .UV,
d > 1, be such a presentation. The restriction maps again induce a closed embedding

d
C(V.U) = P (i, U)

i=1
from which it follows that we may assume, without loss of generality, that V is convex. If
V' is convex, then for all v € S(R") and all ¢ € C;°(V,U), by the mean value theorem,
the function d(u)¢ extends continuously to cly (V) (the closure of V in U). By Whitney
extension theorem [WHhI, it follows that every function ¢ € Cp°(V,U) extends to a smooth
function on U. Hence, the restriction map

C>*(U) = 2 (V,U)

is surjective. This linear map is obviously continuous and both C*°(U) and C;°(V,U) are
Fréchet spaces. Consequently, by the open mapping theorem, C;°(V,U) is a quotient of
C>°(U) and the result follows since C*°(U) is nuclear. W

B Some estimates

B.1 Three lemmas

Lemma B.1.1 LetU C F* be a compact neighborhood of 1. Then, for all § > 0 there exists
0" > 0 such that

/u (1+|te —ty|) " dt < (L4 |2)) ™ (14 [y~

/ (14t — )P dt < (1+ [2)™ (14 Jy])~"
Uu

forall x,y € F.
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Lemma B.1.2 (i) Let T be a torus over F and let x1,...,Xn be linearly independent
elements of X*(T)z. Then, for all Re(s) > 0, the function
e ) =170 () = 1
is locally integrable over T'(F).

(i1) Let V be a finite dimensional F-vector space and let Ay, ..., A, be linearly independent
elements in V= Then, for all Re(s) > 0, the function

v (@) @)

1s locally integrable over V.. Moreover, for all d > n and every compact subset ICyy TV,
we have

s—0t

lim Sd/K M@ () de = 0
A%

Lemma B.1.3 Let H be an algebraic group over F, o a log-norm on H (cf. Section [[.2)
and dph a left Haar measure on H(F'). For allb > 0, let us denote by 1, the characteristic
function of {h € H(F); o(h) <b}. Then, there exists R > 0 such that

/ 1y (h)dph < €™
H(F)

for all b > 0.

B.2 Asymptotics of tempered Whittaker functions for general lin-
ear groups

Let V' be an F-vector space of finite dimension d and set G = GL(V). Let (ey,...,eq) be a
basis of V and (B,T) be the standard Borel pair of G with respect to this basis. We have
an isomorphism

T ~ (Gp,)*
t = (ti)1<i<d
where t;, 1 < i < d, denotes the eigenvalue of ¢ acting on e;. Set
T:Z{tET; tdzl}
Let N be the unipotent radical of B and let £ be a generic character on N(F'), for example
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i=1

£(n) =1 (i(”eiH,e:)) , n€N(F)

where (e], ..., e};) denotes the dual basis of (ey, ..., eq).

Let m € Temp(G) and fix a Whittaker model for 7

T = C* (N(F)\G(F), )
v = W,

Hence, there exists a nonzero continuous linear form

{:7° —=C

such that £ o m(n) = £(n)l for all n € N(F') and so that

Wy (g) = (m(g)v)
for all v € 7*° and all g € G(F).

Lemma B.2.1 For all R > 0, there exists a continuous semi-norm vy on ©° such that
d—1 .
(W, ()] < va()=¢ @) [ max (1. [F])
i=1
for allv € 7 and all t € T(F).

Proof: Assume first that £’ is p-adic. Then, we have the following stronger inequality whose
proof is classical (cf. for example [Wad] Lemme 3.7 (i))

(B.2.1) For all v € 7, there exists ¢ > 0 such that
d-1
W (@) < Z°0 [ ] 1o.a(])
i=1
for all € T(F) and where 1y9, denotes the characteristic function of the interval ]0, c].

We henceforth assume that F' = R. In this case, the inequality of the lemma is a consequence
of the two following facts:
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(B.2.2) There exists Ry > 0 and a continuous semi-norm v on 7 such that
d-1 n
(W, (5)] < v()Z9(E) [ [ max (1, &)™
i=1

for all v € 7 and all 7 € T(R).

(B.2.3) For all 1 <i < d— 1, there exists u; € U(n) such that

W, (?) = ?z‘_l Wﬂ'(“i)v (t)

for all v € 7 and all 7 € T(R).

