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A local trace formula for the Gan-Gross-Prasad
conjecture for unitary groups: the Archimedean case *

Raphaél Beuzart-Plessis
November 30, 2018

Abstract

In this paper, we prove, following earlier work of Waldspurger [Wall, [Wad] a sort of
local relative trace formula which is related to the local Gan-Gross-Prasad conjecture
for unitary groups over a local field F' of characteristic zero. As a consequence, we
obtain a geometric formula for certain multiplicities m(7) appearing in this conjecture
and deduce from it a weak form of the local Gan-Gross-Prasad conjecture (multiplicity
one in tempered L-packets). These results were already known over p-adic fields
and thus are only new when F' = R.

Contents

|J_E limi : | 14
1.1 General notation and conventions . . . . . . . . oo 14
1.2  Reminder of norms on algebraic varieties . . . ... 18

1.6 Measures . . . . . ..o 35
1.7_Spaces of conjugacy classes and invariant topology . . - . .. . ... 37
1.8 Orbital integrals and their Fourier transformd . . . . . . . . . . . . . . ... 39

1.9 (G M)familied . . . . . .o 41
1.10 Weighted orbital integrald . . . . . v oo oo e 43

Representations 44
Smooth representations, Elliptic regularity . . . . . . . . .. . ... .. ... 45
nitary and tempered representations . . . . . .. ..o Lo 46
Parabolic induction . . . . . . . . . .. 51

#2010 Mathematics subject classification: Primary 22E50; Secondary 11F85, 20G05



4 Quasi-characters
4.1 Quasi-characters when Fispadid . . . . . . ... .. ... ... .......
4.2 Quasi-characters on the Lie algebrafor F =R . . . . . . . . .. . ... ...

4.3 Local expansions of quasi-characters on the Lie aleebra when F =R . . . . .

I5 Strongly cuspidal functions

5.1 Definition, first properties . . . . . . . ...

Neighted orbital integrals of strong ..ou.. 11) n,' ............

6_2 Deﬁmhon of GGP ‘rrl .............................
6.3 The multiplicity m(m) . . . . . . .
6.4 _H\G is a spherical variety, good parabolic qubqroupCI .............
6.5 Some estimated . . ...
6.6 i itiond . . ..
6.7 _The function Z7\A . . . . .




9 Spectral expansion 218

9.1 Thetheoremi . . . . . . . . . . . .. 218
9.2 Study of an auxiliary distributionl . . . . . .. ... 218
9.3 End of the proof of Theorem Q.I.10. . . . . . . . .. .. ... ... ... ... 225
[10 The spe al expansion of J" 226
0 he affine subspace X1 . . . . . .. 226
0 onjugation bv M. . . . . . .. 227
0 haracteristic polvnomial . . . . . . . . . ... 230
0.4 Characterization of 21 . . . . . . . . . . ... 231

10.8 Statement of the spectral expansion of .J L 244
10.9 Introduction of a truncationl . . . . . . . . o 244
10.10Change of truncationl . . . . . . . . . . .. 249

- — Mgeoml - - - « « - 0o e 276




12.6 Proof of Theorem @ ............................. 295

%ﬂm&p&&% 297
Fospaces . . . . . 298
A2 Vector-valued integrald . . . . . . . ... 299
A.3 Smooth maps with values in topological vector SPACES . . . . 299
A.4 Holomorphic maps with values in topological vector spaces] .......... 302

IA.5 _Completed projective tensor product, nuclear spaced . . . . . . . . ... ... 303

IB_Some estimates 306
B Three lemmad . . . . . . oo 306

%Mﬁ@@@m&mﬁuﬁmﬂw&@ ... 307
i i o 310

|__Bibliographyl 321
IList of Notationd 326

Introduction

Let F be a local field of characteristic 0 which is different from C. So, F' is either a p-adic
field (that is a finite extension of Q,) or F' = R. Let E//F be a quadratic extension of F' (if
F =R, we have E = C) and let W C V be a pair of hermitian spaces having the following
property: the orthogonal complement W+ of W in V is odd-dimensional and its unitary
group U(W+) is quasi-split. To such a pair (that we call an admissible pair, cf. Section
6.2), Gan, Gross and Prasad associate a triple (G, H, ). Here, G is equal to the product
U(W) x U(V) of the unitary groups of W and V', H is a certain algebraic subgroup of G and
£ : H(F) — S! is a continuous unitary character of the F-points of H. In the case where
dim(W+) = 1, we just have H = U(W) embedded in GG diagonally and the character ¢ is
trivial. For the definition in codimension greater than 1, we refer the reader to Section 6.2
We call a triple like (G, H, &) (constructed from an admissible pair (W, V)) a GGP triple.

