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Abstract

In this paper, we prove a conjecture of Wei Zhang on comparison of certain lo-
cal spherical characters from which we draw some consequences for the Ichino-Tkeda
conjecture for unitary groups.
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1 Introduction

Let E/F be a quadratic extension of number fields. Let V' be a (n+1)-dimensional hermitian
space over E and let W < V be a nondegenerate hyperplane. Set G = U(W) x U(V) and
H = U(W). We view H as a subgroup of GG via the natural diagonal embedding. Let 7 be
a cuspidal automorphic representation of G(A). Define the H-period of 7 to be the linear
form Py : m — C given by

Pr(¢) = ¢(h)dh, ¢em

JH (FN\H(A)
where dh stands for the Tamagawa Haar measure on H(A) (the integral is absolutely con-
vergent by cuspidality of 7). Let BC(m) be the base change of m to GL,(Ag) x GL,1(Ag)
(known to exist thanks to the recent work of Mok [Mok| and Kaletha, Minguez, Shin
and White [KMSW]). We may decompose 7 = 7, [X] m,4+1 with m,, m,4; cuspidal auto-
morphic representations of U(W) and U(V) respectively. We have a similar decomposi-
tion BC(w) = BC(m,) X BC(m,41) with BC(m,), BC(m,+1) two automorphic representa-
tions of GL, g and GL, 1 g respectively. Let L(s, BC(w)) denote the L-function of pair
L(s, BC(m,) x BC(m,+1)) defined by Jacquet, Piatetskii-Shapiro and Shalika. If 7 is tem-
pered everywhere (meaning that for all place v the local representation 7, is tempered), a
famous conjecture of Gan, Gross and Prasad links the nonvanishing of the period Py to
the nonvanishing of the central value L(1/2, BC (7)) (see |GGP,conjecture 24.1] for a precise
statement). In the influential paper [II|, Ichino and Ikeda have proposed a refinement of
this conjecture for orthogonal groups in the form of an exact formula relating these two
invariants. This conjecture has been suitably extended to unitary groups by N. Harris in
his Ph.D. thesis (|Ha]). These formulas are modeled on the celebrated work of Waldspurger
([Wald3|) on toric periods for G Ls.

In two recent papers ([Zhl], |[Zh2]), W.Zhang has proved both the Gan-Gross-Prasad and
the Ichino-Tkeda conjectures for unitary groups under some local assumptions on 7. More
precisely, Zhang proves the Gan-Gross-Prasad conjecture under some mild local assumptions
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(mainly that 7 is supercuspidal at one place of F' which splits in F, see [Zhl,Theorem 1.1])
but he only gets the Ichino-Ikeda conjecture under far more stringent assumptions (see
[Zh2 Theorem 1.2]). This discrepancy is due to some local difficulties that we shall discuss
shortly. In [Zh2]|, Zhang makes a series of conjectures (one for every place of F') which if true
would allow to considerably weaken the assumptions of [Zh2, Theorem 1.2|. The goal of this
paper is to prove this conjecture at all nonarchimedean place of F'. Thus, it will allow us to
derive new cases of the Ichino-Tkeda conjecture.

Let us now formulate the Ichino-lTkeda conjecture in a form suitable to our purpose. We
assume from now on that 7 is everywhere tempered. Set

L(s, BC(m))
L(s+ 1,7, Ad)

where A, ;1 is the following product of special values of Hecke L-functions

L(s,7):=Api1

n+1

AnJrl = H L(Zu nZE'/F)

i=1
ng/r being the idele class character associated to the extension £/F and where the adjoint
L-function of 7 is defined by

L(s,w, Ad) := L(s, BC(m,), As" V") L(s, BC(mp41), As©V")

(see |GGP, §7] for the definition of the Asai L-functions). For all place v of F', we will denote
by L(s,m,) the corresponding quotient of local L-functions. To the period Py we associate
a global spherical character J;. It is a distribution on the Schwartz space S(G(A)) of G(A)
given by

J=(f) = Z Pu(r(f)¢)Pu(9)

¢eBr

for all f € S(G(A)) and where B, is a (suitable) orthonormal basis of 7 for the Petersson
inner product

(6.6 per = f o(9)8(9)dg

G(F)\G(A)
(where dg is the Tamagawa Haar measure on G(A)). We also define local spherical characters
as follows. Fix factorizations dg = | [, dg, and dh = | [, dh, of the Tamagawa Haar measures

on G(A) and H(A) respectively. For all place v of F'; we define a local spherical character
I, : S(G(F,)) = C (where S(G(F,)) denotes the Schwartz space of G(F,)) by

T (fa) = f Trace(m,(h)mo(£.)dhe,  f, € S(G(F,)

H(Fy)

(the integral is absolutely convergent by temperedness of m,). For almost all place v of F if
fv is the characteristic function of G(O,) we have
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o (f2) = £(5, m)uol(H(0,))wol(G(O,))

2
We define a normalized spherical character Jfrv by
I, (fo)
Ji(f) = o
’ L(5:7)

Finally, we will write S, for the component group associated to the L-parameter of 7. It is
a 2-abelian group and if BC(w) is cuspidal we have S, ~ (Z/2Z)*. We can now state the
Ichino-Tkeda conjecture as follows:

Conjecture 1.0.1 (Ichino-Ikeda) Assume that 7 is everywhere tempered. Then, for all
factorizable test function f =[], f, € S(G(A)) we have

T = 187G [T 72,05

Note that the Ichino-Ikeda conjecture is not usually stated this way but rather in a form
involving directly the (square of the absolute value of the) period Py and some local peri-
ods (see [II,conjecture 1.5] and [Ha,conjecture 1.2]), see however [Zh2, lemma 1.7| for the
equivalence between the two formulations.

The main tool used by Zhang to attack conjecture 1.0.1 is a comparison of certain (simple)
relative trace formulae that have been proposed by Jacquet and Rallis ([JR|). To carry this
comparison, we need a fundamental lemma and the existence of smooth matching. The
fundamental lemma for the case at hand has been proved by Yun ([Yu]) in positive charac-
teristic and extended by J. Gordon to characteristic 0 in the appendix to [Yu]. The existence
of smooth matching at nonarchimedean places is one of the main achievements of Zhang in
[Zh1]. It has been recently extended in a weak form by Xue (|Xue|) to archimedean places.
The comparison between the two trace formulae has been done by Zhang in [Zhl]. The
output is an identity relating the spherical J; (under some mild local assumptions on ) to
certain periods on the base-change of m. More precisely, there is a certain spherical char-
acter Ipc(r) attached to these periods and we get an equality between J(f) and Ipc ) (f')
up to an explicit factor for nice matching functions f and f’ (see [Zh2,Theorem 4.3] and
Theorem 3.5.1 below). Thanks to the work of Jacquet, Piatetskii-Shapiro and Shalika on
Rankin-Selberg convolutions we know an explicit factorization for Ipc(s) in terms of local
(normalized) spherical characters I?BC(M) (see |Zh2,Proposition 3.6]). As a consequence, we
also get an explicit factorization of J,. However, this factorization is still in terms of the
local spherical characters IJHBO(M) which are living on (products of) general linear groups. In
order to get the Ichino-Ikeda conjecture we need to compare them with the our original local
spherical characters Jfru. It is precisely the content of the following conjecture of Zhang (see
[Zh2, conjecture 4.4] and conjecture 3.5.5 for precise statements):



Conjecture 1.0.2 (Zhang) Let v be a place of F. Then for all matching functions f, €
S(G(F,)) and f! € S(G'(F,)) we have

Lo, (1) = Cmy) 2, (£2)

where C(m,) is some explicit constant.

Together with the above-mentioned comparison of relative trace formulae, this conjecture
implies the Ichino-Tkeda conjecture under mild local assumptions (see |[Zh2,Proposition 4.5]).
Zhang was able to verify his conjecture in certain particular cases. More precisely, in [Zh2|
the above conjecture is proved for split places or when the representation 7, is unramified
(and the residual characteristic is sufficiently large) or supercuspidal (see Theorem 4.6 of
loc.cit). This explains the very strong conditions that are imposed on 7 in [Zh2, Theorem
1.2]. The main purpose of this paper is to prove conjecture 1.0.2 at every nonarchimedean
place. Our main result thus reads as follows (see Theorem 3.5.7):

Theorem 1.0.3 For every nonarchimedean place v of F, conjecture 1.0.2 holds at v.

As a consequence of this theorem we obtain the following result towards conjecture 1.0.1
(see Theorem 3.5.8):

Theorem 1.0.4 Let 7 be cuspidal automorphic representation of G(A) which is everywhere
tempered. Assume that all the archimedean places of F split in E and that there exists a
nonarchimedean place vy of F' such that BC(m,,) is supercuspidal. Then conjecture 1.0.1

holds for m.

The main new ingredient in the proof of Theorem 1.0.3 is a group analog of the local relative
trace formula for Lie algebras developed by Zhang in [Zh1,84.1]. Actually, this local trace
formula can be derived directly from results contained in [Zhl] and [Beu| so that the proof
of it is rather brief (see §4.3). We then deduce Theorem 1.0.3 from a combination of this
local trace formula with certain results of Zhang on truncated local expansion of spherical

characters (see [Zh2.,§8| and §4.1).

We now briefly describe the content of each section. In section 1, we set up the notations, fix
the measures and recall a number of results (in particular concerning global and local base-
change for unitary groups and the local Gan-Gross-Prasad conjecture) that will be needed in
the sequel. In section 2 we mainly recall the work of Zhang on comparison of global relative
trace formulae, we state precisely conjecture 1.0.2 as well as the main results (Theorem 3.5.7
and Theorem 3.5.8). Section 3 is devoted to the proofs of Theorem 1.0.3 and Theorem
1.0.4. In section 4, we explain how we can remove the temperedness assumption in Theorem
3.5.8. Finally, we have included an appendix to prove that the simple Jacquet-Rallis trace
formulae are still absolutely convergent for test functions which are not necessarily compactly
supported (but nevertheless rapidly decreasing). For this, we define certain norms on the
automorphic quotient [G] := G(F)\G(A) and establish their basic properties. This material



is certainly classical but the author hasn’t be able to find a convenient reference, hence
we provide complete proofs. It has however interesting consequences e.g. for H a closed
subgroup of G we can give a criterion under which every cuspidal form on [G] is integrable
on [H] (see Proposition A.1.1 (ix), the criterion simply being that the variety H\G is quasi-
affine).

Aknowledgement: I thank Volker Heiermann, Wee-Teck Gan and Hang Xue for useful
comments on an earlier draft of this paper. This work has been done while the author was
a Senior Research Fellow at the National University of Singapore and the author would like
to thank this institution fo its warm hospitality.

2 Preliminaries

2.1 General notations and conventions

In this paper E/F will always be a quadratic extension of number fields or of local fields of
characteristic zero. We will always denote by Trg/r the corresponding trace and by x +— T
the nontrivial F-automorphism of E. Moreover, we will fix a nonzero element 7 € E such
that Trg/p(7) = 0. The notation Rp/p will stand for the Weil restriction of scalars from
E to F. For every finite dimensional hermitian space V over E we will denote by U(V)
the corresponding unitary group and we will write u(V') for its Lie algebra. The standard
maximal unipotent subgroup of GL, will be denoted by N,. For all connected reductive
group G over F' we will write Zg for the center of G. For all n > 1 we define a variety 5,
over I' by

Sn = {S € RE/FGLm 8§ = 1}
and its "Lie algebra" s, by

Sy = {X € RE/FMmX +7 = 0}

We have a surjective map v : RgpGL,/GL, — S, given by v(g) = gg~' which, by Hilbert
90, is surjective at the level of k-points for any field k. We will denote by ¢ the Cayley map
¢: X — (X +1)(X —1)~! which realizes a birational isomorphism between s, and S, and
also between u(V') and U(V') for all finite dimensional hermitian space V' over E.

Assume that the fields F and F' are local. We will then denote by |.|r the normalized absolute
value on F' (and similarly for F) and by ng/p the quadratic character of F'* associated to
the extension E/F. We will also fix an extension 7’ of 1g/p to £* and a nontrivial additive
character ¢ : F — C*. We will set ¢p(z) = ¢(3Trg/r(z)) for all z € E. Let G be a
reductive connected group over F. By a representation of G(F') we will always mean a
smooth representation if F' is p-adic and an admissible smooth Fréchet representation of
moderate growth if F' is archimedean (see [BK], [Ca] and [Wall, section 11]). We will denote
by Irr(G), Irrum:(G) and Temp(G) the set of isomorphism classes of irreducible, irreducible
unitary, irreducible tempered representations of G(F') respectively. We will endow these sets
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with the Fell topology (see [Tad]). For any parabolic subgroup P = MU of G (U denoting
the unipotent radical of P and M a Levi factor) and for any irreducible representation o
of M(F) we will denote by i%(o) the normalized parabolic induction of o. The notation
Unit(G) will stand for the group of unitary unramified characters of G(F'). The space of
Schwartz functions S(G(F')) consists of locally constant compactly supported functions if
F'is p-adic oand functions rapidly decreasing with all their derivatives if F' is archimedean
(see [Beu,§1.4]). If F'is p-adic and €2 is a finite union of Bernstein components of G(F') (see
[BD]), we will denote by S(G(F))q the corresponding summand of S(G(F')) (for the action
by left translation). Finally, if 7 is an irreducible generic representation of GL,,(E) we will
denote by W(m, ¥ g) the Whittaker model of 7 with respect to ¢¥g. It is a space of smooth
functions W : G(F') — C satisfying the relation

W (ug) = (Y, vii1) W (9)

for all u € N,,(F) and such that 7 is isomorphic to W(w, 1¢g) equipped with the G(F)-action
by right translation.

In the number field case, we will denote by A and Ag the adele rings of F' and F respectively
and by ng/p the idele class character associated to the extension E/F. We will fix an
extension 1’ of ng/p to Aj. For every place v of ' we will denote by F;, the corresponding
completion, O, c F, the ring of integers (if v is nonarchimdean) and we will set £, = EQrF,,
Ogrv = O o, O, where Op, Of denote the ring of integers in F' and E respectively. If
S is a finite set of places of F, we define Fg = [ [, ¢ Fy». If ¥ is a (usually infinite) set of
places of F', we will write Ay, for the restricted product of the F, for v € ¥. We will also
fix a nontrivial additive character ¢ : A/F — C* and we will set ¥g(z) = ¥(3Trg/r(2))
for all z € Ap. For all place v of F, will denote by 1, Vg, and 7, the local components
at v of ¥, ¢p and 7’ respectively. Let G be a connected reductive group over F. We will
set [G] = G(F)\G(A) and for all place v of ' we will denote by G, the base-change of G
to F,. The Schwartz space S(G(A)) of G(A) is by definition the restricted tensor product
of the local Schwartz spaces S(G(F,)). We will denote by U(gs) the enveloping algebra of
the complexification of the Lie algebra go, of [],,, G(F,) and by Cg € U(go) the Casimir
element. If a maximal compact subgroup K = [ [, K, of G(A) has been fixed, we will also
denote by Cx € U(gs) the Casimir element of Ko :=[],,, Ky. Finally if n: A*/F* — C*
is an idele class character and g € GL,(A) we will usually abbreviate n(det g) by 7(g).

2.2 Analytic families of distributions

Assume that F' is a local field. Let G be a connected reductive group over F' and let 7 — L,
be a family of (continuous if F' is archimedean) linear forms on S(G(F')) indexed by the set
Temp(G(F)) of all irreducible tempered representations of G(F"). Assume that the following
condition is satisfied:

For all parabolic subgroup P = MU of GG and for all square-integrable



representation o of M (F) there is at most one irreducible subrepresentation 7 of
i% (o) such that L, # 0.