Let us identify g with gl; using the basis ey, ..., e; and let us denote for 1 < i < d—1 by
X; € g the matrix with a 1 at the crossing of the ith row and (i + 1)th column and zeros
everywhere else. Set u} = X;X;41... Xq_1 and u; = d€(u}) ™1} for 1 < i < d — 1. Here
d¢ : U(n) is the natural extension of the character d¢ : n(R) — C obtained by differentiating
¢ at the origin. Note that the elements u; are well-defined since by the hypothesis that ¢ is
generic we have d§(u}) # 0 for all 1 < i < d — 1. Moreover, it is easy to check that for all
1 <i<d—1, u; satisfies the claim We are thus only left with proving [B.2.2

In what follows, we fix a positive integer k that we assume sufficiently large throughout.
Denote by B = T'N the Borel subgroup opposite to B with respect to 7. Let Y;,...,Y}, be
a basis of b(R) and set Az = Y? + ...+ Y2 € U(b). Then, by elliptic regularity (cf. 2.1.2),
there exists functions ¢ € 2= dmB)=LB(R)) and p2 € O(B(R)) such that

o x AL+ o2 = 5
Applying 7 to this equality, we get
Wold) = € (x(@v) = £ (r()n(AE)m(Ev) + € (x(¢2)m(Ev)
for all v € 7 and all £ € T(R). Let oy € C®(N(R)) be any function such that
fN(R) on(n)¢(n)dn = 1. Then we have ¢ = £ o w(py). Plugging this into the last equal-
ity, we get
(B.2.4) Wo®) = € (r()r(Ak)rB0) + £ (x(2)n ()

for all v € 7 and all 7 € T(RR) where we have set ! = @ * @t and ©* = @y * p2. Note @'
and ¢? both belong to C2F™B) =1 (G(R)). It follows that for k sufficiently large, the two
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vectors £ om(pl), Lom(p?) € 7~ actually belong to 7°. Assuming k to be that sufficiently
large, by 2.2.6] we get the existence of a continuous semi-norm v, on 7 such that

€ (") (g)v)| < mo(v)Z(g)
for all v € 7, all g € G(R) and all ¢ € {1,2}. Combining this inequality with [B.2.4] we get
}Wv(f)‘ < (v (W(?_lA%;)’U) + 15(v)) =9(t)

for all v € 7 and all £ € T(R). To ends the proof of B2.2, it suffices to notice that A s a

sum of eigenvectors for the adjoint action of T(R) on U(b) and that any such eigenvector has

an associated eigen-character of the form ¢ € T(R) + #;™ ...1,"¢" for some nonnegative
integers ny,...,ng_1. A

B.3 Unipotent estimates
Let us fix the following

e (G a connected reductive group over F’;

® Poin = MyinNmin and P = Moo Nmin two opposite minimal parabolic subgroups of

G;
o A,in = Ap . denotes the maximal split subtorus of My,;
® \uin @ Nimin — G, is a non-degenerate additive character;
® Lnin = Vo Xminr : Nin(F) = C* where ¢ : F' — C* is a continuous unitary character;
o N/ . =Ker(Apin)-

e K is a maximal compact subgroup of G(F') that is special in the p-adic case. We
denote by mp_: G(F) = Mpuin(F) any map such that mp  (g)"'g € Npin(F)K for
all g € G(F).

The purpose of this section is to show the following estimate

Proposition B.3.1 There exists € > 0 such that the integral

6ﬁmin (mﬁmin (n,n> ) 1/2_Edn,
ernin(F)

is absolutely convergent for all n € Ny (F') and is bounded uniformly in n.

310



To prove this estimate, we will use the holomorphic continuation of the Jacquet integral.
Let us recall what it means. For all s € C, we introduce the smooth normalized induced
representation

oo g 'S [e%)
TrS o Pmin(épmin)

By restriction to K, all the spaces underlying the representations 75° (for s € C) become
isomorphic to C®°(Kyin\K), where Ky = K N Pyin(F). We will use these isomorphisms
as identifications and for e € C*°(Kyin\K), s € C, we will denote by e, the corresponding
vector in the space of 7°. Now for Re(s) > 0, we may define the following functional

As: CF(Kpin\K) = C
e — /Nmin(F) es(n)é(n)dn

(the integral is absolutely convergent). This functional is called the Jacquet integral. The
space C°(Kuin\K) is naturally a topological vector space: if F' is Archimedean then it
has a structure of Fréchet space whereas if F' is p-adic we equip it with the finest locally
convex topology. Then Ay, for Re(s) > 0, is a continuous linear form hence it belongs to the
topological dual of C°°(K i, \K) that we will denote by C~°(K i, \K). The holomorphic
continuation of the Jacquet integral now means the following

The map s € {Re > 0} — Ay € C7°°(Kyin\K) is holomorphic and admits an
holomorphic continuation to C.