Let m be a tempered irreducible representation of G(F'). By this, we mean that 7 is an irre-
ducible unitary representation of G(F') whose coefficients satisfy a certain growth condition
(an equivalent condition is that 7 belongs weakly to the regular representation of G(F)).
We denote by 7 the subspace of smooth vectors in 7. This subspace is G(F)-invariant and
carries a natural topology (if F' = R, this topology makes 7> into a Fréchet space whereas if



F'is p-adic the topology on 7 doesn’t play any role but in order to get a uniform treatment
we endow 7°° with its finest locally convex topology). Following Gan, Gross and Prasad, we
define a multiplicity m(7) by

m(m) = dim Homg (7%, €)

where Hompy (7%, ¢) denotes the space of continuous linear forms ¢ on 7 satisfying the
relation ¢ o w(h) = £(h)¢ for all h € H(F). By the main result of [JSZ] (in the real case)
and JAGRS] (in the p-adic case) together with Theorem 15.1 of [GGP], we know that this
multiplicity is always less or equal to 1.

The main result of this paper extends this multiplicity one result to a whole L-packet of
tempered representations of G(F'). This answers a conjecture of Gan, Gross and Prasad
(Conjecture 17.1 of [GGP]). Actually, the result is better stated if we consider more than
one GGP triple at the same time. In any family of GGP triples that we are going to consider
there is a distinguished one corresponding to the case where G and H are quasi-split over
F. So, for convenience, we assume that the GGP triple (G, H, &) we started with satisfies
this condition. The other GGP triples that we need to consider may be called the pure
inner forms of (G, H,£). Those are naturally parametrized by the Galois cohomology set
HY(F,H). A cohomology class o € H'(F, H) corresponds to a hermitian space W, (up to
isomorphism) of the same dimension as W. If we set V,, = W, &+ W+, then (W,,V,) is an
admissible pair and thus gives rise to a new GGP triple (G, Hq,&,). The pure inner forms
of (G, H, &) are exactly all the GGP triples obtained in this way.

Let ¢ be a tempered Langlands parameter for G. According to the local Langlands cor-
respondence (which is now known in all cases for unitary groups, cf. [KMSW] and [Mok]),
this parameter determines an L-packet I1% () consisting of a finite number of tempered rep-
resentations of G(F). Actually, this parameter also defines L-packets 1% () of tempered
representations of G (F) for all « € HY(F, H). We can now state the main result of this
paper as follows (cf. Theorem [12.4.T]).

Theorem 1 There exists exactly one representation w in the disjoint union of L-packets

|| 1%y

a€H(F,H)

such that m(m) = 1.

As we said, this answers in the affirmative a conjecture of Gan-Goss-Prasad (Conjecture
17.1 of |[GGP]). The analog of this theorem for special orthogonal groups has already been
obtained by Waldspurger in the case where F' is p-adic [Wal]. In [Beul], the author adapted
the proof of Waldspurger to deal with unitary groups but again under the assumption that
F is p-adic. Hence, the only new result contained in Theorem [l is when F' = R. However,
the proof we present here differs slightly from the original treatment of Waldspurger and we
feel that this new approach is more amenable to generalizations. This is the main reason
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why we are including the p-adic case in this paper. Actually, it doesn’t cost much: in many
places, we have been able to treat the two cases uniformly and when we needed to make a
distinction, it is often because the real case is more tricky.

As in [Wal] and subsequently [Beul], Theorem [I follows from a formula for the multiplicity
m(m). This formula express m(m) in terms of the Harish-Chandra character of 7. Recall
that, according to Harish-Chandra, there exists a smooth function 6, on the regular locus
Gheg(F') of G(F') which is locally integrable on G(F') and such that

Trace 7(f) :/ O () f(x)dx

G(F)
forall f € C°(G(F)) (here C°(G(F)) denotes the space of smooth and compactly supported
functions on G(F')). This function €, is obviously unique and is called the Harish-Chandra
character of 7. To state the formula for the multiplicity, we need to extend the character 6,
to a function

cr: G(F) = C

on the semi-simple locus Gy(F') of G(F). If © € Gheg(F), then ¢, (z) = 6,(z) but for a
general element x € G (F'), ¢ () is in some sense the main coefficient of a certain local
expansion of 6, near x. For a precise definition of the function c,, we refer the reader to
Section 4.5 where we consider more general functions that we call quasi-characters and which
are smooth functions on Gee(F') sharing almost all of the good properties that characters
of representations have. As we said, it is through the function ¢, that the character 6, will
appear in the multiplicity formula. The other main ingredient of this formula is a certain
space I'(G, H) of semi-simple conjugacy classes in G(F'). For a precise definition of I'(G, H),
we refer the reader to Section 1.2l Let us just say that I'(G, H) comes naturally equipped
with a measure dx on it and that this measure is not generally supported in the regular locus.
For example, the trivial conjugacy class {1} is an atom for this measure whose mass is equal
to 1. Apart from these two main ingredients (the function ¢, and the space I'(G, H)), the
formula for the multiplicity involves two normalizing functions DY and A. Here, DY is the
usual discriminant whereas A is some determinant function that is defined in Section [11.2]
We can now state the formula for the multiplicity as follows (cf. Theorem [M1.4.2]).