This condition is for example automatically satisfied if G = GL,, (as in this case the rep-

resentation i%(o) is always irreducible). If this condition is satisfied, we may extend the

family of distributions 7 +— L. to any induced representation i%(o) as above by setting
Lig(yy = L if 7 is the unique irreducible subrepresentation of i% (o) such that L, # 0 and
Lig () = 0 if no such subrepresentation exists. We then say that this family is analytic if for
all f e S(G(F)), all parabolic subgroup P = MU and all square-integrable representation o

of M(F) the function

X € \I]umt(M> = L'G(U®X)(f)

'p
is analytic (recall that W,,,;;(M) being a compact real torus has a natural structure of analytic
variety).

2.3 Base Change for unitary groups

Let E/F be a quadratic extension of local fields of characteristic zero (either archimedean or
p-adic). Let V' be a n-dimensional hermitian space over E. Recall that the set of Langlands
parameters for U(V) is in one-to-one correspondence with the set of (—1)"*!'-conjugate dual
continuous semisimple representations ¢ of the Langlands group Lg of E (see [GGP, §3] for a
definition of e-conjugate dual representations). In what follows, by a Langlands parameter for
U(V') we shall mean a representation ¢ of this sort. By the recent results of Mok [Mok]| and
Kaletha-Minguez-Shin-White [KMSW] on the local Langlands correspondence for unitary
groups together with the work of Langlands [Lan]| for real groups, we know that there exists
a canonical decomposition

Irr(U(V) = |17 ()

indexed by the set of all Langlands parameters for U (V). The sets IIV(V)(y) are finite (some
of them may be empty) and called L-packets. By the Langlands classification, the above
decomposition boils down to an analog decomposition of the tempered dual

Temp(U(V)) = |_|1"V(p)

)

where the union is over the set of tempered Langlands parameters for U(V') i.e. the pa-
rameters ¢ whose image is bounded. This last decomposition admits a characterization in
terms of endoscopic relations (see [Mok, Theorem 3.2.1] and [KMSW, Theorem 1.6.1]) and
of the (known) Langlands correspondence for GL4(FE) ([He|, [HT], [S]). By this Langlands
correspondence, every parameter ¢ of U(V') determines an irreducible representation m(y)
of GL,(E). If 7 is in the L-packet corresponding to ¢ we will write BC(7) := 7(p). If 7 is
tempered then so is BC'(7) and conversely. However it might happen that 7 is supercuspidal
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or square-integrable but BC(w) is not. Aubert, Moussaoui and Solleveld [AMS]| have re-
cently proposed a very general conjecture on how to detect supercuspidal representations in
L-packets. Moreover, Moussaoui [Mou]| has been able to verify this conjecture for orthogonal
and symplectic groups. Most probably his work will soon cover unitary groups too. We will
need the following particular case of the Aubert-Moussaoui-Solleveld conjecture for which
however we can give a direct proof.

Lemma 2.3.1 Assume that F is p-adic. Let m € Irr(U(V)) and assume that BC(w) is
supercuspidal. Then so is .

Proof: We will use the following characterization of supercuspidal representations

(1) 7 is supercuspidal if and only if the Harish-Chandra character O, of 7 is compactly
supported modulo conjugation.

The necessity is an old result of Deligne (|De|). The sufficiency follows for example from
Clozel’s formula for the character (|Cl1, Proposition 1]).

Let ¢ be the Langlands parameter of 7. Then by our assumption the L-packet ITV(V)(¢)
is a singleton. Introduce the twisted group Gzn\(_E) = GL,(E)0, where 0,(g) = g It
is the set of F-points of the nonneutral connected component of the non-connected group
Gt = Rp/pGL, % {1,60,}. Since ¢ is a conjugate-dual representation of Lg, it follows that
BC(m) may be extended to a representation BC(w)" of G*(F). Denote by EC'\(/) the
restriction of BC(m)* to Gm) and denote by O —— 55T the Harish-Chandra character of

BC(m) (the Harish-Chandra theory of characters has been extended to twisted groups by
Clozel [C12]). Since BC(m) is supercuspidal, the character © 50T 18 compactly supported

modulo conjugation (this follows for example from the equality up to a factor between © 55— 350)

and weighted orbital integrals of coefficients of BC (7T) see [Wald2, théoréme 7.1]). By the
endoscopic characterization of the local Langlands correspondence for unitary groups, there is

a relation between O, and © 5~ B3 . More precisely there is a correspondence between (stable)
regular conjugacy classes in U(V')(F') and GE:(E?) (see [Beu2,83.2], in this particular case

the correspondence takes the form of an injective map U(V'),¢y(F')/stab — GL, ( )./ stab)

and for all regular elements y € U(V)(F), T € Gzn\(_E) that correspond to each other we
have (see [Mok, Theorem 3.2.1] and [KMSW, Theorem 1.6.1])

reg

O st (1) = Aly, 7)O4(y)

where A(y,T) is (up to a sign) a certain transfer factor. From this relation we easily infer

that ©, is compactly supported modulo conjugation and hence that 7 is supercuspidal by
(1). &

We now move on to a global setting. Thus E/F is a quadratic extension of number fields
and V is a n-dimensional hermitian space over E. If v is a place of F' which splits in E then
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we have isomorphisms U (V')(F,) ~ GLy(F,) and (Rg/pGLy)(F,) ~ GL,(F,) x GL,(F,) and
we define a base change map BC : Irr(U(V),) — Irr((Rg/rGLy),) by 7 — X 7. By
Theorem 2.5.2 of [Mok] and Theorem 1.7.1/Corollary 3.3.2 of [KMSW]| we may associate to
any cuspidal automorphic representation 7 of U(V') an isobaric conjugate-dual automorphic
representation BC(m) of GL,(FE), the base-change of 7, satisfying the following properties:

(1) The Asai L-function

L(s, BC(x), AstD"™)

has a pole at s = 1 and moreover if BC() is cuspidal this pole is simple (see [GGP, §7]
for the definition of the Asai L-functions);

(2) Let v be a place of F. Then, if BC(n) is generic or v splits in £ we have BC(m,) =
BCO(7)y;

(3) If BC(m) is generic then the multiplicity of 7 in L*([U(V)]) is one (see Theorem 2.5.2/Re-
mark 2.5.3 of [Mok| and Theorem 5.0.5, Theorem 1.7.1 and the discussion thereafter of
[KMSW]).

Let v be a place of F' and 7w € Irr(U(V)(F,)). Assume first that v is inert in E. By the
Langlands classification there exist

e a parabolic subgroup P = M'N of U(V'), with

M ~ REU/FHGLnl X ... X REH/FUGLnT- X U(V’)
where V' < V,, is a nondegenerate subspace;
e tempered representations m; € Temp(GL,,(E,)), 1 <i <r,and 7’ € Temp(U(V"));

e real numbers \; > ... > A\, > 0,

such that 7 is the unique irreducible quotient of

ig(v)” (|det|’glv7rl ... |det| 7, K )

The r-uple (A1,...,A;) only depends on 7 and we will set ¢(7) = A\ if r > 1, ¢(7) =0
if = 0 (ie. if m is tempered). Assume now that v splits in £. Then, we have an
isomorphism U(V'), ~ GL, r, and there exists a r-uple (n4, ..., n,) of positive integers such
that ny + ...+ n, = n, tempered representations m; € Temp(G Ly, (F,)) i = 1,...,r and real
numbers A\; > Ay > ... > )\, such that 7 is the unique irreducible quotient of

Z.gLn (|det\}i7ﬁ e \det\?i?fr)
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where P denotes the standard parabolic subgroup of GL, with Levi GL,, x ... x GL,, . In
this case, we set ¢(m) = max(|A1], |Ar|). This depends only on 7 and in particular not on the
choice of the isomorphism U(V'), ~ GL, r, (which is only defined up to an automorphism
of GL,, p, since it involves the choice of a place of E above v).

In any case, for ¢ > 0 we define Irr<.(U(V),) to be the set of irreducible representations
me Irr(U(V),) such that ¢(m) < ¢. Combining the above global results of Mok and Kaletha-
Minguez-Shin-White with the bounds toward the Ramanujan conjecture for GL,, of Luo-
Rudnick-Sarnak [LRS| suitably extended to ramified places independently by Miiller-Speh
and Bergeron-Clozel (|MS], [BC]), we get the following:

Lemma 2.3.2 Setc=1- n21+1. Let 7 be a cuspidal automorphic representation of U(V)(A)
such that BC(r) is generic. Then, for all place v of F' we have

o € Irr<.(U(V)y)

2.4 The local Gan-Gross-Prasad conjecture for unitary groups

Let E/F be a quadratic extension of local fields of characteristic zero (either archimedean or
p-adic). Let W be a n-dimensional hermitian space over E and define the hermitian space
V by V=W @&t e where (e,e) =1. Set H=U(W) and G = U(W) x U(V). We view H as
a subgroup of G via the diagonal embedding. We will say than an irreducible representation
7 of G(F') is H-distinguished if the space Hompg(m,C) of H(F)-invariant (continuous in the
archimedean case) linear forms on 7 is nonzero. By multiplicity one results (see [AGRS],
[JSZ]) we always have dim Hompy(m,C) < 1. We will denote by Irrg(G) and Tempy(G)
the subsets of H-distinguished representations in Irr(G) and Temp(G) respectively. Let ¢
be a generic Langlands parameter for G. We have the following conjecture of Gan, Gross
and Prasad (|[GGP,conjecture 17.1])

Conjecture 2.4.1 The L-packet T1%(p) contains at most one H-distinguished representa-
tion.

By |Beu, Theorem 12.4.1] and |GI, Proposition 9.3], the following cases of this conjecture
are known.

Theorem 2.4.2 (Beuzart-Plessis, Gan-Ichino) .
(i) Let ¢ be a tempered Langlands parameter for G. Then conjecture 2.4.1 holds for .

(i1) Assume that F is p-adic. Then conjecture 2.4.1 holds for any generic Lamglands pa-
rameter ¢ of G.
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2.5 Measures

We will use the same normalization of measures as in [Zh2, §2|. Let us recall these choices.
We actually define two sets of Haar measures: the normalized and the unnormalized. We
will use the normalized Haar measures apart in section 4 where we will use the unnormalized
one. From now on and until section 4, where we will switch to a local setting, we fix a
quadratic extension E£/F of number fields. We will denote by 7ng/p the idele class character
corresponding to this extension. We will also fix a nonzero character ¢ : A/F — C* and a
nonzero element 7 € E such that Trg/p(7) = 0. We will denote by g the character of Ag

given by ¢E(Z) = ¢(%TTE/F<Z))'

Let v be a place of F'. We endow F), with the self-dual Haar measure for 1,. Similarly, we
endow £, with the self-dual Haar measure for ¢p ,. On F, we define a normalized measure

dx
dxl’v = <Fu(1> Y
‘xv|Fv
and an unnormalized one
dx
d*r, = ——
|IU|FU

More generally, for all n > 1, we equip G L, (F,) with the following normalized Haar measure

L, dgo ij
dgy = Cr, (1)
|det g, |
as well as with the following unnormalized one
— Hij dgu,ij
! |det Gu |%U

and similarly for GL,,(E,). Recall that IV, denotes the standard maximal unipotent subgroup
of GL,. We will give N,,(F,) and N, (E,) the Haar measures

We equip A*, N,(A), N,(Ag), GL,(A) and GL,(Ag) with the global Tamagawa Haar

measures given by

dx =] [d*zy, du=1]]du, dg=1]]dg,

Recall that S, = {s € Rg/rGLy; ss = 1} and its Lie algebras, = {X € Rp/pM,; X +X = 0}.
Let V' be a n-dimensional hermitian space over E and denote by u(V') the Lie algebra of
U(V). Choosing a basis of V' we get an embedding u(V') — Rg/pM,. Let us denote by (., )
the GL, (E,)-invariant bilinear pairing on M, (F,) given by

12



(X,Y):=Trace(XY)

Note that the restrictions of (.,.) to s,(F,) and u(V)(F,) are F,-valued and nondegenerate.
We define a Haar measure dX on u(V')(F),) such that the Fourier transform

B(Y) = f (XN (X, V)X
uw(V)(Fv)

and its dual

B(X) = f (Y )oY, X))dX
u(V)(Fv)

are inverse of each other. We define similarly a Haar measure and Fourier transforms ¢ — @,
@ — @ on s,(F,).

The Cayley map ¢ : X — ¢(X) = (1+ X)(1 — X) ! induces birational isomorphisms from s,
to S, and from u(V') to U(V'). We define the unnormalized Haar measure d*g, on U(V)(F,)

to be the unique Haar measure such that the Jacobian of ¢ at the origin is 1. The normalized
Haar measure on U(V')(F},) is defined by

dgv = L(la nEu/Fv>d*gv

Similarly, we endow S,,(F},) with an unnormalized measure d*s, which is the unique GL,,(E,)-
invariant measure for which the Jacobian of the Cayley map ¢ at the origin is 1. The
corresponding normalized measure is given by

dSU = L<17 nEv/Fv)d*Sv

Note that d*s, (resp. ds,) can also be identified with the quotient of the unnormalized
(resp.normalized) Haar measures on GL,,(E,) and GL,(F,) via the isomorphism
v:GL,(E,)/GL,(F,) ~ S,(F,), v(g) = gg . Finally, we equip U(V)(A) with the global
Haar measure given by

d.g = Hdgv

It is not the Tamagawa measure since there is a factor L(1,7g/p) " missing. Note that the
local normalized Haar measure dg, can be identified with the quotient of the normalized
Haar measures on E and F via the isomorphism E)/F* ~ U(1)(F,), * — z/T. Hence,
as the Tamagawa number of U(1) is 2, we have

(1) vol (E*A\AR) = vol([U(1)]) = 2L(1, ngyr)

13



3 Spherical characters, the Ichino-Ikeda conjecture and
Zhang’s conjecture

In this section E/F will be a quadratic extension of number fields and we will use normalized
Haar measures (see §2.5). Let W be an hermitian space of dimension n over E. We will
set V = W @' Ee where (e,e) = 1, G = UW) x U(V) and H = U(W). We view H
as a subgroup of GG via the diagonal embedding. We will fix a maximal compact subgroup
K =1], K, of G(A). We will say that an irreducible representation 7 = &/, of G(A) is
abstractly H-distinguished if for all place v of F' the representation m, is H,-distinguished
ie. if Hompy,(7,,C) # 0. Set G' = Rg/p (GL, x GLy11). We define two subgroups H] =
Rp/pGL, and H) = GL,, x GLyy1 of G' (H] is embedded diagonally). We also define a
character n of Hj(A) by

(91, 92) = Neyr(91)" " mye(g2)"
for all (g1, g2) € Hy(A) = GL,(A) x GL,1(A). We will also fix a maximal compact subgroup
K' = 1], K, of G'(A) such that K] = GL,(Og,) x GL,+1(Og,) for all nonarchimedean
place v of F. Finally, if 7 and II are cuspidal automorphic representations of G(A) and
G'(A) respectively then we endow them with the following Petersson inner products

(61, P2) pet := J[G] ¢1(9)¢2—@an Gr1,p2 €T

(6, &) per = f () dd s B, II

[Z6/\G']

3.1 Global spherical characters

For any cuspidal automorphic representation 7 of G(A) we define the H-period Py : m — C
by

Pu() = fm o(h)dh, der

The integral is absolutely convergent (see Proposition A.1.1(ix)). We will say that the
cuspidal automorphic representation 7 is globally H-distinguished if the period Py is not
identically zero on m. We may associate to this period a (global) spherical character J, :

S(G(A)) — C defined as follows. Let f € S(G(A)) and choose a compact-open subgroup

Ky < G(Ay) by which f is biinvariant. Let Bx! be an orthonormal basis for the Petersson
inner product of 7% whose elements are Cg and C eigenvectors. Then we set

T(f) = > Pu(x(f)d)Pu(®)

K
¢eBy !
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The sum is absolutely convergent and does not depend on the choice of the basis B (see
Proposition A.1.2).