Proof of Proposition B.3.1t We may assume without loss of generality that G is adjoint.
This implies the existence of a one-parameter subgroup

a: Gm — Amin
x +— a(x)

such that Ay, (a(z)na(z)™) = xA(n) for all z € G,, and all n € N. Note that a € X, (Amin)
is in the positive chamber corresponding to P.;,. We start by proving the following

(B.3.1) For all e € C®°(Kpin\K), all n € Nyin(F') and all s € {Re > 0}, we have

/.

min

65(n/n)dn/:A¢($Amin(n))As (ms(a(z))e) 6p,. (a(x))* Y 2dx

(F)

where dx denotes some additive Haar measure on F' and both integrals are absolutely
convergent.

Fix e € C®°(Knin\K) and s € C such that Re(s) > 0. Using Apinr, we may identify
NI i (F)\Npin(F) with F. Then both sides of [B.:3.] may be seen as a functions on F":
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p1:y€F— es(n'y)dn’

o2y € F s / bey)As (mo(a(2))e) bp,, (alz)*2da

The integral defining the ¢, is absolutely convergent and the resulting function is integrable
over F'. Moreover, in the p-adic case we obtain a uniformly smooth function on F' whereas
in the Archimedean case we obtain a function on F' that is smooth with all its derivatives
integrable. All of these easily follow from the following two facts

(B.3.2) For every compact C' C Ny, (F'), we have
es(n'n)| < 8, (mp,, (n))"*"

for all n’ € Ny (F') and all n € C.

(B.3.3) The integral
1/24Re(s
Nmin(F)

is absolutely convergent.

In both cases, this implies that ¢, admits a Fourier transform

Bi(x) = / o1 (0 0@y dy

(the Haar measure dy being the quotient of the Haar measure on Ny, (F') and on N/ (F))
which is integrable over F' and that for dz the Haar measure dual to dy, we have

o1(y) = / 31 (2) (y)de

forally € F. To proveB.3.1lit is thus sufficient to establish that A, (7, (a(z))e) 65, (a(x))*~1/% =
?1(x) for all x € F*. We have

Astmfa)e) = [ cu(nale) e

— 65 (a(x))V/** /N e (a(z)""na(z)) e (n)dn

= a0 [ (oI e



for all x € F'*, where at the third line we made the variable change n + a(x)na(z)~*. This
proves the equality A, (m,(a(x))e) dp,. (a(x))*"Y2? = @) (z) for all z € F* and ends the proof
of B.3.1l

We will now prove the following
(B.3.4) There exists 0 > 0 such that for all e € C°°( Ky, \K) the integral

/F A, (ma(al(2))e) S, (ala)) ™ 2da

is absolutely and locally uniformly convergent for all s in {Re > —d}.

First we show how to deduce the proposition from this last claim. It implies in particular
that the right hand side of [B.3.1] admits an holomorphic continuation to some half plan
{Re > —6}, 0 > 0. Consequently, the left hand side also admits an holomorphic continuation
to such an half plane. Let us consider the case where e = ¢y € C*°(K i\ K) is the constant
function equal to 1. Then the left hand side of [B:3.]is, for Re(s) > 0,

| g )

(F)

Since the integrand is positive for s real, this implies that the integral is still absolutely
convergent in the half plane {Re > —§}. Hence, for € < §, the integral of the proposition
is convergent. Moreover, it is equal to the integral of the right hand side of [B.3.1] evaluated
at s = —e. By [B.3.4] this integral is also absolutely convergent. Since the absolute value
of the integrand is independent of n € N(F'), this shows the uniform boundedness of the
proposition. Hence, we are left with establishing [B.3.4

Fix e € C°(Kyin\K). We now split [B.3.4] into the two following estimates:

(B.3.5) The integral
[ A mala))e) dn o) s
{lz|>1}

is absolutely convergent locally uniformly in s for all s € C.