Theorem 2 For every irreducible tempered representation m of G(F'), we have the equality

m(m) = lim cx(2) D (2)V2 A ()Y dx
s—0t F(G,H)

The integral in the right hand side of the equality above is absolutely convergent for all s € C
such that Re(s) > 0 and moreover the limit as s — 07 exists (cf. Proposition T1.2.1]).

As we said, Theorem [I] follows from Theorem 2l This is proved in the last chapter of this
paper (Chapter [[2]). Let us fix a tempered Langlands parameter ¢ for G. The main idea of
the proof, the same as for Theorem 13.3 of [Wall, is to show that the sum
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(0.0.1) > oom

a€H(F,H) nellCa(p)

when expressed geometrically through Theorem [2] contains a lot of cancellations which
roughly come from the character relations between the various stable characters associated
to ¢ on the pure inner forms of G. Once these cancellations are taken into account, the
only remaining term is the term corresponding to the conjugacy class of the identity inside
I'(G, H). By classical results of Rodier and Matumoto, this last term is related to the num-
ber of generic representations inside the quasi-split L-packet I1%(). By the generic packet
conjecture, which is now known for unitary groups, we are able to show that this term is
equal to 1 and this immediately implies Theorem [Il Let us now explain in more detail how
it works. Fix momentarily o € H'(F, H). Using Theorem Bl we can express the sum

as

(0.0.2) lim Cpo(x) DG (2)Y2A(2)*2da

s—0t [(Go,Ho)

where we have set ¢, o =
sum of characters ,, = >

¢x. One of the main properties of L-packets is that the
reTIGa () 0, defines a function on G, yeg(F') which is stable, which

here means that it is invariant by G, (F)-conjugation. In Section T2l we define a notion
of strongly stable conjugacy for semi-simple elements of G, (F). This definition of stable
conjugacy differs from the usually accepted one (cf. [Kottl]) and is actually stronger (hence
the use of the word “strongly”). The point of introducing such a notion is the following:
it easily follows from the stability of 6, that the function c,, is constant on semi-simple
strongly stable conjugacy classes. This allows us to further transform the expression
to write it as

m€llCe ()

lim |p;15tab(:):)|c%a(x)DG“(x)l/QA(x)s_l/Qd:z

s—0F Fstab(GOuHa) ’
where Lgian (Go, Hy) denotes the space of strongly stable conjugacy classes in I'(G,, H,) and
Pastab Stands for the natural projection I'(Gy, Hy) = Ustan(Ga, Hy) (thus |p;7lstab(x)| is just
the number of conjugacy classes in I'(G,, H,) belonging to the strongly stable conjugacy
class of z). Returning to the sum [0.0.I] we can now write it as

(003) > Jim b (@) ) D% (@) 2 A 2)* 2

+
OcEHl(F,H) s—0 Fstab(GouHa)



A second very important property of L-packets is that the stable character 6, is related in
a simple manner to the stable character 6, on the quasi-split form G(F’). More precisely,
Kottwitz [Kott2] has defined a sign e(G,) such that we have 6, ,(y) = e(Gq)0,1(x) as soon
as Y € Gareg(F) and x € Gee(F) are stably conjugate regular elements (i.e., are conjugate
over the algebraic closure where G, (F) = G(F)). Once again, this relation extends to the
functions ¢, and c,; and we have ¢, o(y) = €(Ga)cy,1(x) for all strongly stably conjugate
elements y € G, s5(F) and © € Gg(F). As it happens, and contrary to the regular case,
there might exist semi-simple elements in G, (F') which are not strongly stably conjugate
to any element of the quasi-split form G(F'). However, we can show that the function ¢, ,
vanishes on such elements = € G, ss(F'). Therefore, these conjugacy classes don’t contribute
to the sum and transferring the remaining terms to G(F'), we can express as a
single integral

s—0+

= < Z e(Ga(w)) o1 (2) DY (2) 2 A ()" da
F(G’H) Y~stab®

where the sum

(0.0.4) > e(Gay)

Y~stab®

is over the conjugacy classes y in the disjoint union | | HL(F.H) I'(G,, H,) that are strongly
stably conjugate to x and a(y) € H'(F, H) denotes the only cohomology class such that
y lives in I'(Ga(y), Ha(y)). There is a natural anisotropic torus 7, C H associated to x €
[stan(G, H) such that the set of conjugacy classes in | | . () ['(Ga, H,) lying inside the
strongly stable conjugacy class of z is naturally in bijection with H*(F,T},) (cf. Section
for the definition of 7). Moreover, for y € H'(F,T,), the cohomology class a(y) is just the
image of y via the natural map H'(F,T,) — H'(F, H). Hence, the sum [.0.4] equals