Let IT be a cuspidal automorphic representation of G'(A) whose central character is trivial
on Zm(A) = A* x A*. We define two periods A : Il — C and §: I — C by

A¢) = ¢(h1)dhy

[H1]
B(¢) = f o(ha)(ho)idhs
[ZHé\Hé]

for all ¢ € II. The two above integrals are absolutely convergent (see Proposition A.1.1(ix)).
We also define a (global) spherical character Iy : S(G'(A)) — C as follows. Let f' € S(G'(A))

and choose a compact-open subgroup Ky < G(Ay) by which f’ is biinvariant. Let Bg " be
an orthonormal basis for the Petersson inner product of IT%# whose elements are Cr and
Ck eigenvectors. Then we set

In(f) = >, MI(f)¢)B(9)
¢>eBHf’

The sum is absolutely convergent and does not depend on the choice of the basis 15’1{[{ " (see
Proposition A.1.2).

3.2 Local spherical characters

Let v be a place of F'. Let m, be a tempered representation of G(F,). We define a distribution
Jr, : S(G(F,)) — C (the local spherical character associated to m,) by

Bo(f) = | Trace(m (bm (f))dh, 1€ CGIE)
H(Fy)
By [Beu, §8.2|, the above integral is absolutely convergent. Choosing models for G and H

over Op, for almost all v if f, = 1k, , we have

Teu(fo) = £(5m)vol(H(O) 0ol (G(O,)

(see the introduction for the definition of L(s,m,)). Hence, we define a normalized spherical
character Jﬁv by

By [Beu, Theorem 8.2.1| we have

(1) m, is H,-distinguished if and only if J,, # 0.
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Moreover, by [Beu, Corollary 8.6.1|, for all parabolic subgroup P = MU of G, and for all
square-integrable representation o of M there is at most one irreducible subrepresentation
7 < i%(0) such that J, # 0. Thus, we are in the situation of §2.2 and the family of
distributions 7, € Temp(G,) — J,, is analytic.

Let II, be a generic unitary representation of G'(F,). We may write II, = 11, , X 1L, 11,
where II,,, and II,, 41, are generic and unitary representations of GL,(E,) and GL,,1(E,)
respectively. Let W(Il,,,, ¥ 5) and W(Il,41.,,%E) be the Whittaker models of II,,, and

I1,,11,, corresponding to the characters v, and ¥ respectively. Set W(IL,) = W(Il,, .., ¥ ) ®
WL, 41,0, ¥E). We define linear forms (the local Flicker-Rallis periods)

ﬁn,v : W<Hn,v7$E> - C, 5n+1,v : W<Hn+1,v7 7#E) - (C

and scalar products

Hn,v : W<Hn,v7$E) X W(Hn,vaaE> - (C, 9n+1,v . W(HnJrl,vawE) X W(HnJrl,vawE) - C

by

Brew(Wi) = f Wi (ex(T)gk—1)nE, /7, (det gr—1)" dgr—1
Ni_1(Fu)\GLg_1(Fy)

O (Wi, W) = f Wi (gk—1) W (Gr—1)dgr—1
Ni_1(Eu)\GLg_1(Ev)

for all k = n,n + 1, all W,,, W, € W(Il,,,,, ¢ ) and all W1, W/ ., € W(Il,41.,¢r) where
(1) = diag(t* 1, 7872, ..., 7,1) (recall that 7 is a fixed nonzero element of E such that
Trgp(T) = 0). The above integrals are absolutely convergent (see [JS] Propositions 1.3 and
3.16 for the absolute convergence of . ,,, the proof for ., is identical). Set 8, = 5,.,® Bni1.0
and 0, = 0, , ® 0, 41,. If E,/F,, 11, ¥p, are unramified, 7 is a unit in £, and W, € W(II,)
is the unique K/-invariant vector such that W,(1) = 1, we have (see [JS, Proposition 2.3]
and [Zh2,§3.2|)

Bo(W,) = vol (K1) L(1, T, , A" Y L(1, 41, AsCD)

and

0,(Wy) = vol(K,)L(1,11,,, x Iy ) L(L, T x T, )

Hence, we define normalized versions % and 6% of 3, and 6, by

B
0
L(1,1L,,, AsCD" ) L(1, My, AsCD™) 70 L(1, % ILY ) L(1, Iy < T1Y )

u 0,

By =

For all s € C, we also have the local Rankin-Selberg period A, (s,.) : W(II,) — C defined by
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)\U(S, Wn®Wn+1) = f Wn(gn>Wn+1(gn>|det gn|sEvdgn
Nn (BEv)\GLn(Ev)

for all (W, W,,41) € W(Il,,.p, V) x W(Il41.4,¢E), and its normalization (s, .) given by

Ao(s,.)
L(S + %a Hn,v X Hn-‘rl,v)

The integral defining A, (s, .) is absolutely convergent for Re(s) » 0 and M (s, .) extends to an
entire function on C (see [JPSS| and [Jac| for the archimedean case). We will set A1 = X5 (0, .).
Obviously A defines a Hj(F,)-invariant linear form on IT,. Moreover by [JPSS| and |Jac],
there exists W e W(IL,) such that \j(W) = 1. Hence A} defines a nonzero element in
Homy (1L, C). If 11, is tempered then A,(s,.) is absolutely convergent for Re(s) > —1/2
and we will set A, = A\, (0, .).

M (s,.) =

We are now ready to define the (normalized) local spherical character Ilg[v :S(G'(F,)) - C
attached to II,. Let f) € S(G'(F,)). If v is nonarchimedean then choose a compact-open
subgroup Ky of G'(F,) by which f] is biinvariant and let By, be an orthonormal basis of

K
I, 7 for the scalar product 3. If v is archimedean, we let By, be any orthonormal basis of
I1, for the scalar product 67 consisting of Ck:-eigenvectors. Then we set

I (£ = D0 NL(f)W)EW)
WeBn,,
The sum is absolutely convergent and does not depend on the choice of By, . If moreover II,
is tempered then we define an unnormalized local spherical character Iy, : S(G'(F,)) — C
by using 6,, 3, and A, instead of 69, 3% and A%. Finally, the proofs of [JS, Proposition 1.3]
and [JPSS, Theorem 2.7] easily show that the family of distributions II, € Temp(G!) — I,
is analytic in the sense of §2.2.

3.3 Orbital integrals
Consider the action of H x H on G by left and right translations. Then, an element § € G is

said to be reqular semisimple for this action if its orbit is closed and its stabilizer is trivial.
Denote by G, the open subset of regular semisimple element in GG. Let v be a place of F
and § € G,s(F,) be regular semisimple. We define the (relative) orbital integral associated
to ¢ as the distribution given by

00, f») = fo(hoh)dhdl',  f, € S(G(F,))

JH(Fu)xH(FU)
There is another way to see these orbital integrals. For all f, € S(G(F,)), we define a
function f, e S(U(V)(F,)) by
folx) = J fo(h(1,z))dh, xeU(V)(F,)

H(Fy)
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This defines a surjective linear map S(G(F,)) — S(U(V)(F,)). Let us say that an element
x € U(V) is regular semisimple if it is so for the action of U(W) by conjugation i.e. if the
U(W)-conjugacy class of z is closed and the stabilizer of x in U(W) is trivial. Denote by
U(V),s the open subset of regular semisimple element in U(V'). For all x € U(V),s(F,) we
define the orbital integral associated to x as the distribution

Owg) = | plhah™)dh, o, SOVE)
UW)(Fy)

For all § = (dw,dy) € G,s the element = = 51;/15‘/ is regular semisimple in U(V') and this

defines a surjection G,s — U(V),s. Moreover, for all § € G,s(F,) and all f € S(G(F,)), we

have the equality

~

0(6, f) = O(=, [)
where x = 5‘7[,15‘/.

We can also define orbital integrals on the space S(u(V)(F,)). Call an element X € u(V)
regular semisimple if it is so for the adjoint action of U(W). Let us denote by u(V), the
open subset of regular semisimple elements. Then, for all X € u(V),s(F,) we can define an
orbital integral by

OCte) = | phXhdh, e SWIVE)
UW)(Fv)

The Cayley map ¢ : X — (1+X)(1—X) ! realizes a U(W)-equivariant isomorphism between

the open subsets u(V)° = {X e u(V); det(1—X) # 0} and U(V)° = {x € U(V); det(1+z) #

0}. Assume that v is nonarchimedean and let w < u(V)°(F,) and Q2 < U(V)°(F,) be open

and closed U(W)(F,)-invariant neighborhoods of 0 and 1 respectively such that the Cayley

map restricts to an analytic isomorphism between w and {2 preserving measures. For all

peS(U(V)(Fy)), we define a function ¢, by
Cfele(X)) fXew
e(X) = { 0 otherwise
Then for all X € w,s =w nu(V),s(F,) and all ¢ € S(U(V)(F),)) we have

O(e(X), ) = O(X, )

Consider now the action of Hi x Hj on G’ by left and right translations. As before, an
element v € G’ is said to be reqular semisimple for this action if its orbit is closed and its
stabilizer is trivial. Denote by G., the open subset of regular semisimple element in G'. Let
v be a place of F' and v € G/ (F,) be regular semisimple. We define the (relative) orbital
integral associated to v as the distribution given by

O, f) = f Py h)n(h)dhadhs, T € S(G'(F))

Hy(Fy)x Hy (Fo)
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There is another way to see these orbital integrals. Recall that S, ,1(F,) = {s € GL,;1(E,); s5 =
1} and that we have a surjective map v : GL,1(E,) — Sni1(F,), v(g) = gg'. For all
f! e S(G'(F,)), we define a function f! € §(S,.1(F,)) by

fi s) = f f fo(hi(1, gho))dhodhy, g€ GLyy1(E,), s =v(g)
1(Fy) JGLnii (Fy

if n is even and

\

7 f f £ (ha (L, gho) ) (gha)dhodhy, g € GLusi(Ey), s = v(g)
’F’U GL7L+1(F'U

if n is odd. In any case, this defines a surjective linear map S(G'(F,)) — S(Sn+1(Fy))-
The group GL, acts on S, ;1 by conjugation and we shall say that an element s € S, is
regular semisimple if it is so for this action i.e. if the G L,-conjugacy class of s is closed and
the stabilizer of s in GL,, is trivial. We will denote by S, ;1 ,s the open subset of regular
semisimple elements in S, 1. For all s € S,,41,5(F,) we define the orbital integral associated
to s as the distribution

O(s, ) = f (™ shins, e (W)dh, o' € S(Susi(F))
GLyn(Fy)

For v = (71, 72) € G", the element s = v(7; '72) € S,.11 is regular semisimple and this defines
a surjection G, — Spi1.s. Moreover, for all v € G (F,) and all f' € S(G'(F,)), we have
the equality

N O(s,f’) if n is even,
O(”’f)‘{mm DOGs,F) it nis odd

where s = v(v; '72).

We can also define orbital integrals on the space S(s,41(F,)). Call an element X € s,
regular semisimple if it is so for the adjoint action of GL,,. Let us denote by 5,41 ,s the open
subset of regular semisimple elements. Then, for all X € s,,11,:(F,) we can define an orbital
integral by

0<X,w'>=f S X, e (), ' € S(snin(F))
GLyn(Fy)

The Cayley map ¢ = ¢, 41 : X — (1 + X)(1 — X)™! realizes a GL,-equivariant isomorphism
between the open subsets s, ., = {X € §,41; det(1 —X) # 0} and Sy, ,; = {s € S,11; det(1+
s) # 0}. Let w' < s ((F,) and @ < Sy, (F,) be open and closed GL,(F,)-invariant
neighborhoods of 0 and 1 respectively such that the Cayley map restricts to an analytic
isomorphism between w’ and €’ preserving measures. For all ¢’ € §(S,,11(F,)), we define a
function ¢ € S(s,11(F)) by
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, (X)) X el
(X) = { 0 otherwise

Then for all X € w], = w N §,11,5(F,) and all ¢’ € S(S,41(F,)) we have

O(c(X),¢') = O(X, ¢))

3.4 Correspondence of orbits and transfer

We now recall the correspondence between orbits following [Zh1, §2.4]. We will denote by
H\G'/H,, H\G/H, S,+1/GL,, and U(V)/U(W) the geometric quotients of G', G, Sy 41
and U(V) by Hi x H), H x H, GL,, and U(W) respectively (the last two actions being
given by conjugation). We will also write (H{\G'/H)),,, (H\G/H),,, (Sh+1/GLy),s and
(U(V)/U(W)),s for the regular semisimple loci in these geometric quotients. These are the
image of G), G;s, Sp41.s and U(V),s by the natural projections. The maps (y1,72) € G' —
v(y; '72) and (8w, dy) € G +— 0y 0y induce isomorphisms

H\G'/Hy ~ Sp1/GL, and H\G/H ~U(V)/U(W)

and similarly for the regular semisimple loci. Moreover, there is a natural isomorphism (see
[Zh1, §3.1])

(1) H\G'/H; ~ H\G/H
which preserves the regular semisimple loci. For all field extension k of F' we have (H{\G'/H)),, (k) =

H{(k)\G.,(k)/H5(k) and H(k)\G,s(k)/H (k) is a subset of (H\G/H),, (k). The above iso-
morphism thus induces injections

(2) H(k)\Gys(k)/H (k) — Hi(k)\G,.,(k)/Hy(k)
and

This last map admits the following explicit description. Choosing a basis of V' whose last
element is e we get an embedding U(V')(k) < GL,+1(k ®r E). By |[Zh3, lemma 2.3] any
regular semisimple element x € U(V),s(k) is GL, (k®p E)-conjugated to a regular semisimple
element of S, (k) which is unique up to GL,(k)-conjugation. The G L, (k)-conjugacy class
of this element is exactly the image of = by the map (3).

We have a similar situation at the level of Lie algebras: we have a canonical isomorphism
between geometric quotients
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(4) Sp11/GLy, ~u(V)/UW)

which preserves the regular semisimple loci (8,41/GLy,)rs = Snt1.rs/GLn and (w(V)/U(W)),s =
w(V),s/U(W). For all field extension k of F' this induces an injection

(5) U(V)rs(B)/UW)(K) = 8ni1,rs(k)/GLn(K)
We now define, following [Zh2, §4.1], two families of transfer factors Q, : G (F,) — C* and

Wy * Spi10s(Fy) = C*, v a place of F, satisfying the following conditions:

e For all v and all v € G/ (F,) (resp. all X € s,11,:(F,)) we have Q,(hivhe) =
0o (h2)Q(7) (vesp. wy(h™'Xh) = ng,/rk, (h)w,(X)) for all (hi, he) € H{(F,) x H)(F,)
(resp. for all h e GL,(F,));

e Forall vy e G (F) (resp. all X € 5,,41,5(F)), we have the product formula [ [, ©Q,(v) =
1 (resp. [ [, wo(X) = 1) where almost all terms in the product are equal to 1.

Let v be a place of F. For all s € S,,11,+(F,) and all X € §,,41.,5(F,), we set

(6) Qu(s) =, (det(s)’[nTﬂ] det(ens1, €nr1S, - - -, ean"))
(7) wy(X) =, (det(ent1, €ni1X, ..., 01 X"))
where e,41 = (0,...,0,1) and 7/, is the local component at v of the character ' : Ay — C*

extending 7g/p that we fixed at the beginning. Note that (see the proof of [Zh1, lemma 3.5])

(8) 0, (e(X)) = 7,(2)"" 2w, (X)
for all X € s,,41.,5(F,) sufficiently close to 0. Finally for all v = (y1,72) € G.,(F},), we set

Q,(s) if n is even,

Qv(f}/) = { 7];(7;172)&21}(8) lf n iS Odd

where s = v(v; '72). For future reference, we record the following formula,

(9) 2,(1)0(7. [') = Qu(s)0s. F)
for all f' € S(G'(F,)), all v € G’ ,(F,) and where we have set s = v/(y; '72).
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Using the transfer factors we can define the notion of matching functions as follows. Let v
be a place of F'. We say that functions f' € S(G'(F,)) and f € S(G(F,)) match each other
or that they are smooth transfer of each other if we have the equality

0(67 f) = QU(7>O<77 f,)

for every d € G,4(F,) and v € G (F,) whose orbits correspond to each other via the embed-
ding (2). Similarly, we say that functions ¢’ € S(s,41(F,)) and ¢ € S(w(V')(F,)) match each
other or that they are smooth transfer of each other if we have the equality

O(X, ow) = w,(Y)O(Y, ¢)

for every X e uw(V),s(F,) and Y € 8,11 ,5(F,) whose orbits correspond to each other via the
embedding (5).