(B.3.6) There exists § > 0 such that the integral
/ A (ﬂ-s(a(l'))E) 5Pmin (a(x))8_1/2dx
{lel<1}

is absolutely convergent locally uniformly in s for all s € {Re > —¢}.
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When F' = R, for each integer & > 0 the (continuous) dual C~*(K,\K) of the space
CH(Knin\K) of functions continuously derivable up to order k is a Banach space which
naturally embeds in C'~°°(K;,,\K) and by [A.4.1] we have the following:

(B.3.7) Assume F' = R. Then, for every relatively compact open subset 2 C C, there exists
an integer k > 0 such that the map s € Q — A, factors through C~*(K;,\K) and
defines an holomorphic function into that Banach space.

We now prove [B.3.5l By assumption, there exists X € ny, such that &un(e®) # 1 and
a(z)Xa(x)™! = xX for all z € F*. We now separate the proof according to whether F is
p-adic or real

e First assume that F' is a p-adic field. It is easy to see that x € F* — A (ms(a(z))e)
is bounded on compact subsets of F'* locally uniformly in s. Hence, it is sufficient to
establish the following

(B.3.8) There exists ¢ > 1 such that
As (ms(a(x))e) = 0

for all s € C and all x € F'* satisfying |z| > c.

Indeed, for all s € C and all x € F*, we have

Emin(€™)As (mo(a(x))e) = A (mo(e™)ms(a(x))e)
= A, (ws(a(aj))ws(ele)e)

and for z sufficiently large, e* ¥ is in K and stabilizes e. Since &nm(e™) # 1, this
shows the vanishing [B.3.8

e Let us now treat the case where F' = R. Fix © a compact subset of C. By [B.3.7 there
exists an integer £ > 0 such that

[As ()] < l€'lle

for all ¢/ € C°(Kyin\K) and all s € 2. Moreover, it is easy to see that there exists a
positive integer Ny > 0 such that

Ims(a())e'ller < |z™[le'lox

for all ¢ € C*°(Kpin\K), all s € Q and all z € F'* such that |z| > 1. Hence, we have
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(B.3.9) [As (ms(a(z))e)] < |2 fle o

for all ¢ € C®°(Kumin\K), all s € Q and all z € F* such that || > 1. Also, there exists
a positive integer N; such that

(B310> }5Pmln(a(x>>s_1/2} << |x‘N1
for all s € Q and all x € F* such that |z| > 1.

Consider the element X € np;,(F) previously introduced. Up to a scaling, we may
assume that d€u,,(X) = 1. Then, for every positive integer Ny, we have

A (ms(a(z))e) = dgmin(X)NzAs (ms(a(z))e)
= A, (WS(XNZ)T('S(CL x))e)
= |x|N2A, (71'8(&(1’ )WS(XNQ)e)

Since the family (m (X"?)e) cq 18 bounded in C*°(Kyin\K), combining the previous
equality with [B:3.9] we get that for every integer Ny > 0, we have an inequality

1A, (moa(@))e)] < [a] Yo

for all s € Q and all x € F* such that |z| > 1. Combining this further with [B:3.10], we
get an inequality
0P (a(2))*™12A, (my(al2))e)| < |2] 72

for all s € Q and all x € F* such that |x| > 1. This ends the proof of [B.3.5

We now prove [B.3.6. We will deduce it from the following claim:

(B.3.11) There exists d > 0 such that we have an inequality which is uniform locally in s

[As (ms(al@))e)| < 8p,,, (a(2)) /7 Olo(a(x))!

for all € F* such that |z| < 1.

That [B:3.11] implies [B:3.6] is clear since for 6 > 0 sufficiently small the function z +
Sp.. (a(z))°c(a(z))? is locally integrable on F.
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It only remains to prove [B.3.11l Define a bilinear form (.,.)x on C'(Kuin\K) (space of all
complex-valued continuous functions on Ky, \K) by

(e,eV i = /Ke(k)e'(k:)dk, e, € € C(Kun\K)

This pairing induces a continuous embedding C(Kpuin\K) C C7°(Kumin\K) and we have
(ms(g)e, €V = (e,m_s(g7 )€ )k for all e,¢/ € C(Kpin\K), all s € C and all g € G(F).
Moreover, the space C(K i, \K) is a Banach space when equipped with the norm

le]loe = sup le(k)], e € C(Ko\K)
keK
We have

(B.3.12) There exists d > 0, such that
(e, ms(a(2))e) x| < Op,y, (a(@)* o (a(@)lefloolle o

forall s € C, all e, ¢’ € C(Kpin\K) and all x € F* such that |z| < 1.