(0.0.5) > eGag)

yeH (F,Ty)

In order to further analyze this sum, we need to recall the definition of the sign e(G,).
In [Kott2], Kottwitz constructs a natural map H'(F,G) — H?*(F,{£1}) = Bry(F) from
HY(F,G) to the 2-torsion subgroup of the Brauer group of F'. Since F'is either p-adic or real,
we have an isomorphism Bry(F) ~ {+1}. The sign e(G,) for « € H'(F, H) is now just the
image of o by the composition of this map with H*(F, H) — H'(F,G). Following Kottwitz’s
definition, it is not hard to see that the composition H'(F,T,) — H'(F,G) — Bry(F) is a
group homomorphism. Moreover, it turns out that for x # 1 this homomorphism is surjective
and this immediately implies that for such an x the sum is zero. Going back to [0.0.3],
we are only left with the contribution of 1 € I'(G, H) which is equal to

cpa(1)
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By a result of Rodier |[Ro| in the p-adic case and of Matumoto [Mat] in the real case, the
term c,1(1) has an easy interpretation in terms of Whittaker models. More precisely, this
term equals the number of representations in the L-packet I19(¢) having a Whittaker model,
a representation being counted as many times as the number of types of Whittaker models
it has, divided by the number of types of Whittaker models for G(F'). A third important
property of L-packets is that I1% () contains exactly one representation having a Whittaker
model of a given type. It easily follows from this that c,,(1) = 1. Hence, the sum
equals 1 and this ends our explanation of how Theorem [2 implies Theorem [Il

The proof of Theorem Pl is more involved and takes up most of this paper. It is at this
point that our strategy differs from the one of Waldspurger. In what follows, we explain
the motivations and the main steps of the proof of Theorem 2l Consider the unitary repre-
sentation L*(H(F)\G(F),&) of G(F). Tt is the L*induction of the character ¢ from H(F)
to G(F) and it consists in the measurable functions ¢: G(F) — C satisfying the relation
w(hg) =&(h)p(g) (h € H(F), g € G(F)) almost everywhere and such that

/ |g0(:£)|2dx < 00
H(F)\G(F)

The action of G(F) on L*(H(F)\G(F),¢) is given by right translation. Since the triple
(G, H,¢) is of a very particular form, the direct integral decomposition of L*(H(F)\G(F), &)
only involves tempered representations and moreover an irreducible tempered representation
7 of G(F') appears in this decomposition if and only if m(7) = 1. It is thus natural for our
problem to study this big representation L?*(H(F)\G(F),&). A function f € C*(G(F))
naturally acts on this space by

/ f(9)o(ag)dg, o€ LEHF\G(F).£), « € G(F)

Moreover, this operator R(f) is actually a kernel operator. More precisely, we have

(R(f)g) (x) = / o i VRN, 0 € LHINGR).O), € G(F)

Ky(x,y) = fathy)&(h)dh, x,y € G(F)

H(F)
is the kernel function associated to f. In order to study the representation L?(H (F)\G(F),¢),
we would like to compute the trace of R(f) (because for example it would give some informa-
tions about the characters of the representations appearing in L2(H (F)\G(F),€)). Formally,
we may write

(0.0.6) “Trace R(f) :/( . K(f,z)dz”



where K (f,z) = K¢(z,x), v € H(F)\G(F), is the restriction of the kernel to the diagonal.
Unfortunately, neither of the two sides of the equality makes sense in general: the
operator R(f) is not generally of trace class and the integral of the right hand side is not
usually convergent. The first main step towards the proof of Theorem Pl is to prove that
nevertheless the expression in the right hand side of still makes sense for a wide range
of functions f. A function f € C°(G(F)) is said to be strongly cuspidal if for every proper
parabolic subgroup P = MU of GG, we have

(mu)du =0, for all m € M(F)
U(F)

In Chapter B, we prove the following (see Theorem B.1.T)).

Theorem 3 For every strongly cuspidal function f € C°(G(F)), the integral

/ K(f,z)dz
H(F\G(F)

1s absolutely convergent.

We actually prove more: we show that the above integral is absolutely convergent for every
strongly cuspidal function in the Harish-Chandra Schwartz space C(G(F')) rather than just
C*(G(F)). This seemingly technical detail is in fact rather important since in the real
case the author was only able to construct enough strongly cuspidal functions in the space
C(G(F)) and not in C°(G(F)).