If the place v splits in E then the existence of smooth transfer is easy (see [Zhl, Proposition
2.5]). One of the main achievement of [Zh1] was to prove the existence of smooth transfer
for nonarchimedean places. In other words, we have the following (see [Zh1l, Theorem 2.6]):

Theorem 3.4.1 (Zhang) Let v be a nonarchimedean place of F'.

(i) For every function f' e S(G'(F,)) there exists a function f € S(G(F,)), matching f'
and conversely for every function f € S(G(F,)) there exists a function f" € S(G'(F,))
which matches f.

(i1) For every function @' € S(8,41(F,)) there exists a function ¢ € S(u(V)(F,)) matching
/

¢ and conversely for every function ¢ € S(w(V')(F,)) there exists a function ¢' €
S(sp11(F,)) which matches .

One of the main ingredient in the proof of Zhang was the following (see [Zh1, Theorem 4.17])

Theorem 3.4.2 (Zhang) Let v be any place of . If p € S(u(V)(F,)) and ¢' € S(5n41(F}))
match then so do €(X,ng,/r,, v)"" V2G5 and ¢

In a recent paper Xue ([Xue|) was able to extend Zhang results to obtain a weak version of
smooth transfer at archimedean places (which however is sufficient for many global appli-
cations). In order to state Xue’s result in the generality that we need, we have to vary the
hermitian space W. Let us denote momentarily the groups G and H by G" and H". To
every hermitian space W’ of rank n over E we can associate similar groups G"' and H"'
and replacing W by W' everywhere in the previous paragraphs we have a notion of matching
between test functions in S(G'(F,)) and test functions in S(G"'(F,)), v a place of . Then,
Xue’s result reads as follows:

Theorem 3.4.3 (Xue) Let v be an archimedean place of F. Then, the space of functions
f'e S(G'(F,)) admitting a smooth transfer to S(GV'(F,)) for all hermitian space W' of rank
n over E is dense in S(G'(F,)). Similarly, the space of functions f € S(GV(F,)) such that
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there exists a function f' € S(G'(F,)) matching f and with the property that for all hermitian
space W' of rank n over E for which W! % W, the function f' match 0 € S(GV'(F,)), is
dense in S(G(F})).

Parallel to the existence of smooth transfer there is also a fundamental lemma for the case
at hand. This fundamental lemma has been proved by Yun in (sufficiently large) positive
characteristic [Yu| and extended to the characteristic zero case by J.Gordon in the appendix
to [Yu]. It can be stated as follows:

Theorem 3.4.4 (Yun-Gordon) There exists a constant c(n) depending only on n such
that for every place v of F' of residual characteristic greater than c(n) the following holds: If
W, admits a self-dual lattice L, then the function f, = 1k, match the function f, = 1¢o,)
where we have defined a model of G over O, using the self-dual lattice L,, otherwise the
function f,, = 1x; match the function f, = 0.

3.5 Transfer of spherical characters, Zhang’s conjecture and Ichino-
Ikeda conjecture

We shall say of a function f € S(G(A)) that it is nice if it satisfies the following conditions:

e f is factorizable: f = ®,f,;

e There exists a nonarchimedean place v; of F' and a finite union €2; of cuspidal Bernstein
components of G(F,,) such that f,, € S(G(F,,))a;;

We define the notion of nice function on G’(A) similarly. To state the next theorem, we will
need to consider more than one pair of hermitian spaces (W, V). Recall that we have an
orthogonal decomposition V = W @' Ee where (e, e) = 1. To any (isomorphism class of) n-
dimensional hermitian space W’ over E we associate the pair (W', V') where V' = W' ®* Ee.
Using such a pair we may construct a new pair ("', G"") of reductive groups over F where
HY' = UW") and GV’ = U(W') x U(V"). Note that if W’ = W then (H"',GY') = (H,G).
The discussions of the previous paragraphs of course apply verbatim to (H"',G"'). In
particular we have a notion of matching between functions in S(G"'(F,)) and S(G'(F,)), v
a place of F, and a notion of nice function on G"'(A). We shall say that a nice function
f" e S(G'(A)) match a tuple of nice functions (f"' )y, f¥ € S(G"'(A)) and W’ running
over all isomorphism classes of n-dimensional hermitian spaces over F| if for all W’ and all
place v of F the functions f/ and f'"" match. Comparing two (simple) global relative trace
formulae that have been proposed by Jacquet and Rallis ([JR]), Zhang proves the following
(see [Zh1, Proposition 2.10] and [Zh2, Theorem 4.3]):

Theorem 3.5.1 (Zhang) Let w be an abstractly H-distinguished cuspidal automorphic rep-
resentation of G(A) such that BC(w) is cuspidal and for all non-split archimedean place v
the representation m, is tempered. Let f € S(G(A)) and f' € S(G'(A)) be nice functions and
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assume that there exists a tuple (f" )y, fV' € S(GV'(A)), of nice functions matching f’
such that fV = f. Then, we have

J=(f) =272 L(L,mg/r) *Ipcm) ()

Remark 3.5.2 The above theorem differs slightly from [Zh1, Proposition 2.10] and [Zh2,
Theorem 4.3] for the following reasons:

o [irst we are not assuming that our test functions are supported in the regular semi-
simple locus (this is one of the requirement that Zhang imposes on his ‘nice’ functions);

o We are using test functions that are not necessarily compactly supported (since they are
only rapidly decreasing, i.e. in the Schwartz space, at the archimedean places). This is
necessary if we want to apply this theorem in conjunction with Xue’s result (Theorem
3.4.83) as the dense subspace of ‘transferable’ test functions that he constructs has no
reason to consists of compactly supported functions;

e We have drop the condition that 7 is supercuspidal at one split places but we add the
assumption that m must be tempered at all non-split archimedean places.

This last point is only minor: dropping the condition of ™ being supercuspidal at one
split place can be done by slightly modifying Zhang’s original argument when he separates
contributions in the spectral side of the simple trace formulas and using the recent extension
by Ramakrishnan of his ‘mild Tchebotarev theorem for GL(n)’ [Ral. Moreover, here we
assume that m 1s tempered at all non-split archimedean places in order to have a result
independent of the local Gan-Gross-Prasad conjecture for generic L-packets at archimedean
places (this conjecture is currently only known for tempered L-packets at these places, see
§2.4), this conjecture was granted as a working hypothesis in [Zh2[. The first point is more
sertous and to get rid of this assumption on the support we have to use the recent works of
Zydor [Zy] on reqularization of the geometric side of the Jacquet-Rallis trace formulae and
Chaudouard-Zydor [CZ] on extending the transfer to singular orbital integrals. Finally, the
extension to rapidly decreasing functions (at the archimedean places) is an easy matter using
basic estimates on these functions. A convenient way to do this is to introduce some norms
on the automorphic quotient [G] = G(F)\G(A). We give definitions and basic properties of
these norms in the appendix. Also, for convenience of the reader, we provide in appendiz A a
full proof of Theorem 3.5.1 using the aforementioned results of Zydor and Chaudouard-Zydor

Thanks to the theory of Rankin-Selberg convolution due to Jacquet, Piatetski-Shapiro and
Shalika (|JPSS]), for every cuspidal automorphic representation 7 of G(A) whose base change
is cuspidal we know a factorization of the global spherical character Igc(r). More precisely,
if f'e S(G'(A)) is completely factorizable, we have (see [Zh2, Proposition 3.6])
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1/2 BC(n 1—[

(1) Ince(f') = L(1, ng/r)? L(L, 7, Ad)

An immediate consequence of this factorization of Theorem 3.5.1 and of the multiplicity one
theorems of Aizenbud-Gourevitch-Rallis-Schiffmann [AGRS] of of Jiang-Sun-Zhu [JSZ] is the

following;:

Corollary 3.5.3 Let m be a globally H-distinguished (i.e. such that J, # 0) cuspidal auto-
morphic representation of G(A) satisfying the two following conditions:

e For all non-split archimedean place v of F', the representation m, is tempered;

o There exists a split nonarchimedean place vy such that m,, is supercuspidal.

Then for all place vi of F different fmm vo where m is tempered, there exists a constant
C(my,) € C such that for all pair (f,,, f,,) € S(G(F,,)) x S(G'(F,,)) of matching functions
with the property that f, has a matchmg test function fW' e S(GW'(F,))) for all hermitian
space W' of rank n, we have

Jﬂ"ul (fvl) = C(?Tvl )]BC(m;l)(f{)l)

Remark 3.5.4 Note that the condition of matching of the function f, is empty if v1 is
nonarchimedean (by Theorem 3.4.1) or splits in E.

Proof: Let A" denote the adeles outside of v; and let f* =[], € S(G(A™)) be a
factorizable test function. By the multiplicity one results of [AGRS| and [JSZ] and 3.2 (1),
there exists a constant C' € C such that

J(f" ® for) = O, (fur)

for all f,, € S(G(F,,)). Since J # 0 we may choose the function f** so that C' # 0. More-
over, up to replacing f,, by its projection to S(G(F,,))a,, Where {2y denotes the Bernstein
component of m,,, we may assume that f,, € S(G(F,,))q,- Then, for all f, € S(G(F,,))
the function f = f" ® f,, is nice. By Theorem 3.4.3 of Xue we can also arrange f! such
that for all non-split archimedean place v the function f, admits a transfer f/ € S(G'(F,))
which itself admits a transfer to S(G"'(F,)) for all rank n hermitian space W’ over E.
By Theorem 3.4.1 of Zhang and our choice of f*' at non-split archimedean places, we can
find a factorizable test function f* = [] ., f, € S(G'(A")) matching f* and more-
over admitting a matching to S(G"'(A")) for all W’. Since v, splits in F, there exists
an isomorphism G =~ G,, x G,, so that BC(m,,) = m,, X 7, and then every function

¢ =p1®ps e S(G'(Fy,)) ~ S(G(F,,)) ®S(G(F,,)) match the functlon 01 %0y € S(G(Fy,))
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where ¢y (g9) := ©2(g7") and * denotes the convolution product. From this we easily infer
that we can choose f; € S(G'(Fy,))a,x0y, Where Qf is the Bernstein component dual
to . Then, for all f; e S(G'(F,,)) the function f" := f™ ® f, is nice. Now the
result follows from Theorem 3.5.1 applied to f = f" ® f,, and f' = f'"' ® f} where
(fors f1,) € S(G(F,,)) x S(G'(F,,)) is any pair of matching functions with f; satisfying the
condition of the statement (Note that the assumption that m,, is supercuspidal implies that
BC(7) is cuspidal). W

In [Zh2, conjecture 4.4], Zhang makes the following conjecture

Conjecture 3.5.5 Letv be a place of F' and let m, = 7, ,XITp11, be an irreducible tempered
unitary H,-distinguished representation of G(F,). Then, for all matching functions f €
S(G(F,)) and f' € S(G'(F,)), we have

]BC(WU)<f1/)) = ’iv<7TU>L<17 UEU/FU)_ljm(fv)

the constant k,(m,) being given by

n(n+1)/2
dn"rdn 2 €<1/2777E7J/Fu7wv)
"{v(ﬂ-v) = |7- (Ev )/ < 771,)(_2,7_> wBC’(ﬂn,U)(T>
where Wpc(r, ) denotes the central character of BC(my,) and d,, = (g), dpi1 = (";1)

Remark 3.5.6 The above conjecture actually differs slightly from [Zh2,conjecture 4.4]. In-
deed, there is a discrepancy in the definition of the constant k,(m,). In loc. cit. there is
an extra factor n,(disc(W)) and the factor n)(—27) is replaced by n. (7). This discrepancy
seems to come from lemma 9.1 of [Zh2] on the compatibility between the transfer factors
on the group and on the Lie algebra (see §3.4(8)). Of course, this difference has no im-
pact for global applications since in any case if ™ is an automorphic representation then

11, Ko(my) = 1.

Obviously, we may deduce from the conjunction of the above conjecture, of Theorems 3.5.1,
3.4.1 and 3.4.3 and of the factorization (1) some instances of the Ichino-lkeda conjecture (as
stated in the introduction). In [Zh2|, Zhang was able to verify conjecture 3.5.5 in certain
particular cases (see [Zh2, Theorem 4.6]). More precisely, he proves the conjecture when
either

e The place v splits in F;

e v is nonarchimedean, 7, is unramified and the residue characteristic of v is sufficiently
large;

e v is nonarchimedean and m, is supercuspidal.

The main goal of this paper is to prove conjecture 3.5.5 for all nonarchimedean places v.
Namely, we prove

26



Theorem 3.5.7 Conjecture 3.5.5 holds for all nonarchimedean place v of F.

As in |Zh2], this theorem has consequences for the Ichino-Tkeda conjecture. Namely, we will
deduce from it the following

Theorem 3.5.8 Assume that all the archimedean places of F split in E and let m be a
cuspidal automorphic representation of G(A) which is everywhere tempered and such that

there exists a nonarchimedean place v of F with BC(m,) is supercuspidal. Then conjecture
1.0.1 holds for «.

The proofs of Theorems 3.5.7 and 3.5.8 will be given in §4.4 and §4.6.

3.6 A globalization result

Until the end of this paragraph, we make the following assumption
the hermitian space W is anisotropic

This means that H = U(W) is an anisotropic group over F'.

Let v; be a nonarchimedean place of F' which is inert in E and let S be a finite set of
nonarchimedean places of F' which split in £. Let ¢ be a unitary supercuspidal representation
of G(Fs). Recall that Tempy(G,,) denotes the set of (isomorphism classes of) tempered
irreducible H (F,, )-distinguished representations m; of G(F,,) (see §2.4). Let Irry, o u(G)
be the set of irreducible representations m; € Irr(G,,) for which there exists a cuspidal
automorphic representation 7 of G(A) which is globally H-distinguished (i.e. such that
Jr # 0) such that 7,, ~ m and 75 ~ 0 ® x for some unramified character x € V,,;(Gs).
The goal of this section is to prove the following result:

Proposition 3.6.1 The set Irry, » g(G) N Temp(G,,) is dense in Tempy (Gy,).

The proof of this proposition follows closely that of Corollary A.8 in [ILM, appendix A|. We
will need a lemma which is the analog of lemma A.2 of loc. cit. Before stating it we need to
introduce some more notations.

Let P = M N be a parabolic subgroup of GG,, and let o be a square-integrable representation
of M(F,,). We will say that the tempered representation ig’”la of G(F,,) is regular if for all
w e W(G,,, M) we have wo # o. Recall that this implies that the representation ifjla is
irreducible. We will denote by Temp,.,(G.,) the set of all regular tempered representations
of G(F,,). It is an open subset of Temp(G,,). Recall that in §2.3 for all ¢ > 0 we have defined
subsets [17<.(U(W),,) and Irr<.(U(V),,) of Irr(U(W),,) and Irr(U(V),,) respectively. In
what follows, we set I77<.(Gy,) = Irr<o(U(W)y,) B Irr<(U(V)y,) and Ir7 i <e(Go,) =
Ir7unit(Goy) O Irr<o(Gyy).
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Lemma 3.6.2 Let 0 < ¢ < % Then, Temp,eg(Gy,) is open in Irryni <.(Gy,) (for the Fell
topology).