Indeed, let e, ¢’ € C(Kpn\K), unraveling the definitions we have
(e, 7 (a(x)e )k = / 5 (M, (Ka(@)))* " ¢ (kp,, (ka(x))) e(k)dk
K

Hence,
/ / Re(s
e mla)e)] < el sup 37, (mp,,, (kal@) ™) [ Gy, (i, (kafa))) " di

for all s € C and all z € F*. The integral above is (by definition) Z%(a(x)) and since a(.)
is in the positive chamber relative to Py, by Proposition [L51[(i) there exists a dy > 0 such
that Z%(a(z)) < 6p,, (a(x))?0o(a(x))® for all z € F* with |z| < 1. On the other hand, it

easily follows from Proposition [L5.11(i) and (ii) that there exists d; > 0 such that

sup 37, (m, (ka(r)) ™| < G, (a()) 17 (a(a))

for all s € C and all € F* such that |z| < 1. The estimate [B.3.12] follows.

We now prove [B.3.11] distinguishing again the case where F' is p-adic from the case where
F=R.
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e Assume first that F' is a p-adic field. Since a € X, (Anin) is in the positive chamber for
Phin, there exists a compact-open subgroup K5 C K, N Fmin(F ) fixing e and such
that a(zr) ' Kpa(x) C K5 for all z € F* with || < 1. Fix such a subgroup and let
K' C K N Ker(&min) Kp be a compact-open subgroup. Then, we have

Ay (ms(a(z))e) = As (m(exr)ms(alz))e)

for all s € C and all z € F* such that |z| < 1, where e = vol(K’) '1g. Now the
function s — A o m(egs) actually takes value in C*°(K,;,\K) and we have

As (m(exn)e’) = (Asom(ex), ')k

for all ¢ € C°°(Kpin\K) and all s € C. By [B.3.12 it is thus sufficient to show that
the map s — Asjom(exr) € C(Kumin\K) is locally bounded (as a map into C'(Kpin\K)).
Obviously, this map is continuous as a map into C'~°( Ky, \K) (because s — Ay is
continuous). Moreover, the map s — A, o m(egs) in fact takes value in the finite
dimensional subspace of functions invariant on the right by K’. Since the topologies
induced by either C™°(Kyin\K) or C(Kmnix\K) on that subspace are the same, we
conclude that the map s +— A;om(egs) € C(Kmin\K) is continuous and we are done.

e Assume now that F' = R. Fix a basis Xi,... Xy of p;,(F) and set
Ap=X{+...+ X5 €U (P(F))

By elliptic regularity (cf. 2.1.2)), for every positive integer m such that 2m > dim (Pin),
there exist functions ¢}, € C2m—dimPuin=l (P, . (F)) and @4 € Cx (Pmin(F)) such that

gplﬁ * A% + 902? — 5511\111
Hence, for all s € C we have

(PR (AR) + (%) = Id

Choose a function pn € C° (Nyin(F')) such that / ©n(n)&min(n)dn = 1. Then,
Nmin(F)
we have

(B.3.13) As(€) = Ay (m (M) T (AR)e') + Ay (ms(9?)e)

for all ¢/ € C®°(Kuim\K) and all s € C, where ¢! = oy * p3; € C2m—dimPrin=1 (G(F))
and p* = oy * @2 € CF (G(F)).

Fix €2 C C a compact subset. By [B.3.7] there exists an integer k > 0 such that

s A, € CTF(Kpin\ K)
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is holomorphic. If m is sufficiently large, we will have ¢' € C*(G(F)) and hence
Ay o my(¢") € C(Kpin\K) for i = 1,2 and for all s € Q. Henceforth, we will assume
that m is that sufficiently large. By [B.3.13 we have

A, (mo(a(z))e) = (As o my(@"), mo(a(x)) s (a(z) ' ABa(x)) €)  +(As 0 T (©?), ms(a(z))e) .