Once we have Theorem [3] we can consider the distribution

froath=[ (s

H(F)\G(F)

which is defined on the subspace Cgeusp (G (F')) of strongly cuspidal functions in C(G(F')). The
next two steps toward the proof of Theorem [2] are to give two rather different expressions
for the distribution J(.). The first expansion that we prove is spectral. It involves a natural
space X (G) of tempered representations. In fact, elements of X' (G) are not really tempered
representations but rather virtual tempered representations. The space X' (G) is build up
from Arthur’s elliptic representations of the group G and of all of its Levi subgroups. We
refer the reader to Section 27 for a precise definition of X'(G). Here, we only need to know
that X (G) comes equipped with a natural measure dr on it. For all 7 € X'(G), Arthur has
defined a weighted character

feCG(F)) = Jum(T, f)

Here, M(m) denotes the Levi subgroup from which the representation 7 originates (more
precisely, 7 is parabolically induced from an elliptic representation of M (w)). When M () =
G, the distribution Jg(7,.) simply reduces to the usual character of 7, that is Jg (7, f) =

10



Trace m(f). When M (m) # G, the definition of the distribution Jys(x(7,.) is more involved
and actually depends on some auxiliary choices (a maximal compact subgroup K of G(F') and
some normalization of intertwining operators). However, it can be shown that the restriction
of Jui(n) (7, .) t0 Cocusp(G(F')) doesn’t depend on any of these choices. For f € Cyousp(G(F)),

o~

we define a function §; on X(G) by

O (m) = (—1)™ Jaym (7, f), 7€ X(G)

where ay;(r) is the dimension of A the maximal central split subtorus of M (7). The
spectral expansion of the distribution J(.) now reads as follows (cf. Theorem 0.1.1]):

Theorem 4 For every strongly cuspidal function f € Cseusp(G(F)), we have

J(f) = D(m)8;(wym(r)dx
X(G)

The factor D(w) appearing in the formula above is a certain determinant function which
comes from Arthur’s definition of elliptic representations. What is really important in the
above spectral expansion of J(.) is the appearance of the abstractly defined multiplicity m().
Its presence is due to the existence of an explicit description of the space Hompy (7%, £). More
precisely, for 7 an irreducible tempered representation of G(F'), we may define a certain
hermitian form £, on 7> by

Lofe,e) = / (e n(h)E(RYdh, e ¢ €

H(F)

The above integral is not necessarily absolutely convergent and needs to be regularized (cf.
Section [1]), it is why we put a star at the top of the integral sign. In any case, L. is
continuous and satisfies the intertwining relation

Lo(m(h)e,m(h)e) =E(R)EN)Lr(e,e), e e €n™ hh' € H(F)

In particular, we see that for all ¢ € 7 the linear form e € 7 +— L, (e,€’) belongs to
Hompy (7%, €). Hence, if £, is not zero so is m(7). In Chapter [, we prove that the converse
is also true. Namely, we have (cf. Theorem [7.2.T])

Theorem 5 For every irreducible tempered representation m of G(F), we have
Lr#0& m(m)#0

This theorem has already been established in [Beul] when F' is p-adic (Théoréme 14.3.1
of [Beul]). An analogous result for special orthogonal groups was proved previously by
Waldspurger in [Wad] (Proposition 5.7) and then reproved in a different manner by Y.
Sakellaridis and A. Venkatesh in [SV] (Theorem 6.4.1) in a more general setting but under

11



the additional assumption that the group is split. The proof given in [Beul| followed closely
the treatment of Sakellaridis and Venkatesh whereas here we have been able to give an
uniform proof in both the p-adic and the real case which is closer to the original work of
Waldspurger.

As already explained, Theorem [ is a crucial step in the proof of the spectral expansion
(Theorem M]). Actually, once Theorem [lis established, Theorem @ essentially reduces to the
spectral expansion of Arthur’s local trace formula [A1] together with an argument allowing
us to switch two integrals. This step is carried out in Chapter [0l

We now come to the geometric expansion of J(.). It involves again the space of conjugacy
classes I'(G, H) that appears in the formula for the multiplicity (Theorem [2)). The other
main ingredient is a function cy: Gg(F) — C that is going to take the role played by the
function ¢, in the multiplicity formula. The definition of ¢; involves the weighted orbital
integrals of Arthur. Recall that for every Levi subgroup M of G and all x € M (F)NGieg(F),
Arthur has defined a certain distribution

feCG(F)) = Ju(z, [)
called a weighted orbital integral. If M = G, it simply reduces to the usual orbital integral

Ja(e, f) = / f(g'xg)dg, | € C(G(F))
Gz (F)\G(F)

When M # G, the distribution Jys(x,.) depends on the choice of a maximal compact sub-
group K of G(F'). However, as for weighted characters, the restriction of Jy(x,.) to the
subspace Cseusp(G(F')) of strongly cuspidal functions doesn’t depend on such a choice. For
[ € Cocusp(G(F)), we define a function 6 on G, (F') by

Op(z) = (=1)™M@ Jyp) (@, f), 7 € Greg(F)

where M (z) denotes the minimal Levi subgroup of G containing = and ajs,) denotes, as
before, the dimension of Ajs(,) the maximal central split subtorus of M(z). The function 6
is invariant and we can show that it shares a lot of the good properties that characters of
representations have. It is what we call a quasi-character (cf. Chapter ). In particular, as
for characters, there is a natural extension of 6; to a function

Cy: GSS(F) — C

and we can now state the geometric expansion of J(.) as follows (cf. Theorem TT.4.1]).