Proof: The proof is the same as in [ILM, lemma A.2| the key fact being that the real
exponents of tempered representations of unitary groups are all half integers. In loc. cit.
the authors use the work of Muic on generic square-integrable representations of classical
groups (|Mui]) to deduce this fact for tempered generic representations. However, as already
noted in [ILM, Remark A.3|, the same result holds for all tempered representation thanks to
the work of Meeglin and Moeglin-Tadic on classification of square-integrable representations
of classical groups (|[Moel],[MT]). Note that the basic assumption made by Moeglin and
Tadic (see [MT,§2] for a precise statement) to prove their classification is now known since
it follows from the canonical normalization of intertwining operators for unitary groups due
to Mok (|[Mok,Proposition 3.3.1]) and Kaletha-Minguez-Shin-White ([KMSW, lemma 2.2.3])
together with the classical reducibility criterion of Silberger and Harish-Chandra ([Sil1,§5.4],
[Sil2, lemma 1.2; lemma 1.3]). For quasi-split unitary groups, a different proof has been
given by Meeglin ([Moe2]) using twisted endoscopy. For a proof of the basic assumption for
quasisplit symplectic and orthogonal groups using the normalization of intertwining operators
see [Xu,Proposition 3.2|. B

Proof of Proposition 3.6.1: By [Beul, Corollary 8.6.1], the closure of Tempy(G,,) is an
union of connected components of Temp(G,,). Hence Tempp eq(Gy,) := Tempu(Gyy) N
Temp,eq(G.y, ) is dense in Tempy (G, ). Let m € Tempp req(Gy, ). It is sufficient to show that
m belongs to the closure of I, oy (G) N Temp(G,,). Since o is H(Fs)-distinguished (see
§3.2), by [SV] Theorem 6.2.1 and Theorem 6.4.1 we know that 7; and o belong to the support
of the Plancherel measures for L?(H (F,,)\G(F,,)) and L*(H(Fs)\G(Fs)) respectively. From
[SV, Theorem 16.3.2], it follows that there exists a sequence of globally H-distinguished
automorphic representations , of G(A) such that w,,, — m and m,s — o for the Fell
topology. Since 0 ® V,,it(Gs) is open in Irr,,+(Gs) we have m, s € 0 ® V., (Gs) for n
sufficiently large. This implies that 7, ,, belongs to Irr,, , #(G) and 7,, BC(m,) are cuspidal
for n sufficiently large.

Set ¢ = % — m By Lemma 2.3.2, 7, ,,, belongs to IT7ynit <.(Gy,) for n sufficiently large.
Hence, by Lemma 3.6.2, m,,,, € Tempp req(Gy,) for n sufficiently large and this ends the

proof of the proposition. H

4 Proof of Zhang’s conjecture

In this section we will prove Theorem 3.5.7 and Theorem 3.5.8. As Theorem 3.5.7 has
already been proved by Zhang at every split place v, we only need to prove it at every
nonarchimedean place v of F' which is inert in E. Fix such a place v. We will now drop all
the index v: E/F = E,/F,,G = G,, H=H,, G' =G\, H = H{,, Hy = Hy,, Y = 1,
YE = Yg, and so on. Also, to ease notation we will just write s = s,,1. Finally, we will
now use unnormalized Haar measures (see §2.5). In particular, Theorem 3.5.7 now takes the
following form (see [Zh2, lemma 4.7]):
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Theorem 4.0.1 Let 7 = m,XI7,+1 be a H-distinguished irreducible tempered representation
of G(F). Then, for all matching functions f € S(G(F)) and f' € S(G'(F)), we have

Ipem) (f) = k(m)Jx(f)

where

n(n+1)/2
dn+dni1)/2 6(1/2,77E/F>?/))
o) = [l (S22 -

4.1 A result of Zhang on truncated local expansion of the spherical
character Iy

In this section we recall a result of Zhang |Zh2] on the existence of truncated local expansion
for the spherical characters Iy;. This result is the main ingredient in the proof by Zhang
of some particular cases of conjecture 3.5.5. It will also play a crucial role in the proof of
Theorem 3.5.7.

Let us set
0 .0
=10 . . | es(F)
O ... 0 7 0

It is a regular nilpotent element for the GL, (F)-action by conjugation (see [Zh2, lemma
6.1]). Zhang has defined a regularized orbital integral e over the orbit of £ (see [Zh2,
definition 6.10]). It is a G'L,,(F)-invariant linear form ¢ € S(s(F)) — e (¢) which coincide
with the usual orbital integral when the support of ¢ intersect the orbit of £ in a compact
set.

A u

For all X = (v w) € 5,.1(F), we define

A_(X) :=det (v, vA, . .. ,UA"_l)
Note that (see §3.4 (7))

(1) w(X) = n(=1)"y'(A-(X))

for all X € s,,(F) and

(2) A_(E) = (_1)"("—1)/27_71(714-1)/2
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Let r > m’ > m > 0 be positive integers. In [Zh2, definition 8.1|, Zhang defines a notion
of (m, m/,r)-admissible test functions on G’(F'). They span a finite dimensional subspace of
S(G'(F)). In what follows when we say that (m,m’, ) is sufficiently large, we shall mean that
m is sufficiently large, that m' is sufficiently large depending on m and that r is sufficiently
large depending on (m,m’). Recall that in §3.3 we have, using a Cayley map, associated to
any function f’ € S(G'(F)) a function f; on s(F). Also, in §2.5 we have defined a certain
Fourier transform ¢ — @ on S(s(F")). We extract from [Zh2] the two following results (see
Lemma 8.8, Theorem 8.5 of [Zh2] and their proofs):

Proposition 4.1.1 (Zhang) Let U and Z be relatively compact neighborhood of 1 and 0

in G'(F) and (s/GL,)(F) respectively. Then, if (m,m’,r) is sufficiently large, for every

(m,m’,r)-admissible function f' we have Supp(f’) < U and the function X € Z., —

n'(A_(X))O(X, J?u’) is constant and equal to n'(A_(§_))pe_ (J?h/) Moreover, we can find a
!/

m,m’,r)-admissible function f' such that pe_ J?’ #0.
S

Theorem 4.1.2 (Zhang) Let Il =11, x| 11,41 be an irreducible tempered representation of
G'(F). Then, if (m,m’,r) is sufficiently large (depending on I1) we have the equality

In(f') = |rlS )P (T e (F)

for all (m,m’,r)-admissible function f', where d, = () and wy, denotes the central character
of I1,,.

A direct consequence of Proposition 4.1.1 and Theorem 4.1.2 is the following:

Corollary 4.1.3 Let C < Temp(G') be a compact subset and let U and Z be relatively
compact neighborhood of 1 and 0 in G'(F') and (s/GLy,)(F) respectively.. Then, there ezists
a test function f' € S(G'(F)) satisfying the following conditions:

(i) Supp(f') < U and the function X € Z,.5 — n'(A_(X))O(X, fh/) is constant and equal
to 0/ (A-(§-)ne(f7);

(i1) pe(f5) #0;
(i7i) For all 11 € C' we have the equality

In(f') = |7l (T)pe_ ()

Proof: For all r > m/ > m > 0, let us denote by C[m,m’,r| the set of II € C' such that the
equality

~

In(f') = |7l on (7Y e (£)
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holds for all (m,m/, r)-admissible function f’. Note that C[m,m’, r] is a closed subset of C.
Obviously, by Proposition 4.1.1, it suffices to show that if (m,m/, r) is sufficiently large then
C[m,m',r] = C and for that we may assume C' to be connected. By Theorem 4.1.2 we have

U N U N Ufndmn=c

mo>0 m=mg m6>m m/>m6 ro>m’ r=ro

Now, by Baire category theorem, this implies that for (m,m’,r) sufficiently large the set
C|m,m/, r] is not meager i.e. it has nonempty interior (since it is closed). By connectedness
of C' and analyticity of IT — Iy this implies C[m, m’,r] = C and this ends the proof. B

4.2 Weak comparison of local spherical characters

Proposition 4.2.1 For all m € Tempy(G) there exists a nonzero constant C(w) € C such
that for all matching functions f € S(G(F)) and f' € S(G'(F')) we have

Jo(f) = C(m)pom (f)

Moreover, the function m € Tempy (G) — C(7) is analytic.

Proof: Assume that we have proved the existence of a constant C'(7) as in the proposition
for a dense set of m in Tempy(G). We claim that the proposition can be deduced from
this. Indeed, for all 7 € Tempy (G) we can define a constant C'(7) as follows: choose any set
(f,f) e S(G(F))xS(G'(F)) of matching functions such that Igc(r) (f) # 0 (the existence of
such a pair follows from Theorem 3.4.1 and Theorem 4.1.2) and set C'(7) = J(f)Ipc@) (f) 7"
Of course this constant may a priori depend on the choice of f and f’ but it follows from
the analyticity of m — J, and II — Iy and our assumption that in fact it is independent of
such a choice. Still by analyticity of the spherical characters the equality of the proposition
is true for all 7 € Tempy(G) and all pair of matching functions (f, f’) and the function
m € Tempy(G) — C(m) is analytic. Moreover it is nowhere zero since for all 7 € Tempy (G)
there exists f € S(G(F')) such that J.(f) # 0 and there exists a f' € S(G'(F')) matching f
(by Theorem 3.4.1).

We now prove the existence of a dense subset of 7 satisfying the proposition. To this end
we will use Proposition 3.6.1. We first need to globalize the situation at hand. Let

e E/F be a quadratic extension of number fields such that all archimedean places of F
are nonsplit in E and v; be a place of F such that E,, /F,, ~ E/F;

e W a n-dimensional hermitian space over E such that

— for all archimedean place v of F the group U(W), is anisotropic (in particular W
is anisotropic);

- Wy, =~ W.
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We will set V = W @' Ee where (e,e) = 1 (so that V,, ~ V), H= U(W) and G = U(V).
Let vy be two nonarchimedean places of F which split in [E and let o be a supercuspidal rep-
resentations of G(F,,). Applying Proposition 3.6.1 to S = {vy}, we deduce the existence of a
dense subset D < Tempy (G) such that for all 7 € D there exists a globally H-distinguished
cuspidal automorphic representation IT of G(A) such that IT,, ~ 7 and II,, is supercuspidal.
Applying Corollary 3.5.3 to such representations II, which we remark are necessarily tem-
pered at all archimedean places since U(W) is anisotropic there, we deduce for all 7 € D
there exists a constant C'() as in the proposition. l

4.3 A local trace formula
Let fi1, fo € S(G(F)). Then

(1) The integral

J 1,J2) — 1 hl h2 2 d dhldhg
ot =[] o) e

is absolutely convergent.
This follows from [Zh1, Lemma A.4].
By [Beul, Proposition 8.2.1(v)|, we have

2) I(fu, o) = f T2 (f0) e (f)dpics(m)

Tempy (G)

where dug(m) denotes the Harish-Chandra-Plancherel measure of G(F'). We also have (see
§3.3 for the definition of f;)

J(f1, fo) = J J Fi(h™'zh) fo(z)dzdh
UW)(F) JUV)(F)
Let us fix open and closed U(W)(F,)-invariant neighborhoods w < u(V)(F,) and ©Q <

U(V)(F,) of 0 and 1 as in §3.3. Assume that f; is supported in €. Then, we have (see §3.3
for the definition of f;})

J(f1, f2) = J J fra(W T XR) for (X)dX dh
UW)(F) Ju(V)(F)

By Fourier transform, we also have

J(f1; f2) = J J Fra(h™ X ) o5 (X)dX dh
UW)(F) Ju(v)(F)

By [Zh1, Corollary 4.5] this expression is absolutely convergent so that we can switch the
two integrals and we finally get
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3) It = |

Fia(X)O(X, fay)dX
u(V)(F)

Summing up, from (2) and (3) we deduce that

(4) Lem,,H<G> To(F) o (fa)dpic(m) = f

Fra(X)O(X, fop)dX
w(V)(F)

for all functions f1, fo € S(G(F)) with Supp(fs) < €.
We will also need the following formula (see [Beul, Proposition 8.2.1(iv)|):

(5) 7 = f T2(f)dpg(r)
Tempu(G)
for all f e S(G(F)).

4.4 Proof of Theorem 4.0.1

We keep the notations of the previous paragraph. Let f € S(G(F')). Denote by C <
Tempy(G) the support of the function 7 — J.(f). It is a compact set and so is its dual
CV. Let us denote by Y the image of Q in (H\G/H)(F) = (U(V)/UW))(F) and by Z
the image of the support of fn in (w(V)/UW))(F). We will denote by the same letters the
corresponding subsets in (H{\G'/H})(F') and (s/GL,,)(F) respectively (see §3.4 (1) and (4)).
By Corollary 4.1.3, there exists a function f' € S(G'(F)) such that

e f’is supported in the inverse image of ) in G'(F));

~

e The function Y € Z,.; — n'(A_(Y))O(Y, fh’) is constant and equal /(A (€-))ue_ (f7);

o 1 (f) #0;

e For all [ e BC(C") we have

A~

In(f') = |7l e on (7Y pe (£)

Let f» € S(G(F)) be a function matching f’ (whose existence is guaranteed by Theorem

3.4.1). Up to multiplying fo by the characteristic function of ) we may assume that fQ is
supported in Q. By §3.4(8) the functions n(2)"™ D2/ and fo; match. Hence, by Theorem

3.4.2 so do n(2)"("+1)/2fh’ and 6(%,77E/F,¢)"("+1)/2J?2,u- Thus, by 4.1(1) and 4.1(2), for all
X € Q,, denoting by Y € Z,., the corresponding element, we have
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1

6(5

s ) TTVRO(X, for) = n(2)" V20 (—1)" ) (A_(Y))O(Y, f)
= 7(2)" D2 (1) (A (62 )) e ()
= 1/ (=2r)" D2 (F])

Consequently, we have

~

e(%, NE/F, ) ) nntl)/2 ~ ~ o
—e L 7 O 2 = _
(1) ( (=27 L(V)(F)fu(x) (X, f20)dX = pue (J:u)J fiy(X)dX

= pie_ (F)12(0) = pe_(F) (1)
= pe_(f7) I (f)dpc(T)

JTempy (G)

where the last equality follows from 4.3(5).
On the other hand, by Proposition 4.2.1, for all 7 € C' we have

Jee (f2) = C(m" ) Ipeay () = O rl5 ) 2w oo, (T ()
It follows that

2) f e () =

pe (R0 [ L ()0 ety (r)diia(n)

Tempr (G)

Since e (fh’) # 0, we deduce from (1), (2) and 4.3(4) that

3) f D IO = D () =

for all f € S(G(F)) and where

1 n(n+1)/2
—_ || (dn+dni1)/2 w
K(W) |7'|E ( 77,(_27') WBC(n)n (7‘)

Let Z(G) denotes the Bernstein center of G (see |[BD]). We may see Z(G) as a unital
subalgebra of the space of continuous functions on T’emp(G) which moreover acts on S(G(F))
with the property that J.(z « f) = z(m)J:(f) for all z € Z(G), all f € S(G(F)) and all
m € Temp(G). Thus by (3), we get
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(4) f o Z) () O) = Dol =0

for all f € S(G(F)) and all z € Z(G). For all # € Temp(G) let us denote by y, the
‘infinitesimal character’ of m, that is the algebra homomorphism x, : Z(G) — C given by
Xx(2) := z(m) for all z € Z(G). Set Y := SpecmazZ(G). Then, the map Temp(G) — Y,
T +— X is continuous and proper. Let Y, S Y be the image of this map and py be the
push-forward of the Plancherel measure ji¢ to Yiemp. Then, by the disintegration of measures
there exists a measurable mapping x — g, from Y}, to the space of measures on Temp(G)
such that

®) | emduetm = | [ emdin @iy ()
Temp(G) Yiemp JTemp(G

for all continuous compactly-supported function ¢ : Temp(G) — C and such that for all
X € Yiemp, fty is supported on Temp, (G) := {m € Temp(G) | xr = x}. By (4), we get

(6) f (0 f To(F) () O — 1) dpay () (x) = 0
Yiemp Tempm,(G)

for all f € S(G(F)) and all z € Z(G) where we have set Tempy,(G) := Tempy(G) N
Temp, (G). Since the restriction of Z(G) to Yiem, is self-adjoint (i.e. for all z € Z(G) there

exists z* € Z(G) such that z*(x) = z(x) for all x € Yi.,), separates points and for all
f e S(G(F)) the function © € Temp(G) — J(f) is compactly supported, by (6) and the
Stone-Weierstrass theorem for jiy-almost all x € Yy, we get

L o Jo(f) (K(7)C () = 1) dpiy () = 0

for all f e S(G(F)). Since Temp, (G) is finite, we have

L o Te(f) (6(x)C(@Y) = Ddpy(m) = D1 Jolf) (5(x)C (") = 1) py ()

meTempr, (G)

for py-almost all x € Yiempy and all f € S(G(F)). Finally, as the spherical characters J, for
7 € Temppy ,(G) are linearly independent, we get that

(R(m)C(m") = 1) py () = 0
for piy-almost all x € Yo, and all m € Tempy , (G) which by (5) means that x(7)C(7r) =1
for pg-almost all 7 € Tempy(G). Since m € Tempy(G) — k(m)C(7) is analytic and the
support of ug is precisely Temp(G), it follows that x(m)C(7w) = 1 for all 7 € Tempy(G)
which is what we wanted. B
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4.5 A first corollary

In this paragraph we prove the following corollary to Theorem 4.0.1. It will be needed for
the proof of Theorem 3.5.8.