for all s € Q and all x € F*. Since a(.) is in the positive chamber relative to Py,
the function x € F* + a(x)"'Aa(x) is a finite sum of terms of the form z — 2°D
where ¢ > 0 is an integer and D € U(p,,;,(F')). Since for all D € U(g(F)) the map
s — s(D)e is locally bounded, by [B.3.12] we are reduced to showing that the maps

s€Q Ajomy(p') € C(Kmin\K) (i=1,2)

are bounded. Fix i to be 1 or 2 and set ¢ = ¢'. In any case, we have ¢ € C*(G(F)).
Then, for all s € C the operator m4(p) is given by a kernel function m,(p)(.,.) on
Knin\K x Kpin\K i.e., we have

(m(0)) (k) = /K mo(0) (e, K)e(k )k

for all ¢ € C*°(Kpin\K) and all k € K, where
R = [ o Bk, (o) i
Ponin(F

For all s € C, we have m,()(.,.) € C*(Kpin\K X Kunin\K) and it is not hard to see that
the map s — 7,(¢)(.,.) € C*(Kuin\K X Kuin\K) is holomorphic hence continuous.
Now for all s € Q and all £ € K, we have

(As oms(p)) (k) = As (ma(0) (K, )

Since s — A, € C7F(Kpiu\K) is continuous, we deduce that

|(As o7 ()) (B)] < [lms(@) (K, )l e
< ||7Ts(90)('7’)||0k

for all s € Q and all & € K (the first norm above is the norm on C*(K,,;,\ K) whereas
the second norm is the norm on C*( K, \K X Kuin\K)). Since the last norm above
is bounded on 2 (because s — w,(p)(.,.) is continuous), this proves that the map

s€ Qs A, omy(p) € C*(Kpin\K) is bounded and ends the proof of B:3.11l M

Corollary B.3.2 Let P = MN D Puin = MuyinNmin be a parabolic subgroup of G containing
Poin- Then, for all 6 > 0 there exists € > 0 such that the integral

/ =9 (0)e™ (1 + [Aan(n)]) " din
N(F)

15 absolutely convergent.
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Proof: First we do the case where P = P,;,. Fix ¢ > 0 such that the conclusion of
Proposition [B.3.1l holds for € = ¢y3. Then, the integral

/ o5, (Mp,, (n>>1/2—60 (1+ ‘)‘min(n)D_z dn
Nmin(F) - -

is absolutely convergent. By Proposition [L5[(ii), there exists d > 0 such that Z%(g) <
op_ (mp_ (9))*0(g)? for all g € G(F). Moreover, by the [Wa2] Lemme I11.3.4 (in the
p-adic case) and [Wall] Lemma 4.A.2.3 (in the real case), there exists ¢; > 0 such that
ecrr(n) <« op (mp_(n))~" for all n € Ny (F). It follows that for € < egcy, the integral

/ =6 (m)e ™ (1 + [An(n)]) 2 dn
Nmin(F)

is absolutely convergent. This establishes the corollary for 6 > 2. Let 0 < § < 2 and set

p= %, q= ﬁ. By Holder inequality, for all € > 0 we have

/ E(n)e ™ (14 [Ain(n)]) ™" dn = / 2 (n) Pt ageo o (1 4 |\ yin(n)]) ™" dn
Nmin(F)

Nmin(F)

1/p
< (/ EG(n)eQE’”’(") (1+ |)\mm(7’L)|)_2 dn)
Nmin(F)

1/q
X </ EG(n)e_eq"(")dn)
Nmin(F)

By what we just saw, the first integral above is absolutely convergent if € is sufficiently small.
On the other hand, the second integral above is always absolutely convergent by Proposition
[L5Tl(iv). Hence, the integral

/ =€ (0)e™ (1 + [Aan(n)])* din
Nmin(F)

is absolutely convergent for € > 0 sufficiently small. This settles the case P = P,;,. We may
deduce the general case from this particular case as follows. Let § > 0 and choose € > 0 such
that the conclusion of the corollary holds for P = P,;,. Then, the integral

/ / =6 (nn)e ™) (1 + | Apin(nn)]) " dndn’
N(F)\Nin(F) J N(F)

is absolutely convergent. By Fubini, it follows that there exists n’ € Ny, (F') such that the
inner integral

/ EG(nn')e“’(”"l) (1+ \)\min(nn/)\)_é dn
N(F)
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is also absolutely convergent. Up to translation by N(F'), we may assume that Ay, (n') = 0.
Moreover, we have inequalities

EG(’)’I,) < EG(TLTL,), esa(n) < esa(nn’)

forallm € N(F). It follows that the same integral without the n’ is also absolutely convergent
and this ends the proof of the corollary B
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