Theorem 6 For all strongly cuspidal functions f € Cseusp(G(F)), we have

J(f) = lim c;(x)DC(x) 2 A ()~ da

s—07t I(G,H)

12



Once again, the expression of the right hand side of the equality above is absolutely con-
vergent for all s € C such that Re(s) > 0 and the limit as s — 07 exists (cf. Proposition
IT.2.7).

It is from the equality between the two expansions of Theorem [l and Theorem [@ that we
deduce the formula for the multiplicity (Theorem [2). To be more precise, we first prove the
spectral expansion (Theorem []) and then we proceed to show the geometric expansion (The-
orem [0) and the formula for the multiplicity (Theorem []) together in a common inductive
proof. The main reason for proceeding this way and not in a more linear order is that we
use the spectral expansion together with the multiplicity formula for some “smaller” GGP
triples in order to show that the distribution J(.) is supported in the elliptic locus G(F)en
of G(F'). This fact is used crucially in the proof of Theorem [6] and the author was not able
to give an independent proof of it.

We now give a quick description of the content of each chapter. The fist two chapters are
mainly intended to set up the notations, fix some normalizations and remind the reader of
some well-known results. In particular, the second chapter contains the basic material we will
be using on tempered representations. It includes a strong statement of the Harish-Chandra
Plancherel theorem sometimes called matricial Paley-Wiener theorem which in the p-adic
case is due to Harish-Chandra [Wa2] and in the real case is due to Arthur [A2]. In Chapter
Bl we recall the Harish-Chandra technique of descent. There are two: descent from the group
to the centralizer of one of its semi-simple elements (semi-simple descent) and descent from
the group to its Lie algebra. In both cases, the descent takes the form of a map between some
function spaces. We will be particularly concerned by the behavior of invariant differential
operator (in the real case) under these two types of descent and we collect the relevant results
there. The last Section (B.4) is devoted to a third type of descent that we may call parabolic
descent. However, we will be mainly interested in the dual of this map which allows us to
“induce” invariant distributions of Levi subgroups. In Chapter [, we define the notion of
quasi-characters and develop the main features of those functions that in many ways looks
like characters. The main results of this chapter are, in the p-adic case, already contained
in [Wal] and so we focus mainly on the real case. Chapter [l is devoted to the study of
strongly cuspidal functions. In particular, it is in this chapter that we define the functions
0 and 07 to which we alluded before. This chapter also contains a version of Arthur’s local
trace formula for strongly cuspidal function (Theorems [B.5.1] and 5.5.2)). The proof of these
two theorems, which are really just slight variation around Arthur’s local trace formula, will
appear elsewhere [Beu2]. In Chapter [6] we define the GGP triples, the multiplicity m(w) and
we show some estimates that will be needed in the proof of the main theorems. Chapter [1is
devoted to the proof of Theorem[Bl In Chapter 8, we establish Theorem [3as well as an analog
for the Lie algebra g(F) of G(F). This allows us to define two distributions J(.) and J%¢(.)
on the group G(F') and its Lie algebra respectively. Chapter [0 concentrates on the spectral
expansion of the distribution J(.) (Theorem [). As already explained, the main ingredient
in the proof is Theorem [5l In Chapter [I0, we establish some “spectral” expansion for the Lie
algebra analog J™°. More precisely, we express J"¢(f) in terms of weighted orbital integrals

of J?, the Fourier transform of the function f. Chapter [[1] contains the proofs of Theorem
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and Theorem 21 As we said, these two theorems are proved together. The last chapter,
Chapter [[2] is devoted to the proof of the main result of this paper (Theorem [I]) following
the outline given above. Finally, I collected in two appendices some definitions and results
that are used throughout the text. Appendix[Alis concerned with locally convex topological
vector spaces and particularly smooth and holomorphic maps taking values in such spaces
whereas Appendix [Bl contains some general estimates.
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1 Preliminaries

This is a preparatory chapter. We mainly set up notations, conventions and recall some
standard results from the literature. In more details, Section [LI] fixes general notations,
Section is devoted to a certain notion of norm on algebraic varieties over local fields due
to Kottwitz [Kott3] that we will use extensively, in Section [[3we prove some useful estimates
that will be needed later, in Section [[.4 we introduce the most common spaces of functions
that will appear in this paper, Section discusses the very important Harish-Chandra
Schwartz space of functions and its basic properties, Section explains our normalizations
of measures, in Section [[.7] we introduce some spaces of conjugacy classes that we equip
with topologies and measures, in Section [I.8 we set up notations for orbital integrals and
recall some of their properties, finally in Sections and [LT0] we recall Arthur’s notions of
(G, M)-family and weighted orbital integral respectively.