Corollary 4.5.1 Let f € S(G(F)) and f" € S(G'(F)). Then f and f' match if and only if

we have

Ipeq) (f) = k(m)Jx(f)

for all m € Tempp(G) and where as before we have set

n(n+1)/2
ntdny1)/2 6(%’77E/F’¢) w (7_>
' (=27) petm

Proof: The necessity follows from Theorem 4.0.1. Let us prove the sufficiency. Thus, we
assume that

k() = |7

IBC(W)(.f/) = K’(,]T>J7r(f)
for all m € Tempy(G) and we want to prove that f and f’ match. Let f, € S(G(F)) be a
function which matches f’ (such a function exists by Theorem 3.4.1). Then, by Theorem
4.0.1 and the assumption, for all 7 € Tempy(G) we have J(f) = J(f2). Thus, by 4.3(2),
for all f; € S(G(F')) we have

(1) J(f, f) = J(fi f2)

Let 29 € U(V),s(F) and choose f; so that f; is supported in a small neighborhood of g
in U(V),s(F). Then a formal manipulation, which is justified since everything is absolutely
convergent here, yields

) Hh) = | - pl)0G s
U(V)(F)
and
) Wk = | h@)0 s
U(V)(F)
Since the functions z € U(V),s(F) — O(x, f) and x € U(V),s(F) — O(z, f2) are locally
constant (see [Zhl, Proposition 3.13]), we may choose f; such that J fi(z)O(z, f)dx =
UV)(F)
O(zo, f) and J f1(2)O(z, fa)dz = O(xg, f2). For such a choice, it follows from (1), (2)
U(V)(F)

and (3) that O(xzg, f) = O(x, f2). As xy was arbitrary we see that f and f; have the same
regular semisimple orbital integrals and hence f and f’ match.
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4.6 Proof of Theorem 3.5.8

We may assume that 7 is abstractly H (A)-distinguished (hence for all v, 7, is H,-distinguished).
By the multiplicity one theorems of Aizenbud-Gourevitch-Rallis-Schiffmann [AGRS| of of
Jiang-Sun-Zhu [JSZ], there exists a constant C' such that

T(f) = C[ [ . (f)

for all factorizable test function f = [], f, € S(G(A)) and we only need to show that
C =471L(m,1/2). For this, it is sufficient to prove the existence of f € S(G(A)) with

T =47 ) [T .05

and J2 (f,) # 0 for all place v. Let v; be a (nonarchimedean) place of F' such that BC(m,, )
is supercuspidal (such a place exists by assumption). This implies in particular that BC(m)
is cuspidal and 7,, supercuspidal (by Lemma 2.3.1). By Theorem 3.5.1, Theorem 3.5.7 and
identity 3.5 (1), it suffices to show that there exist a nice function f’ e S(G'(A)) matching
a tuple of nice functions (f"')y, f¥" € S(GV'(A)), such that Ipc(r,(f)) # 0 for all v. Let
€ be the Bernstein component of BC(7,,) in G'(F,,). Then, we can find a function f’, €
S(G'(F,,))q, such that Ipcer, )(f',,) # 0. Let f" =[], f, be a factorizable test function in
S(G'(A)) such that f, = f", and Ipc(r,)(f)) # 0 for all other place v. By construction, the
function f’ is nice. Moreover, by the assumption on archimedean places, Theorem 3.4.1 and
Theorem 3.4.4, we can find a tuple of functions (f"")y~, fV' € S(G"'(A)), matching f’. Of
course, the functions f"' have no reason of being nice. However, by Lemma 2.3.1 for all W’
there exists a finite union Q}"" of cuspidal Bernstein components of G’ (F,,) such that Q"
contains all irreducible representation of G"'(F,,) whose base change belongs to €; and by
Corollary 4.5.1 up to replacing fUVI// by its projection szVIQ‘{V’ onto S(GW'(Fvl))mw we may

! ! . . .
assume that XlV = f;}V QW' Then, for all W’ the function f" is nice and we are done. H
1,349

A Compaison of relative trace formulae

The goal of this appendix is to provide a proof of Theorem 3.5.1. Inspired by [Kott, §18|, we
start by introducing a convenient notion of norms on the adelic points of a variety over F'.

A.1 Norms on adelic varieties

We will use the following convenient although not very precise notations. If f;, f, are positive
valued functions on a set X we will write

fi(x) « fo(x), forallze X

to mean that there exists a constant C' > 0 such that f;(z) < C'fo(x) for all x € X. We will
also write
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fi(x) < fo(x), forallze X

or just fi < f, if there exist constants C,d > 0 such that f,(z) < Cfo(z)? for all z € X.
Finally, we will write

fi(z) ~ fo(x), forallze X
or simply f1 ~ f2 if f1 < f2 and fy < f1.

Let X be a set. By an abstract norm on X we will just mean a function .|| : X — [1,4+0][.
Let ||.|l; and .2 be two abstract norms on X. We will say that ||.||; dominates ||.||2 if
|x||2 < ||z]|1 for all z € X and we will say that ||.||; and ||.||> are equivalent if ||.||; dominates
|.]l2 and ||.||2 dominates ||.||; i.e. if [|.|[i~ ||.|]2- Let f: X — Y be a map between two sets
and let ||.||y be an abstract norm on Y. Then, we define an abstract norm f*||.||y on X by

fllzlly = [1f(@)[ly
for all z € X.

Let F' be a number field, A its ring of adeles and for every place v of F' we will denote by F,
the corresponding completion. For every finite extension F” of F', we will write A = AQp F’
for the adele ring of F’. We fix algebraic closures F of F and F,, of F,. For every place v of
F, we will denote by |.|, the normalized absolute value on F,. This absolute value extends
uniquely to an absolute value on F, that we will also denote by |.|,. We define

Af = F@FA = h_I)nApf
F/
where the limits is taken over all finite subextension of F'/F. Let X be an algebraic variety
over F' (i.e. a reduced separated scheme of finite type over F'). Since X is of finite type we
have X (Az) = lim X (Ag/). We are going to define certain (equivalence classes of) abstract
FI
norms on X (Ax) and X(F,), v a place of F. The definition of these abstract norms in
mainly inspired by [Kott, §18|. First assume that X is affine and choose a set {P;, ..., P}
of generators for the F-algebra F[X]. For every place v of F' we define an abstract norm

Il x, on X (F) by

2]l x, := max (1, [Pr(2)[o, -, [ Pr()])

for all x € X(F,). Choosing a different generating set {Q1,...,Q,} would yield another
family of abstract norms (||.||’y,), with the following properties:

e For all place v, |||, ~ [I-|lx.;

e There exists d > 0 such that for almost all place v, we have

1/d
I < (1, < 1114,
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In particular, for all v the equivalence class of the abstract norm ||.||x, does not depend on
the particular generating set chosen and by a norm on X (F,) we will mean any abstract
norm in this equivalence class. Note that the norms (||.||x,), constructed above are Galois
invariant in the sense that ||°z||x, = ||z||x, for all x € X(F,) and all o € Gal(F,/F,). This
allows us to extend the norm ||.||x, to X (K) for any finite extension K of F,: choosing any

embedding ¢ : K — F, we set

lzllx, = lle(@)]lx,
for any z € X (K).
We now define an abstract norm ||.||x on X(Az) as follows. Let x € X(Az) and choose a

finite extension F'/F such that € X(Ap/). Then, we may write = as a product [ [, 2,
xp € X(F)), indexed by the set of places of F’ and we set

1/[F":F]
F!:F,
lellx =TT { ] [lealE"!
v wlv

where the first product is over the set of places v of F' and the second product is over the
set of places w of I’ above v. Note that this definition does not depend on the choice of the
finite extension F’/F such that z € X(Ag). Moreover, choosing a different generating set
would give an equivalent abstract norm. By a norm on X (Ax) we will mean any abstract
norm in this equivalence class. We will assume from now on that for any affine variety X

over F' we have fixed norms ||.||x on X (Ax) and norms ||.||x, on X (F,), for all place v of F,
as above (i.e. by choosing a finite generating set of F[X]). In the particular case X = Al
(the affine line) we will even take

]| ay = max(1, |z[,)

for all place v of F' and for all z € X(F,) = F,. Note that by the product formula we then
have

(1) lzllar = [l [las

—=X
for every x € F.

We continue to assume that X is affine. Let U = (U;);e; be a finite covering of X by affine

open subsets. We can define another abstract norm ||.||x, on X(F,) by

||| x, 2 := min{||z||v, ;@ € I such that z € U;(F,)}, ze X(F,)
Then we have (see [Kott, Proposition 18.1(6)])

e For all place v, ||.||x,u ~ |||l x.;
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e There exists d > 0 such that for almost all place v, we have

1/d
1Y < oz < [N,

e For all place v, ||.||x, .z is Galois invariant.

We can also define an abstract norm ||.||xz on X (Ag) by sending € X(Ap/), F'/F a finite
extension, to

1/[F":F]
F!:.F,
lella = [T { T Tl
v wlv
Then ||.||xu is a norm on X (Ax) (i.e. ||.||xu ~ ||.|[x)- This allows us to extend the definition

of the abstract norms ||.||x and |[.||x, to any algebraic variety X over F' as follows. Let X
be such a variety and choose a finite covering U = (U;)e; of X by affine open subsets. Then
the definitions of the abstract norms ||.|x and ||.|[x,« as above still make sense and we
will set ||.|lx == ||-llxu ||-llx, := ||-]|x, - Choosing a different covering V of X would give
abstract norms (||.|’x,). and |[|.||x satisfying the following

e For all v, ||.||'x, ~ [|.||x, and there exists d > 0 such that for almost all v we have

1/d
IS < (1, < 1114,

o [ % ~ Il llx

In particular the equivalence class of ||.||x (resp. of ||| x, for v a place of F') doesn’t depend
on the particular choice of U and by a norm on X (Az) (resp. on X (F,)) we will mean any
abstract norm in this equivalence class. From now on we assume that every algebraic variety
over F' has been equipped with a family of norms as above (i.e. by choosing a finite covering
U by affine open subsets). If X is affine we also assume that these norms have been defined
using the trivial covering U = {X} so that they coincide with the ones we already fixed. If

G is an affine algebraic group over F' we also define a norm ||.||j¢] on [G] = G(F)\G(A) by

:= inf
lellor = _inf. Inelle

for all z € [G].

Proposition A.1.1 Let X and Y be algebraic varieties over F' and let G be an affine alge-
braic group over F.

(i) The function x — ||x||x is locally bounded on X (A).

(ii) Let f: X — Y be a morphism of algebraic varieties. Then f*||.||y < ||.||[x. In particular
we have ||gq'||la < llgllclld’ e and [lg7 e ~ lglla for all g, g’ € G(Aw). If moreover f
is a finite morphism (in particular if it is a closed embedding) then f*||.|ly ~ ||| x-
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(117) Let f € F[X] and let Xy = D(f) be the principal open subset of X defined by the
nonvanishing of f. Then, we have
Il ~ llallx ]l f (@)l
for all v € X;(Ag).

(iv) Let U < X be an open subset and assume that X is quasi-affine. Then, we have

[zl ~ [l x

for all x € U(F). More generally if p: X — Y is a reqular map and Y is quasi-affine
then for all open subset V 'Y we have
[z llp-20vy ~ ]l x
for all z € p~Y(V)(A%) such that p(z) € V(F).
(v) If X is quasi-affine then there exists d > 0 such that

> lally?

zeX(F)
converges.

(vi) Let d.g be a right Haar measure on G(A). Then there exists d > 0 such that the two
integrals

[ ol [ paliar
G(A) [G]

CONVETGE.

(vii) Assume that X carries a G-action and that we have a regular map p : X — 'Y making
X into a G-torsor over'Y . Fix a right Haar measure d,.g on G(A). Then for all d > 0
there exists d' > 0 such that

f lgzll5¥ drg < Ilp(a) 15"
G(A)

for allx € X(A).
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(viii) Assume that G is connected and reductive and let & < G(A) be a Siegel domain (see
[MW1, §1.2.1]). Then, we have
l9llc ~ llgllie
forallge &.
(iz) Let H < G be a closed subgroup such that G/H is quasi-affine (this is the case if for
example H is reductive or if there is no nontrivial morphism H — G, ). Then, we have
Iy ~ [l {le

for all x € [H]. In particular, by (vi) there exists d > 0 such that the integral

[MERFE
[H]

cOnverges.

Proof:

(i) This follows from the fact that for all v the function x € X(F,) — ||z||x, is locally
bounded and the fact that for almost all v we have ||z,||x, = 1 for all z, € X(O,).

(ii) It suffices to prove the following

e For all place v, we have f*||.|ly, < ||.||x, and if f is finite ||.||x, < f*||-|lv,;

e There exists d > 0 such that for almost all place v, we have f*||.|ly, < [|.||%, and
if f is finite || 3 < £ l|y,-

Assume that the norms (||.|/x, ), have been defined using the finite affine open covering
U = (U;)ier of X and that the norms (||.||y,), have been defined using the finite affine
open covering V = (V;);jes of Y. Up to refining U, we may assume that for all j € J
there exists a subset I(j) < I such that f~1(V;) = Uicr(jy Ui- 1f moreover f is finite
then for all j € J, the open subset f~!(V;) is affine so that we may assume that
U= (f(V}))jes. This allows us to reduce to the case where both X and Y are affine
in which case the statement can be proved much the same way as |[Kott, Proposition
18.1(1)).

(iii) Assume that the family of norms (]|.||x, ), has been defined using the finite affine open
covering U = (U;)ier of X. Set U, y = U; n Xy for all i € I. Obviously, we may assume
that the family of norms (J|.[[x,,)., has been defined using the affine open covering
Ur = (Ui r)ier of Xy and that
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Izllo ., = max (v, .. [f(2)],")

for all place v of F and all z € U; ;(F,). Then we have

\/HIIIU@-,U max(L [ f(2)[;") < l#llv, ;, < ll2llv,, max(L,[f(2)[;")

for all place v of F and all z € U, ;(F,). It follows that

Vallx, max(1, [£(2)[57) < ll2llx,,, < llo]x, max(1, | f(2)[;")

for all place v of F' and all z € X;(F,). Taking the product we get

Vlxllf @) e < llollx, < lollx ] f (@) la
for all z € X;(Ag).