1.1 General notation and conventions

Throughout this paper, we fix a field [F] which is either p-adic (i.e., a finite extension of Q,)
or R the field of real numbers. We denote by |.| the normalized absolute value on F i.e.,
for every Haar measure dr on F' we have d(ax) = |a|dz, for all a € F. We fix once and
for all an algebraic closure [F for F and let [ = Gal(F/F) be the corresponding absolute
Galois group. We will also denote by |.| the unique extension of the absolute value to F. All
varieties, schemes, algebraic groups will be assumed, unless otherwise specified, to be defined
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over F. Moreover we will identify any algebraic variety X defined over F or F with its set of
F-points. For G a locally compact separable group (for example the F-points of an algebraic
group defined over F'), we will usually denote by dpg (resp. drg) a left (resp. a right) Haar
measure on GG. If the group is unimodular then we will usually denote both by dg. Finally
dc will stand for the modular character of G that is defined by dz(gg'™!) = dg(g’)drg for all
g €G.

We fix, until the end of Chapter [Bl, a connected reductive group G over F. We denote by g
its Lie algebra and by

GXxg—g

(9,X)— gXg™

the adjoint action. A sentence like “Let P = MU be a parabolic subgroup of G” will mean
as usual that P is defined over F', U is its unipotent radical and that M is a Levi component
of P defined over F. We define an integer |0(G)| by

§(G) = dim(G) — dim(T)

where T is any maximal torus of G. It is also the dimension of any regular conjugacy class

in G.

Let us recall some of the usual objects attached to G. We shall denote by [Z] the center of
G and by [Ag] its split component. We define the real vector space

= Hom(X*(G),R)

and its dual

L= X"(G)®R

where X*(G) stands for the module of F-rational characters of G. We have a natural
homomorphism

Hy: G(F) = Ag
given by

(x;Ha(g)) =log (Ix(9)]), g€ G(F), x € X*(G)
Set = Hg(G(F)) and — Hg(Ag(F)). In the real case, we have Agp = Agp =
Ag. In the p-adic case, Ag r and Ag r are both lattices inside Ag. We also set =
Hom(Ag r, 27Z) and |AY ,| = Hom(Ag r, 27Z). In the p-adic case, .Z%F and AY, o are

this time lattices inside A7, whereas in the real case we have A, = A = 0. We set
= A/ A¢ p and we identify iAf  with the group of unitary unramified characters of
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G(F') by mean of the pairing (), g) € iAG p X G(F) — eMH6(9) - We shall also denote by
A o] and [AF | the complexifications of Ag and Ag,.

Let P = MU be a parabolic subgroup of GG. Of course, the previous constructions apply to
M. We will denote bythe set of roots of Ay, in the unipotent radical of P. If K is a
maximal compact subgroup of G(F') which is special in the p-adic case, we have the Iwasawa
decomposition G(F') = M(F)U(F)K. We may then choose maps mp: G(F) — M(F),
up: G(F) — U(F) and kp: G(F) — K such that g = mp(g)up(g9)kp(g) for all g € G(F).
We then extend the homomorphism Hj; to a map [Hp|: G(F) — Ay by setting Hp(g) =
Hy(mp(g)). This extension depends of course on the maximal compact K but its restriction
to P(F') doesn’t and is given by Hp(mu) = Hy;(m) for allm € M(F) and allu € U(F). By a
Levi subgroup of G we mean a subgroup of G which is the Levi component of some parabolic
subgroup of G. We will also use Arthur’s notation: if M is a Levi subgroup of G, then we
denote by [P(M)|, [C(M)| and [F(M)| the finite sets of parabolic subgroups admitting M as a
Levi component, of Levi subgroups containing M and of parabolic subgroups containing M
respectively. If M C L are two Levi subgroups, we set = Ay /Ar. We have a canonical
decomposition

AM:ALEB.Aﬁ/I

and its dual

=A@ (Af)

If H is an algebraic group, we shall denote by H° its neutral connected component. For
x € G (resp. X € g), we denote by (resp. |Z¢(X)|) the centralizer of x (resp. X) in G
and by [G]= Zg(z)° (resp. [Gx]= Z5(X)?) the neutral component of the centralizer. Recall
that if X' € g is semi-simple then Z¢(X) = Gx. We will denote by [Gyand [Greg] (resp. [fzg and
the subsets of semi-simple and regular semi-simple elements in G (resp. in g). For any
subset A of G(F) (resp. of g(F')), we will denote by A, the intersection AN Gieg(F) (resp.
ANgreg(F)) and by Ay the intersection ANGgs(F') (resp. ANgss(F)). We will usually denote
by a set of representatives for the conjugacy classes of maximal tori in G. Recall that
a maximal torus T of G is said to be elliptic if A7 = Ag. Elliptic maximal tori always exist
in the p-adic case but not necessarily in the real case. An element x € G(F) will be said
to be elliptic if it belongs to some elliptic maximal torus (in particular it is semi-simple).
Similarly, an element X € g(F') will be said to be elliptic if it belongs to the Lie algebra of
some elliptic maximal torus. We will denote by |G'(£')en| and |g(f)en| the subsets of elliptic
elements in G(F') and g(F’) respectively. We will also set = G(F)en N Greg(F) and
= g(F)en N Greg(F). For all x € Gg(F) (resp. all X € g(F)), we set

: ‘det(l — Ad(2)))gq.| (resp. = ‘det ad(X)lg/gx})

If a group H acts on a set X and A is a subset of X, we shall denote by Normy(A) the
normalizer of A in H. For every Levi subgroup M and every maximal torus 7" of G, we will
denote by W (G, M) and [W (G, T')| the Weyl groups of M (F') and T'(F') respectively, that is
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W(G, M) = Normgpy(M)/M(F) and W(G,T) = Normg ) (T)/T(F)

If fis a function on either G(F') or g(F), for all ¢ € G(F) we will denote by [f] the
function f o Ad(g). We shall denote by [Rl and [I] the natural actions of G(F') on functions
on G(F) given by right and left translation respectively. That is (R(g)f) (v) = f(vg) and

(L(9)f) (v) = f(g~1y) for every function f and all g,y € G(F).

Assume that ' = R. Then, we will denote by the enveloping algebra of g = g(C)
and by its center. The right and left actions of G(F') on smooth functions on G(F)
of course extend to U(g). We still denote by R and L these actions. For z € Z(g), we will
simply set zf = R(2)f (= L(z*)f with a notation introduced below) for all f € C*(G(F)).
We will also denote by and the symmetric algebras of g and g* respectively. We
will identify S(g*) with the algebra of complex-valued polynomial functions on g and we
will identify S(g) with the algebra of differential operators on g with constant coefficients.
More precisely for u € S(g), we shall denote by the corresponding differential operator.
We denote by [[(g)| and |I(g*)| the subalgebras of G-invariant elements in S(g) and S(g*)
respectively. We will also need the algebra of differential operators with polynomial
coefficients on g(F'). We will denote by u —[u* the unique C-algebra automorphism of both
U(g) and S(g) that sends every X € g to —X. We then have

(/ (M@ﬁﬂ@ﬁ@ﬂg:/“ F1(9) (R(u)fa) (9)dg, for all fu, fo € CX(G(F)),u € U(g)
G(F) G(F)

/(F) (O(u) f1) (X) fo(X)dX = /(F) f1(X) (0(u™) f2) (X)dX, for all fi, fo € CZ(g(F)),u € S(g)

For each maximal torus T of G, the Harish-Chandra homomorphism provides us with an
isomorphism

2() = Sy

z = Ef

where W (Gc,Tc) denotes the Weyl group of T¢ in Ge. Assume that H is a connected
reductive subgroup of G of the same rank as G, for example H can be a Levi subgroup
or the connected centralizer of a semi-simple element. Let 7' C H be a maximal torus.
Since W (H¢, Tc) € W(Gc, 1t), the Harish-Chandra isomorphism for 7" induces an injective
homomorphism

Z(g) = Z(b)

z — ol

which is in fact independent of 7" and such that the extension Z(h)/Z(g) is finite. Similarly,
over the Lie algebra we have isomorphisms
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[(g*) ~ S(t*)W(G@,TC) [(g) ~ S(t)W(chTC)

p =[Pl u — [0

The first one is just the “restriction to t” homomorphism, the second one may be deduced
from the first one once we choose a G-equivariant isomorphism g ~ g* (but it doesn’t depend
on such a choice). As for the group, if H is a connected reductive subgroup of G of the same
rank as G, we deduce from these isomorphisms two injective homomorphisms

I(g") = I(b*) I(g) — I(h)
pl—> U — x|

which are such that the extensions 1(h*)/I(g*) and I(h)/I(g) are finite. Also the two iso-
morphisms Z(g) ~ S(t)"V(@eTe) and I(g) ~ S()"(@T0) induce an isomorphism Z(g) ~ I(g)
that we shall denote by z +— u,.

We will also adopt the following slightly imprecise but convenient notation. If f and g are
positive functions on a set X, we will write
f(z) < g(x) for all x € X
and we will say that f is essentially bounded by g, if there exists a ¢ > 0 such that
f(z) < eg(z), for all z € X
We will also say that f and g are equivalent and we will write

f(x) ~ g(x) for all x € X

if both f is essentially bounded by ¢ and g is essentially bounded by f.

1.2 Reminder of norms on algebraic varieties

All along this paper, we will assume that g = g(F') has been equipped with a (classical)
norm |.|g, that is a map |.|; : g — Ry satisfying |AX|; = [N | X|g [ X +Y|; < | X+ |Y]q
and | X|; = 0 if and only if X =0 for all A € F and X,Y € g. For any R > 0, we will denote
by the closed ball of radius R centered at the origin in g(F).