(iv) We prove the second claim which is more general than the first. Let p : X — Y be
a regular map, V' < Y an open subset and assume that Y is quasi-affine. It already
follows from (ii) that we have

lzllx < llllp-1ov)

for all + € X(Ag). Hence, it suffices to prove the reverse inequality for all = €
p1(V)(Ag) such that p(z) € V(F). As Y is quasi-affine, up to replacing V by a
finite affine open cover we may assume that V' =Y} for some f e F[Y]. Still denoting
by f its image in F[X] we then have p~ (V) = X;. Then by (ii), (iii) and (1) we have

zllx, ~ 2 llx I @) lar = lzlx I f@)llar < lzllx

for all 2 € X(Ap) such that f(z) e F . This implies the desired inequality.

(v) As there exists an open embedding of X into an affine variety, by (iv) we immediately
reduce to the case where X itself is affine. Then, we can find a closed embedding
t: X — A" for some integer n > 0 and by (ii) we are reduced to prove the statement
for X = A" and then eventually for X = A! in which case the statement is easily
checked.

(vi) Note that

fnwamsf
[G] [G]

D ||w||adda:=f lglladsg
G(A)

¥eG(F)
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for all d > 0. Hence it suffices to show that for d sufficiently large the last integral
above is convergent. Assume that H is a closed distinguished subgroup of G isomorphic
to G,, or G,. We first show that if the statement is true for both H and G/H then it
is true for G. For this we write

| ety = | | ahetand.g
G(A) (G/H)(A) JH(A)

for all d > 0 and where d,.h, d,.g are suitable right Haar measures on H(A) and
(G/H)(A) respectively (Note that (G/H)(A) = G(A)/H(A)). Let dy,d; > 0. Set-
ting d = dy + dy, we get

—do
h||gld,h < ( inf | gh ) J h|| o™ d,h
J, e < int ltla ) | ol

for all ¢ € G(A). By (ii), there exists ¢ > 0 such that ||hllg < ||ghl|&]lgll for all
(h,g9) € H(A) x G(A). Hence,

—do
lohllg'd:h < ( inf thna) lolls |l
J H(A) “ heH (A) G H(A) H

for all g € G(A). As the left hand side above is, as a function of g, invariant by right
translation by H(A) we also get

d1—dp
h||5%d, b« ( inf | gh > f hll g d,h
o e < (int k) |l

for all ¢ € G(A). By assumption for d; sufficiently large the last integral above is
convergent. Thus, it only remains to show that for d’ > 0 sufficiently large the integral

—d
in thug) v
f(G/H)(A) <heH<A>

converges. By (ii), we have ||g||q/n < infrema)||gh|c for all g € G(A)/H(A). Conse-
quently, the convergence of the last integral above for d’ sufficiently large follows from
the assumption on G/H.

Let Py be a minimal parabolic subgroup of G over F. Then, by the Iwasawa decompo-
sition there exists a compact subgroup K < G(A) such that G(A) = Py(A)K. As K is

compact, by (i) the norm ||.||¢ is bounded on K. Moreover, we have

\f mmww=f ‘meM%mWo
G(A) Po(A) JK
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(vii)

for suitable (right) Haar measures d,py and dk on Py(A) and K respectively. By (i)
and (ii), it follows that we may assume G = Py. Let Py = MyNy be a Levi decompo-
sition. Then the Haar measure d,.py decomposes as d,py = dnodmg according to the
decomposition Py(A) = No(A)My(A). Moreover we have ||nomo|lp, ~ |70l |70~
for all (mg,ng) € Mo(A) x No(A). This allows us to reduce to the case where G = M,
or G = Ny. If G = Ny then it admits a composition series whose successive quotients
are isomorphic to G, and we are reduced to the case G = G, where the statement can
be checked directly. Assume now that G = M, and denote by Ay the maximal split
torus in the center of G. Then Ay is isomorphic to a product of G,, and My/Ay is
anisotropic. Thus, we only need to treat the cases G = G,, and G anisotropic. Once
again if G = G,, the statement can be checked directly. Now if G is anisotropic we
write

@) f lgllgidg = f S lgllgtde
G(A) G(F)\

G(A) yeG(F)

By (i), (ii) and (v) if d is sufficiently large the function
geGA) ~ > |glg”
VeG(F)

is locally bounded. Moreover by [BHC] the quotient G(F)\G(A) is compact. The result
then follows from (2).

Let d > 0. As p is a G-torsor and Y is separated, the action of G on X is free i.e. the
regular map
GxX—->XxX
(9, 2) = (g, 7)

is a closed embedding. By (ii), it follows that there exists ¢ > 0 such that ||g|l¢ «
lgx |5 ||| for all (g,x) € G(A) x X(A). Let dy,d; > 0. Using the same trick as in
the first part of the proof of (vi), we show that for d' = dy + d; we have

di1—dp
_q . —di/c
f Lozl dvg ( in ||993||X) f lollg™ d.g
G(A) 9eG(A) G(A)

for all x € X(A). By (vi), the last integral above is convergent for d; sufficiently large.
Moreover, by (ii) we have |p(x)|ly < infgequ)|lgz|x for all x € X(A). Thus, the
statement follows by choosing d sufficiently large (depending on d;).
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(viii)

Let Ty be a maximal split torus in RpG. Then, up to conjugating & by an element
of G(F), there exists a compact subset {2 < G(A) such that

S < TH(R)Q

Hence, by (i) and (ii) it is sufficient to show that

lalle ~ llalle

for all a € To(R). The inequality ||a||j¢) < ||al|¢ is obvious so that we only need to show
that ||al|¢ < ||al/j¢ for all @ € To(R). Let x1,..., X, be a basis of X*(7). Then we
have

lalle ~ max (Ix1 (@)l xa(a)[ ™" - . Ixan(@)], xa(a)| )

for all a € Ty(R). Thus, it suffices to show that for all character y € X*(Tp) we have
Ix(a)] < |la||jc for all @ € To(R). Let x be such a character and let V' be a rational
representation of R /G containing a nonzero vector vy such that a.vy = x(a)vy for all
a €Ty Let vy,...,v, be a basis of V. Set Vi = V ®gp A and define a nonnegative
function |.|y on Vj by

Mor + -+ Al = [ [max(Afe, - [ Aolo)
v

for all \j,..., \. € A. Note that there exist nonzero vectors v € Vj such that |v|y =0
but that, however, if v € Vp = V ®q F' is nonzero then |v|y = 1. We have |v|y < ||v]|v;
for all v € V), where Vr is considered as an algebraic variety over F. Note that G acts
on Vp via the natural embedding G — (Rp/oG)r. Hence, by (ii) we have

x(@)|" < [x(@)|“lvolv = lvavoly < vavollv; < [valle

for all a € To(R), v € G(F') and where we have set d = [F : Q]. Taking the infimum
over v yields the desired inequality.

By (ii), the inequality |z|/jq) < |||/jz is obvious so that we only need to show that
|zl < [|z]lje for all x € [H]. We will need the following fact (which is where the
assumption G/H quasi-affine is crucial):

(3) There exists a (set-theoretic) section s : (H\G) (F') — G(F) such that
Is(z)|lc < ||z||me for all z € (H\G) (F).

Proof of (3): Let p : G — H\G be the natural surjection. Since H\G is quasi-
affine, by (iv), it suffices to find an open covering (U;);c; of H\G and sections s; :
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Ui(F) — p~'(U;)(F) such that ||s;(z)||,-11;) < ||z||v; for all i € I and all x € U;(F).

It is even sufficient to construct one non-empty open subset U € H\G and a section
sy : U(F) — p "(U)(F) such that ||sy(z)|,-1@0) < ||z|v for all z € U(F). Indeed,
if such a pair (U, sy) exists, we can find a finite number of translates U; := U~;,
vi € G(F), i € I, covering H\G and then the sections s; : U;(F) — p~1(U;)(F) given
by si(z) := s(zy; ')y, for all i € I and x € U;(F), satisfy the desired condition.
As p: G — H\G is a torsor for the étale topology, we can find a non-empty open
subset U < H\G and a finite étale map U’ — U such that U’ xy G is the trivial
G-torsor over U’. In particular there exists a regular section sy : U — U’ xy; G. Let
so : U(F) — U'(F) be any set-theoretic section. Then, by (ii) and since U’ — U is
finite, the section sy := pry o spr o sy : U(F) — p Y(U)(F), where pry denotes the
projection U’ xy G — G, satisfies the desired condition.

Let s : (G/H)(F) — G(F) be a section as in (3). We have ||y|lc/z < ||7h| g, for all
(v,h) € G(F) x H(A) (by (ii)) and thus

inf_ |72l < [s() "yl < Isllellvhlle < Ivleallvilie < Ivhlla
v'eH (F)
for all (v,h) e G(F) x H(A). Taking the infimum over ~ it follows that
inf_||[v'h|lg < inf |yh|lg = ||k
int_ Il < _inf il = [
for all h € H(A). Hence, it suffices to show

(4) bl < inf_[[vh]la
YEH(F)

for all h € H(A). Denote by Ny the unipotent radical of H and let Ly be a Levi
component of H (so that H = Ly x Ny). As [Ny] is compact we are easily infer from
(i) and (ii) that

[enllimy ~ 1€l and inf |lyloflp ~  inf |y,
YEH(F)

vLeLy

forall ¢ € Ly(A) and all n € Ny(A). We are thus reduced to prove (4) in the case where
H is reductive. Denote by H° the connected component of the identity in H. Since
H(F)/H(F), H(F)/H°(F) are finite and H(A)/H°(A) is compact we may assume
that H = H°. Let Ty be a maximal split torus of RpoH and let x € X*(1p). By (viii),
it is sufficient to show that

(5) Ix(@)] < [lvallu
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for all a € To(R) and all v € H(F). Let V be a rational representation of RpgH
containing a nonzero vector vy such that a.vg = x(a)vy for all a € Ty. Fix a basis
v1,...,0, of V and let |.|} be the nonnegative function on VAF =V ®q Az defined by

1/[F":F]
vr 4 Ay = [T [max(Avwles - [ Arlo) Fo
v wlv
for all Ay,..., A\, € Ap, F'/F a finite extension. Note that |v|y, = 1 for all nonzero

vector v € Vi =V ®q F and |v|y < [|v||y, for all v e V,_. It follows that

(@) < Ix(@)yvoly = lyavelv < vavollv, < |lvalln

for all (a,7) € To(R) x H(F'). Taking the infimum over v we get (5) and this ends the
proof of (ix).

Let G be a connected reductive group over F. Fix a maximal compact subgroup K. of
G(Ay) and a Haar measure dg on G(A). We will denote by U(gs) the universal enveloping
algebra of (the complexification of) the Lie algebra of G(A.). For simplicity we will assume
that the split center of G is trivial. Denote by A(|G]) the space of automorphic functions
on [G] by which we mean functions ¢ : [G] — C satisfying the following conditions

e ¢ is smooth: there exists a compact-open subgroup K of G(Ay) such that ¢ is right
K-invariant and for all g € G(Ay) the function g, € G(Ay) — ¢(gugy) is C*;

e ¢ is uniformly of moderate growth: there exists d > 0 such that for all u € U(g.,) we
have | (A(u)6)(g)] < gl for all g € G(A)

Note that we don’t impose any condition of K -finiteness or 3..-finiteness (where 3., denotes
the center of U(gy)). The space A([G]) is naturally equipped with a LF topology (see [Beul,
appendix A] for basic facts about LF vector spaces). As usual, we define A, ([G]) to be
the subspace of cuspidal functions in the following sense: ¢ € A([G]) is cuspidal if for all
proper parabolic subgroup P = M N of G we have

J ¢(ng)dn =0
[V]

for all g € G(A). The space A..s,([G]) is a closed subspace of A([G]) from which it inherits
a LF topology and moreover every cuspidal function ¢ € A.ysp(|G]) is of rapid decay in the
following sense: for all u € U(gy) and for all d > 0 we have

[(R(w)9)(9)] < llgll
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for all g € [G] (see [MW1, Corollary 1.2.12]). By the open mapping theorem, for all compact-
open subgroup K of G(A;) the topology on A, ([G])¥ is also induced by the family of
seminorms

10]lau = SE%E]I(R(U)@(Q)IHgll‘ﬁc]a d>0,ucU(gs)

There is another natural family of seminorms inducing the given topology on A...,([G])¥.
Let Cg € U(gy) and Ck € U(E,) denote the Casimir elements of G(Ay,) and K, respectively
and set A = C% + C%. Then the family of Sobolev seminorms

||¢||k = HR(l + A)k¢HL2([G])7 k = 07 ¢ € Acusp([GD

where ||.||z2(jq)) denotes the L*-norm on L*([G]), induce on A, ([G])¥ its LF topology
(this follows essentially from strong approximation together with the Sobolev lemma). We
will denote L2, ([G]) the completion of A.,s,([G]) in L([G]). It is a unitary representation

cusp

of G(A) which decomposes discretely.
Let now f € S(G(A)) be a Schwartz function on G(A). We denote as usual by

Ei(w,y)= >, fla"'y), zyeldC]
)

veG(F

the automorphic kernel of f. Note that the sum is absolutely convergent by Proposition
A1l Let m © Awsp([G]) be a cuspidal automorphic representation and let B, be an
orthonormal basis of (the completion of) 7 for the L? scalar product. We define

Kix(z,y) = Y, (R(H)$)(@)e(y), =.ye (]

¢eBr

Then Ky, is the orthogonal projection of Ky, seen as a function in z, onto 7 or, what
amounts to the same, the orthogonal projection of Ky, seen as a function of y, onto 7.
Finally, letting B © A5 ([G]) be an orthonormal basis of L2, ([G]), we set

cusp

Kfeusp(t,y) = ) (B())0)(2)d(y), w,ye[C]

¢eB
Note that

Kfewsp =Y Kjr
iy

where the sum is over a complete family of orthogonal cuspidal automorphic representations
T < Acusp([G]) (all of them if there is multiplicity one).

Proposition A.1.2 Let Hi, H, © G be closed algebraic subgroups such that the quotients
G/Hy and G/Hy are quasi-affine. Then the integral
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f f Z|Kf77r(h1>h2)|dh1dh2
[Hl] [H2

1=

the sum running over a complete family of orthogonal cuspidal automorphic representations,
converges. We even have the stronger following result: let Ky be a compact-open subgroup of
G(Ay) such that f is right Ko-invariant and let B © Aeusp([G])5° be an orthonormal basis
of L2,,,([G])*° consisting of functions which are Cx and Cq eigenvectors, then the integral

[, ] Siwewolistodm,
[H.1] J[Hz] d)EB

CONVETGES.

Proof: The second statement is obviously stronger than the first since for every cuspidal
automorphic representation 7 we can find an orthonormal basis of 7%° consisting of Cx—
and Cg—eigenvectors. Let B be an orthonormal basis of L2, ([G])*° as in the proposition.
By Proposition A.1.1(ix) it suffices to prove that for all d > 0 we have

(7) LIRS @) < Nalli vl

»eB

for all z,y € [G]. Let d > 0. Since the family of norms (||.||x)r generates the topology on
Acusp([G]) 50, there exists k > 0 such that

()] < llollellzl
for all ¢ € Auyus,([G]) 0 and all z € [G].

For all ¢ € B, let us denote by Ag(¢), Aa(¢) € R the eigenvalues of Cx and Cg acting on ¢.
Let N be a positive integer. For all ¢ € B, we have

R()é = (1+Xa(9)" + Aic(#)") "V R(F™)o
where V) = (1 + A)VN f. Hence, we have

;‘JR z)|lo(y)] = d;g(l +A6(9)? + Ak (0)*) MR(FM) (@)l o(y)]
<« [lzllig vl Z;;(l +Aa(9)? + Axc(0)?) VRS llxllo ]l
= [lzlli& vl :%(1 +Aa(9)? + Ak (9)?) NI R(FY) | 2|6 12
< el @yl q;g(l +Aa()” + A ()*)
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for all z,y € [G] and where ||.||1 denotes the L'-norm on L*([G]). By [Mu], for N » 1 the
last sum above converges. This proves (7) and ends the proof of the proposition. B

Remark A.1.3 o [ix f* e S(G(A™)). Then, the proof of the proposition actually shows
that for all d > 0 there ezists a continuous seminorm vg on S(G(Fy)) so that

(8) K fpocusn(@s )] < valf) 2l ol

for all fy, € S(G(Fy)) and all z,y € [G].

o We can prove the first part of the proposition directly by using the Selberg trick. Indeed,
it suffices to show that the series

> K

converges absolutely in Ac,sp(|G x G]) or, what amounts to the same, that it converges
absolutely in A(|G x G]). To prove this, we only need to show that the sum

DI ()

converges absolutely for all x,y € [G] and is bounded uniformly in x, y. By a theorem
of Dizmier-Malliavin ([DM]), we may write f as a finite sum of convolutions f1;* fa;,
fri, f2: € S(G(A)), i = 1,..., k. By the Cauchy-Schwarz inequality, we have

k
‘Kfﬂ(x? y)‘ < Z Khz,iﬂf<x7 x)l/thl,iﬂT(y7 y)1/2

i=1

for all 7, all z,y € [G] and where we have set hj; = f5; * f;; where by definition

*:(9) = f5.i(g7). Thus, by another application of Cauchy-Schwarz, we get

k
Z|Kf,w(za y)| < Z Khzyi,cusp(xa z)l/thl,i,cusp(ya y>1/2
T i=1

for all x,y € [G] and the right hand side is uniformly bounded (even of rapid decay).
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A.2 Relative trace formulae

We now return to the situation considered in section 3. We will use the same notations and
normalization of measures as there (in particular our global Haar measures are Tamagawa
measures). We define the following 'bases’ (geometric quotients): B := H\G/H and B’ :=
H{\G'/H}. These are affine varieties (as H, H; and H) are reductive). We set p : G — B
and p' : G’ — B’ for the natural projections and pp, p’ for the corresponding maps at the
level of F-points. For all test function f € S(G(A)), f' € S(G'(A)), § € B(F), v € B'(F), we
set

Kps(z,y) = > fla7'6y), z,yeG(A)

QEPF (6)

Kpa(ey)i= >, fl™'w), oyed'(d)

ve(Pp) 1 (7)

Note that these sums are absolutely convergent by Proposition A.1.1 (v) and that

Z Kis(x,y)

6eB(F)

Kf/ Z, y Z Kf/ € y
~eB'(F)

Whenever convergent, we define the following ’global orbital integrals’

0(5, f) = J J Kﬁg(hl, hg)dhldhg
[H] J[H]

O, f) = f K pooy (s, ho)n(hs) dhadhy
[H]] J[H]]

and the following two expressions

J(f) - J[H] LH] Kf(hl, hg)dhldhg

[(f/) = J Kf’(hlu h2)77(h2)dh2dh1
[H1] J[Hj]

Proposition A.2.1 (i) Assume that f € S(G(A)) is a nice function (see §3.5). Then the
expressions defining J(f) and O(0, f), § € B(F), are absolutely convergent and we have
the equalities

>, 06, ) =J(f) =), T (f)

0eB(F)
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where the left sum is absolutely convergent and the right sum is over the set of cuspidal
automorphic representations m of G(A).

(11) Assume that f" € S(G'(A)) is a nice function (see §3.5). Then the expressions defining
I(f") and O(~, f'), v € B'(F), are absolutely convergent and we have the equalities

D1 00, f) = I(f) = X, 2L, ngye) *In(f)
~eB/(F) I

where the left sum is absolutely convergent and the right sum is over the set of cuspidal
automorphic representations Il of G'(A) whose central character is trivial on Zpy; (A).

Proof: We only prove (ii) the proof of (i) being similar.
Set G = G'/Zpy and define 7 eS(G(A) b

Then we have, at least formally,
J J hl, ho)n(ha)dhodhy
HY] J[Hy 2y

the expression defining I(f’) is absolutely convergent and that

I(f/):Zf f Kﬁ,n<h17h2)7](h2)dh2dhl
m JIH] J[H)/Z ]

where the sum is over the set of all cuspidal automorphic representations II of G'(A) with
a central character trivial on Zp;(A). We would like to identify the term indexed by II
above with the global spherical character I(f’). However, we don’t have equality on the
nose because the scalar products used to define Ii;(f’) and K 7 are not the same. More
precisely, Iri(f’) is defined using the Petersson scalar product (., .)pe; of section 3 whereas in
the definition of K F we have used the scalar product

As f’ is a nice function we have K3 7 = Kj ., Thus, by Proposition A.1.2, it follows that

(¢, ¢/)L2([€;']) - @1 ¢(§)Wd§

— vol (Zar (F)Ziy(A)\Zer(A)) (9,6 s
Thus, we get

J;{/ fH//Z hl, ho)n(hs)dhedhy = vol (ZG/(F)ZHQ(A)\Z@(A))f1 In(f")
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By 2.5(1), we have

vol (Zer(F) Zy (A)\Zer (A)) = vol (E*AX\AY)” = 22L(1, ngyr)?
and the second equality of (ii) follows.

The first equality follows from standard formal manipulations. To justify these manipula-
tions, we need to establish that the following expression is absolutely convergent (as a triple
integral)

J J > Ky (ha, ha)n(he)dhadhy = J J >0 Kj (h, ha)n(ha)dhadhy
[41] (1) 1t/ 2,4)

(2] ~eB!(F) ~eB!(F)

where for all v € B'(F), K} is defined the same way as Ky ,. For this, by Proposition
A.1.1 (v) and (ix), it suffices to show that for all d > 0 we have an inequality

(1) 15 (s )| << I 2 U 2

for all v € B'(F) and all hy € [H]|, hy € [H)/Zy]. Since f’' is factorizable, we may
write f' = f. ® f'° with f, € S(G'(Fy)) and f'% € S(G'(A%)). Let B <> V = A’
be a closed embedding of B’ into some affine space. For all ¢ € CFP(V(Fy)), we define
fo = (0f%) ® ® f'* where we identify ¢ with a function on G’(F,) by composition with the
projection G'(F,) — B'(Fy) and the embedding B'(F;) < V(F). Then, f/ is again a

nice function so that K = Kj .. and, by A.1(8), for all d > 0 there exists a continuous
Lp?

semi-norm 4 on S(G’(F:O)) such that

) [ (90| < vale o) lall 2 Iyl 2

for all p € CP(V(Fy)) and all z,y € [G]. Let I denote the intersection of B'(F') with
the projection of the support of f'* (a compact subset of B/(A%)). Note that for all ¢ €
CE(V(Fp)), all v € B'(F) and all (hi,he) € Hi(Ap) x Hy(Ap), we have Ky _(hi,ha) =
(V) K (h, he) and Kj (i, he) = 0if v ¢ I'. Hence, by (2), to show (1) 1t suffices to
construct a family (¢, ),er of functions in C°(V (F,,)) satisfying the following two conditions

e For all v e I', we have Supp(¢,) nI' = {7} and ¢,(y) = 1;
e For all d > 0, the function v € I — ||v||%va(p, fL) is bounded.

There exists a lattice L < V(Fy) containing I'. Fix a function ¢y € CP(V (Fy)) with the
property that Supp(po) N L = {0} and ¢y(0) = 1. For all v € L, define ¢, € C(V(F,))
by ¢u(x) = wo(x — v). We claim that the family (¢, ),er satisfies the two conditions above.
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Indeed, the first condition is clear and for all d > 0, there exist k > 0 and two finite families
(u;)ier and (v;);er of elements of U(g.,) such that

vi(pfi) <sup sup [(R(ui)e)(9)(R(vi) f2)(9)] lglle

el geGr(Fu)

for all p € CX(V(Fy)). Then, for all £ > 0 we have

va(pfy) < (sup Sup \(MW)@O)(Q)HIQIIJ) (Sup sup \(R(vi)féo)(g)lllg||l§;7>

iel geG'(Fyp) el geG'(Fu)

for all p € CP(V(F,)). Thus, it suffices to show that for all u € U(g),) there exists £ > 0 so
that the function

vel = Wiz sup [(R(w)e,)(9)lllglle

geGl(Fco)

is bounded. Fix u € U(g),). Then, we can find a finite family (r;);e; of regular functions
in C [Rr/pG’] and a finite family (X;)je; of elements of the symmetric algebra of V(F)
such that, denoting by d(X;) the corresponding constant coefficients differential operators
on V(Fy), we have

R(u)e = > r;0(X;)p
jedJ
for all p € CP(V(Fy)). Since for each j € J the absolute value of r; is bounded by a constant

times a power of the norm |.||¢/, we are reduced to prove that for all X in the symmetric
algebra of V(Fy,) there exists £ > 0 such that

V% sup [0(X)ey(9)l gl « 1
9€G’ (Fo)

for all v e I'. By our choice of the functions (¢ ) er and Proposition A.1.1(ii) we have

7l < llglle

for all v e I" and all g € G'(F,) with ¢, (g) # 0. Hence, we just need to show that for all X
in the symmetric algebra of V(F,) the function

yel'— sup [0(X)py(g9)] = sup [(X)py(v)]
geG/(Fw) UEB/(Fco)

is bounded. But this is obvious by the way we have defined the functions (¢, ) er. W
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A.3 Proof of Theorem 3.5.1

Let f € S(G(A)) and f' € S(G'(A)) be nice functions and assume that there exists a tuple
(Y, 7 e S(G"'(A)), matching f’ and such that f = f. By Theorem 3.4.4, we may
assume that f"' = 0 for almost all W’. There are natural isomorphisms H"’ \GW/ JHY' ~
B ~ B’ for all W’ (see §3.4). In order to compare the trace formulas of Proposition A.2.1,
we need to know that for all § € B(F') and all v € B'(F') corresponding to each other via the
previous bijection we have

(1) 20 (6, /") =007, 1)

Note that for v regular semi-simple (i.e. such that the fiber over v in G'(F') consists of
regular semi-simple elements), this is a direct consequence of the fact that (f"')y» matches
f’ (in this case there is at most one nonzero contribution in the left sum). To treat the
general case, we need to use recent results of Zydor and Chaudouard-Zydor. More precisely,
in |Zy| Zydor has defined, for 6 € B(F') and v € B'(F), certain distributions

gV e S(GV () — 0%(5,9")

g € S(G'(A)) ~ 0%(v,9)

The definition of O%(v,.) is (roughly) as follows. let A be the standard maximal split torus
in GL, and set a := X,(A)®R. Then for T € a, ¢ € S(G'(A)) and v € B'(F), Zydor defines
a certain ’truncated’ kernel K _ on [H{] x [Hj] (see [Zy] §5.5, note that the o of loc. cit.
corresponds to our v and that the function f of loc. cit. corresponds not to g’ but rather to
its descent ¢’ to S,11(A) as in §3.3) and he shows that for 7" in a certain cone the integral

077 (v,4) = J[H,] iy K. (h1, ha)n(hg)dhydhy

converges absolutely (see [Zy,Theorem 5.9]). The definition of K, is as a sum the main
term being Ky ., and the remaining terms depending only on g} for certam proper parabolic

subgroup P = MU of G’ where gp(x) := J ¢'(xu)du. Since f’ is a nice function, we have
U(A

fp = 0 for all proper parabolic subgroup an(d)thus K yry = Ky and O%T (v, ') = O(v, )
for all T' (remark that this also reproves the absolute convergence of O(vy, f') of Proposition
A.2.1). Finally, still for T in a certain cone, Zydor shows that the function T +— O%7T (v, ¢')
is an exponential-polynomial whose purely polynomial term is constant (|Zy, Theorem 5.9])
and he defines O%(, ¢’) to be this constant. Since O%T (v, f') = O(y, f’) for all T, we also
have O% (v, f') = O(, f'). The definition of O%(4,.) is similar and since the functions f"’
are nice the same argument shows that OZ (6, fV') = O(9, fV') for all W’ and all § € B(F).
Finally, the main result of [CZ] is that if ¢’ € S(G’(A)) match a tuple of functions (¢"" )y,
gV e S(G"'(A)), then we have
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>.07(5,g") = 0%(v,9)
W/

for all 6 € B(F) and all v € B'(F) corresponding to each other (strictly speaking [CZ]
only considers compactly supported functions but the proofs applies verbatim to Schwartz
functions). Together with the previous equalities this shows (1).

Now (1) together with Proposition A.2.1 leads to the identity

(2) DN T (FY) = D272 L(1, ) P In(f)

W' Tty

where 7 runs over the set of all cuspidal automorphic representations of G"'(A) and
IT runs over the set of all cuspidal automorphic representations of G’(A) whose central
character is trivial on Zp; (A). Fix a maximal compact subgroup KWV =11, KY of GY'(A)
for all W’ and let ¥ be the infinite set of places v of F' which split in F and where m, f
and f’ are unramified. By Theorem 3.4.4, we may assume that for all W’ and all v € X
the function f'' is unramified (i.e. it equals vol(K!')™'1,us). Then, in the equality
(2) only the 7y~ and the II which are unramified at all places ‘in & contribute. Define the
Hecke algebra He v = C.(G(Ay)//Kyx) of compactly supported and Ky-biinvariant functions
on G(Ay). This is the restricted tensor product over v € 3 of the local Hecke algebras
Heo = C(G(F,)//K,). We define similarly the Hecke algebra Hex = C.(G'(Ax)//KY)
and the local Hecke algebras He,, = C.(G'(F,)//K]). Note that for all n-dimensional
hermitian space W’ over E we have an isomorphism G(Ay) ~ G"'(Ay) canonical up to
conjugation which induces a canonical isomorphism Hgy ~ C.(GY'(Ay)//KY"). There is
a base change homomorphism He 'y — Hex, h — h" and for all v € %, all W’ and all
hy € Harw, hy * f/ and kY x f¥" match each other (see [Zhl, Proposition 2.5]). For all
irreducible unitary representation I of G’(A) which is unramified at all places in ¥ let us
denote by h — iAL(H) the corresponding character of the Hecke algebra H¢r s Then, for all
W', all cuspidal automorphic representation 7y which is unramified at all places in ¥ and

all h € Her x the element h* € Hex acts on Wvlég by iAz(BC'(WW/)). Let h € Herx. Since the

functions h * f* and (k" % f"")y~ are nice and match each other we can apply equality (2)
to these functions to get

(3) SN WBC () n, (F7) = 3272 L1 ) " 2R(I) Inn(f)

W' oy 11

Let Ir7yunie (G’ (A)) be the set of all irreducible unitary representations of G'(A) which are
unramified at all places in ¥. Then the functions II € I77,,; »(G'(A)) — h(Il), h € He 5,

are bounded and we have i* = h where h* (9) = h(g~1'). Hence by the Stone-Weierstrass
theorem, from (3) we deduce
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(4) DN T (FY) = D272 L(1, i) P In(f)

W' Ty II

where this time 7y~ and II run over the sets of cuspidal automorphic representations of
G"'(A) and G'(A) such that BC(my,) = 11, = BC(x,) for all v € ¥.. Recall the following
automorphic-Cebotarev-density theorem due to Ramakrishnan (|Ra|):

Theorem A.3.1 (Ramakrishnan) Let Iy, IIy be two isobaric automorphic representa-
tions of GL4(Ag) such that 11, ~ Iy, for almost all places v of F' that are split in E.
Then, Hl = Hg.

As BC(my») is always isobaric it follows from this theorem that the right hand side of (4)
reduces to 272L(1,ng/r) *Ipcmn (f') and that if my- contributes to the left hand side then
BC(my+) = BC(w). In particular, my» and 7 belong to the same (global) Vogan L-packet.
By the local Gan-Gross-Prasad conjecture (see §2.4), and since by assumption 7 is tempered
at all archimedean places, we know that there is at most one abstractly H" -distinguished
representation in this L-packet. By assumption, 7 is such a representation. Hence, the left

hand side of (4) reduces to J;(f) and this ends the proof of Theorem 3.5.1. W
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